当前位置:文档之家› 钢管力学

钢管力学

钢管力学

力学性能

钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。

①抗拉强度(σb)

试样在拉伸过程中,在拉断时所承受的最大力(Fb),除以试样原横截面积(So)所得的应力(σ),称为抗拉强度(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为:式中:Fb--试样拉断时所承受的最大力,N(牛顿); So--试样原始横截面积,mm2。

②屈服点(σs)

具有屈服现象的金属材料,试样在拉伸过程中力不增加(保持恒定)仍能继续伸长时的应力,称屈服点。若力发生下降时,则应区分上、下屈服点。屈服点的单位为N/mm2(MPa)。

上屈服点(σsu):试样发生屈服而力首次下降前的最大应力;下屈服点(σsl):当不计初始瞬时效应时,屈服阶段中的最小应力。

屈服点的计算公式为:

式中:Fs--试样拉伸过程中屈服力(恒定),N(牛顿)So--试样原始横截面积,mm2。

③断后伸长率(σ)

在拉伸试验中,试样拉断后其标距所增加的长度与原标距长度的百分比,称为伸长率。以σ表示,单位为%。计算公式为:

式中:L1--试样拉断后的标距长度,mm; L0--试样原始标距长度,mm。

④断面收缩率(ψ)

在拉伸试验中,试样拉断后其缩径处横截面积的最大缩减量与原始横截面积的百分比,称为断面收缩率。以ψ表示,单位为%。计算公式如下:式中:S0--试样原始横截面积,mm2; S1--试样拉断后缩径处的最少横截面积,mm2。

⑤硬度指标

金属材料抵抗硬的物体压陷表面的能力,称为硬度。根据试验方法和适用范围不同,硬度又可分为布氏硬度、洛氏硬度、维氏硬度、肖氏硬度、显微硬度和高温硬度等。对于管材一般常用的有布氏、洛氏、维氏硬度三种。

工程力学论文

Hefei University 论文题目:工程力学论文 年级专业: 13级化工卓越工程师之班姓名:王俊 学号:1303022043 老师姓名:胡淼

摘要:工程力学是力学的一个分支,它主要涉及机械、土建、材料、能源、交通、航空、船舶、水利、化工等各种工程与力学结合的领域,分为六大研究方向:非线性力学与工程、工程稳定性分析及控制技术、应力与变形测量理论和破坏检测技术、数值分析方法与工程应用、工程材料物理力学性质、工程动力学与工程爆破。学制一般为四年,毕业后授予工学学士。就业面相当广泛,可以继续读博、从事科学研究、教师、公务员,或到国防单位工作,去外企等等。总的来说,工程力学专业具有现代工程与理论相结合的的特点,有很大的知识面和灵活性,对国家现代化建设具有重大意义。 关键字:历史、研究方向、应用、学习心得 一、工程力学简介 工程力学是研究有关物质宏观运动规律,及其应用的科学。工程给力学提出问题, 力学的研究成果改进工程设计思想。从工程上的应用来说, 工程力学包括: 质点及刚体力学,固体力学,流体力学,流变学,土力学,岩体力学等。人类对力学的一些基本原理的认识,一直可以追溯到史前时代。在中国古代及古希腊的著作中,已有关于力学的叙述。但在中世纪以前的建筑物是靠经验建造的。1638年3月伽利略出版的著作《关于两门新科学的谈话和数学证明》被认为是世界上第一本材料力学著作,但他对于粱内应力分布的研究还是很不成熟的。纳维于1819年提出了关于粱的强度及挠度的完整解法。1821年5月14日,纳维在巴黎科学院宣读的论文《在一物体的表面及其内部各点均应成立的平衡及运动的一般方程式》,这被认为是弹性理论的创始。其后,1870年圣维南又发表了关于塑性理论的论文水力学也是一门古老的学科。 早在中国春秋战国时期(公元前5~前4世纪),墨翟就在《墨经》中叙述过物体所受浮力与其排开的液体体积之间的关系。欧拉提出了理想流体的运动方程

