当前位置:文档之家› 重力加速度的三种测量方法

重力加速度的三种测量方法

重力加速度的三种测量方法
重力加速度的三种测量方法

重力加速度的三种测量方法

摘要:本文采用滴水法,电磁打点计时器法,平衡法三种方法测量重力加速度。

关键词:滴水法,打点计时器,弹簧秤

引言:重力加速度g是一个重要的地球物理常数,地球上各个地区的重力加速度,随地球纬度和海拔高度的变化而变化。准确

地确定它的量值,无论从理论上、科研上还是生产上都有极

其重大的意义。对重力加速度多种测法的研究和分析,找出

最适合测量本地重力加速度的方法,将会使我们受到很多启发

和教益。

重力加速度的测量可以用滴水法,电磁打点计时器法,平衡法,单摆法,圆锥摆法,斜槽法,自由落体运动法等方法测量,本文详

细介绍前三种方法。

1.滴水法

(1)让水滴落到垫起来的盘子上,可以听到水滴每次碰盘子的

声音,仔细地调整水龙头的阀门,使第一滴水碰到盘的瞬间,同时

第二滴水正好从阀门处开始下落;

(2)从听到某个水滴的声音时开始计时,并数“0”,以后每

听到一次响声,顺次加1,直到数到n,计时停止,秒表上时间为t;(3)用米尺量出水龙头滴水处到盘子的距离为h,根据上述实验所

得的数据,计算出重力加速度的值;

(4)两滴水间的间隔即为水下落的时间,计数n,用时t秒,则

1次下落时间t'= n/t秒.利用自由落体运动公式h=gt'2/2可得

g=2hn2/t2。

2.电磁打点计时器法

(1)电磁打点计时器是一种使用低压交流的计时仪器,它的工

作电压是4~6V。电源频率是50Hz时,它每隔O.02s打一个点;

(2)用手拉住正确穿过打点计时器的纸带上端,纸带下端连接

重物,然后在接通4~6V的交流电源后,释放纸带,在纸带上就打出

一行小点,立即关闭电源;

(3)在纸带上选取能看清的一段,将某个能看清的点标为0,

以后每隔4个点标一个计数点;

(4)从0开始测量每相邻计数点间的位移分别记为S1、S2、

S3……S6,采用逐差法S4-S1=S5-S2=S6-S3=3gt2,这样能减少偶然误差,最后可得重力加速度的平均值

3.平衡法

(1)用物理天平测量5个已知质量的钩码;

(2)将所测钩码依次挂在弹簧秤下,等平衡后,读出弹簧秤上

的示数G,并记录;

(3)根据测量的G值和m值,做出G-m图像,求出图像的斜率,根据重力公式G=mg,则g=G/m,可知其斜率便为重力加速度g值。

4.三种实验方法测量结果的比较及结论

通过几种不同的实验方法,发现其测量的重力加速度均与理论上的有一定的误差。虽然这与实验所在地的高度,纬度及受到空气阻力有关,但也离不开操作过程中的实验误差。因此我们在实验过程中必须严格按照操作步骤,尽量把误差缩小到最小范围。

通过比较,可知三种方法中,滴水法最准确,平衡法的操作最简便。电磁打点计时器法准确度与操作简便处于两者之中。

用滴水法测量重力加速度时,虽然仪器操作简便,但如果要得到最佳的实验结果,在实验操作中有一些细节很难做到,比如调节阀门,让听到第一滴水声看到第二滴水刚刚离开阀门,这不仅是要动手能力强。而且要有很高的观察能力和反应能力,而这些细节对实验的影响力又很大,如果调试不准,会对实验带来很大的误差,所以要得到最佳的实验结果具有较大难度。还有空气的流动也会引入误差。

电磁打点计时器法操作及数据处理较困难,打点计时器打点时振针对纸带产生冲击和摩擦,这个冲击和摩擦既影响了纸袋的正常运动,又影响了振针的运动。每打一个点就会产生触头和纸,纸带和复写纸的摩擦,故实验误差较大。

平衡法的误差主要是由实验仪器的老化及人眼所读数据与真实数据间存在一定误差的引入,在实验过程中,我们用物理天平测量了已知钩码的质量,发现它与理论值具有一定的偏差,还有弹簧秤

的弹簧由于老化而弹力系数发生变化,因此测量的重力不准确,对测量结果带来很大误差,所以本方法只能用来粗侧。

速度测量方法概述

速度测量方法概述 一、速度测量方法 M法是测量单位时间内的脉数换算成频率,因存在测量时间内首尾的半个脉冲问题,可能会有2个脉的误差。速度较低时,因测量时间内的脉冲数变少,误差所占的比例会变大,所以M法宜测量高速。如要降低测量的速度下限,可以提高编码器线数或加大测量的单位时间,使用一次采集的脉冲数尽可能多。 T法是测量两个脉冲之间的时间换算成周期,从而得到频率。因存在半个时间单位的问题,可能会有1个时间单位的误差。速度较高时,测得的周期较小,误差所占的比例变大,所以T法宜测量低速。如要增加速度测量的上限,可以减小编码器的脉冲数,或使用更小更精确的计时单位,使一次测量的时间值尽可能大。 M法、T法各且优劣和适应范围,编码器线数不能无限增加、测量时间也不能太长(得考虑实时性)、计时单位也不能无限小,所以往往候M法、T法都无法胜任全速度范围内的测量。因此产生了M法、T法结合的M/T 测速法:低速时测周期、高速时测频率。 二、光电编码器 1、工作原理 光电编码器,是一种通过光电转换将输出轴上的机械几何位移量转换成脉冲或数字量的传感器。这是目前应用最多的传感器,光电编码器是由光栅盘和光电检测装置组成。光栅盘是在一定直径的圆板上等分地开通若干个长方形孔。由于光电码盘与电动机同轴,电动机旋转时,光栅盘与电动机同速旋转,经发光二极管等电子元件组成的检测装置检测输出若干脉冲信号,通过计算每秒光电编码器输出脉冲的个数就能反映当前电动机的转速。此外,为判断旋转方向,码盘还可提供相位相差90º;的两路脉冲信号。

