当前位置:文档之家› YAFFS2启动坏块问题

YAFFS2启动坏块问题

YAFFS2启动坏块问题
YAFFS2启动坏块问题

YAFFS2启动坏块问题

动的时候出现一大串:

block 2 is bad block 3 is bad block 4 is bad block 5 is bad block 6 is bad block 7 is bad block 8 is bad block 9 is bad ... VFS:Mounted root yaffs filesystem. Freeing init memory:

120K Warning:

unable to open an initial console. Failed to execute /linuxrc. Attempting defaults... Kernel panic - not syncing:

No init found. Try passing init option to kernel. 或者block 2 is bad 没有出现直接显示 VFS:

Mounted root yaffs filesystem. Freeing init memory:

120K Warning:

unable to open an initial console. Failed to execute /linuxrc. Attempting defaults... Kernel panic - not syncing:

No init found. Try passing init option to kernel. 其实都是 MTD没有正确地读取到 root 可以在 u-boot 中执行 nand bad 查看 bad block 的信息如果从0x200000 - 0x1200000 之间有很多bad block说明nand write.yaffs 这个命令还有问题 OOB 的信息没有正确地写入在 NANDFLASH 只写入了 data 而 OOB 没有写进去. 下面说说如果解决这个问题:在 NANDFLASH 的写入过程中其中会调用 nand_do_write_ops 在这个函数中 if unlikelyoob oob nand_fill_oobchip oob ops 这两行要注意在这两行之前 OOB buf一直都是正解的但这两行之后 OOB 的数据就变成了 0xFF了在靠前的一些 block OOB 都是 0xFF但是到了后面 OOB的数据就变得杂乱无章了所以就会出现一大串的 bad flash为什么会变成没有规律原因还没有找到将这两行MASK改为memcpychip-oob_poi oob ops-ooblen 问题就解决了或者在nand_write_opts 函数中将 oob_ops.mode MTD_OOB_AUTO 改为 oob_ops.mode MTD_OOB_RAW 问题同样可以解决.

Android源代码结构分析

目录 一、源代码结构 (2) 第一层次目录 (2) bionic目录 (3) bootloader目录 (5) build目录 (7) dalvik目录 (9) development目录 (9) external目录 (13) frameworks目录 (19) Hardware (20) Out (22) Kernel (22) packages目录 (22) prebuilt目录 (27) SDK (28) system目录 (28) Vendor (32)

一、源代码结构 第一层次目录 Google提供的Android包含了原始Android的目标机代码,主机编译工具、仿真环境,代码包经过解压缩后,第一级别的目录和文件如下所示: . |-- Makefile (全局的Makefile) |-- bionic (Bionic含义为仿生,这里面是一些基础的库的源代码) |-- bootloader (引导加载器),我们的是bootable, |-- build (build目录中的内容不是目标所用的代码,而是编译和配置所需要的脚本和工具) |-- dalvik (JAVA虚拟机) |-- development (程序开发所需要的模板和工具) |-- external (目标机器使用的一些库) |-- frameworks (应用程序的框架层) |-- hardware (与硬件相关的库) |-- kernel (Linux2.6的源代码) |-- packages (Android的各种应用程序) |-- prebuilt (Android在各种平台下编译的预置脚本) |-- recovery (与目标的恢复功能相关) `-- system (Android的底层的一些库)