钢材的物理力学性能和机械性能表

钢材的物理力学性能和机械性能表 钢材的主要机械性能(也叫力学性能)通常是指钢材在标准条件下均匀拉伸.冷弯和冲击等. 单独作用下所显示的各种机械性能。钢材通常有五大主要的机械性能指标:通过一次拉伸试验可得到抗拉强度,伸长率和屈服点三项基本性能; 通过冷弯试验可得到钢材的冷弯性能; 通过冲击韧性试验可得到冲击韧性。 1.屈服点(σs) 钢材或试样在拉伸时,当应力超过弹性极限,即使应力不再增加,而钢材或试样仍继续发生明显的塑性变形,称此现象为屈服,而产生屈服现象时的最小应力值即为屈服点。 设Ps为屈服点s处的外力,Fo为试样断面积,则屈服点σs =Ps/Fo(MPa),MPa称为兆帕等于N(牛顿)/mm2,(MPa=106Pa,Pa:帕斯卡=N/m2) 2.屈服强度(σ0.2) 有的金属材料的屈服点极不明显,在测量上有困难,因此为了衡量材料的屈服特性,规定产生永久残余塑性变形等于一定值(一般为原长度的0.2%)时的应力,称为条件屈服强度或简称屈服强度σ0.2 。 3.抗拉强度(σb) 材料在拉伸过程中,从开始到发生断裂时所达到的最大应力值。它表示钢材抵抗断裂的能力大小。与抗拉强度相应的还有抗压强度、抗弯强度等。 设Pb为材料被拉断前达到的最大拉力,Fo为试样截面面积,则抗拉强度σb= Pb/Fo (MPa)。

4.伸长率(δs) 材料在拉断后,其塑性伸长的长度与原试样长度的百分比叫伸长率或延伸率。 5.屈强比(σs/σb) 钢材的屈服点(屈服强度)与抗拉强度的比值,称为屈强比。屈强比越大,结构零件的可靠性越高,一般碳素钢屈强比为0.6-0.65,低合金结构钢为 0.65-0.75合金结构钢为0.84-0.86。 6.硬度 硬度表示材料抵抗硬物体压入其表面的能力。它是金属材料的重要性能指标之一。一般硬度越高,耐磨性越好。常用的硬度指标有布氏硬度、洛氏硬度和维氏硬度。 ⑴布氏硬度(HB) 以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2)。 ⑵洛氏硬度(HR) 当HB>450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计量。它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。根据试验材料硬度的不同,分三种不同的标度来表示: HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。 HRB:是采用100kg载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。 HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材

工程力学考试卷及答案

《工程力学》考试卷及答案 试卷部分 专业: 学生证号: 姓名: 1、如图所示,在刚体上A 、B 、C 三点分别作用三个大小相等的力F1、F 2、F3,则( )。 A 、刚体平衡 B 、刚体不平衡,其简化的最终结果是一个力 C 、刚体不平衡,其简化的最终结果是一个力偶 D 、刚体不平衡,其简化的最终结果是一个力和一个力偶 2、如图所示轴受3个转矩,则AB 段轴内部受扭 矩为( ) A 、Ma B 、Mb C 、Mc D 、Ma+Mb 3、力偶对物体产生的运动效应为( )。 A 、只能使物体转动 B 、只能使物体移动 C 、既能使物体转动,又能使物体移动 D 、它与力对物体产生的运动效应有时相同,有时不同 4、如图所示,F 1、F 2(方向如图,大小为正)分别作用于刚体上A 、B 两点,且F 1、F 2与刚体上另一点C 点共面,则下述说法正确的是( ): A 、 在A 点加一个适当的力可以使系统平衡。 B 、 在B 点加一个适当的力可以使系统平衡。 C 、 在C 点加一个适当的力可以使系统平衡。 D 、 在系统上加一个适当的力偶可以使系统平衡。 5、如图所示AC 、BC 杆受力F 作用处于平衡,则下列说法正确的是( )。 A 、 AC 杆是二力构件,BC 杆不是; B 、 B C 杆是二力构件,AC 杆不是; C 、 AC 杆、BC 杆都是二力构件; D 、 AC 杆、BC 杆都不是二力构件。 M A M B M C

