当前位置:文档之家› 泥浆的性能参数在泥水平衡盾构施工中的应用

泥浆的性能参数在泥水平衡盾构施工中的应用

泥浆的性能参数在泥水平衡盾构施工中的应用
泥浆的性能参数在泥水平衡盾构施工中的应用

Journal of Oil and Gas Technology 石油天然气学报, 2018, 40(2), 34-38

Published Online April 2018 in Hans. https://www.doczj.com/doc/c212017838.html,/journal/jogt

https://https://www.doczj.com/doc/c212017838.html,/10.12677/jogt.2018.402017

Application of Mud Performance Parameters in the Construction of Slurry Balance Shield

Gaofeng Wang1, Qingfeng Zhan2, Zhan Zhang2, Qixian Guo2, Shukai Zhang2

1Public Utilities Administration of Chizhou City, Anhui Province, Chizhou Anhui

2No.4 Branch Company of China Petroleum Pipeline Engineering Co. Ltd., Langfang Hebei

Received: Nov. 25th, 2017; accepted: Jan. 13th, 2018; published: Apr. 15th, 2018

Abstract

The mud had an important influence on the tunneling effect of the slurry balance shield. The qual-ity of the mud application technology directly affected the project progress, cost, safety and quality.

The mud performance parameters and its variation were systematically studied; by taking com-mon pebbles, clay and sand layer in the project as an example, the mud application cases in dif-ferent environments were systematically expounded.

Keywords

Slurry Balance Shield, Mud Performance, Variation Law

泥浆的性能参数在泥水平衡盾构施工中的应用

泥浆的性能参数在泥水平衡盾构施工中的应用

汪高峰1,詹清枫2,张 展2,郭启先2,张树凯2

1

安徽省池州市公用事业管理局,安徽 池州

2中国石油管道局工程有限公司第四分公司,河北 廊坊

作者简介:汪高峰(1978-),男,工程师,主要从事市政公共管理、城市油气储运管理工作。

收稿日期:2017年11月25日;录用日期:2018年1月13日;发布日期:2018年4月15日

泥浆对泥水平衡盾构的掘进效果影响巨大,泥浆应用技术的好坏直接影响工程进度、成本、安全、质量。系统研究了泥浆性能参数及其变化规律,以工程中常见的卵石、黏土、砂层为例,深入剖析了泥浆在不同环境下的应用实例。

关键词

泥水平衡盾构,泥浆性能,变化规律

Copyright ? 2018 by authors, Yangtze University and Hans Publishers Inc.

This work is licensed under the Creative Commons Attribution International License (CC BY). https://www.doczj.com/doc/c212017838.html,/licenses/by/4.0/

1. 引言

泥浆在泥水平衡盾构中具有稳定开挖面、排渣、保护刀具等作用。施工中,泥浆应用不当,将造成刀具磨损速度加快,缩短刀具使用寿命,管路堵塞,泥浆循环系统不流畅等不良影响,延缓工程进度[1]。有时甚至会造成开挖面坍塌,地表出现沉降、建筑物塌陷,造成安全事故和国家财产的损失,影响工程的顺利贯通[2]。对泥浆性能参数及其变化规律进行研究,有利于快速、准确地在不同地层中对泥浆进行调整,使泥浆能满足施工的需要,保证工程顺利进行。

2. 泥浆性能参数及其变化规律

以膨润土、CMC 、纯碱、正电胶、自来水为原料来配制掘进循环的泥浆并测试其关键性能,分析泥浆性能参数及其变化规律。

2.1. 膨润土对泥浆性能的影响

配制密度1.12 t/m 3的泥浆,在其他成分质量分数不变的情况下,改变膨润土的质量分数,得出膨润土质量分数对泥浆黏度、屈服值的影响曲线,如图1所示。由图1可知,膨润土质量分数与泥浆黏度、屈服值呈近似抛物线关系,当膨润土质量分数增大至10.5%后,泥浆屈服值将急剧增长。

Open Access

汪高峰 等

Figure 1. The effect of bentonite mass fraction on mud viscosity and yield value 图1. 膨润土质量分数对泥浆黏度、屈服值的影响

2.2. 纯碱对泥浆黏度的影响

配制密度1.12 t/m 3的泥浆,在其他成分含量不变的情况下,改变纯碱的质量分数,可以得出纯碱质量分数对泥浆黏度的影响曲线,如图2所示。由图2可知,纯碱质量分数 < 0.5%时,泥浆黏度上升幅度小;纯碱质量分数在0.5%~0.6%时,泥浆黏度急剧上升。因此,在黏土掘进中,若要增大泥浆pH 值,建议加入的纯碱质量分数小于0.5%。

Figure 2. The effect of pure alkali mass fraction on mud viscosity 图2. 纯碱质量分数对泥浆黏度的影响

2.3. CMC 对泥浆黏度、屈服值的影响

配制密度1.12 t/m 3的泥浆,在膨润土及纯碱质量分数不变的情况下,改变CMC 的质量分数,可以得出CMC 质量分数对泥浆黏度、屈服值的影响曲线,如图3所示。

泥浆的性能参数在泥水平衡盾构施工中的应用

Figure 3. The effect of CMC mass fraction on mud viscosity and yield value

图3. CMC质量分数对泥浆黏度、屈服值的影响

2.4. 正电胶对泥浆黏度、滤失水量、屈服值的影响

配制密度为1.12 t/m3的泥浆,测出黏度与滤失水量,做正电胶与泥浆黏度、屈服值、滤失水量的曲线关系图,如图4、图5所示。由图4可知,在正电胶质量分数在0.5%~0.7%的范围内,泥浆的黏度、屈服值波动较大。由图5可知,膨润土质量分数在6%时,泥浆滤失水量的减小幅度最大,说明膨润土质量分数影响正电胶对滤失水量的作用。

Figure 4. The effect of positive adhesive mass fraction on mud viscosity and yield value

图4. 正电胶质量分数对泥浆黏度、屈服值的影响

Figure 5. The effect of positive adhesive mass fraction on filtration loss of mud

图5.正电胶质量分数对泥浆滤失水量的影响

汪高峰等

对比图3与图4可以得出,如泥浆加入物质的质量分数相同,则加入CMC的泥浆黏度上升幅度较大,屈服值上升幅度较小;加入正电胶的泥浆黏度上升幅度较缓,但屈服值上升幅度比加入CMC的明显,表现为“低黏度高屈服值”的泥浆体系,有利于提高泥浆净化设备的分离效率。因此,工程中应优先使用正电胶干粉作增黏剂。

3. 泥浆应用实例

3.1. 卵石地层中泥浆应用

卵石地层天然含水量25%,天然密度为2 g/cm3,土粒密度为27 g/cm3,饱和度为100%,压缩模量为60 MPa,内聚力为0 kPa,内摩擦角为46?,承载力特征值550 kPa。根据上述泥浆性能参数,配制5种不同的浆液进行测试、试验,由于卵石中掘进滤失水量较大,可加入适量降滤失水剂,得出卵石地层中最佳泥浆配制方案为:水+ 10%膨润土(一级) + 5%纯碱+ 0.5%正电胶干粉+ 0.2%降滤失水剂(以上配方均为质量分数,下同)。

3.2. 砂层中泥浆应用

砂层地层天然含水量23%,天然密度为1.9 g/cm3,土粒密度为2.65 g/cm3,饱和度为100%,压缩模量为12 MPa,内聚力为3 kPa,内摩擦角为34?,承载力特征值160 kPa。根据上述泥浆性能参数,配制5种不同的浆液进行测试、试验,得出砂层地层中最佳泥浆配制方案为:水+ 9%膨润土(一级) + 5%纯碱+ 0.5%正电胶干粉+ 0.2%降滤失水剂。

3.3. 黏土地层泥浆应用

黏土地层天然含水量30%,天然密度为1.85 g/cm3,土粒密度为2.71 g/cm3,饱和度为95%,压缩模量为16 MPa,内聚力为30 kPa,内摩擦角为17?。承载力特征值150 kPa。由于黏土具有黏性,其成分与天然膨润土有一定共性,与清水结合后的混合物具有一定屈服值与黏度,同时滤失水量较小。因此,试验中仅使用清水作为浆液,并加入适量扩散剂,以解决渣土将刀具包裹,黏泥结成泥块,影响循环系统通畅的问题。黏土地层泥浆配制方案为:水+ 0.2%扩散剂。

4. 结语

根据泥浆的性能参数及其变化规律以及各地层试验结果,得出卵石、砂层、黏土地层中泥水平衡盾构掘进的最佳泥浆配比。卵石层中泥浆配比:水+ 膨润土(一级) 10% + 5%纯碱+ 0.5%正电胶干粉+

0.2%降滤失水剂。砂层中泥浆配比:水+ 9%膨润土(一级) + 5%纯碱+ 0.5%正电胶干粉+ 0.2%降滤失水

剂。黏土层中泥浆配比:水+ 0.2%扩散剂。

参考文献

[1]张凤祥, 朱合华, 傅德明. 盾构隧道[M]. 北京: 人民交通出版社, 2004: 120-122.