Struts2框架工作原理及应用体会

2012年第11卷第6期 产业与科技论坛2012.(11).6 Industrial &Science Tribune Struts2框架工作原理及应用体会 □宋 君 张家爱 【摘要】通过针对特定用户的分析,搭建以Struts2为技术核心的旅行社管理系统。本文简单的介绍了MVC 、 Struts2的工作原理,同时总结了在项目制作过程中所得到的心得。 【关键词】 Struts2;MVC ;FilterDispatcher ;Action 【基金项目】本文为大学生科技创新院级基金项目(编号:2011070)成果 【作者单位】宋君,吉林农业科技学院信息工程学院;张家爱,吉林农业科技学院信息工程学院教师 本着锻炼自我与积极参与到实用性技术的目标,以发掘自身创新意识为前提。利用空闲时间,在老师的指导下,进行了一次大学生创新项目的实践性活动。本着实用原则,以某中小旅行社为客户(根据用户需求,匿名),以Struts2框架为基点,进行了一次旅行社管理系统的开发。在项目结束之余, 特将在项目过程中经历的种种认识进行了简单的总结,希望让阅读本文的朋友们,更多的参与到此类活动中。 一、基础思想— ——MVC 简述作为时下经典框架之一, MVC 具有其独特的价值。MVC 框架简单的说,就是将数据模型与用户视图进行分离。通过控制器进行协调处理的一种结构是框架。同时,也是本文中要讨论的Sturts2框架的基础思想。 M 是指模型层(Model ),V 是指用户视图(View ),C 则是指控制器 (Controller )。这种划分方式是以将模型层与视图层进行代码分离,从而降低两者之间的耦合性,使同一程序可以使用不同形式进行表现。不同层之间的修改不会或尽量少的印象到其他层功能的史前为前提。有效的提高的代码的维护性和设计难度。 图1 二、 Struts2工作原理(一)Struts2框架组成。Struts2框架由三个主要部分组成:核心控制器、业务控制器,以及由用户实现的业务逻辑组件。这里我们将侧重于核心控制器与业务控制器的理解与说明。 (二)核心控制器:FilterDispatcher 。FilterDispatcher 是Struts2框架的核心控制器,在此,我们可以将FilterDispatcher 看作一个类似于过滤网的过滤器。当用户发出请求,并到达Web 硬哟那种时,该过滤器会过滤用户请求。如果用户请求的结尾为action ,则将该请求转入Struts2框架进行处理。当Struts2框架获得了*.actio 请求后,会根据请求前面“*”的那部分内容,决定调用哪个业务逻辑组件作为响应单位。这里需要说明的是Struts2用来处理用户请求的Action 实例并不是业务控制器,而是作为Action 的代理———正因为Struts2的一大特点,与Servlet API 的非耦合性,使得用户实现的业务控制器无法直接处理用户请求。有效的提高了后期调试维护的效率。而Struts2框架再次提供了了一系列的拦截器。这些拦截器负责将HttpServletRequest 请求的参数解析出来,传入Action 中,并毁掉Action 的Execute 方法来处理用户请求。用户实现的Action 类仅作为Struts2的Action 代理的代理目标。用户实现的业务控制器则包含了对用户请求的处理。用户的请求数据包含在HttpServletRequest 对象中,而用户的Action 类无需访问HttpServletRequest 对象。拦截器负责将HttpServletRequest 里的请求数据解析出来,并传给业务逻辑组件Action 实例。 (三)业务控制器。业务控制器就是前文提到的用来实现用户Action 的实力,这里的每个Action 类通常包含有一个execute 方法,当业务控制器处理完用户的请求后,该方法将会针对此次处理返回一个字符串— ——该字符串就是一个逻辑树图名。当程序开发人员开发出系统所需要的业务控制器后,还需要针对性的配置Struts2的Action ,即需要配置Ac- tion 的以下三个部分:(1)Action 所处理的URl 。(2)Action 组件所对应的实现类。(3)Action 里包含的逻辑试图和物理资源之间的对应关系。每个Action 都要处理一个用户请求,而用户请求则总是包含有指定的URL 。当核心控制器过滤用户请求,并调用后,根据请求的URL 和Action 处理URL 之间的对应关系来处理转发。 · 342·

busybox详解制作根文件系统

详解制作根文件系统 单击,返回主页,查看更多内容 一、FHS(Filesystem Hierarchy Standard)标准介绍 当我们在linux下输入ls / 的时候,见到的目录结构以及这些目录下的内容都大同小异,这是因为所有的linux发行版在对根文件系统布局上都遵循FHS标准的建议规定。 该标准规定了根目录下各个子目录的名称及其存放的内容: 制作根文件系统就是要建立以上的目录,并在其中建立完整目录内容。其过程大体包括: ?编译/安装busybox,生成/bin、/sbin、/usr/bin、/usr/sbin目录 ?利用交叉编译工具链,构建/lib目录 ?手工构建/etc目录 ?手工构建最简化的/dev目录 ?创建其它空目录 ?配置系统自动生成/proc目录 ?利用udev构建完整的/dev目录 ?制作根文件系统的jffs2映像文件 下面就来详细介绍这个过程。 二、编译/安装busybox,生成/bin、/sbin、/usr/bin、/usr/sbin目录

这些目录下存储的主要是常用命令的二进制文件。如果要自己编写这几百个常用命令的源程序,my god,这简直是一个噩梦!好在我们有嵌入式Linux系统的瑞士军刀——busybox,事情就简单很多。 1、从https://www.doczj.com/doc/bf10266856.html,/下载busybox-1.7.0.tar.bz2 2、tar xjvf busybox-1.7.0.tar.bz2解包 3、修改Makefile文件 175 ARCH ?= arm 176 CROSS_COMPILE ?= arm-linux- 4、make menuconfig配置busybox busybox配置主要分两部分。 第一部分是Busybox Settings,主要编译和安装busybox的一些选项。这里主要需要配置:

几种Nand flash文件系统的对比

几种Nand flas文件系统的对比 1.来源:NLE-FFS: A Flash File System with PRAM for Non-linear Editing For thesedevices, NAND flash memory has became the most attractive storage medium due to outstanding characteristics such as its increased capacity, low power consumption, small size and light weight. For the efficient management of NAND flashmemory, several flash file systems have been proposed, including JFFS2, YAFFS2, CFFS and PFFS. several file systems such as MNFS,NAMU and ScaleFFS have been designed for real-time recording /playback and large-capacity storage. A. YAFFS2 YAFFS2 is the most widely employed file system for NAND flash memory. YAFFS2 essentially saves the object ID (file ID) and the chunk (page) number in the spare region to show the offset of a page and the owner file of the page. Therefore, YAFFS2 reads the spare regions and object headers to establish the metadata in memory. Although YAFFS2 is designed to support NAND flash memory, it has scalability problems. With YAFFS2, the location of the updated page is saved in NAND flash pages or spare regions, as shown in Fig. 10 (a); hence, the file system