二、是非题(每小题3分,共15分) 1、如物体相对于地面保持静止或匀速运动状态,则物体处于平衡。( ) 2、成力偶的两个力F=-F,所以力偶的合力等于零。( ) 3、静力学公理中,二力平衡公理和加减平衡力系公理适用于刚体。( ) 4、杆件的基本变形有四种:轴向拉伸或压缩、剪切、挤压和弯曲。( ) 5、作用在同一物体上的两个力,使物体处于平衡的必要和充分条件是:这两个力大小相等、方向相反、沿同一条直线。( ) 三、填空题(每个空2分,共30分) 1、力对物体的作用效果一般分为效应和效应。 2、求杆件受力后的内力所用的方法是。 3、平面汇交力系平衡的几何条件是合力为。 4、作用在刚体上的两个力偶的等效条件是、和作用于同一平面。 5、工程中把以变形为主要变形的杆件成为轴。 6、柔索的约束反力T通过,沿柔索而物体。 7、当杆件受到一对垂直于轴线的大小相等、方向相反、作用线相距很近的力作用时,将产生。 8、平面内两个力偶等效的条件是这两个力偶处于;上述两平面力偶平衡的充要条件是。 9、工程中把以变形为主要变形的杆件成为梁。 10、工程中把以变形为主要变形的杆件成为轴。 11、材料力学的任务就是在满足的前提下,经济、合理、安全的设计构件。 四、问答题(每小题3分,共6分) 1、简述杆件变形的四种基本形式。 答: 2、什么是力偶三要素? 答: 五、绘图题(每小题6分,共18分) 1、画出下图中球的受力图。

钢管力学性能

钢管力学性能 力学性能 钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。 ①抗拉强度(σb) 试样在拉伸过程中,在拉断时所承受的最大力(Fb),出以试样原横截面积(So)所得的应力(σ),称为抗拉强度(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为: 式中:Fb--试样拉断时所承受的最大力,N(牛顿); So--试样原始横截面积,mm2。 ②屈服点(σs) 具有屈服现象的金属材料,试样在拉伸过程中力不增加(保持恒定)仍能继续伸长时的应力,称屈服点。若力发生下降时,则应区分上、下屈服点。屈服点的单位为N/mm2(MPa)。 上屈服点(σsu):试样发生屈服而力首次下降前的最大应力;下屈服点(σsl):当不计初始瞬时效应时,屈服阶段中的最小应力。 屈服点的计算公式为: 式中:Fs--试样拉伸过程中屈服力(恒定),N(牛顿)So--试样原始横截面积,mm2。 ③断后伸长率(σ) 在拉伸试验中,试样拉断后其标距所增加的长度与原标距长度的百分比,称为伸长率。以σ表示,单位为%。计算公式为: 式中:L1--试样拉断后的标距长度,mm; L0--试样原始标距长度,mm。 ④断面收缩率(ψ) 在拉伸试验中,试样拉断后其缩径处横截面积的最大缩减量与原始横截面积的百分比,称为断面收缩率。以ψ表示,单位为%。计算公式如下: 式中:S0--试样原始横截面积,mm2; S1--试样拉断后缩径处的最少横截面积,mm2。 ⑤硬度指标 金属材料抵抗硬的物体压陷表面的能力,称为硬度。根据试验方法和适用范围不同,硬度又可分为布氏硬度、洛氏硬度、维氏硬度、肖氏硬度、显微硬度和高温硬度等。对于管材一般常用的有布氏、洛氏、维氏硬度三种。 A、布氏硬度(HB) 用一定直径的钢球或硬质合金球,以规定的试验力(F)压入式样表面,经规定保持时间后卸除试验力,测量试样表面的压痕直径(L)。布氏硬度值是以试验力除以压痕球形表面积所得的商。以HBS(钢球)表示,单位为N/mm2(MPa)。 其计算公式为: 式中:F--压入金属试样表面的试验力,N; D--试验用钢球直径,mm; d--压痕平均直径,mm。 测定布氏硬度较准确可靠,但一般HBS只适用于450N/mm2(MPa)以下的金属材料,对于较硬的钢或较薄的板材不适用。在钢管标准中,布氏硬度用途最广,往往以压痕直径d来表示该材料的硬度,既直观,又方便。 举例:120HBS10/1000130:表示用直径10mm钢球在1000Kgf(9.807KN)试验力作用下,保持3 0s(秒)测得的布氏硬度值为120N/ mm2(MPa)。