[2]袁大军, 李兴高, 李建华, 等. 卵石地层泥水盾构泥浆渗透试验分析[J]. 都市快轨交通, 2009, 22(3): 32-35.

[编辑] 邓磊

知网检索的两种方式:

1. 打开知网页面https://www.doczj.com/doc/c212017838.html,/kns/brief/result.aspx?dbPrefix=WWJD

下拉列表框选择:[ISSN],输入期刊ISSN:2471-7185,即可查询2. 打开知网首页https://www.doczj.com/doc/c212017838.html,/

左侧“国际文献总库”进入,输入文章标题,即可查询

投稿请点击:https://www.doczj.com/doc/c212017838.html,/Submission.aspx

期刊邮箱:jogt@https://www.doczj.com/doc/c212017838.html,

土压平衡盾构与泥水平衡盾构的结构原理

2土压平衡盾构与泥水平衡盾构的结构原理 傅德明 上海市土木工程学会 1 土压平衡盾构的结构原理 土压平衡盾构的基本原理 土压平衡盾构属封闭式盾构。盾构推进时,其前端刀盘旋转掘削地层土体,切削下来的土体进入土舱。当土体充满土舱时,其被动土压与掘削面上的土、水压基本相同,故掘削面实现平衡(即稳定)。示意图如图所示。由图可知,这类盾构靠螺旋输送机将碴土(即掘削弃土)排送至土箱,运至地表。由装在螺旋输送机排土口 处的滑动闸门或旋转漏斗控制出土量,确保掘削面稳定。 1.1.1 稳定掘削面的机理及种类 土压盾构稳定掘削面的机理,因工程地质条件的不同而不同。通常可分为粘性土和砂质土两类,这里分别进行叙述。 1.1.1.1 粘性土层掘削面的稳定机理 因刀盘掘削下来的土体的粘结性受到破坏,故变得松散易于流动。即使粘聚力大的土层,碴土的塑流性也会增大,故可通过调节螺旋输送机转速和出土口处的滑动闸门对排土量进行控制。对塑流性大的松软土体也可采用专用土砂泵、管道排土。 地层含砂量超过一定限度时,土体流性明显变差,土舱内的土体发生堆积、压密、固结,致使碴土难于排送,盾构推进被迫停止。解决这个问题的措施是向土舱内注水、空气、膨润土或泥浆等注入材,并作连续搅拌,以便提高土体的塑流性,确保碴土的顺利排放。 1.1.1.2 砂质土层掘削面的稳定机理 就砂、砂砾的砂质土地层而言,因土颗粒间的摩擦角大故摩擦阻力大;渗透系数大。当地下水位较高、水压较大时,靠掘削土压和排土机构的调节作用很难平衡掘削面上的土压和水压。再加上掘削土体自身的流动性差,所以在无其它措施的情况下,掘削面稳定极其困难。为此人们开发了向掘削面压注水、空气、膨润土、粘土、泥水或泥浆等添加材,不断搅拌,改变掘削土的成分比例,以此确保掘削土的流动性、止水性,使掘削面稳定。 1.1.1.3 土压盾构的种类 按稳定掘削面机构划分的土压平衡盾构大致有如下几种,见表1。 表1 土压盾构的种类 图1 土压盾构基本形状

泥水盾构泥浆参数测试

泥浆参数测试试验 一、泥浆比重 1.1仪器及测试原理简介 泥浆比重也即是泥浆密度,一般用相对密度的方式来表示,即相对于水的密度,水的密度为1.0g/cm3。 采用NB-1型泥浆比重计对泥浆密度进行测试,图1是该型比重计结构。 (1)泥浆杯;(2)水准泡;(3)主刀口;(4)主刀垫; (5)底座;(6)挡臂;(7)砝码;(8)杠杆;(9)平衡圆柱 图1 泥浆比重计结构 1.2实验器材 NB-1型泥浆比重计,1000ml泥浆杯,清水,泥浆试样。 1.3实验步骤 1、准备工作: 将比重计用清水清洗并擦拭干净。 2、泥浆比重测试步骤如下: 1.取下杯盖,装满欲测泥浆试样,如泥浆中浸入气泡,需轻轻敲击测试杯,直至气泡溢出杯外; 2.将杯盖重新盖上,并转动盖紧,使多余的泥浆和空气从杯盖中间小孔挤出; 3.将称体外表面及杯盖上多余的泥浆擦拭干净; 4.将称体主刀刃对准刀口,放于支撑座上; 5.将砝码移到刃口附近,然后再缓缓向右移动砝码,使杠杆主尺保(主尺每一小格值为0.01,单位g/cm3)持水平的平衡位置(可通过观察水准泡判断是否

平衡); 6.读数,砝码左侧边线所对的刻线就是所测泥浆的比重; 7.每次使用后要彻底洗净、擦干,然后放于仪器箱中。 3、仪器校验 泥浆杯中注满20℃清洁的淡水,用同样测量泥浆的方法测得比重如为1,则表明比重计是准确的,可以使用。如果测得结果不为1,则可将泥浆比重计的平衡圆柱盖拧开,通过增减圆柱内的金属颗粒,使测量的清水比重为1即可。 二、泥浆含沙量 2.1仪器及测试原理 泥浆含砂量指泥浆中不能通过203目筛孔,或粒径大于0 074毫米的固相颗粒所占泥浆体积的百分数。使用NA-1型泥浆含沙量器对泥浆进行含沙量测试,图2为仪器各组成部分。 图2 泥浆含沙量测定器 2.2实验器材 NA-1型泥浆含沙量计,1000ml泥浆杯,清水,泥浆试样。 2.3实验步骤 1、准备工作 将仪器用清水清洗并擦拭干净。 2、测试步骤:

泥水盾构出渣量及出浆比重计算

长沙市南湖路湘江隧道泥水盾构泥水处理 对于泥水平衡盾构掘进来说,最重要的一点就是保持进出浆动态平衡,以及掘进速度与进出浆比重匹配。 一 泥水动态平衡 进(出)浆流量为Q,进浆比重ρ1,出浆比重ρ2,掘进速度ν,盾构直径为D ,围岩比重ρ3,不同岩层原状土比重分别ρa3,ρb3,ρc3.....,下面为正常掘进动态平衡式: ()2 3122D Q Q ∏=-υρρρ (1) Q-进(出)浆流量,单位m 3/h ρ1-进浆比重,单位,KG/m 3 ρ2-出浆比重单位,KG/m 3 ν-掘进速度,m /h 盾构机的掘进速度一般情况都是mm/min,而不是m /h ρ3-围岩比重,KG/m 3 D-盾构外壳直径,m 此计算式表示单位时间匀速掘进一定进尺,实际出渣量、理论出渣量与进出浆比重的匹配关系。 二 盾构掘进状态 1 按掘进状态是否连续可分为正常掘进状态和非正常掘进状态。 1)正常掘进状态 正常掘进状态为在掘进施工中建立科学合理的泥水压力,并保证进浆泥浆具有良好的携渣性能,各项指标均符合要求,掘进当中不出现压力非正常波动情况,按照方案设定速度保持相对均匀速度连续掘