2、倍频电路 倍频电路一般是指电机反馈变频器的倍频,一般4倍频居多。举个例子,如果电机装了一个1000线编码器,如果在没有倍频的情况下,电机每转一圈可输出1000个脉冲;如果经过4倍频电路处理,则可以得到一圈4000个脉冲的输出,电机一圈为360°,所以每个脉冲代表的位置为360°/4000,相比360°/1000, 分辨率为4倍。 3、频压转换 在测量转速(频率)时,目前多采用数字电路,但有些场合则需要转速(频率)的变化与模拟信号输出相对应,这样便可在自动控制系统实验中用频/压转换器件代替测速发电机,从而使实验设备简化。

复摆法测重力加速度

复摆法测重力加速度 一.实验目的 1.了解复摆的物理特性,用复摆测重力加速度。 2.学会用作图法研究问题及处理数据。 二.实验原理 复摆实验通常用于研究周期与摆轴位置的关系,并测定重力加速度。复摆是一刚体绕固定水平轴在重力作用下作微小摆动的动力运动体系。如图1,刚体绕固定轴O在竖直平面内作左右摆动,G是该物体的质心,G与轴O的距离为h,θ为其摆动角度。若规定右转角为正,此时刚体所受力矩与角位移方向相反,则有: θ M- =,(1) sin mgh 又据转动定律,该复摆又有: θ I M=(I为该物体转动惯量) (2)

由(1)和(2)可得: θωθsin 2-= (3) 其中I mgh = 2 ω。若θ很小时(θ在5°以内)近似有: θωθ 2-= (4) 此方程说明该复摆在小角度下作简谐振动,该复摆振动周期为: mgh I T π =2 (5) 设G I 为转轴过质心且与O 轴平行时的转动惯量,那么根据平行轴定律可知: 2mh I I G += (6) 代入上式得: mgh mh I T G 2 2+=π (7) 设(6)式中的2mk I G =,代入(7)式,得: gh h k mgh mh mk T 2 22222+=+=ππ (8) k 为复摆对G (质心)轴的回转半径,h 为质心到转轴的距离。对(8)式平方则有: 2 2222 44h g k g h T ππ+= (9) 设22,h x h T y ==,则(9)式改写成: x g k g y 2 2244ππ+= (10) (10)式为直线方程,实验中测出n 组(x,y)值,用作图法求直线的截距A 和斜率B ,由 于224A k g π=,2 4B g π=,所以 2 4g B π=,k = =(11) 由(11)式可求得重力加速度g 和回转半径k 。 三.实验仪器 复摆装置、秒表。

大学物理重力加速度的测定实验报告范文.doc

大学物理重力加速度的测定实验报告范 文 一、实验任务 精确测定银川地区的重力加速度 二、实验要求 测量结果的相对不确定度不超过5% 三、物理模型的建立及比较 初步确定有以下六种模型方案: 方法一、用打点计时器测量 所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等. 利用自由落体原理使重物做自由落体运动.选择理想纸带,找出起始点0,数出时间为t的p点,用米尺测出op的距离为h,其中t=0.02秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g. 方法二、用滴水法测重力加速度 调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n 取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2. 方法三、取半径为r的玻璃杯,内装适当的液体,固定在旋转台上.旋转台绕其对称轴以角速度ω匀速旋转,这时液体相对于玻璃

杯的形状为旋转抛物面 重力加速度的计算公式推导如下: 取液面上任一液元a,它距转轴为x,质量为m,受重力mg、弹力n.由动力学知: ncosα-mg=0 (1) nsinα=mω2x (2) 两式相比得tgα=ω2x/g,又tgα=dy/dx,∴dy=ω2xdx/g, ∴y/x=ω2x/2g. ∴ g=ω2x2/2y. .将某点对于对称轴和垂直于对称轴最低点的直角坐标系的坐标x、y测出,将转台转速ω代入即可求得g. 方法四、光电控制计时法 调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n 取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2. 方法五、用圆锥摆测量 所用仪器为:米尺、秒表、单摆. 使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆锥n转所用的时间t,则摆锥角速度ω=2πn/t 摆锥作匀速圆周运动的向心力f=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r由以上几式得: g=4π2n2h/t2. 将所测的n、t、h代入即可求得g值.

贫困测量方法综述

贫困测量方法综述 山东大学卫生管理与政策研究中心何平 摘要:贫困问题是一个世界性难题,国内外对于贫困问题的讨论也比较热烈,本文主要从贫困的内涵介入,阐述了贫困测量的不同方法,并对这些方法进行了分析和评价。 关键词:贫困测量方法 Abstract: Poverty problem is one of the difficulties in the world. It has become one of the hot topics in the research. This article primarily analyses the connotation of poverty, then expatiates different approaches about poverty measurement, also compares and evaluates these approaches. Keywords: poverty measurement approach 一、对贫困的理解。 长期以来,国内外学者主要是从物质层面和经济学意义上来理解贫困的,把贫困看成是不能满足居民基本生活需要的一种状态。早在1901年,朗特里(Seebohm Rowntree)就认为:“如果一个家庭的总收入不足以维持家庭人口最基本的生存活动要求,那么,这个家庭就基本上陷入了贫困之中。”这里提出的是基本生存要求实际上就为以后确定贫困线奠定了理论基础,涉及到的是绝对贫困的概念。 社会学家则把贫困认为是个人能力(如受教育的程度和健康水平等)缺乏而难以维持人类基本福利水平的一个表现。这其中,一部分社会学家及人口学家把社会、行为和政治因素作为评价福利水平的基础。也就是说,人们不正当的行为,相对不利的政治经济环境也是导致贫困的一个重要因素。 本人认为,贫困是一个综合的概念,不仅仅需要从物质层面上给予准确的界定,而且还要从人的能力和社会因素方面给予概括。贫困的内涵应该从经济福利(economical well-being)、能力(capability)和社会排他性(social exclusion)这三个方面进行理解。 贫困在经济福利水平上的表现就是贫困人口难以维持包括在经济上、心理上、社会政治方面最低的生存标准。