LINUX文件系统制作详细

Linux文件系统制作流程 关键词:ARM Linux yaffs文件系统移植 Linux文件系统简介 Linux支持多种文件系统,包括ext2、ext3、vfat、ntfs、iso9660、jffs、romfs和nfs等,为了对各类文件系统进行统一管理,Linux引入了虚拟文件系统VFS(Virtual File System),为各类文件系统提供一个统一的操作界面和应用编程接口。 Linux下的文件系统结构如下: Linux启动时,第一个必须挂载的是根文件系统;若系统不能从指定设备上挂载根文件系统,则系统会出错而退出启动。之后可以自动或手动挂载其他的文件系统。因此,一个系统中可以同时存在不同的文件系统。 不同的文件系统类型有不同的特点,因而根据存储设备的硬件特性、系统需求等有不同的应用场合。在嵌入式Linux应用中,主要的存储设备为RAM(DRAM,

SDRAM)和ROM(常采用FLASH存储器),常用的基于存储设备的文件系统类型包括:jffs2,yaffs,cramfs,romfs,ramdisk,ramfs/tmpfs等。 >基于FLASH的文件系统 Flash(闪存)作为嵌入式系统的主要存储媒介,有其自身的特性。Flash的写入操作只能把对应位置的1修改为0,而不能把0修改为1(擦除Flash就是把对应存储块的内容恢复为1),因此,一般情况下,向Flash写入内容时,需要先擦除对应的存储区间,这种擦除是以块(block)为单位进行的。 闪存主要有NOR和NAND两种技术(简单比较见附录)。Flash存储器的擦写次数是有限的,NAND闪存还有特殊的硬件接口和读写时序。因此,必须针对Flash 的硬件特性设计符合应用要求的文件系统;传统的文件系统如ext2等,用作Flash的文件系统会有诸多弊端。 在嵌入式Linux下,MTD(Memory Technology Device,存储技术设备)为底层硬件(闪存)和上层(文件系统)之间提供一个统一的抽象接口,即Flash的文件系统都是基于MTD驱动层的(参见上面的Linux下的文件系统结构图)。使用MTD 驱动程序的主要优点在于,它是专门针对各种非易失性存储器(以闪存为主)而设计的,因而它对Flash有更好的支持、管理和基于扇区的擦除、读/写操作接口。 顺便一提,一块Flash芯片可以被划分为多个分区,各分区可以采用不同的文件系统;两块Flash芯片也可以合并为一个分区使用,采用一个文件系统。即文件系统是针对于存储器分区而言的,而非存储芯片。 1.jffs2 JFFS文件系统最早是由瑞典Axis Communications公司基于Linux2.0的内核为嵌入式系统开发的文件系统。JFFS2是RedHat公司基于JFFS开发的闪存文件系统,最初是针对RedHat公司的嵌入式产品eCos开发的嵌入式文件系统,所以JFFS2也可以用在Linux,uCLinux中。 Jffs2:日志闪存文件系统版本2(Journalling Flash FileSystem v2) 主要用于NOR型闪存,基于MTD驱动层,特点是:可读写的、支持数据压缩的、基于哈希表的日志型文件系统,并提供了崩溃/掉电安全保护,提供“写平衡”支持等。缺点主要是当文件系统已满或接近满时,因为垃圾收集的关系而使jffs2的运行速度大大放慢。 目前jffs3正在开发中。关于jffs系列文件系统的使用详细文档,可参考MTD补丁包中mtd-jffs-HOWTO.txt。 jffsx不适合用于NAND闪存主要是因为NAND闪存的容量一般较大,这样导致jffs为维护日志节点所占用的内存空间迅速增大,另外,jffsx文件系统在

实验四 ramdisk 根文件系统的制作

实验四ramdisk根文件系统的制作 一.实验目的 1.熟悉根文件系统组织结构; 2.定制、编译ramdisk根文件系统。 二.实验设备 1.硬件:EduKit-IV 嵌入式教学实验平台、Mini2410 核心子板、PC 机; 2.软件:Windows 2000/NT/XP、Ubuntu 8.04、其他嵌入式软件包。 三.实验内容 利用6.3 中的已经完成的文件系统,生成一个根文件系统镜像。 四.实验原理 ramdisk是内核初始化的时候用到的一个临时文件系统,是一个最小的linuxrootfs系统,它包含了除内核以外的所有linux系统在引导和管理时需要的工具,做为启动引导驱动,包含如下目录: bin,dev,etc,home,lib,mnt,proc,sbin,usr,var。还需要有一些基本的工具:sh,ls,cp,mv……(位于/bin 目录中);必要的配置文件:inittab,rc,fstab……位于(/etc目录种);必要的设备文件:/dev/tty*,/dev/console,/dev/men……(位于/dev目录中);sh,ls等工具必要的运行库:glibc。1.制作ramdisk根文件系统映像 1)单击菜单应用程序->附件->终端打开终端,设置环境变量: $ source /usr/local/src/EduKit-IV/Mini2410/set_env_linux.sh $ source /usr/crosstool/gcc-3.4.5-glibc-2.3.6/arm-linux/path.sh 2)执行命令切换到ramdisk实验目录下: $cd $SIMPLEDIR/6.4-ramdisk 3)运行脚本文件: $ sudosh ramdisk-install.sh shell 脚本命令说明: #!/bin/bash # # ramdisk-install.sh - Make ramdiskfilesystem. # # Copyright (C) 2002-2007