进,掘进中盾构机相关设备运转正常,不出现停机情况。 2)非正常掘进状态 非正常掘进状态是因为某些因素如泥浆站泥浆池满浆、设备故障导致掘进不连续,此种不连续掘进状态增加了非正常的工序如泥水管循环?掘进速度的变化不利于出渣判断。 三掘进出渣量计算及相关参数 泥水盾构掘进中出渣的多少关系到地表沉降、隧道成型及隧道稳定。所以在掘进中如何科学合理的控制出渣尤为重要,下面根据掘进参数对出渣量的相关问题的进行分析。 1 出浆比重计算 根据以上计算式(1)可得出浆比重: ρ2= () Q Q D 1 2 32 ρ υ ρ+ ∏ (2) = () 1 2 32ρ υ ρ + ∏ Q D (3) 进(出)浆流量为800m3,ρ1=1.30KG/m3,中风化圆砾岩ρ3=2.43KG/m3,盾构外壳直径为11.65m,掘进速度取ν=10 mm/min,即ν=0.6 m/min,得: ρ2= () 800 30 .1 800 2 65 . 11 14 .3 6.0 43 .22? + ? ? =1.49KG/m3此处的掘进的速度的单位应当为mm/min 或者为m/h,应当保持单位的统一性;还有盾构机在正常掘进的时候的流量绝对不会是800m3根据以上计算与实际掘进中实测进出浆泥浆比重相符合。 而通常掘进岩层比重,盾构机直径及进浆比重可视为给定值,则

超大直径泥水平衡盾构穿越深水浅覆土区风险分析与对策研究

超大直径泥水平衡盾构穿越深水浅覆土区风险分析与对策研 究 摘要:本文以南京纬三路过江隧道工程超大直径泥水平衡盾构机穿越江中深槽段施工为例,通过对风险源的分析与应对措施研究,提出了超大泥水平衡盾构长距离穿越深水浅覆土地区应对措施。 1.工程背景 南京纬三路过江通道工程采用直径14.93m泥水平衡盾构,盾构穿越江中深槽段总长度为586m,该段掘进全部位于江中段,是工程中风险最高、难度最大的施工区段。在该段深槽线路范围内,线路位于右偏R=1500m的圆曲线内,线路为V字型,坡度从-3.892%过最低点(SDK4+780)后变为2.45%。江底最低覆土深度为14.46m(到盾构机顶部),水深最深为34.9m(2009年9月数据)。江中段地质情况见表1。 表1 地质分层分段情况表 2.施工风险分析 2.1地质勘测准确性风险 由于江底深水地质勘测难度大、成本高,准确性也难以保证,江底隧道地质勘探具有极大的局限性,遇到未勘查清楚的不良地质或存在未查明的地下障碍物的风险十分可能发生。因此,施工准备阶段和施工过程中,需要通过对筛分渣样的分析达到地质预测的目的,可部分揭示开挖面前方地层情况。同时江底可能会出现特异性的障碍物,如废弃铁块、沉船等影响盾构掘进。 2.2盾构机的适应性、可靠性风险 盾构机选型极大程度上是工程成功的决定性因素,盾构机穿越江底掘进过程中,盾构机选型尤为重要,主要表现在以下几个方面: (1)刀盘、刀具磨损:盾构机长距离掘进对刀盘、刀具磨损大;在软硬不均的地层及卵石地层掘进时,刀具不可避免的产生卡刀或偏磨等问题。 (2)泥浆泵及管路磨损、堵塞:泥水循环回路泥浆中的砂石成分会磨损泥浆泵及排送管路,导致盾构机排渣不畅; (3)主轴承磨损,密封件防水失效:因主轴承在长距离掘进被磨损可能导致密封件防水失效,泥浆向盾构机内渗漏,保压系统失衡; (4)盾尾密封:盾尾密封系统的不适应性或受管片及周围土体的磨损影响,导致盾构间隙增大或油脂仓保压失效,盾构机发生渗漏; (5)数据采集系统、传感器失灵:受开挖面恶劣条件影响,盾构工作面数据采集系统、传感器有失效风险,盾构掘进参数或正面舱压等指标无法准确显示; (6)液压推进系统漏油:液压推进系统漏油,推力不足可能导致盾构后退风险; (7)注浆管路堵塞:由于浆液残留结块等原因可能导致注浆管路堵塞,无法进行正常的同步注浆; (8)主轴承断裂:由于主轴承磨损或在掘进复杂地层中偏心力矩致过大可导致主轴承断裂。 2.3江底冒浆风险 由于隧道穿越复合地层、上软下硬地层控制难度大,卵砾石层、粉砂岩层等地层表现为孔隙较大的特点,要依据地层条件及时调整泥浆质量和泥水压力,加

泥水盾构操作规程

盾构机掘进基本操作指导书 (包括刀盘转速、掘进速度、油缸推力、方向姿态等控制) 1、安全操作规程 1.1.基本注意事项 (1).遵守岗位内安全规程 ●盾构机操作、维修人员必须是受过专业训练的,必须具备相应的操作资格。 ●进行机械操作或维修时,请遵守相关的技术资料和项目部下发的文件中所 有安全规则、注意事项及顺序。 ●身体不适、服用药物(催眠药)时及酒后不要操作, 因为发生危机时,容易造成判断失误。 ●多人共同作业时,一定要设指挥员,根据制定的方案操作。 (2).设臵安全联锁装臵 ●请确认所有的防护装臵、防护罩是否装在正常位臵。如果破损,请马上修理。 ●请认真了解盾构联锁、溢流阀等安全装臵。 ●请勿随便调节盾构联锁装臵、溢流阀。 解除盾构联锁装臵请参照盾构联锁装臵的使用说明。 ●一旦误用安全装臵,将会造成重大人身事故。 (3).电气、液压的设定,不要随便变更 ●为防止电气火灾,请勿变更热继电器等设定值。 ●为防止盾构机损伤,请勿变更溢流阀压力等液压设定值。 (4).正确穿戴工作服和安全保护用品 过肥的服装、饰品等有可能被机械部件上的物品钩住,有油的工作服因易 燃,也不得穿用。 ●请勿忘记根据工作内容穿戴保 护眼镜、安全帽、口罩、手套等。 特别是用锤子打击销子等金属片、 异物时可能飞散,必须使用保护眼 镜、安全帽、手套等保护用具。

1.2.盾构掘进过程中的注意事项 (1).掘进中必须特别注意的事项 ●掘进中,机器有时会突然侧滚。所以进入掘进机内时,请充分注意因突然侧滚造 成的跌倒、滚落。 特别是在高处时,必须要用安全带。 ●因传送带或土沙压送泵运转中的振动,造成后续台车的翻到,伤及 作业者的危险性是存在的,请切实装好防翻部件,并认真确认。(2).注意电机的散热 ●电机散热装臵周围闭塞时,就不能散热,有损伤内部、发生火灾的可能, 因此,请保持电机散热装臵的正常运转,不要挡住电机前后风路。(3).推进油缸靴撑和管片间的注意事项 ●推进油缸靴撑和管片间有夹住手脚的危险。注意不要把手脚臵于其间。(4).注意异常声音、异常情况等 ●如果对器具的异音、异常不加以注意,零部件将可能破损而飞散,并有因部件 飞散而造成人员伤害的危险。 机器发生异音、异常时,请立即中止掘进,进行点检、维修。

泥水平衡盾构机施工方案

针对本项目的特性技术方案简述 施工技术篇 一、工程概述 二、总体施工部署及施工思路 2.1 初步施工安排 2.2 总体计划 2.3 工程管理目标 2.4 施工的前准备工作 2.5 施工组织管理 2.6 项目施工总体思路及工艺 2.7 施工总平面图布置规划 三、重点、关键和难点工程的施工方案、工艺及其措施简述 3.1 重点、关键和难点工程分析及应对措施 3.1.1 城市中心区的和谐施工 3.1.2 交通疏解、管线改迁及征地拆迁对工程前期推进影响大 3.1.3 盾构始发与到达施工难度大 3.1.4 基坑安全施工 3.1.5 顶管施工重难点分析及应对措施 3.1.6 泥水盾构刀盘、刀具设计 3.2 本项目主要工程施工方案及工艺简述 3.2.1 竖井(工作井)施工 3.2.2 顶管施工 3.2.3 盾构施工 3.2.4 管道功能性试验 3.2.5 其他附属及机电安装工程 四、交通疏导方案规划 4.1 交通疏导原则及规定 4.2 交通疏解实施程序 4.3 交通疏解方案