重力加速度测量设计性试验

重力加速度测量(设计性实验) 【实验目的】 (1)推导单摆测量重力加速度的公式。 (2)掌握单摆测量重力加速度实验的实验设计方法及验证方法。 (3)掌握间接测量量不确定度的计算方法。 (4)了解单摆测量重力加速度实验的主要误差来源。 (5)估算实验仪器的选取参数并设计实验数据记录表格。 【设计实验】 设计性实验的设计过程主要有以下几步: (1)根据待测的物理量确定出实验方法(理论依据),推导出测量的数学公式;判定方法误差给测量结果带来的影响。 (2)根据实验方法及误差设计要求,分析误差来源,确定所需要采用的测量仪器(包括量程、精度等)以及测量环境应达到的要求(如空气、电磁、振动、温度、海拔高度等)。 (3)确定实验步骤、需要测量的物理量、测量的重复次数等。 (4)设计实验数据表格及要计算的物理量。 (5)实验验证。要用测得的实验数据,采用误差理论来验证实验结果。若不符合测量要求,则需对上述步骤中的有关参数做出适当调整并重做实验,据测得的实验数据进行实验验证,以此类推直到符合要求为止。 设计实验的原则应在满足设计要求的前提下,尽可能选用简单、精度低的仪器,并能降低对测量环境的要求,尽量减少实验测量次数。 【设计要求】 (1)测定本地区的重力加速度,要求重力加速度的相对不确度小于0.5%,即 g 0.5u g ≤%。确 定所需仪器的量程和精度,以及测量参数(摆长和摆动次数)。 (2)本实验是测量重力加速度的设计性实验,但考虑到设计难度、仪器资源的限制等因素,规定其实验方法采用单摆法。 (3)可用仪器有:钢卷尺(1 mm/2 m ,表示最小分度值为1 mm ,量程为2 m ,下同)、钢直尺(1 mm/1 m )、游标卡尺(0.02 mm/20 cm )、普通直尺(1 mm/20 cm )、电子秒表(0.01 s )、单摆实验仪(含摆线、摆球等)。 【实验内容】 (1)原理分析。写出单摆法测量公式完整的推导过程及近似要求,并画出原理图(查阅相关书籍及网站)。 (2)误差分析。分析实验过程中的主要误差来源并估算。 (3)不确定度的推导与计算。 (4)估算实验参数(摆长和摆动次数)。 (5)设计实验步骤与数据表格。 (6)实验与验证。 【设计提示】

实验2 自由落体法测定重力加速度(详写).doc

《实验2 自由落体法测定重力加速度》 实验报告 一、实验目的和要求 1、学会用自由落体法测定重力加速度; 2、用误差分析的方法,学会选择最有利的测量条件减少测量误差。 二、实验描述 重力加速度是很重要的物理参数,本实验通过竖直安放的光电门测量自由落体时间来求重力加速度,如何提高测量精度以及正确使用光电计时器是 实验的重要环节。 三、实验器材 MUJ-5C型计时计数测速仪(精度0.1ms),自由落体装置(刻度精度0.1cm), 小钢球,接球的小桶,铅垂线。 四、实验原理 实验装置如图1。 在重力实验装作用下,物体的下落运动是匀加速直线运动, 其运动方程为 s=v0t+1/2g t2 该式中,s是物体在t时间内下落的距离;v0是物体运动的初 速度;g是重力加速度;若测得s, v0,t,即求出g值。 若使v0=0,即物体(小球)从静止释放,自由落体,则可 避免测量v0的麻烦,而使测量公式简化。但是,实际测量S 时总是存在一些困难。本实验装置中,光电转换架的通光孔总 有一定的大小,当小铁球挡光到一定程度时,计时-计数-计频 仪才开始工作,因此,不容易确定小铁球经光电转换架时的挡 光位置。为了解决这个问题,采用如下方法: 让小球从O点处开始下落,设它到A处速度为v0,再经过 t1时间到达B处,令AB间距离为s1,则 gt12 s1=v0t1?1 2 同样,经过时间t2后,小球由A处到达B’处,令AB’间 的距离为s2,则有 s2=v0t2+1/2g t22 化简上述两式,得: 图1 实验装置图g=2(s2t1-s1t2)/ t1t22-t2t12=2(s2/t2-s1/t1)/ t2-t1 --------------------------------------------(1)