工程力学讲义

静力学 静力学的基本概念 1、平衡——平衡是物体机械运动的特殊形式,是指物体相对地球处于静止或匀速直线运动状态。 2、刚体——在外界的任何作用下形状和大小都始终保持不变的物体。或者在力的作用下,任意两点间的距离保持不变的物体。 刚体是一种理想化的力学模型。 一个物体能否视为刚体,不仅取决于变形的大小,而且和问题本身的要求有关。 3、力——力是物体相互间的机械作用,其作用结果使物体的形状和运动状态发生改变。 1. 静力学公理 基本概念 力系——作用于同一物体或物体系上的一群力。 等效力系——对物体的作用效果相同的两个力系。 平衡力系——能使物体维持平衡的力系。 合力——在特殊情况下,能和一个力系等效 的一个力。 公理一 (二力平衡公理) 要使刚体在两个力作用下维持平衡状态,必须也只须这两个力大小相等、方向相反、沿同一直线作用。 公理二 (加减平衡力系公理) 可以在作用于刚体的任何一个力系上加上或去掉几个互成平衡的力,而不改变原力系对刚体的作用。 推论 (力在刚体上的可传性) 作用于刚体的力,其作用点可以沿作用线在该刚体内前后任意移动,而不改变它对该刚体的作用。 公理三 (力平行四边形公理) 作用于物体上任一点的两个力可合成为作用于同一点的一个力,即合力。合力的矢由原两力的矢为邻边而作出的力平行四边形的对角矢来表示。 即,合力为原两力的矢量和。 矢量表达式:R= F1+F2 推论 (三力汇交定理) 当刚体在三个力作用下平衡时,设其中两力的作用线相交于某点,则第三力的作用线必定也通过这个点。 公理四 (作用和反作用公理)

任何两个物体间的相互作用的力,总是大小相等,作用线相同,但指向相反,并同时分别作用于这两个物体上。 公理五 (刚化公理) 设变形体在已知力系作用下维持平衡状态,则如将这个已变形但平衡的物体变成刚体(刚化),其平衡不受影响。 2. 力对点之矩 力矩:表示力使物体绕某点转动效应的量称为力对点之矩简称力矩。 它的大小为力F的大小与力臂d的乘积,它的正负号表示力矩在平面上的转向。 由力矩的定义可知: a 当力的作用线通过矩心时,力臂值为0,力矩值也为0. b 力沿其作用线滑移时,不会改变力对点之矩的值,因为此时并未改变力,力臂的大小及力矩的转向。 合力矩定理 平面力系的合理对平面上任一点之矩,等于所有各分力对同一点力矩的代数和。 3 力偶的性质: 1、力偶的第一性质:力偶的作用效果是使刚体发生转动,不能与一个力等效——没有合力,也不能用一个力与之平衡——只有一个反转向的力偶才能与之平衡。因此力偶和力是静力学的两个基本要素(机械作用量)。 2、力偶的第二性质:力偶对物体的转动效应,用力偶矩来度量,其大小为力偶中力F与力偶臂h的乘积。同平面力偶的等效定理 3、同一平面内的两个力偶,如果力偶矩相等,则此二力偶相等。 4、力偶可在其作用面内任意移动(或移动到另一平行平面),而不改变对刚体的作用。 5、只要力偶的转向和力偶矩的大小不变(F、h可变),则力偶对刚体的作用效应就不变, 4. 力的平移定理 力的平移定理表明,作用于刚体上的力可以平移到刚体内任意一点,但必须附加一力偶。此附加力偶的力偶矩等于原力对平移点之矩。 5. 约束和约束反力 基本概念: 1、自由体:可以任意运动(获得任意位移)的物体。 2、非自由体:不可能产生某方向的位移的物体。 3、约束:由周围物体所构成的、限制非自由体位移的条件。 4、约束反力:约束对被约束体的反作用力。 5、主动力:约束力以外的力。 几种常见约束力 (一)光滑接触面约束 性质:光滑支承面对物体的约束力,作用在接触点处,方向沿接触表面的公法线,