五、地下管线及其他地上地下设施的保护加固措施 5.1 地下管线保护措施 5.2 建构筑物保护措施 六、施工保障措施 6.1 施工质量保障措施 6.1.1 质量目标 6.1.2 质量保证体系 6.1.3 质量保证制度 6.1.4 主要工程施工质量控制措施 6.2 施工安全保障措施 6.2.1 安全目标 6.2.2 安全保证体系 6.2.3 安全保证制度 6.2.4 主要工程施工安全控制措施 6.3 应急预案 6.3.1 应急救援中心的职责 6.3.2 信息报告及处理 6.3.3 应急决策及响应 6.3.4 应急救援的资源配置 6.4 文明施工及环境保护措施 6.4.1 管理体系 6.4.2 文明施工措施 6.4.2 环境保护措施 七、本项目拟配备的机械设备情况

盾构施工介绍

盾构施工介绍 一、盾构机选型 盾构的机型是指在根据工程地质和水文地质条件,盾构所采用的最有效的开挖面支护形式。 1.选型依据 (1) 土质条件、岩性、(抗压、抗拉、粒径、成分等个参数) (2) 开挖面稳定(自立性能) (3) 隧道埋深、地下水位 (4) 设计隧道的断面 (5) 环境条件、沿线场地(附近管线和建筑物及其结构特性) (6) 衬砌类型 (7) 工期 (8) 造价 (9) 宜用的辅助工法 (10) 设计路线、线形、坡度 (11)电气等其他设备条件 地层渗透系数对于盾构的选型是一个很重要的因素。通常,当地层的渗透系数小于10-7m/s时,可以选用土压平衡盾构机;渗透系数大于10-4 m/s时,一般选用泥水盾构;介于两者之间的既可以用土压平衡的,也可用泥水盾构。根据地层渗透系数与盾构类型的关系,若地层以各种级配富水的砂层、砂砾层为主时,宜选用泥水盾构;其它地层宜选用土压平衡盾构。我们一号井的盾构机选用海瑞克生产的S592盾构机。 二、盾构机介绍 1.TBM概述 机器类型土压平衡盾构安装功率 4000千瓦 TBM长度+后配套长度约88米 TBM重量约750吨 曲率半径(最小) 500米 2.盾构概述 (1)盾构钢结构

前盾(直径) 8800毫米(长度) 2800毫米 中盾(直径) 8785毫米(长度) 3000毫米 盾尾(直径) 8770毫米(长度) 4100毫米加4排密封刷(2)盾尾铰接油缸(被动) 数量 15个 行程 150毫米 标准推力在215巴时6500千牛 (3)掘进 主推进油缸数量 19×2个 行程 2500毫米 推力在350巴时70000牛 (4)人孔闸 数量 1个类型平行闸 前舱容积 2430升前舱容纳人数 2个 主舱容积 4170升主舱容纳人数 4个 工作压力 6巴 (5)螺旋输送机 数量 1台长度 15175毫米 功率 400 千瓦速度 0-22.1/分钟扭矩(额定) 217千牛米 3.刀盘概述 开挖直径 8830毫米重量(含刀具) 116吨 滚刀(一圈) 45 滚刀(中心) 4 滚刀直径 432毫米齿刀 58 中间刀具 1 铲刀 16 磨损保护 3个传感器 4.主驱动概述 主驱动电动马达 14个 功率 14×160千瓦速度 0-4.2 /分钟

泥水平衡盾构机施工总结

泥水平衡盾构机施工总结 本工程是我单位常规直径地铁盾构第一次采用泥水盾构机施工。在施工、操作方面可借鉴经验不多,造成在施工中走过了不少弯路,出现了许多问题。泥水盾构机操作的基本原则是:控制切口压力在技术交底范围内稳定和盾构机姿态在设计要求范围内的前提下,实现盾构机正常掘进。切口压力的稳定是保证地面沉降、安全掘进的前提条件,而盾构机姿态决定隧道走向是否与设计路线符合,成型隧道符合设计要求的先决条件。如果在掘进期间,切口压力不稳定,波动较大的话,轻则沉降较大,重则引起地面塌方。所以在操作泥水盾构机的时候,每一个操作手必须清楚的明白,保证切口压力稳定的重要性。而盾构机姿态是决定我们的施工是否按设计路线施工,如果出现姿态超限,轻则隧道管片出现错台、开裂、漏水等质量问题,重则需要联系设计单位和业主,进行调线。通过一年多的泥水盾构机施工经验,结合自己以前土压平衡盾构机的操作经验,对泥水盾构机的施工和质量控制方面的一些想法做如下总结。 一.工程概况: 东莞市城市快速轨道交通R2线工程(东莞火车站~东莞虎门站段)[2303A标:榴花公园站、茶山站~榴花公园站区间]土建工程施工项目,位于方中路上的茶山站后,正线隧道与出入段线隧道并行约100m由东向西穿越宽约200米的寒溪河,进入东岸大片农田(此时出入段线进入寒溪河东岸的东城车辆段)、通过中间风井及河西岸的数幢别墅后进入莞龙路。线路继续沿莞龙路前行,绕避了数架人行天

桥后到达榴花公园前的榴花公园站结束。 本标段起讫里程YDK2+298.728~ YDK5+502.598,包含1个明挖车站(【榴花公园站】)和1个区间(【茶山站~榴花公园站区间】),1条出段线盾构隧道(【中间风井~出段线盾构井】),1条入段线盾构隧道(【茶山站~入段线盾构井】)。其中正线段茶山站~榴花公园站区间左线起讫里程为:ZDK2+301.000~ZDK3+497.720、 ZDK3+653.485~ZDK4+118.812,左线长1662.041m; 右线起讫里程为:YDK2+298.728~YDK3+434.162、YDK3+601.659~ YDK4+110.000,右线长1643、775m;区间正线总长3406.628m。其中ZDK3+653.485~ZDK3+746.000、YDK3+601.659~ YDK3+690.000采用矿山法开挖,盾构管片衬砌。 二.操作注意事项: (一)泥浆粘度控制 在泥水盾构中,泥浆的作用有两种:维持开挖面稳定和运送弃土。泥水盾构机施工时稳定开挖面的原理为:以泥水压力来抵抗开挖面的土压力和水压力以保持开挖面的稳定,同时,控制掌子面变形和地面沉降;在掌子面形成弱透水性泥膜,保持泥水压力有效作用于掌子面。泥浆作为一种运输介质将开挖下来的渣土以流体形式输送,经地面泥水处离处理设备分离,将处理过的渣土运至弃土场。 泥浆的比重和粘度等性能决定它稳定开挖面和携带渣土的能力。(1)泥浆比重 为保持开挖面的稳定,即把开挖面的变形控制到最小限度,泥