高电压测量方法概述

高电压测量方法概述 球隙法测量高电压是试验室比较常用的方法之一。空气在一定电场强度下,才能发生碰撞游离。均匀电场下空气间隙的放电电压与间隙距离具有一定的关系。可以利用间隙放电来测量电压,但绝对的均匀电场是不易做到的,只能做到接近于均匀电场。测量球隙是由一对相同直径的金属球所构成。加压时,球隙间形成稍不均匀电场。当其余条件相同时,球间隙在大气中的击穿电压决定于球间隙的距离。对一定球径,间隙中的电场随距离的增长而越来越不均匀。被测电压越高、间隙距离越大。要求球径也越大。这样才能保持稍不均匀电场。球隙法测量接线如图1所示。 测量球隙作为一种高电压测量方法的优缺点进行比较。其优点是:可以测量稳态高电压和冲击电压的幅值,是直接测量超高压的重要设备。结构简单,容易自制或购买,不易损坏。有一定的准确度,测量交流及冲击电压时准确度在3%以内。球隙法测量的缺点是:测量时必须放电放电时将破坏稳定状态可能引起过电压。气体放电有统计性。数据分散,必须取多次放电数据的平均值,为防止游离气体的影响,每次放电间隔不得过小。且升压过程中的升压速度应较缓慢,使低压表计在球隙放电瞬间能准确读数,测量较费时间。实际使用中,测量稳态电压要作校订曲线,测量冲击电压要用50%放电电压法。手续都较麻烦。被测电压越高,球径越大,目前已有用到直径为±3m的铜球,不仅本身越来越笨重,而且影响建筑尺寸。 静电压表法测量原理是加电压于两电极,由于两电极上分别充上异性电荷,电极就会受到静电机械力的作用,测量此静电力的大小或是由静电力产生的某一极板的偏移(或是偏转)就能够反映所加电荷的大小。 静电电压表有两种类型,一种是绝对静电电压表,另一种是非绝对的静电电压表,由于绝对静电电压表结构和应用都非常复杂。在工程上应用较多的还是构造相对简单的非绝对静电电压表,其测量不确定度为1%~3%。量程可达1000kV。此种测量表测量时可动电极有位移。可动电极移动时,张丝所产生的扭矩或是弹簧的弹力产生了反力矩,当反力矩和静电场的力矩相平衡时,可动电极的位移达到一个稳定值。与可动电极相连接在一起的指针或反射光线的小镜子就指出了被测电压的数值。静电电压表从电路中吸取的功率相当小,当测量交流电压时,表计通过的电容电流的多少决定于被测电压频率的高低以及仪器本身电容的大小,由于仪表的电容一般仅有几皮法到几十皮法,所以吸取的功率十分的微小,因此静电电压表的内阻抗极大。通常还可以把它接到分压器上来扩大其电压量程,目前国内已生产有250~500kV的静电电压表。

(完整版)重力加速度的测定实验报告

重力加速度的测定 一,实验目的 1,学习秒表、米尺的正确使用 2,理解单摆法和落球法测量重力加速度的原理。 3,研究单摆振动的周期与摆长、摆角的关系。 4,学习系统误差的修正及在实验中减小不确定度的方法。 二,实验器材 单摆装置,停表(精度为0.01s),钢卷尺(精度为1mm),游标卡尺(精度为0.02mm) 三,实验原理 单摆是由一根不能伸长的轻质细线和悬在此线下端体积很小的重球所构成。在摆长远大于球的直径,摆球质量远大于线的质量的条件下,将悬挂的小球自平衡位置拉至一边(很小距离,摆角小于5°),然后释放,摆球即在平衡位置左右作周期性的往返摆动,如图2-1所示。 f =F sinθf θ T=F cosθ F= mg L 单摆原理图

摆球所受的力f 是重力和绳子张力的合力,f 指向平衡位置。当摆角很小时(θ<5°),圆弧可近似地看成直线,f 也可近似地看作沿着这一直线。设摆长为L ,小球位移为x ,质量为m ,则 L x = θsin f=θsin F =-L x mg - =-m L g x 由f=ma ,可知a=- L g x 式中负号表示f 与位移x 方向相反。 单摆在摆角很小时的运动,可近似为简谐振动,比较谐振动公式:a = m f =-ω2 x 可得ω=l g ,即02 22=+x dt x d ω,解得)cos(0?ω+=t A x ,0A 为振幅,?为初相。 应有[])2cos())((cos )cos(000?πω?ω?ω++=++=+=t A T t A t A x 于是得单摆运动周期为:T =ωπ 2=2πg L 即 T 2=g 2 4πL 或 g=4π22 T L 又由于细线不是完全没有质量,他在外力作用下也不可能完成伸长,所以,单摆的重力加速度公式修正为 22 21 4T d L g +=π 四,实验步骤 1,数据采集 (1)测量摆长L 用米尺测量摆球支点和摆球顶点或最低点的间距l ,用游标卡尺测量小球的直径d,则摆长 d l L 2 1+= (2)测量摆动周期 用手把摆球拉至偏离平衡位置约? 5放开,让其在一个铅直面内自由摆动,当小球通过平衡位置的瞬间,开始计时,连续默数100次全振动时间为t ,再除以100,得到周期T 。 (3)将所测数据列于下表中,并计算出摆长、周期及重力加速度。

气垫导轨测重力加速度 大学物理实验

气垫导轨测重力加速度 【试验目的】: 1.研究测重力加速度的方法; 2.测量本地区的重力加速度。 【实验原理】: 当气轨水平放置时,自由漂浮的滑块所受的合外力为零,因此,滑块在气轨上可以静止,或以一定的速度作匀速直线运动。在滑块上装一与滑块运动方向严格平行、宽度为的挡光板,当滑块经过设在某位置上的光电门时,挡光板将遮住照在光敏管上的光束,因为挡光板宽度一定,遮光时间的长短与滑块通过光电门的速度成反比,测出挡光板的宽度L和遮光时间t,则滑块通过光电门的平均速度为: V=L/t (1-1) 若挡板很小,则在挡光范围内滑块的速度变化也很小,故可以把平均速度看成是滑块经过光电门的瞬时速度。挡板越小,则平均速度越准确地反映该位置上滑块的瞬时速度,显然,如果滑块作匀速直线运动,则滑块通过设在气轨任何位置的光电门时瞬时速度都相等,毫秒计上显示的时间相同,在此情形下,滑块速度的测量值与挡板的大小无关。 若滑块在水平方向受一恒力作用,滑块将作匀加速直线运动,分别测出滑块通过相距S的2个光电门的始末速度和V1和V2则滑块的加速度: 2as=v12–v22 (1-2) 将式(1-1)代入(1-2)中 得: 2as=L2(1/t22-1/t12) (1-3) 其原理如图1. 气垫导轨与水平面的夹角为α 则 a=g*ginα. (1-4) 【待测物理量】: V〈物体运动速度〉、a〈物体运动加速度〉、g〈本地区的加速度〉、α〈气垫导轨与水平面的夹角〉、Δt〈物体在两光电门之间的运动时间〉. 【实验仪器及其使用介绍】: 气垫导轨、数字毫秒计、滑块、游标卡尺、垫块。 一、气垫导轨 气垫导轨是一种现代化的力学实验仪器。实物如下图所示:

重力加速度的测量及应用

重力加速度的测量及应用 重力加速度g值的准确测定对于计量学、精密物理计量、地球物理学、地震预报、重力探矿和空间科学等都具有重要意义。 测量: 最早测定重力加速度的是伽利略。约在1590年,他利用倾角为θ的斜面将g的测定改为测定微小加速度a=gsinθ,。1784年,G?阿特武德将质量同为M的重物用绳连接后,挂在光滑的轻质滑轮上,再在另一个重物上附加一重量小得多的重物m,使其产生一微小加速度a =mg/(2M+m),测得a后,即可算出g。 1888年,法国军事测绘局使用新的方法进行了g值的计量.它的原理简述为:若一个物体如单摆那样以相同的周期绕两个中心摆动,则两个中心之间的距离等于与上述周期相同的单摆的长度。当时的计量结果为:g=9.80991m/s2。 1906年,德国的库能和福脱万勒用相同的方法在波茨坦作了g值的计量,作为国际重力网的参考点,即称为“波茨坦重力系统”的起点,其结果为g(波茨坦)=9.81274m/s2。 根据波茨坦得到的g值可以通过相对重力仪来求得其他地点与它的差值,从而得出地球上各地的g值,这样建立起来的一系列g值就称为波茨坦重力系统。国际计量局在1968年10月的会议上推荐,自1969年1月1日起,g(波茨坦)减小到9.81260m/s2。根据上述修正了的波茨坦系统,在地球上的一级点位置的g值的不确定度可小于5×10-7。 应用: 地球对表面物体具有吸引力,重力加速度是度量地球重力大小的物理量。按照万有引力定律,地球各处的重力加速度应该相等。但是由于地球的自转和地球形状的不规则,造成各处的重力加速度有所差异,与海拔高度、纬度以及地壳成分、地幔深度密切相关。 重力预震:地球物理学研究中要求观测重力长期的细微的变化,即所谓g的长度;这种变化可能是由于地壳运动,地球的内部结构和形状的演变,太阳系中动力常数的长度以及引力常数G的变化等等。观测这些变化要求g值的计量不确定度达10-8至10-9量级。观测g值的变化可能对预报地震有密切的关系.据有关方面报道,七级地震相对应的g值变化约为0.1×10-5m/s2。目前,许多国家都在探索用g值的变化作临震预报。 重力探矿:利用地下岩石和矿体密度的不同而引起地面重力加速度的相应的变化。故根据在地面上或海上测定g的变化,就可以间接地了解地下密度与周围岩石不同的地质构造、矿体和岩体埋藏情况,圈定它们的位置。所用的仪器是重力仪和扭秤(目前已为高精度重力仪所代替)。

切削温度测量方法概述..

热工测量仪表作业 切削温度测量方法概述Summary of Cutting Temperature Measurement Methods 作者姓名:王韬 专业:冶金工程 学号:20101360 指导老师:张华 东北大学 Northeastern university 2013年6月

切削温度测量方法概述 王韬 东北大学 摘要:高速切削加工现已成为当代先进制造技术的重要组成部分,切削热与切削温度是高速切削技术研究的重要内容。本文根据国内外高速切削温度测量方法的研究现状,对目前常用的切削温度测量方法进行了分类和比较,主要包括接触式测温、非接触式测温和其他测量方法三种,详细介绍了热电偶法、光辐射法、热辐射法、金相结构法等几种常用切削测温方法的基本原理、优缺点、适用范围及发展状况;介绍了几种新型高速切削温度测量方法。最后对各种测量方法作了比较,探讨了切削温度实验测量方法研究的发展方向。 关键词: 切削温度,测量方法,发展状况 Summary of Cutting Temperature Measurement Methods Wang Tao Northeastern university Abstract: High-speed machining has become an important part of the contemporary advanced manufacturing technology. Cutting heat and cutting temperature is the important content of high speed cutting technology research. This paper gives the background to the measurement of metal cutting temperatures and a review of the practicality of the various methods of measuring cutting temperature while machining metals. Classify the cutting temperature measurement methods, mainly including non-contact temperature measurement, non-contact temperature test of other three kinds of measurement methods; Introduced the thermocouple method, radiation method, radiation method and metallographic structure of the basic principle of several kinds of commonly used cutting temperature measurement method, the advantages and disadvantages, applicable scope and the status of the development; Several new high-speed cutting temperature measurement methods are introduced. Finally discusses the development direction of cutting temperature experiment measurement method research for a variety of measurement methods. Keywords:metal cutting, cutting temperature, measurement method

复摆法测重力加速度

实验名称: 复摆法侧重力加速度 仪器与用具:复摆、秒表。复摆,一块有刻度的匀质钢板,板面上从中心向两侧对称的开一些悬孔。 另有一固定刀刃架用以悬挂钢板。调节刀刃水平螺丝,调节刀刃水平。 实验目的:①了解复摆小角摆动周期与回转轴到复摆重心距离的关系。②测量重力加速度。 实验报告内容(原理预习、操作步骤、数据处理、误差分析、思考题解答) [实验原理] 一个围绕定轴摆动的刚体就是复摆。当复摆的摆动角θ很小时,复摆的振动可视为角谐振动。根据转动定律有 22 dt d J J mgb θβθ-=-= 即 02 2 =+ θθJ m g b dt d 可知其振动角频率 J m g b =ω 角谐振动的周期为 m g b J T π 2= (3.3.10) 式中J 为复摆对回转轴的转动惯量;m 为复摆的质量;b 为复摆重心至回转轴的距离;g 为重力加速度。如果用Jc 表示复摆对过质心轴的转动惯量,根据平行轴定理有 2 mb Jc J += (3.3.11) 将式(3.3.11)代入式(3.3.10)得 mgb mb Jc T 2 2+=π (3.3.12) 以b 为横坐标,T 为纵坐标,根据实验测得b 、T 数据,绘制以质心为原点的T-b 图线,如图3.3.3所示。左边一条曲线为复摆倒挂时的b T '-'曲线。过T 轴上1T T =点作b 轴的平行线交两条曲线于点A 、B 、C 、D 。则与这4点相对应的4个悬点A '、B '、C '、D '都有共同的周期T 1。