yaffs2文件系统制作

交叉编译器ARM-Linux-gcc4.1.2 开发板TX2440A Busybox-1.15.1.tar.bz2(在Linux中被称为瑞士军刀) mkyaffs2image工具 首先创建一个名字为root_2.6.31的文件夹,在其中创建如下文件夹 etc bin var dev home lib mnt proc root sbin sys tmp usr opt共14个文件夹 解压Busybox tar xjvf busybox 进入源目录,修改Makefile 第164行,CROSS_COMPILE=arm-linux- 第190行,ARCH=arm 执行#make men onfig进行配置 配置选项大部分都是保持默认的,只需要注意选择以下这几个选项,其他的选项都不用动:Busybox Setting---> Build Options---> [*]Build Busybox as a static binary(no shared libs) [*]Build with Large File Support(for accessing files>2GB) Installation Options--->

(./_install)Busybox installation prefix 进入这个选项,输入busybox的安装路径,如:../rootfs Busybox Library Tuning---> [*]vi-style line editing commands [*]Fancy shell prompts 要选择这个选项:“Fancy shell prompts”,否则挂载文件系统后,无法正常显示命令提示符:“[\u@\h\W]#” 配置完成以后 执行#make #make install 然后就会在上一级目录下生成rootfs文件夹,里面包含几个文件夹/bin/sbin/usr linuxrc 把这些文件全部复制到刚建好的root_2.6.31目录下, #cp–rf*../root_2.6.31 在dev目录下,创建两个设备节点: #mknod console c51 #mknod null c13 然后进入自己建立的etc目录 拷贝Busybox-1.15.2/examples/bootfloopy/etc/*到当前目录下。 #cp-r../../busybox-1.15.2/examples/bootfloopy/etc/*./ 包括文件:fstab init.d inittab profile

基于busybox的根文件系统制作

龙源期刊网 https://www.doczj.com/doc/bf10266856.html, 基于busybox的根文件系统制作 作者:李飞,武金虎,石颖博 来源:《电脑知识与技术》2010年第17期 摘要:Busybox是构建嵌入式Linux文件系统的必备软件,它是所有文件和设备节点的起始点,是决定系统能否正常启动的关键。通过busybox-1.1.3为例,进行配置、编译、安装等过程,从而形成简单的根文件系统映像文件,为以后嵌入式Linux系统的移植打下了良好的开端。 关键词:Busybox;嵌入式Linux;Linux操作系统;根文件系统;cramfs 文件系统 中国分类号:TP316.81文献标识码:A文章编号:1009-3044(2010)17-4655-02 Making Root File System Based on Busybox LI Fei, WU Jin-hu, SHI Ying-bo (College of Computer Science and Information, Guizhou University, Guiyang 550025, China) Abstract: Busybox is an essentiaL software to buiLd an embedded Linux fiLe system. It is the starting node point of aLL the fiLes and devices and the key whether the system can have a normaL start. Taking busybox-1.1.3 for exampLe, making a simpLe root image system fiLe by configuration compiLation and instaLLation Lays a good foundation for migration of the embedded Linux system. Key words: busybox; embedded linux; Linux OS; root file system; cramfs file system 1 根文件系统结构 根文件系统是所有文件和设备节点的起始点,包括系统所必须的各种工具软件、库文件、 脚本、配置文件等一系列的文件。一个基本的Linux根文件系统包含有以下的目录:dev、proc、bin、etc、usr、Lib、temp、var、usr等等目录。其中dev是设备文件节点目录,proc是挂载proc文件系统所用的目录,bin目录下面包含了系统的基本命令,etc目录是系统启动脚本所在的目录,Lib是系统默认的动态链接库目录,usr是用户目录,temp是临时目录,用来保存临时文 件,var目录包含系统运行时要改变的数据。以上都是根文件系统所必须的目录 2 Busybox简介 熟练嵌入式Linux的朋友对busybox一定不会陌生,它是标准Linux工具的一个单个可执行实现,被形象的称为嵌入式Linux系统中的“瑞士军刀”,因为它将许多常用的UNIX工具和命令 结合到一个单独的可执行程序中。虽然busybox中的这些工具相对于GNU常用工具功能有所