清华大学研究生弹塑性力学讲义 8弹塑性_塑性力学基本方程和解法

弹塑性力学 第七章塑性力学的基本方程与解法 一、非弹性本构关系的实验基础 拿一根工程上最常用的低碳钢的试件,在拉伸试验机上就可得到如图7.1所示的应力应变曲线。图中A为比例极限,当变形状态未超过A点时材料处于线弹性状态;B为弹性极限,AB段的变形虽然还是弹性的,即卸载时能按原来的加载曲线返回,但应力应变之间不再是线性关系。C,D分别为上、下屈服极限,超过C点后材料进入塑性变形状态,卸载时不再按原来的加载曲线返回,而且当载荷完全卸除后还有残余变形。由C到D是突然发生的,由于材料屈服引起应力突然下降,而应变继续增加。由D到H是一接近水平的线段,称为塑性流动段。对同一种材料D点的测量值比较稳定,而C点受试件截面尺寸、加载速率等影响较大。如果载荷在使材料屈服之后还继续增加,则进入图中曲线右部的强化段。即虽然材料已经屈服,但只有当应力继续增加时,应变才能继续增大。在图中b点之后,试件产生颈缩现象,最后试件被拉断。如果在塑性流动段的D′点,或强化段的H′点卸载,将能观测到沿着与OA平行的直线返回,当载荷为零是到达O′点或O′′点,即产生残余变形。 图7.1 低碳钢单向拉伸应力应变曲线 有些高强度的合金钢并没有象低碳钢那样的屈服段,其单向拉伸的应力应变曲线如图7.2所示。这种情况下屈服极限规定用产生0.2%塑性应变所对应的应力来表示,σ。 记为 0.2 图7.2 高强度合金钢单向拉伸应力应变曲线

第七章 塑性力学的基本方程与解法 如果以超过屈服极限的载荷循环加载,所得试验结果则象图7.3所示。在实验中还发现,对于某些材料(图7.4),如果在加载(拉伸)屈服后完全卸载到O ′′点,然后接着反向加载(压缩),则其反向屈服点对应的应力绝对值s σ′′不仅小于s σ′,而且小于初始屈服应力的绝对值σ′。这是德国的包辛格(Bauschinger, J.)最早发现的,称为包辛格效应。 图7.3 循环加载曲线示意图 图7.4 包辛格效应 当材料进入塑性状态后,如果不是单调加载,则应力和应变之间不仅不是单值函数的关系,而且当时的应变不仅和当时的应力有关,还和整个加载的历史有关。同样,当时的应力不仅和当时的应变有关,而且也和整个变形的历史有关。这就增加了问题的复杂性。材料的特性不能简单的用应力应变关系来描述,而要用比较复杂的本构关系,即应力和整个变形历史的关系来描述。 此外,在实际工程问题中经常遇到的材料非线性问题往往不是单向应力状态,即不是一维问题。要对三维问题单靠实验来确定应力张量和应变张量之间的关系几乎是不可能的。因此,在建立非线性本构关系时,除去不能脱离实验基础之外,还必须有基本理论的指导。 二、刚塑性与弹塑性本构模型 z 简化模型 对于低碳钢一类材料,如果承载后产生的变形状态一直达到塑性流动段,为了简化起见,略去应力应变曲线中的上、下屈服极限等细节,可得到由线弹性段和塑性流动水平线段组成的简化模型,称为理想弹塑性模型(图7.5a ): s s s s E E σεεεσεσεε=≤??==>?当当 (1) 在金属成型等问题中,由于塑性流动引起的塑性应变较大,而弹性应变因相比较小而将其忽略,则又可进一步简化为只有水平线段的刚塑性模型(图7.5b ):

工程力学

《工程力学》综合复习资料 1.已知:梁AB 与BC ,在B 处用铰链连接,A 端为固定端,C 端为可动铰链支座。 试画: 梁的分离体受力图。 2.已知:结构如图所示,受力P 。DE 为二力杆,B 为固定铰链支座,A 为可动铰链支座,C 为中间铰链连接。 试分别画出ADC 杆和BEC 杆的受力图。 3.试画出左端外伸梁的剪力图和弯矩图。(反力已求出) D E C B A P

4.已知:悬臂梁受力如图所示,横截面为矩形,高、宽关系为h=2b ,材料的许用应力〔σ〕=160MPa 。 试求:横截面的宽度b=? 5.已知:静不定结构如图所示。直杆AB 为刚性,A 处为固定铰链支座,C 、 D 处悬挂于拉杆①和②上,两杆抗拉刚度均为EA ,拉杆①长为L ,拉杆②倾斜角为α,B 处受力为P 。 试求:拉杆①和②的轴力N1 , N2 。 提示:必须先画出变形图、受力图,再写出几何条件、物理方程、补充方程和静力方程。可以不求出最后结果。 q M e =qa 2 =(11/6)qa