设1b A O =',2b B O =',1b C O '=',2 b D O '=',则有 12 11 2 1 122b mg b m Jc mgb mb Jc T ' '+=+=π π 或 2 2 2 2 2 2122b mg b m Jc mgb mb Jc T ''+=+=π π 消去Jc ,得 g b b g b b T 2 211122'+='+=π π (3.3.13) 将式(3.3.13)与单摆周期公式相比较 ,可知与复摆周期相同的单摆的摆长 11b b l '+=或 2 2b b l '+=,故称11b b '+(或2 2b b '+)为复摆的等值摆长。因此只要测得正悬和倒悬的T-b 曲线,即可通过作b 轴的平行线,求出周期T 及与之相应的11b b '+或2 2b b '+,再由式(3.3.13)求重力加速度g 值。 [实验内容] (1) 将复摆一端第一个悬孔装在摆架的刀刃上,调解调节螺丝,使刀刃水平,摆体竖直。 (2) 在摆角很小时(θ

温度测量方法分类及优缺点概述

温度测量方法分类及优 缺点概述 -CAL-FENGHAI.-(YICAI)-Company One1

温度测量方法分类及优缺点概述 摘要:温度是表征物体冷热程度的物理量, 是国际单位制中七个基本物理 量之一, 它与人类生活、工农业生产和科学研究有着密切关系。随着科学技术水平的不断提高, 温度测量技术也得到了不断的发展。本文将讨论总结温度测量的各种方式,并分析他们各自的优缺点。 1.温度测量的分类 温度测量的分类可以通过其与被测量的物体是否接触分为接触式和非接触式。接触式测量仪表比较简单、可靠,测量精度高。但是因为测温元件与被测介质需要进行充分的热交换,所以其需要一定的时间才能达到热平衡。接触式测量仪存在测温延迟现象,同时受耐高温和耐低温材料的限制,不能应用于这些极端的温度测量。非接触式仪表测温仪是通过热辐射的原理来测量温度的,测温元件不需要与被测介质接触,测温范围广,不受测温上限的限制,也不会破坏被测物体的温度场,反应速度一般也比较快;但受到物体发射率、测量距离、烟尘和水汽等外界因素的影响,其测量误差较大。 2.接触式测量方法 膨胀式温度测量 原理:利用物质的热胀冷缩原理即根据物体体积或几何形变与温度的关系进行温度测量。热胀冷缩式温度计包括玻璃液体温度计、双金属膨胀式温度计和压力式温度计等。 优点:结构简单, 价格低廉, 可直接读数,使用方便,非电量测量方式, 适用于防爆场合。 缺点:准确度比较低, 不易实现自动化, 而且容易损坏。 电量式测温方法 利用材料的电势、电阻或其它电性能与温度的单值关系进行温度测量,包括热电偶温度测量、热电阻和热敏电阻温度测量、集成芯片温度测量等。 1.热电偶的原理是两种不同材料的金属焊接在一起,当参考端和测量端有温差时, 就会产生热电势, 根据该热电势与温度的单值关系就可以测量温度。热电偶具有结构简单, 响应快, 适宜远距离测量和自动控制的特点, 应用比较广泛。 2.热电阻是根据材料的电阻和温度的关系来进行测量的, 输出信号大, 准确度比较高, 稳定性好, 但元件结构一般比较大, 动态响应较差, 不适宜测量体积狭小和温度瞬变区域。 3.热敏电阻是一种电阻值随温度呈指数变化的半导体热敏感元件, 具有灵敏度高、价格便宜的特点, 但其电阻值和温度的关系线性度差,且稳定性和互换性也不好。 4.石英温度传感器是以石英晶体的固有频率随温度而变化的特性来测量温度的。石英晶体温度传感器稳定性很好, 可用于高精度和高分辨力的测量场合。随着电子技术的发展, 可以将感温元件和相关电子线路集成在一个小芯片上, 构成一个小型化、一体化及多功能化的专用集成电路芯片, 输出信号可以是电压、频率, 或者是总线数字信号, 使用非常方便,适用于便携式设备。 接触式光电、热色测温方法

重力加速度测量的十种方法

重力加速度测量的十种方法 方法一、用弹簧秤和已知质量的钩码测量 将已知质量为m的钩码挂在弹簧秤下,平衡后,读数为G.利用公式 G=mg得g=G/m. 方法二、用滴水法测重力加速度 调节水龙头阀门,使水滴按相等时间滴下,用秒表测出n个(n取50—100)水滴所用时间t,则每两水滴相隔时间为t′=t/n,用米尺测出水滴下落距离h,由公式h=gt′2/2可得g=2hn2/t2. 方法三、用单摆测量(见高中物理学生实验) 方法四、用圆锥摆测量.所用仪器为:米尺、秒表、单摆. 使单摆的摆锤在水平面内作匀速圆周运动,用直尺测量出h(见图1),用秒表测出摆球n转所用的时间t,则摆球角速度ω=2πn/t 摆球作匀速圆周运动的向心力F=mgtgθ,而tgθ=r/h所以mgtgθ=mω2r由以上几式得:

g=4π2n2h/t2. 将所测的n、t、h代入即可求得g值. 方法五、用斜槽测量,所用仪器为:斜槽、米尺、秒表、小钢球. 按图2所示装置好仪器,使小钢球从距斜槽底H处滚下,钢球从水平槽底末端以速度v作平抛运动,落在水平槽末端距其垂足为H′的水平地面上,垂足与落地点的水平距离为S,用秒表测出经H′所用的时间t,用米尺测出S,则钢球作平抛运动的初速度v=S/t.不考虑摩擦,则小球在斜槽上运动时,由机械能守恒定律得:mgH=mv2/2.所以g=v2/2H=S2/2Ht2,将所测代入即可求得g值. 方法六、用打点计时器测量.所用仪器为:打点计时器、直尺、带钱夹的铁架台、纸带、夹子、重物、学生电源等. 将仪器按图3装置好,使重锤作自由落体运动.选择理想纸带,找出起始点0,数出时间为t的P点,用米尺测出OP的距离为h,其中t=0.02 秒×两点间隔数.由公式h=gt2/2得g=2h/t2,将所测代入即可求得g.