JFFS文件系统和YAFFS文件系统的比较

JFFS文件系统和YAFFS文件系统的比较 NAND flash文件系统JFFS2和YAFFS比较JFFS是由瑞典的Axis Communications Ab公司开发的(1999,以GNU发布),针对flash设备的特性为嵌入式设备开发的.(我边上的兄弟曾想去那里作毕业设计) JFFS1和JFFS2的设计中都考虑到了FLASH的特性特别是满足了上述3个条件,包括了垃圾回收,坏块管理等功能. 这两种文件系统属于LFS(Log-structured File System).这种文件系统的特点是一旦数据出错,容易恢复,但是系统运行是需要占用一定的内存空间,这些空间就是用来存储”log”的. JFFS的缺点就是加载时间太长,因为每次加载都需要将FLASH上的所有节点(JFFS的存储单位)到内存,这样也占用了可观的内存空间.除此之外,”circle log”设计使得在对文件数据进行所有的数据都会被重写,这样造成不必要的时间,同时也会减少FLASH的寿命. JFFS2对JFFS1作了些改进,比如所需的内存变少了,垃圾回收机制也优化了. 针对JFFS1,JFFS2的缺点,JFFS3出现了. YAFFS1 ">“Yet Another Flash File System”作者是新西兰的Charles Manning为一家名叫Alpha one 的公司(https://www.doczj.com/doc/bf10266856.html,/)设计的,是第一个为NAND Flash设计的文件系统.共两个版本YAFFS1 和YAFFS2. YAFFS1支持512Bytes/Page的NAND Flash;后者YAFFS2支持2kBytes/Page的NAND Flash. YAFFS文件系统也属于LFS. 跟其他文件系统比较,它具有更好的可移植性,甚至可以使用在没有操作系统的设备上(called “YAFFS/Direct”). YAFFS采用模块化设计,虽然最初是用在linux系统上的,但是也已经移植到其他系统比如wince. 还有个突出的优点是它在mount的时候需要很少的内存.(如果是小页—512byte/page,每1MByte NAND大约需要4KBytes内存;大页需要大概1KBytes RAM/1MByte NAND) JFFS与YAFFS比较,两者各有长处. 一般来说,对于小于64MBytes的NAND Flash,可以选用JFFS;如果超过64MBytes,用YAFFS比较合适.

linux-2.6.18移植

Linux-2.6.18移植 有了我们的交叉编译环境和我们先前学的内核基础知识,下面我们就开始我们的内核移植了,我们所用的是博创的 S3C2410 。 关于 linux-2.6.18.tar.bz2 的下载网站先前我们说过,我们要先到该官方网站上去下载一个全新的内核。 [root@Binnary ~ ]# tar –jxvf linux-2.6.18.tar.bz2 [root@Binnary ~ ]# make mrproper 如果你是新下载的内核,那这一步就不用了。但如果你用的是别人移植好的内核,那最好在编译内核之前先清除一下中间文件,因为你们用来编译内核的交叉编译工具可能不同。 第一步:修改Makefile文件 将 改为 第二步:修改分区设置信息 我们要先在BootLoader中查看相应的分区信息 vivi>help 然后修改内核源码中的分区信息。分区信息文件在 a rch/arm/mach-s3c2410/common-smdk.c 将其中的

改为如下内容:

第三步:内核通过 BootLoader把数据写入NAND Flash,而vivi的ECC效验算法和内核的不同,内核的效验码是由NAND Flash控制器产生的,所以在此必须禁用NAND Flash ECC。所以我们就要修改 drivers/mtd/nand/s3c2410.c 这个文件。将 中的 chip->ecc.mode = NAND_ECC_SOFT ,改为如下 chip->ecc.mode = NAND_ECC_NONE。

只此一处。 第四步:下面是devfs的问题,因为2.6.12内核以后取消了devfs的配置选项,缺少了它内核会找不到mtdblock设备。所以我们需要修改 fs/Kconfig 文件,或者是从2.6.12的fs/Kconfig中拷贝下面几项到2.6.18的fs/Kconfig中去,我们采用修改的方法来完成。 修改 fs/Kconfig支持devfs 。 在Pseudo filesystems 主菜单的最后添加我们所要的内容。 第五步:文件系统的支持 Yaffs 文件系统 YAFFS文件系统简介 YAFFS,Yet Another Flash File System,是一种类似于JFFS/JFFS2的专门为Flash设计 的嵌入式文件系统。与JFFS相比,它减少了一些功能,因此速度更快、占用内存更少。 YAFFS和JFFS都提供了写均衡,垃圾收集等底层操作。它们的不同之处在于: (1)、JFFS是一种日志文件系统,通过日志机制保证文件系统的稳定性。YAFFS仅仅 借鉴了日志系统的思想,不提供日志机能,所以稳定性不如JAFFS,但是资源占用少。 (2)、JFFS中使用多级链表管理需要回收的脏块,并且使用系统生成伪随机变量决定 要回收的块,通过这种方法能提供较好的写均衡,在YAFFS中是从头到尾对块搜索, 所以在垃圾收集上JFFS的速度慢,但是能延长NAND的寿命。 (3)、JFFS支持文件压缩,适合存储容量较小的系统;YAFFS不支持压缩,更适合存 储容量大的系统。 YAFFS还带有NAND芯片驱动,并为嵌入式系统提供了直接访问文件系统的API,用 户可以不使用Linux中的MTD和VFS,直接对文件进行操作。NAND Flash大多采用 MTD+YAFFS的模式。MTD( Memory Technology Devices,内存技术设备)是对Flash 操作的接口,提供了一系列的标准函数,将硬件驱动设计和系统程序设计分开。 Yaffs 文件系统内核没有集成,可以对其主页下载: https://www.doczj.com/doc/bf10266856.html,/cgi-bin/viewcvs.cgi/#dirlist