复杂条件下的大直径泥水盾构掘进参数控制

万方数据

万方数据

构转向困难,应该更换边滚刀和周边刮刀。隧道最小转弯半径550nl,如通过以上步骤还不能转向,就需要使用仿型刀,设定开挖角度范围,增大开挖面直径辅助盾构转向。 图1掘进方向控制 Fig.1Excavationdirectioncontrol 2.3同步注浆量及压力的控制 在掘进过程中,控制好同步注浆量及注浆压力,及时填充掘进留下的空隙,保证管片的稳定性,提高隧道的防水性能,是控制地面沉降的必要手段。盾构机同步注浆系统有6根注浆管,圆周方向分布在盾构机尾盾上,注浆量根据开挖直径、管片外径计算出理论注入量。实际则需根据地层特点、盾构姿态等来控制,基本原则是注入量不小于理论注入量,确保顶部两根管路的注入量。注浆压力通常大于同等水平位置开挖舱泥水压力0.02~0.03MPa,压力低则注入量不够,过高会损坏盾尾密封刷或通过地层空隙进入开挖仓。因砂浆凝固会导致注浆管路堵塞,因此每掘进1环,在掘进的最后20cm就停止注浆。在盾构机完成掘进拼装管片时,每隔45—75rain注一次,每次每根管注入0.01一O.02m3。盾构掘进时也应留意注浆量,如遇到松散砂卵石地层或有地下空洞等导致注入量增加时应放慢掘进速度以保证填充密实。因盾构自重,砂浆会向下流,一般盾构上部注浆量要占到总注入量的一半以上,只有保证顶部注入量,才能最大限度地减少地表沉降。 2.4盾尾密封油脂系统 盾尾密封有3道,前、中、后,每一道的压力设定非常重要,假如设定压力过小,油脂注入量少,盾尾密封刷易损坏出现漏浆涌水现象。压力过大,油脂消耗量增大,造成经济损失。3道密封的压力设定以开挖仓土压力及注浆压力为依据,最外层压力应比开挖仓底部压力高约0.1MPa,中层取开挖仓底部压力或等于外层设定压力,内层则比中间层压力减少0.1MPa或与之相同,压力设定完毕后还应统计油脂消耗,并适当调整注脂泵的压力。经计算,每掘进1环,盾尾油脂理论消耗量在100~110kg(视掘进时间而定),可以依据该值调整注脂泵压力保证注入量即可…。 2.5泥水循环系统的控制 根据目前掘进距离统计,盾构机停止掘进80%的原因来自泥水循环系统,包括泵站停机、管路破损、泵及管路堵塞、泥水处理设备故障等(见图2)。 图2泥水循环控制系统 Fig.2Controlsystemofslurrycycle 2010年第12卷第12期67万方数据

大型泥水盾构现场施工中的泥水处理

精心整理大型泥水盾构施工中的 泥 水 分

第一章绪论 一、泥水加压式盾构及其泥水分离处理系统概述 盾构法施工已有170余年历史,随着科学水平的不断提高,盾构技术也得到不断发展和完善。至今,盾构已发展成为软土地层修建隧 施工提供了广阔的舞台。 泥水加压式盾构是在机械掘削式盾构的前部刀盘后侧设置隔板,它与刀盘之间形成压力室,将加压的泥水送入泥水压力室,当泥水压力室充满加压的泥水后,通过加压作用和压力保持机构,来谋求开挖面的稳定。盾构推进时由旋转刀盘切削下来的土砂经搅拌装置搅拌后

形成高浓度泥水,用流体输送方式送到地面。在地面调整槽中,将泥水调整到合适地层土质状态后,由泥水输送泵加压后,经管路送到开挖面泥水压力室,泥水在稳定开挖面的同时,将刀盘切削下来的土砂搅成浓泥浆,再由排泥泵经管路输送到地面。被送到地面的泥水,根据土砂颗粒直径,通过一次分离设备和二次分离设备将土砂分离并脱 在实际施工中,泥膜的形成是至关重要的。当泥水压力大于地下水压力时,泥水理论按达西定律渗入土壤,形成与土壤间隙成一定比例的悬浮颗粒,在“阻塞”和“架桥”效应的作用下,被捕获并积聚于土壤与泥水的接触表面,泥膜就此形成。随着时间的渐渐推移,泥膜的厚度不断增加,渗透抵抗力逐渐增强,当泥膜抵抗力远大于正面

土压时,产生泥水平衡效果。 2、泥水管理控制 (1)、进浆泥水指标 泥浆能否在渗入土壤时形成优质泥膜,能否稳定切口前方土体, 泥水的比重是一个主要控制指标。掘进中进泥比重不易过高或过低,前者将影响泥水的输送能力,后者将破坏开挖面的稳定。 泥水比重的范围应在1.15~1.30 g/cm3,下限为1.15 g/cm3,上限根据施工的特殊要求而定,在砂性土中施工、保护地面建筑物、盾构穿越浅覆层等,可达1.30 g/cm3。甚至可达1.35 g/cm3。

泥水盾构泥水系统技术

泥水盾构泥水系统技术 傅德明 上海申通地铁集团公司 2010.3 1 泥水盾构简介 ?1818年,英国的布鲁诺从蛀虫钻孔得到启示,提出盾构掘进隧道设想。 ? 1825--1843年,布鲁诺在伦敦泰吾士河下用盾构法修建458m长的矩形隧(11.4m× 6.8m)。 ? 1830年,英国的罗德发明“气压法”辅助解决隧道涌水。

1874年Greathead提出泥浆盾构专利 1896年,开始应用刀盘式盾构掘进机 不 ?20世纪60年代初,穿越不稳定和含水地层的隧道工程辅助技术有:降水法、气压 法、地层加固法和冻结法。 ?气压法最经济有效,由于安全和健康等原因,希望有一种能不干扰地面和使工人不 在气压下施工的隧道掘进机,欧洲国家提出“局部气压方法”,但这种对工作面不能提供不变的和有规则的支护。 ?英国隧道专家建议在隔舱板前用喷水“水力盾构”,但水不能支护开挖面,无法阻 止开挖面不停地流动。这种情况与充满水的挖槽相类拟,从而提出在开挖面用类同槽壁法的支护,这样就诞生了泥水加压盾构掘进机。 ?1967年,英国开发成功首台泥水加压平衡盾构。 ?1974年,日本开发成功首台土压平衡盾构。 ?1987--1991年,英国、法国采用11台盾构掘进深50km长的英法海峡隧道,创造单 台盾构连续掘进21km的记录。 ?1989--1996年,日本采用8台世界最大直径14.14m泥水加压盾构,掘进东京湾海 峡隧道,2条隧道各长9.4km。 英国体系泥水盾构

?1964年英国Mott, Hay和Anderson的John Bartlett 申请了泥水加压平 衡盾构掘进机原理专利(英国专利号1083322)。 ?1971年开挖直径4.1m、长140m的试验段。英国体系泥水加压平衡盾构掘 进机与同类德国体系相对照,其研制的特征是有长槽的鼓轮状的切削头、提取来自压力室的泥浆,有粗和细两套分离装置,以及以控制弃土出口压力(阀或泵)的方法保持开挖面的压力。当时,英国由于缺乏能适合促进这种技术的隧道工程,这种技术的发展受到了限制。 日本体系泥水盾构 ?日本工程师相信液体支护隧道开挖面的原理、他们称为“泥水加压平衡盾 构”(即泥水加压平衡盾构)。 ?1970年日本铁建公司在京叶线森崎运河下,羽田隧道工程中采用了直径 7.29m的泥水加压盾构施工,土质为冲积粉砂土层和洪积砂层,N值为2-50,施工 长度为865× 2条=1712延米,见图1。 ?直径7.29m泥水加压盾构掘进机,在隧道施工中获得了极大的成功,它是 当代时最大直径的泥水加压平衡盾构。 ?纵观日本在近30年的泥水盾构发展,自日本泥水盾构问世以来,泥水盾 构一直持续发展。

泥水盾构出渣量及出浆比重计算

长沙市南湖路湘江隧道泥水盾构泥水处理 对于泥水平衡盾构掘进来说,最重要的一点就是保持进出浆动态平衡,以及掘进速度与进出浆比重匹配。 一 泥水动态平衡 进(出)浆流量为Q,进浆比重ρ1,出浆比重ρ2,掘进速度ν,盾构直径为D ,围岩比重ρ3,不同岩层原状土比重分别ρa3,ρb3,ρc3.....,下面为正常掘进动态平衡式: ()2 3122D Q Q ∏=-υρρρ (1) Q-进(出)浆流量,单位m3/h ρ1-进浆比重,单位,KG/m3 ρ2-出浆比重单位,KG/m3 ν-掘进速度,m/h 盾构机的掘进速度一般情况都是mm/min,而不是m/h ρ3-围岩比重,KG/m3 D-盾构外壳直径,m 此计算式表示单位时间匀速掘进一定进尺,实际出渣量、理论出渣量与进出浆比重的匹配关系。 二 盾构掘进状态 1 按掘进状态是否连续可分为正常掘进状态和非正常掘进状态。 1)正常掘进状态 正常掘进状态为在掘进施工中建立科学合理的泥水压力,并保证进浆泥浆具有良好的携渣性能,各项指标均符合要求,掘进当中不出现压力非正常