6.已知:一次静不定梁AB ,EI 、L 为已知,受均布力q 作用。 试求:支反座B 的反力。 提示:先画出相当系统和变形图,再写出几何条件和物理条件。 7.已知:①、②、③杆的抗拉刚度均为EA ,长L ,相距为a ,A 处受力P 。 试求:各杆轴力。 提示:此为静不定结构,先画出变形协调关系示意图及受力图,再写出几何条件、物理条件、补充方程,静立方程。 A L B q

8.已知:传动轴如图所示,C轮外力矩M c=1.2 kN m ,E轮上的紧边皮带拉力为T1,松边拉力为T2,已知 T1=2 T2,E轮直径D=40 cm ,轴的直径d=8cm,许用应力[σ]=120 Mpa 。 求:试用第三强度理论校核该轴的强度。 9.已知:梁ABC受均布力q作用,钢质压杆BD为圆截面,直径d=4 0 mm, BD杆长 L=800 mm , 两端铰链连接,稳定安全系数nst=3 , 临界应力的欧拉公式为 σcr=π2 E / λ2 ,经验公式为σcr= 304–1.12 λ, E = 2 0 0 GPa , σp=2 0 0 MPa ,σs=2 3 5 MPa 。

无缝钢管的力学性能计算公式

无缝钢管的力学性能计算公式 钢材力学性能是保证钢材最终使用性能(机械性能)的重要指标,它取决于钢的化学成分和热处理制度。在钢管标准中,根据不同的使用要求,规定了拉伸性能(抗拉强度、屈服强度或屈服点、伸长率)以及硬度、韧性指标,还有用户要求的高、低温性能等。 ①抗拉强度(σb)试样在拉伸过程中,在拉断时所承受的最大力(Fb), 出以试样原横截面积(So)所得的应力(σ),称为抗拉强度(σb),单位为N/mm2(MPa)。它表示金属材料在拉力作用下抵抗破坏的最大能力。计算公式为:式中:Fb--试样拉断时所承受的最大力,N(牛顿);So--试样原始横截面积,mm2。 ②②屈服点(σs)具有屈服现象的金属材料,试样在拉伸过程中力不 增加(保持恒定)仍能继续伸长时的应力,称屈服点。若力发生下降时,则应区分上、下屈服点。屈服点的单位为N/mm2(MPa)。 上屈服点(σsu):试样发生屈服而力首次下降前的最大应力;下屈服点(σsl):当不计初始瞬时效应时,屈服阶段中的最小应力。 屈服点的计算公式为:式中:Fs--试样拉伸过程中屈服力(恒定),N(牛顿)So--试样原始横截面积,mm2。 ③③断后伸长率(σ)在拉伸试验中,试样拉断后其标距所增加的长 度与原标距长度的百分比,称为伸长率。以σ表示,单位为%。计算公式为:式中:L1--试样拉断后的标距长度,mm;L0--试样原始标距长度,mm。

④④断面收缩率(ψ)在拉伸试验中,试样拉断后其缩径处横截面积 的最大缩减量与原始横截面积的百分比,称为断面收缩率。以ψ表示,单位为%。计算公式如下:式中:S0--试样原始横截面积,mm2; S1--试样拉断后缩径处的最少横截面积,mm2。 ⑤⑤硬度指标金属材料抵抗硬的物体压陷表面的能力,称为硬度。 根据试验方法和适用范围不同,硬度又可分为布氏硬度、洛氏硬度、维氏硬度、肖氏硬度、显微硬度和高温硬度等。对于管材一般常用的有布氏、洛氏、维氏硬度三种。A、布氏硬度(HB)用一定直径的钢球或硬质合金球,以规定的试验力(F)压入式样表面,经规定保持时间后卸除试验力,测量试样表面的压痕直径(L)。布氏硬度值是以试验力除以压痕球形表面积所得的商。以HBS(钢球)表示,单位为N/mm2(MPa)。其计算公式为:式中:F--压入金属试样表面的试验力,N;D--试验用钢球直径,mm;d--压痕平均直径,mm。测定布氏硬度较准确可靠,但一般HBS只适用于 450N/mm2(MPa)以下的金属材料,对于较硬的钢或较薄的板材不适用。在钢管标准中,布氏硬度用途最广,往往以压痕直径d来表示该材料的硬度,既直观,又方便。举例:120HBS10/1000130:表示用直径10mm钢球在1000Kgf(9.807KN)试验力作用下,保持30s(秒)测得的布氏硬度值为120N/ mm2(MPa)。无缝钢管