struts2 实验报告

1.系统分析与设计 1.1 系统功能描述 本系统是个非常简单的注册、登录系统。本系统的实现是基于Struts2、Spring、Hibernate 三个框架,系统功能单一,业务逻辑简单。 当用户注册信用户时,就是向系统中增加一个新用户,对应的数据库增加一条记录。 当用户输入注册信息时,系统提供了基本的输入验证判断用户输入是否合法,只有当用户输入满足基本输入要求时,才会被提交到实际的登录系统,进行实际的登录处理。 系统还使用了随机产生的图形验证码来防止刷新,防止用户通过单击浏览器的书安心按钮来重复注册多个用户。 系统还提供了一种Ajax方式来验证用户输入的注册名是否有效,系统要求所有的用户名不能重复。故当用户输完用户名后,系统立即在页面上方提示用户该用户名是否可用,如果系统中没有该用户名,则系统提示该用户名可用;否则提示用户该用户名重复,用户必须重新选择用户名注册。 当用户注册一个新用户名之后,就可以使用系统的登录功能来登录系统了,用户输入登录用的用户名、密码后,系统一样提供了基本的输入校验。 除此之外,系统还采用了随机产生图形验证码来防止恶意用户的暴力破解,系统随机生成一个图形验证码,而用户登录必须输入图形验证码中显示的字符串,只有用户输入的字符串和系统随机生成的验证码字符相同时,系统才允许用户登录。 1.2 系统功能流程

1.3 数据库设计 相关的映射文件: 一旦提供了上面的映射文件,Hibernate 就可以理解User 和user_table 之间的对应关系。 2.系统实现与测试 2.1 系统采用的关键技术 MVC 框架采用了Struts2框架,Struts2框架的易用性,极好的简化了系统的MVC 层的实现;本系统使用了Struts2的JSON 插件来完成Ajax 功能,除此之外本系统为了避免进行底层的Ajax 交互,还是用了一个简单Prototype.js 函数库,用以简化Ajax 编程。Struts2框架的稳定性,为系统的稳定运行提供了保证。

在硬盘上制作根文件系统.doc

在硬盘上制作根文件系统 一、实验目标: 在硬盘上建立一个根文件系统,硬盘镜像文件的名称为:hdc-0.11.new.img 二、实验环境: 1、Vmware workation, bochs虚拟机,ultraedit编辑环境 2、用到的四个重要的镜像文件:bootimage-0.11-hd,hdc-0.1.img,并将他们放到 mylinux0.11文件夹中。 3、实验环境:redhat linux 三、实验理论依据: 1、Linux引导启动时,默认使用的文件系统是根文件系统。其中一般都包括以下一些子目录和文件: etc/ 目录主要含有一些系统配置文件; dev/ 含有设备特殊文件,用于使用文件操作语句操作设备; bin/ 存放系统执行程序。例如sh、mkfs、fdisk等; usr/ 存放库函数、手册和其它一些文件; usr/bin 存放用户常用的普通命令; var/ 用于存放系统运行时可变的数据或者是日志等信息。 存放文件系统的设备就是文件系统设备。Linux 0.11内核所支持的文件系统是MINIX 1.0文件系统。 2、inode 译成中文就是索引节点。每个存储设备或存储设备的分区(存储设备是硬 盘、软盘、U盘... ... )被格式化为文件系统后,应该有两部份,一部份是inode,另一部份是Block,Block是用来存储数据用的。而inode呢,就是用来存储这些数据的信息,这些信息包括文件大小、属主、归属的用户组、读写权限等。inode为每个文件进行信息索引,所以就有了inode的数值。操作系统根据指令,能通过inode 值最快的找到相对应的文件。每一个文件开头都是一个inode。 做个比喻,比如一本书,存储设备或分区就相当于这本书,Block相当于书中的每一页,inode 就相当于这本书前面的目录,一本书有很多的内容,如果想查找某部份的内容,我们可以先查目录,通过目录能最快的找到我们想要看的内容。