波动情况,按照方案设定速度保持相对均匀速度连续掘进,掘进中盾构机相关设备运转正常,不出现停机情况。 2)非正常掘进状态 非正常掘进状态是因为某些因素如泥浆站泥浆池满浆、设备故障导致掘进不连续,此种不连续掘进状态增加了非正常的工序如泥水管循环?掘进速度的变化不利于出渣判断。 三掘进出渣量计算及相关参数 泥水盾构掘进中出渣的多少关系到地表沉降、隧道成型及隧道稳定。所以在掘进中如何科学合理的控制出渣尤为重要,下面根据掘进参数对出渣量的相关问题的进行分析。 1 出浆比重计算 根据以上计算式(1)可得出浆比重: ρ2= () Q Q D 1 2 32 ρ υ ρ+ ∏ (2) = () 1 2 32ρ υ ρ + ∏ Q D (3) 进(出)浆流量为800m3,ρ1=m3,中风化圆砾岩ρ3=m3,盾构外壳直径为,掘进速度取ν=10 mm/min,即ν= m/min,得: ρ2= () 800 30 .1 800 2 65 . 11 14 .3 6.0 43 .22? + ? ? =m3 此处的掘进的速度的单位应当为mm/min 或者为m/h,应当保持单位的统一性;还有盾构机在正常掘进的时候的流量绝对不会是800m3 根据以上计算与实际掘进中实测进出浆泥浆比重相符合。

泥水盾构施工要点

掌握土压仓内土砂塑性流动性的方法 塑流化改良控制是土压平衡式盾构施工的最重要要素之一,要随时把握土压仓内土砂的塑性流动性。一般按以下方法掌握塑流性状态。 1.根据排土性状 取样测定(或根据经验目视)土砂的坍落度,以把握土压仓内土砂的流动状态。采用的坍落度控制值取决于土质、改良材料性状与土的输送方式。 2.根据土砂输送效率 按螺旋输送机转数计算的排土量与按盾构推进速度计算的排土量进行比较,以判断开挖土砂的流动状态。一般情况下,土压仓内土砂的塑性流动性好,盾构掘进就正常,两者高度相关。 3.根据盾构机械负荷 根据刀盘油压(或电压)、刀盘扭矩、螺旋输送机扭矩、千斤顶推力等机械负荷变化,判断土砂的流动状态。一般根据初始掘进时的机械负荷状况和地层变化结果等因素,确定开挖土砂的最适性状和控制值的容许范围。 泥水平衡盾构掘进中泥浆的作用 泥水平衡式盾构掘进时,泥浆起着两方面的重要作用: 一是依靠泥浆压力在开挖面形成泥膜或渗透区域,开挖面土体强度提高,同时泥浆压力平衡了开挖面土压和水压,达到了开挖面稳定的目的;二是泥浆作为输送介质,担负着将所有挖出土砂运送到工作井外的任务。 因此,泥浆性能控制是泥水平衡式盾构施工的最重要要素之一。 泥水平衡盾构掘进对泥浆的性能指标要求 泥浆性能包括: 物理稳定性、化学稳定性、相对密度、黏度、pH值、含砂率。

土压平衡式盾构出土运输方法与排土量控制 土压平衡式盾构的出土运输(二次运输)一般采用轨道运输方式。 土压平衡式盾构排土量控制方法分为重量控制与容积控制两种。重量控制有检测运土车重量、用计量漏斗检测排土量等控制方法。容积控制一般采用比较单位掘进距离开挖土砂运土车台数的方法和根据螺旋输送机转数推算的方法。我国目前多采用容积控制方法。 泥水平衡式盾构排土量控制方法 泥水平衡式盾构排土量控制方法分为容积控制与干砂量(干土量)控制. 容积控制方法如下,检测单位掘进循环送泥流量Q1与排泥流量Q2,按下式计算排土体积Q3:Q3= Q2-Q1 对比Q3与Q,当Q>Q3时,一般表示泥浆流失(泥浆或泥浆中的水渗入土体);Q<Q3时,一般表示涌水(由于泥水压低,地下水流入)。正常掘进时,泥浆流失现象居多。 干砂量表征土体或泥浆中土颗粒的体积 干砂量控制方法是,检测单位掘进循环送泥干砂量V1与排泥干砂量V2,按下式计算排土干砂量V3,V3= V2-V1 对比V3与V,当V>V3时,一般表示泥浆流失;V<V3时,一般表示超挖。 盾构管片拼装成环方式 盾构推进结束后,迅速拼装管片成环。除特殊场合外,大都采取错缝拼装。在纠偏或急曲线施工的情况下,有时采用通缝拼装。 盾构管片拼装顺序 一般从下部的标准(A型)管片开始,依次左右两侧交替安装标准管片,然后拼装邻接(B型)管片,最后安装楔形(K型)管片。

泥水盾构施工管理介绍

5.1盾构机选型 5.1.1盾构机的选型原则和依据 盾构机选型是盾构隧洞能否优质、安全、快速建成的关键工作之一,选型时主要遵照以下原则: (1)选择的盾构机机型和功能必须满足本标段线路条件、工期、施工条件和环境等要求。 (2)选用的盾构机按本标段的地质条件,进行有针对性的设计与制造,要求其性能与本标段内的工程地质、水文地质条件相适应。 (3)选用的盾构机应具有良好的性能和可靠性。 (4)类似地质、施工条件下盾构选型、施工实例及其效果。 (5)盾构机制造商的知名度、业绩、信誉和技术服务。 (6)依据南水北调中线一期穿黄工程上游线隧洞土建及设备安装施工招标文件及第三卷图纸,为选用盾构机机型的重要依据。 5.1.2盾构隧洞线路条件及混凝土管片 (1)隧洞由邙山隧洞段和过黄河隧洞段组成,最大开挖直径9030mm,总长4250m的直线隧洞。 (2)线路纵坡有三:邙山隧洞约4.91%,过河隧洞段有0.1%和0.2%两种,变坡点竖曲线半径为800m。见5.1-1南水北调中线穿黄隧洞示意图

图1 南水北调中线穿黄隧洞示意图 (3)过河段隧洞围土有单一粘土结构、上砂下土结构和单一砂土结构三种。 (4)主要地质问题有: —砂层中石英颗粒含量高40%-70%,刀具磨损加剧; —刀具检查地点和检查方式; —换刀地点及加固方式选择; —常压下换刀作业和气压下的换刀作业; —遇到枯树和大孤石的处理; —局部有抗压强度达16.5MPa砂岩等。 (5)隧洞外层采用通用环混凝土楔形管片衬砌,每环的楔形量为34.8mm。管环外径8.7m,内径7.9m,管片宽度1.6m,由7块管片组成,错缝拼装,每块管片所对应圆心角51.4286度。管片重量约6.2t。 5.2土压平衡式盾构机与混合式盾构机的基本掘进构成 5.2.1土压平衡式盾构机的基本掘进构成 盾构法施工从气压式盾构机开始到当今广泛使用土压平衡式盾

泥水盾构泥水管理

泥水盾构泥水管理 由于泥水平衡盾构机是靠泥浆带动渣土输送,因此泥浆的质量是顺利掘进的一个重要因素。泥水添加材料主要有水、膨润土、CMC、纯碱等,根据不同的地层采用不同的配合比。泥水性能主要有比重、粘度、含沙量、屈服值、析水量和PH值等几个指标。泥水具体配料的确认必须根据掘削地层的土质条件确定 1. 膨润土 膨润土是泥水主材黏土的补充材料。膨润土通常是以蒙脱石为主要成分的黏土矿物,其相对密度为2.4~2.9,液限为330%~600%,遇水体积膨润10~15倍;另外,其颗粒表面带负电,易与带正电的地层结合形成优质泥膜。 2. CMC CMC是材料、树皮经化学处理后的高分子糊,溶于水时呈现极高的黏性,故多用来作增黏剂。CMC主要用于砂砾层中,有降低滤水量和防止逸泥的作用,也可抵抗阳离子污染。 3. 纯碱 碳酸钠,又称苏打,俗名纯碱,外观为白色粉末或细粒结晶,味涩,相对密度为2.532,易溶于水,其水溶液水解呈碱性,有一定的腐蚀性。纯碱的作用是增加泥水的活性,以降低泥水的密度和黏度。 4. 水 在使用地下水和江河水的场合下,事先应进行水质检查和泥水调和试验,必须除去不纯物质,调整PH值。 5. 砂