复摆侧重力加速度

一、复摆法测重力加速度 一.实验目的 1. 了解复摆的物理特性,用复摆测定重力加速度, 2. 学会用作图法研究问题及处理数据。 二.实验原理 复摆实验通常用于研究周期与摆轴位置的关系,并测定重力加速度。复摆是一刚体绕固定水平轴在重力作用下作微小摆动的动力运动体系。如图1,刚体绕固定轴O在竖直平面内作左右摆动,G是该物体的质心,与轴O的距离为h,θ为其摆动角度。若规定右转角为正,此时刚体所受力矩与角位移方向相反,则有 θ =, (1) M- mgh sin 又据转动定律,该复摆又有 θ&& M=,(2) (I为该物体转动惯量) 由(1)和(2)可得I

θωθsin 2-=&& , (3) 其中I mgh = 2ω。若θ很小时(θ在5°以内)近似有 θωθ2-=&& , (4) 此方程说明该复摆在小角度下作简谐振动,该复摆振动周期为 mgh I T π =2 , (5) 设G I 为转轴过质心且与O 轴平行时的转动惯量,那么根据平行轴定律可知 2mh I I G += , (6) 代入上式得 mgh mh I T G 2 2+=π , (7) 设(6)式中的2mk I G =,代入(7)式,得 gh h k mgh mh mk T 2 22222+=+=π π, (11) k 为复摆对G (质心)轴的回转半径,h 为质心到转轴的距离。对(11)式平方则有 2 2222 44h g k g h T ππ+=, (12) 设22,h x h T y ==,则(12)式改写成 x g k g y 2 2244ππ+=, (13) (13)式为直线方程,实验中(实验前摆锤A 和B 已经取下) 测出n 组(x,y)值,用 作图法求直线的截距A 和斜率B ,由于g B k g A 2 224,4ππ==,所以 ,4,422 B A Ag k B g == =ππ (14) 由(14)式可求得重力加速度g 和回转半径k 。 三.实验所用仪器 复摆装置、秒表。

测量方法

河道横断面测量 一、断面基点的测定 首先,必须沿河布置一些断面基点,并测定它们的平面位置和高程。 1、平面位置的测定 无地形图可用时,须沿河的一岸每隔50至100米布设一个断面基点,基点的排列应尽量与河道主流方向平行,并从起点开始按里程进行编号。 2、高程的测定 二、横断面方向的确定 在断面基点上安置经纬仪,照准与河道主流垂直的方向,倒转望远镜在本案标定一点作为横断面后视点。横断面不一定与相邻基点连线垂直,应在实地测定其夹角,并在横断面测量记录手册上绘一略图注明角值,以便在平面图上标出横断面方向。 为使测深船在航行时有定向的依据,应在断面基点和后视点插上花杆。 三、陆地部分横断面测量 在断面基点上安置经纬仪,照准断面方向,用视距法或其他方法依次测定水边点、地形变化点和地物点至测站点的平距和高差,并算出高程。在平缓的匀坡断面上,应保证图上1~3cm有一个断面点。每个断面都要侧至最高洪水位以上,对于不可到达处的断面点,可利用相邻断面基点按前方交会法进行测定。 四、水下部分横断面测量 横断面的水下部分,需要进行水深测量,根据水深和水面高程计算断面点的高程。水下断面点(水深点)的密度视河面宽度和设计要求而定,通常应保证图上0.5至1.5cm有一点,并且不要漏测深泓线点。 1、视距法 当测船沿断面方向行驶到一定位置需测水深时,即将船稳住,竖立标尺,向基点测站发出信号,双方各自同时进行相关测量和记录(包括视距、截尺、天顶距、水深),并互报点号对照检查,以免观测成果与点号不符。 2、角度交会法 3、断面索法 先在断面方向靠两岸水边打下定位桩,在两桩间水平地拉一条断面索,以一个定位桩作为断面索的零点,从零点起每隔一定间距系一布条,在布条上注明至零点的距离。测深船沿断面索测深,根据索上的距离加上定位桩至断面基点的距离即得水深点至基点的距离。

大学物理实验单摆测重力加速度

大学物理实验单摆测重力加速度 学院: 班级: 姓名: 学号: 时间: 辅导老师: 实验目的 1、研究测定重力加速度的方法; 2、测定本地区的重力加速度。 实验器材 带孔小钢球一个,约1m长的细线一条,铁架台,米尺,数字毫秒计,记时器,螺旋测微仪. 实验原理

一个小球和一根细线就可以组成一 个单摆. 单摆在摆角很小的情况下 做简谐运动.单摆的周期与振幅、摆 球的质量无关.与摆长的二次方根 成正比.与重力加速度的二次方根 成反比. 单摆做简谐运动时,其周期为: 故有: 因此只要测出单摆的摆长L和振动周期T,就可以求出当地的重力加速度g的值,并可研究单摆的周期跟摆长的关系.

实验步骤 (1)取约1m长的细线穿过带孔的小钢球,并打一个比 小孔大一些的结,然后拴在桌边的支架上. (2)用米尺量出悬线长L′,准确到毫米;用螺旋测微 仪测摆球直径,算出半径r。则单摆的摆长为L+r. (3)把单摆从平衡位置拉开一个很小的角度(例如不 超过10o),然后放开小球让它摆动,用停表分别测量单摆完成10、15、20、25、30、35次全振动所用的时间,求出完成一次全振动所需要的时间,这个平均时间就是单摆的周期. (4)把测得的周期和摆长的数值代入公式,求 出重力加速度g的值. 数据处理 误差分析 ①本实验系统误差主要来源于单摆模型本身是否符 合要求.即:悬点是否固定,是单摆还是复摆,球、线是否符合要求,振动是圆锥摆还是在同一竖直平面内振动,以及测量哪段长度作为摆长等等。只要注意了上面这些方面,就可以使系统误差减小到远小于偶然

误差而忽略不计的程度. ②本实验偶然误差主要来自时间(即单摆周期)的测量上.因此,要注意测准时间(周期).要从摆球经过平衡位置开始计时,并采用倒数计时计数的方法,不能多记或漏记振动次数.为了减小偶然误差,应进行多次测量后取平均值. ③本实验中长度(摆线长、摆球的直径)的测量值.