Yaffs2文件系统中对NAND Flash磨损均衡的改进

Yaffs2文件系统中对NAND Flash磨损均衡的改进 摘要:针对以NAND Flash为存储介质时Yaffs2文件系统存在磨损均衡的缺陷,通过改进回收块选择机制,并在数据更新中引入冷热数据分离策略,从而改善NAND Flash的磨损均衡性能。实验借助Qemu软件建立Linux嵌入式仿真平台,从总擦除次数、最大最小擦除次数差值和块擦除次数标准差等方面进行对比。实验结果表明,在改进后的Yaffs2文件系统下NAND Flash的磨损均衡效果有明显提升,这有益于延长NAND Flash的使用寿命。 关键词: Yaffs2文件系统;NAND Flash;垃圾回收;冷热数据 0 引言 NAND Flash存储设备与传统机械磁盘相比,具有体积小、存储密度高、随机存储和读写能力强、抗震抗摔、功耗低等特点[1]。它被广泛用于智能手机、车载智能中心、平板电脑等智能终端中。近年来,以NAND Flash为存储介质的固态硬盘也得到越来越多的应用。目前Yaffs2文件系统(Yet Another Flash File System Two,Yaffs2)[1]是使用最多、可移植性最好的专用文件系统,在安卓、阿里云OS、Linux等嵌入式系统中都有使用。在Yaffs2文件系统下以NAND Flash为存储介质时存在磨损均衡的缺陷,可通过对回收块选择机制作改进和引入冷热数据分离策略来提高磨损均衡的效果。 1 Yaffs2和Nand Flash关系 这里以使用最多的Linux操作系统为实践,将Yaffs2文件系统移植到Linux操作系统中。Linux系统通常可以分为3层:应用层、内核层和设备层,其中支持NAND Flash设备的Yaffs2文件系统属于内核层,。 最上层用户应用程序通过VFS(Virtual File System)提供的统一接口,将数据更新等文件操作传递给Yaffs2。VFS代表虚拟文件系统,它为上层应用提供统一的接口。有了这些接口,应用程序只用遵循抽象后的访问规则,而不必理会底层文件系统和物理构成上的差异。然后Yaffs2通过MTD(Memory Technology Device)提供的统一访问接口对NAND Flash进行读、写和擦除操作,从而完成数据的更新或者存储操作。MTD代表内存技术设备,它为存储设备提供统一访问的接口。最终,在NAND Flash上以怎样的格式组织和存储数据由Yaffs2文件系统决定。 NAND Flash由若干块(block)组成,每个块又是由若干页(page)组成,页中含有数据区和附加区。NAND Flash的页根据状态不同,可以分为有效页、脏页、空闲页。有效页中存放有效数据,脏页中存放无效数据,空闲页是经过擦除后可以直接用于写入数据的页。NAND Flash在写入数据前需要执行擦除操作,因此数据不能直接在相同的位置更新。当一个页中数据需要更新时,必须将该页中有效数据拷贝到其他空闲页上再更新,并将原来页上的数据置为无效。随着时间的推移,许多无效页累积在存储器中使得空闲页逐渐减少。当存储器中的空闲空间不足时,启动垃圾回收操作,利用回收块选择机制从待回收块中选取满足要求的块来擦除,从而得到足够的空闲空间。NAND Flash中块的擦除次数有限,通常为10 000次~100 000次[2]。当某个块的擦除次数超过使用寿命时,该块将无法正常用于数据存储。因此,垃圾回收应利用合理的回收块选择机制,从待回收块中找到回收后能产生良好磨损均衡效果且付出较少额外代价的块来回收,从而获得足够的空闲空间用于数据更新操作。 2 Yaffs2在磨损均衡方面的缺陷 Yaffs2中回收块的选择机制[3]是从待回收块中找到有效数据最少的块来回收。回收过程中,Yaffs2能够减少有效数据的额外读和写操作。当数据更新处于均匀分布的情况下,Yaffs2表现出较好的磨损均衡效果。 但是,通常情况下数据的更新频率不同,有些数据经常更新,而有些数据很少更新。经

如何看懂源代码--(分析源代码方法)

如何看懂源代码--(分析源代码方法) 4 推 荐 由于今日计划着要看Struts 开源框架的源代码 昨天看了一个小时稍微有点头绪,可是这个速度本人表示非常不满意,先去找了下资 料, 觉得不错... 摘自(繁体中文 Traditional Chinese):http://203.208.39.132/translate_c?hl=zh-CN&sl=en&tl=zh-CN&u=http://ww https://www.doczj.com/doc/bf10266856.html,/itadm/article.php%3Fc%3D47717&prev=hp&rurl=https://www.doczj.com/doc/bf10266856.html,&usg=AL kJrhh4NPO-l6S3OZZlc5hOcEQGQ0nwKA 下文为经过Google翻译过的简体中文版: 我们在写程式时,有不少时间都是在看别人的代码。 例如看小组的代码,看小组整合的守则,若一开始没规划怎么看,就会“噜看噜苦(台语)”不管是参考也好,从开源抓下来研究也好,为了了解箇中含意,在有限的时间下,不免会对庞大的源代码解读感到压力。网路上有一篇关于分析看代码的方法,做为程式设计师的您,不妨参考看看,换个角度来分析。也能更有效率的解读你想要的程式码片段。 六个章节: ( 1 )读懂程式码,使心法皆为我所用。( 2 )摸清架构,便可轻松掌握全貌。( 3 )优质工具在手,读懂程式非难事。( 4 )望文生义,进而推敲组件的作用。( 5 )找到程式入口,再由上而下抽丝剥茧。( 6 )阅读的乐趣,透过程式码认识作者。 程式码是别人写的,只有原作者才真的了解程式码的用途及涵义。许多程式人心里都有一种不自觉的恐惧感,深怕被迫去碰触其他人所写的程式码。但是,与其抗拒接收别人的程式码,不如彻底了解相关的语言和惯例,当成是培养自我实力的基石。 对大多数的程式人来说,撰写程式码或许是令人开心的一件事情,但我相信,有更多人视阅读他人所写成的程式码为畏途。许多人宁可自己重新写过一遍程式码,也不愿意接收别人的程式码,进而修正错误,维护它们,甚至加强功能。 这其中的关键究竟在何处呢?若是一语道破,其实也很简单,程式码是别人写的,只有原作者才真的了解程式码的用途及涵义。许多程式人心里都有一种不自觉的恐惧感,深怕被迫去碰触其他人所写的程式码。这是来自于人类内心深处对于陌生事物的原始恐惧。 读懂别人写的程式码,让你收获满满 不过,基于许多现实的原因,程式人时常受迫要去接收别人的程式码。例如,同事离职了,必须接手他遗留下来的工作,也有可能你是刚进部门的菜鸟,而同事经验值够了,升级了,风水轮流转,一代菜鸟换菜鸟。甚至,你的公司所承接的专案,必须接手或是整合客户前一个厂商所遗留下来的系统,你们手上只有那套系统的原始码(运气好时,还有数量不等的文件)。 诸如此类的故事,其实时常在程式人身边或身上持续上演着。许多程式人都将接手他人的程式码,当做一件悲惨的事情。每个人都不想接手别人所撰写的程式码,因为不想花时间去探索,宁可将生产力花在产生新的程式码,而不是耗费在了解这些程式码上。