钢材力学性能指标汇总表

钢材力学性能指标汇总表 钢筋的公称横截面积与公称重量 公称直径,mm 公称横截面积mm 2 公称重量,Kg/m 6.5 33.18 8 50.27 0.395 10 78.54 0.617 12 113.1 0.888 14 153.9 1.21 16 201.1 1.58 18 254.5 2.00 20 314.2 2.47 22 380.1 2.98 25 490.9 3.85 28 615.8 4.83 32 804.2 6.31 36 1018 7.99 40 1257 9.87 50 1964 15.42 注:表中公称重按密度为7.85g/cm3计算。 一、钢筋混凝土用热轧带肋钢精GB1499-1998 1、力学性能 牌号公称直径mm 屈服点σsMpa 抗拉强度 σbMpa 伸长率δs% 不小于 HRB335 6~25 28~50 335 490 16 HRB400 6~25 28~50 400 570 14 HRB500 6~25 28~50 500 630 12 2、弯曲性能(按下表规定的弯心直径弯曲180°后,钢筋受弯曲部位表面不得产生裂纹) 牌号公称直径mm 弯曲试验弯心直径 HRB335 6~25 28~50 3a 4a HRB400 6~25 28~50 4a 5a HRB500 6~25 28~50 5a 7a 二、钢筋混凝土用热轧光圆钢筋GB13013-91 表面形状钢筋级别强度等级代号公称直径 mm 屈服点σsMpa 抗拉强度σbMpa 伸长率 δs% 冷弯d弯心直径a公称直径 不小于 光 圆Ι R235 8~20 235 370 25

工程力学(一)知识要点

《工程力学(一)》串讲讲义 (主讲:王建省工程力学教授,Copyright 2010-2012 Prof. Wang Jianxing) 课程介绍 一、课程的设置、性质及特点 《工程力学(一)》课程,是全国高等教育自学考试机械等专业必考的一门专业课,要求掌握各种基本概念、基本理论、基本方法,包括主要的各种公式。在考试中出现的考题不难,但基本概念涉及比较广泛,学员在学习的过程中要熟练掌握各章的基本概念、公式、例题。 本课程的性质及特点: 1.一门专业基础课,且部分专科、本科专业都共同学习本课程; 2.工程力学(一)课程依据《理论力学》、《材料力学》基本内容而编写,全面介绍静力学、运动学、动力学以及材料力学。按重要性以及出题分值分布,这几部分的重要性排序依次是:材料力学、静力学、运动学、动力学。 二、教材的选用 工程力学(一)课程所选用教材是全国高等教育自学考试指定教材(机械类专业),该书由蔡怀崇、张克猛主编,机械工业出版社出版(2008年版)。 三、章节体系 依据《理论力学》、《材料力学》基本体系进行,依次是 第1篇理论力学 第1章静力学的基本概念和公理受力图 第2章平面汇交力系 第3章力矩平面力偶系 第4章平面任意力系 第5章空间力系重心 第6章点的运动 第7章刚体基本运动 第8章质点动力学基础 第9章刚体动力学基础 第10章动能定理 第2篇材料力学 第11章材料力学的基本概念 第12章轴向拉伸与压缩 第13章剪切 第14章扭转 第15章弯曲内力 第16章弯曲应力 第17章弯曲变形 第18章组合变形 第19章压杆的稳定性 第20章动载荷 第21章交变应力

考情分析 一、历年真题的分布情况 结论:在全面学习教材的基础上,掌握重点章节内容,基本概念和基本计算,根据各个章节的分数总值, 请自行给出排序结果。 二、真题结构分析 全国2010年1月自学考试工程力学(一)试题 课程代码:02159 一、单项选择题(本大题共10小题,每小题2分,共20分) 在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。错选、多选或未选均无分。