盾构在卵石层中掘进时,因地层的有效空隙直径大,故需在泥水中添加一定的砂,以便填充掘削地层的孔隙。 泥水性能指标: 1.比重 泥水的比重是一个主要控制指标。掘进中进泥比重不易过高或过低,过高将影响泥水的输送能力,降低掘进速度;过低则不利于开挖面的稳定。 通过设置在送排泥管处的差压式密度计和γ射线密度计自动测量循环泥浆比重,泥浆试验中是用泥浆天平测量。 2.粘度 泥水的粘度是另一个主要控制指标。从土颗粒的悬浮性要求及泥水处理系统的配套来讲,要求泥水的胶凝强度(静切力)适中;从流动性考虑,运动粘度不宜过高。考虑到泥水处理系统的自造浆能力,随着在粘土层中推进环数的增加,泥浆越来越浓,比重也呈直线上升,其相应的漏斗粘度也会表现上升,但并非说明泥浆的质量越来越高。若在砂性土中施工,粘度甚至会下降,因此,泥水粘度的范围应保持在20~30s。此外,考虑到开挖面的泥膜形成特性,要有适当的宾汉姆屈服值。 考虑到粘度的调整有一个过程,故在泥浆粘度为22s时(调整槽粘度),即可逐渐增加CMC,添加量的多少视粘度下降的趋势而定。 3. 屈服值(YV): YV是流体处于流动状态对保持流动所必须的剪切力的测定值,流动阻抗是由泥水中所含土粒间的牵引力而产生,是维持泥水良好状态的一项重要指标。用与YV有一定相关性的漏斗粘性测定代替。

(建筑施工工艺标准)盾构施工工艺工法(土压泥水)

(建筑施工工艺标准)盾构施工工艺工法(土压泥水)

盾构施工工艺工法 0前言 盾构法(Shield Method)是暗挖法施工中的一种全机械化施工方法,它是将盾构在地中推进,通过盾构外壳和管片支承四周围岩防止发生往隧道内的坍塌,同时在开挖面前方用切削装置进行土体开挖,通过出土机械运出洞外,靠千斤顶在后部加压顶进,并拼装预制混凝土管片,形成隧道结构的一种机械化施工方法。 本施工工法中所描述的盾构分为两类:土压平衡盾构和泥水平衡盾构。 土压平衡式盾构是把土料(必要时添加泡沫、膨润土等对土壤进行改良)作为稳定开挖面的介质,刀盘后隔板与开挖面之间形成泥土室,刀盘旋转开挖使泥土料增加,再由螺旋输料器旋转将土料运出,泥土室内土压可由刀盘旋转开挖速度和螺旋输出料器出土量(旋转速度)进行调节。 泥水式盾构是通过加压泥水或泥浆(通常为膨润土悬浮液)来稳定开挖面,其刀盘后面有一个密封隔板,与开挖面之间形成泥水室,里面充满了泥浆,开挖土料与泥浆混合由泥浆泵输送到洞外分离厂,经分离后泥浆重复使用。 (2)本工法内容包括 ①主要内容 本工法的主要内容包括:盾构组装、调试作业,盾构始发作业,盾构正常掘进作业,盾构到达作业,盾构过站、调头作业,盾构拆卸、吊装、存放作业,刀盘刀具的检查与更换作业,施工运输作业,施工通风及洞内轨道、管线布置作业,盾构施工测量作业10部分。每部分按工序细分,各项作业按照紧前工序达到标准、适用条件、作业内容、作业流程及控制要点、作业组织、紧后工序- 2 -

等内容进行编制。 ② 总体施工流程图 盾构法隧道总体施工流程图见图1 ③ 盾构法隧道施工阶段划分及工作要点 图Ⅲ.1盾构法隧道总体施工流程图 施 工准备阶段 正 常 施工阶段 收尾阶段

盾构讲座二(泥水式盾构机)

泥水式盾构机 1 发展概况 泥水式盾构机是通过有一定压力的泥浆来支撑稳固开挖面;由旋转刀盘、悬臂刀头或水力射流等进行土体开挖;开挖下来的土料与泥水混合以泥水状态由泥浆泵进行输运。泥水式盾构机适用于各种松散地层,有无地下水均可。采用泥水式盾构机进行施工的隧洞工程都说明它是一种低沉降及安全的施工方法,在稳定的地层中其优点更加明显。 最初的泥水盾构要追溯到一百多年前的Greathead及Haag的专利。由于高透水性地层用压缩空气支撑隧洞开挖面非常困难,1874年,Greathead开发了用流体支撑开挖面的盾构,开挖出的土料以泥水流的方式排出。1896年Haag在柏林为第一台德国泥水式盾构申请了专利,该盾构以液体支撑开挖面,其开挖室是有压和密封的。1959年 E.C.Gardner成功地将以液体支撑开挖面应用于一台用于建造排污隧洞的直径为 3.35 m的盾构。1960年 Schneidereit 引进了用膨润土悬浮液来支撑开挖面,而H.Lorenz 的专利提出用加压的膨润土液来稳固开挖面。1967年第一台有切削刀盘并以水力出土、直径为3.1m的泥水盾构在日本开始使用。在德国,第一台以膨润土悬浮液支撑开挖面的盾构由Wayss & Freytag开发并投入使用。 泥水式盾构机的发展有三种历程,即日本历程、英国历程和德国历程。到目前则只有日本和德国两个主要的发展体系。日本的发展历程导致当今的泥水盾构,德国的发展历程导致水力盾构。以日本的泥水盾构为基础发展了土压平衡盾构,而德国的水力盾构导致很多不同的机型,如混合型盾构,悬臂刀头泥水盾构及水力喷射盾构等。德国和日本体系的主要区别是,德国式的在泥水舱中设置了气压舱,便于人工正面控制泥水压力,构造简单;日本式的泥水密封舱中全是泥水,要有一套自动控制泥 水平衡的装置。 1967年三菱公司制造了第一台为泥浆开挖面支护的试验盾构,直径为3.10m的样机取得经验后, 1970年建造了第一台大型泥水盾构,直径为7.20m,用于建设海峡下的Keiyo铁路线。自此以后,日本的很多制造商生产了此型盾构。与欧洲相比,泥水盾构在日本使用很多。在欧洲,英国的Markham,法国的NFM及FCB公司等采用日本许可证,也制造了泥水 盾构。 德国的发展历程起始于1972年,德国承包商Wayss及Freytag公司开发了水力盾构系统。1974年,其样机用于建设Hamburg港口下的Hamburg-Wilhelmsburg总管道,盾构外径为4.48m。当时还没有可靠的盾尾密封。这样一来整条隧道被加压。因为此型盾构是首次使用,很多修改事先未预料到。为了继续隧洞修建工程,采取了许多补救措施,解决了一些主要问题。第二次掘进着重解决了可靠的尾封,使得在最后的30m,采用了新的尾封后才达到隧洞内无压力的目的。当今水力盾构在欧洲市场占有很重要的位置,Herrenknecht,Howaldtswerke Deutsche Werft及Voest Alpine Bergtechnik等公司都是这类盾构最重要的制 造商。