嵌入式Linux根文件系统制作

实训项目四-嵌入四Linux系统根文件系统制作一. 项目实施目的 了解 UP-CUP2440 型实验平台Linux 系统下根文件系统结构 掌握根文件系统的搭建过程 掌握busybox、mkcramfs等工具的使用方法 二. 项目主要任务 使用busybox生成文件系统中的命令部分,使用mkcramfs工具制作CRAMFS 格式的根文件系统。 分析根文件系统etc目录下重要配置文件的格式及语法,熟悉根文件系统的启动过程 三. 基本概念 1.文件系统基本概念 Linux的一个最重要特点就是它支持许多不同的文件系统。这使Linux非常灵活,能够与许多其他的操作系统共存。Linux支持的常见的文件系统有:JFS、ReiserFS、ext、ext2、ext3、ISO9660、XFS、Minx、MSDOS、UMSDOS、VFAT、NTFS、HPFS、NFS、SMB、SysV、PROC等。随着时间的推移, Linux支持的文件系统数还会增加。Linux是通过把系统支持的各种文件系统链接到一个单独的树形层次结构中,来实现对多文件系统的支持的。该树形层次结构把文件系统表示成一个整个的独立实体。无论什么类型的文件系统,都被装配到某个目录上,由被装配的文件系统的文件覆盖该目录原有的内容。该个目录被称为装配目录或装配点。在文件系统卸载时,装配目录中原有的文件才会显露出来。在Linux 文件系统中,文件用i节点来表示、目录只是包含有一组目录条目列表的简单文件,而设备可以通过特殊文件上的I/O 请求被访问。 2.常见的嵌入式文件系统 嵌入式Linux系统一般没有大容量的磁盘,多使用flash存储器,所以多采用基于Flash(NOR和NAND)的文件系统或者RAM内存的文件系统。 (1)Flash根据结构不同分为 NOR Flash和NAND Flash。基于flash的文件系统主要有: jffs2:RedHat基于jffs开发的文件系统。

2-Linux

Linux-2.6.32.2内核在mini2440上的移植(二)---yaffs2文件系统移植 移植环境(红色粗字体字为修改后内容,蓝色粗体字为特别注意内容) 2.1, yaffs2文件系统移植 【1】获取yaffs2 源代码 现在大部分开发板都可以支持yaffs2 文件系统,它是专门针对嵌入式设备,特别是使用nand flash 作为存储器的嵌入式设备而创建的一种文件系统,早先的yaffs 仅支持小页(512byte/page)的nand flash,现在的开发板大都配备了更大容量的nand flash,它们一般是大页模式的(2K/page),使用yaffs2 就可以支持大页的nand flash,下面是yaffs2 的移植详细步骤。 在https://www.doczj.com/doc/bf10266856.html,/node/346可以下载到最新的yaffs2 源代码,需要使用git工具( 安装方法见Git版本控制软件安装与使用),在命令行输入: [root@localhost ~]# cd ./linux-test [root@localhost linux-test]# git clone git://https://www.doczj.com/doc/bf10266856.html,/ya ffs2 Cloning into yaffs2... remote: Counting objects: 6592, done. remote: Compressing objects: 100% (3881/3881), done. remote: Total 6592 (delta 5237), reused 3396 (delta 2642) Receiving objects: 100% (6592/6592), 3.34 MiB | 166 KiB/s, d one. Resolving deltas: 100% (5237/5237), done.

相关主题
文本预览
相关文档 最新文档