用三种方法测量重力加速度

用三种方法测量重力加速度 朱津纬1 (1.复旦大学物理学系,上海市200433) 摘要:本实验通过手机phyphox软件,用三种方法测量了重力加速度。分别将落币法、复摆法和弹簧法所得的重力加速度结果与实际值比较,误差不超过4%。 1 引言 随着科技的发展,如今智能手机功能越来越丰富。许多应用软件全面地利用手机中传感器,可以用来实施物理实验[1,2]。其中,“phyphox”是集合了很多实验项目的应用软件。本实验将利用它来测量重力加速度。 重力加速度可通过多种方法进行测得。如单摆法[3],多管落球法[4],和利用自由落体的方法[5]等。在本实验中,重力加速度利用落币法、复摆法和弹簧法三种方法被测量,并与标准值比较。 2 实验原理 首先,分别介绍三种方法的理论原理。 2.1 落币法 该实验将利用“phyphox”中的“声控秒表”项目,测量硬币从不同高度?自由落体所 需的时间t。通过对t?√?数据线性拟合,得到重力加速度g=2 斜率2 。 如图1所示,硬币自由落体下落的高度为?。用水笔敲击直尺发出敲击声,设该时刻为t0。经过微小时间差Δt(与高度无关,假设为常量),硬币开始下落,设该时刻为t1。一段时间后,硬币落到地上,并发出与地面的碰撞声,设该时刻为t2。“声控秒表”测量了两次声响的时间差t=t2?t0。 由自由落体公式可知 ?=1 2g(t2?t1)2=1 2 g(t?Δt)2,(2.1) 即 t=√2 g √?+Δt。(2.2) 因此t?√?呈线性关系,斜率为√2 g 。 2.2 复摆法 图1 落币法实验示意图

该实验将利用“phyphox ”中的“单摆”项目,测量不同摆长L 复摆的摆动周期T 。通过 对T 2? L 2+bL+ b 23 (L+b 2) 数据线性拟合,得到重力加速度g = 4π 2 斜率 。 如图2所示,长度为L 的细线与宽度为b 的手机组成复摆,以杆子为轴前后摆动。设复摆的转动惯量为I ,手机(过中心水平轴)的转动惯量为I c = mb 212 。则由平行轴定理得 I =I c +m(L +b 2)2。 (2.3) 由复摆摆动周期公式得 T =2π√ I mg(L+b 2 ) =2π√ L 2+bL+ b 23 g(L+b 2 ) 。 (2.4) 因此T 2? L 2+bL+ b 23 (L+b 2) 呈线性关系,斜率为4π2g 。 2.3 弹簧法 该实验将利用“phyphox ”中的“弹簧”项目,测量悬挂不同质量重物弹簧的(平衡时的)下端位置x 和振动周期T 。通过对x ?T 2数据线性拟合,得到重力加速度g =斜率。之后,将考虑空气阻力,得到修正结果。 如图3所示,弹簧悬挂重物。设弹簧不悬挂重物时的平衡位置为x 0(是常量)、弹簧的弹性系数为k 、塑料袋重物的总质量为m 。 由受力平衡,得 mg =k (x ?x 0)。 (2.5) 再由弹簧的周期公式 T =2π√m k , (2.6) 消去m ,得 x =g (T 2π)2+x 0。 (2.7) 图3 弹簧法实验示意图 图2 复摆法实验示意图

工程测量概述

一、单选题【本题型共2道题】 1.工程测量中的建(构)筑物放样或者测放,就是通过()三个元素的测设将图纸上设计的建(构)筑物的平面位置和高程按设计要求,以一定的方法和精度在工程实地标定出来,作为施工的依据。 A.长度、方向和高程 B.距离、角度和高程 C.空间位置和方向 D.长、宽、高 用户答案:[B] 得分:10.00 2.遥感(Remote sensing简称RS)本意是遥远的感知,是指借助对电磁波敏感的仪器,在不与探测目标接触的情况下,记录接收到的被测目标物对()等信息,揭示目标物的特征、性质及其变化的综合探测技术。 A.电磁波的辐射、反射、散射 B.声波的辐射、反射、散射 C.红外线 D.紫外线 用户答案:[A] 得分:10.00 二、多选题【本题型共2道题】 1.目前我国已基本建立了由()、行政法规、()、部门规章、政府规章、重要规范文件等共同组成的测绘法律法规体系,为测绘管理提供了依据,为从事测绘活动提供了基本准则。 A.规程 B.法律 C.地方性法规

D.企业制度 用户答案:[AB] 得分:0.00 2.地方法规和规章是由省、自治区、直辖市的()及其()制定的有关制度为地方性法规和规章。 A.人民代表大会 B.地方工会 C.地方法院 D.常务委员会 用户答案:[AD] 得分:20.00 三、判断题【本题型共2道题】 1.测绘地形图的方法主要有全站仪实地测图和航测法(包括近景摄影)成图。() Y.对 N.错 用户答案:[Y] 得分:0.00 2.通过在施工和运营期间对工程建(构)筑物原体进行观测,分析研究其资料,可以验证设计理论;所采用的各项参数与施工措施是否合理,为以后改进设计、改进施工方法和制定设计规范提供依据。() Y.对 N.错 用户答案:[Y] 得分:20.00

相关主题
文本预览
相关文档 最新文档