盾构选型及参数计算方法

盾构选型及参数计算方法 1.1、序言 盾构是一种专门用于隧道工程的大型高科技综合施工设备,它具有一个可以移动的钢结构外壳(盾壳),盾构内装有开挖、排土、拼装和推进等机械装置,进行土层开挖、碴土排运、衬砌拼装和盾构推进等系列操作,使隧道结构施工一次完成。它具有开挖快、优质、安全、经济、有利于环境保护和降低劳动强度的优点,从松散软土、淤泥到硬岩都可应用,在相同条件下,其掘进速度为常规钻爆法的4~10倍。较长地下工程的工期对经济效益和生态环境等方面有着重大影响,而且隧道工程掘进工作面又常常受到很多限制,面对进度、安全、环保、效益等这些问题,使用盾构机无疑是最好的选择。些外,对修建穿越江、湖、海底和沼泽地域隧道,采用盾构法施工,也具有十分明显的技术和经济优势。 采用盾构法施工,盾构的选型及配置是隧道施工中关键环节之一,盾构选型应根据工程地质水文情况、工期、经济性、环境保护、安全等综合考虑。盾构的选型及配置是一种综合性技术,涉及地质、工程、机械、电气及控制等方面。 1.2盾构机选型主要原则 1.2.1盾构的选型依据 盾构选型主要应考虑以下几个因素: 1)工程地质、水文条件及施工场地大小。 2)业主招标文件中的要求。

3)管片设计尺寸与分块角度。 4)盾构的先进性、适应性与经济性。 5)盾构机厂家的信誉与业绩。 6)盾构机能否按期到达现场。 1.2.2 盾构的型式 1)敞开式型盾构 敞开式型盾构是指盾构内施工人员可以直接和开挖面土层接触,对开挖面工况进行观察,直接排除开挖面发生的故障。这种盾构适用于能自立和较稳定的土层施工,对不稳定的土层一般要辅以气压或降水,使土层保持稳定,以防止开挖面坍塌。有人工开挖盾构、半机械开挖盾构、机械开挖盾构。 2)部分敞开式型盾构 部分敞开式型盾构是在盾构切口环在正面安装挤压胸板或网格切削装置,支护开挖面土层,即形成挤压盾构或网格盾构,施工人员可以直接观察开挖面土层工况,开挖土体通过网格孔或挤压胸板闸门进入盾构。根据以往大量工程经验,通常都将挤压胸板和网格切削装置组合在一起安装在盾构上,形成网格挤压盾构。这种盾构适用于不能自立、流动性在的松软粘性土层、尤其是对隧道沿线地面变形无严格要求的工程。当盾构采用网格开挖时,应将安装在网格后面的挤压胸板部分或大部分拆除,利用网格孔对土层的摩擦力或粘结力对开挖面土层进行支护,当盾构向前推进时(一般是盾构穿越江湖、海底或沼泽地区),应将挤压胸板装上,盾构向前推进时,可将土体全部

泥水平衡盾构始发工艺

- 217 - 始发端地层加固 安装始发基座 盾尾通过洞口密封后进行注浆回填 盾构掘进与管片安装 泥水平衡盾构始发工艺 3.5.1 工艺概述 盾构始发是指盾构从组装调试,到盾构完全进入区间隧道并完成试掘进为止的施工过程。根据大量的工程经验,盾构的始发是盾构施工最为危险,也是最为重要的一个环节。顺利的始发能显著的节约工期、人力和物力。一旦始发出现事故,则必定是较为重大的事故,轻则造成工期延误,浪费资源,重则损坏主要施工机器和已经完成的隧道,造成巨大损失。 3.5.2 作业内容 主要作业内容:调制浆设备安装调试,泥浆的调制,泥水分离设备的安装调试,始发端地层加固,端头洞门凿除,始发基座安装,盾构机组装调试,安装反力架及洞门密封,安装负环管片, 注浆回填,盾构掘进与管片安装。 3.5.3 工艺流程图 图 3.5.3-1 泥水盾构始发流程框图 3.5.4 工序步骤 一、调制浆系统组装调试 1. 调制浆系统过渡池、调整池、新浆池、 清水池、废浆池的设置。 过渡池根据实际情况分为几级,用来接 收从分离站流过来的浆液,调整池和 P1.1 泵连接,向洞内提供循环泥浆,新浆池用来 调制新浆,清水池存放清水,废浆池用来存 放比重过大的废浆。这些池子可以在地上挖 也可是地面上的容器,根据现场情况确定。 调制浆系统及泥水分离设备安装调试 调制泥浆 安装负环管片与盾构机负载调 安装反力架、 洞口密封 盾构机组装、空载调试 端头洞门凿除

2.调制浆系统泵、搅拌机、刮泥机的安装调试。 每个过渡池中配备一台刮泥机以防止浆液沉淀,调整池中配备一台搅拌机保证浆液均匀。新浆池配备一台上料泵和一台将新浆送至调整池的渣浆泵,废浆池中配备一台渣浆泵将废浆抽出丢弃。清水池配备一台清水泵向各个池子送清水。泥浆从上级过渡池到下级过渡池及从过渡池调整池是通过泥浆槽自流进去的。 二、分离设备安装调试 1.基础设计 分离设备的基础是混凝土制成的槽,分离设备安装在混凝土槽的墙上。基础的结构形式根据分离设备的形式而定。 2.分离设备安装及管线布置 分离设备安装就是根据规范将设备安装在基础上。管线布置主要是从分离设备到过渡池的管线布置。泥浆从分离设备到过渡池是通过泥浆自流完成的。这需要泥水分离设备的基础高于过渡池的基础。 三、调制泥浆 在盾构机负载调试之前要制备循环泥浆。新浆的调制在新浆池中进行。添加剂会隧隧道地层的不同而变化。调制好的泥浆用渣浆泵抽至调整池中。 四、始发洞口地层加固、洞门凿除和洞门密封系统的安装。 1.始发洞口的地层加固 洞门地层加固方法如前所述。 2.洞门凿除 盾构始发的站或井的围护结构一般为钢筋混凝土的桩或连续墙,盾构刀盘无法直接切割通过,需要人工凿除。洞门凿除的时机必须把握良好,凿除太迟耽误盾构出洞,凿除太早让洞门后的土体暴露时间过长。一般直径为 6.6m,厚度为一米的洞门,人工凿除需要两个星期的时间。 洞门凿除施工时,不能把所有的钢筋和混凝土全部除掉,应保留围护结构的最后一层钢筋和钢筋保护层,待盾构刀盘到达之后再割除最后一层钢筋网,不能直接暴露出土体。 洞门凿除所用主要机具和人员为: 10 立方空压机一台、风搞 6~8 把、气割设备 2 套、铁锨若干,人员每班 8~10 个。 3.洞门密封系统的安装 洞门密封系统的作用为保证洞门口处的管片背后可靠注浆,对防止隧道贯通后的水土流失也能起到一定的作用。 洞门密封系统最好采用帘布橡胶板加折页压板的方式。 洞门密封系统主要由洞门框预埋的钢环板、帘布橡胶板、折页钢压板固定螺栓及垫片等组成。这种结构的优点为简单可靠,不需要人工调整,折页压板可以自动压紧在盾壳和管片上,可以保证注浆时浆液不会外漏。 五、盾构组装调试和反力架的安装 1.始发基座的安装就位 始发作为盾构拼装和试推进的工作平台,其拼装的要求就是精确和牢固。 始发基座一般分为基础部分和托架部分。基础部分一般为钢筋混凝土的条形梁结构,表面预埋钢板,其主要作用是为托架部分提供牢固和高度合适的平台。 托架部分为钢制的弧形结构,可以很好的托起盾构主机。托架部分为现场拼装,然后根据盾 构主机的始发中心位置精确定位,最后和基础部分的预埋钢板牢牢焊接固定。 2.盾构的组装调试 始发机座安装固定完成后,就开始盾构的组装调试。 首先,依次放下盾构的后配套系统,然后推入始发竖井的后部,为主机拼装让开空间,并分别连接。如果竖井内没有空间放下后配套系统,那就只有把后配套系统放在地面了,然后用延长管线连接后配套和主机。 主机的拼装是盾构组装最困难部分。主机的各部件体积和重量都很大,需多台吊机协调吊装,需各作业人员配合默契。主机各部件的连接要求很高,需要作业人员有较高的专业素质和丰富的经验。 盾构主机与后配套拼装连接完成后,就可以依次进行电气、液压等系统的调试。 - 218 -

相关主题
文本预览
相关文档 最新文档