影响钢材力学性能的因素2

2.3影响钢材力学性能的因素 影响钢材力学性能的因素有: 化学成分冶金和轧制过程时效冷作硬化温度 应力集中和残余应力复杂应力状态 1.化学成分 钢的基本元素为铁(Fe),普通碳素钢中占99%,此外还有碳(C)、硅(Si)、锰(Mn)等杂质元素,及硫(S)、磷(P)、氧(O)、氮(N)等有害元素,这些总含量约1%,但对钢材力学性能却有很大影响。 碳:除铁以外最主要的元素。碳含量增加,使钢材强度提高,塑性、韧性,特别是低温冲击韧性下降,同时耐腐蚀性、疲劳强度和冷弯性能也显著下降,恶化钢材可焊性,增加低温脆断的危险性。一般建筑用钢要求含碳量在0.22%以下,焊接结构中应限制在 0.20%以下。 硅:作为脱氧剂加入普通碳素钢。适量硅可提高钢材的强度,而对塑性、冲击韧性、冷弯性能及可焊性无显著的不良影响。一般镇静钢的含硅量为0.10%~0.30%,含量过高(达1%),会降低钢材塑性、冲击韧性、抗锈性和可焊性。 锰:是一种弱脱氧剂。适量的锰可有效提高钢材强度,消除硫、氧对钢材的热脆影响,改善钢材热加工性能,并改善钢材的冷脆倾向,同时不显著降低钢材的塑性、冲击韧性。 普通碳素钢中锰的含量约为0.3%~0.8%。含量过高(达1.0%~1.5%以上)使钢材变脆变硬,并降低钢材的抗锈性和可焊性。 硫:有害元素。引起钢材热脆,降低钢材的塑性、冲击韧性、疲劳强度和抗锈性等。一般建筑用钢含硫量要求不超过0.055%,在焊接结构中应不超过0.050%。 磷:有害元素。虽可提高强度、抗锈性,但严重降低塑性、冲击韧性、冷弯性能和可焊性,

尤其低温时发生冷脆,含量需严格控制,一般不超过0.050%,焊接结构中不超过 0.045%。 氧:有害元素。引起热脆。一般要求含量小于0.05%。 氮:能使钢材强化,但显著降低钢材塑性、韧性、可焊性和冷弯性能,增加时效倾向和冷脆性。一般要求含量小于0.008%。 为改善钢材力学性能,可适量增加锰、硅含量,还可掺入一定数量的铬、镍、铜、钒、钛、铌等合金元素,炼成合金钢。钢结构常用合金钢中合金元素含量较少,称为普通低合金钢。 2.冶金轧制过程 ?按炉种分: 结构用钢我国主要有三种冶炼方法:碱性平炉炼钢法、顶吹氧气转炉炼钢法、碱性侧吹转炉炼钢法。 平炉钢和顶吹转炉钢的力学性能指标较接近,而碱性侧吹转炉钢的冲击韧性、可焊性、时效性、冷脆性、抗锈性能等都较差,故这种炼钢法已逐步淘汰。 ?按脱氧程度分: 沸腾钢、镇静钢和半镇静钢。 沸腾钢脱氧程度低,氧、氮和一氧化碳气体从钢液中逸出,形成钢液的沸腾。沸腾钢的时效、韧性、可焊性较差,容易发生时效和变脆,但产量较高、成本较低;半镇静钢脱氧程度较高些,上述性能都略好;而镇静钢的脱氧程度最高,性能最好,但产量较低,成本较高。 3.其他因素 时效

合金钢管力学性能合金管尺寸公差.doc

合金钢管尺寸公差 合金钢材质中各元素及符号含义 钢的牌号简称钢号,是对每一种具体钢产品所取的名称,是人们了解钢的一种共同语言。我国的刚号表示方法一般采用汉语拼音字母、化学素符号和阿拉伯数字相结合的方法表示 下面我们具体介绍一下合金钢材质中各元素及符号含义 1、钢号开头的两位数字表示钢的碳含量,以平均碳含量的万分之几表示,如40 Cr。 2、钢中主要合金元素,除个别微合金元素外,一般以百分之几表示。当平均合金含量<1.5%时,钢号中 一般只标出元素符号,而不标明含量,但在特殊情况下易致混淆者,在元素符号后亦可标以数字“1”, 例如钢号“12CrMoV”和“12Cr1MoV”,前者铬含量为0.4-0.6%,后者为0.9-1.2%,其余成分全部相同 当合金元素平均含量≥1.5%、≥2.5%、≥3.5%……时,在元素符号后面应标明含量,可相应表示为2、3 、4……等。例如18Cr2Ni4WA。 3、钢中的钒V、钛Ti、铝AL、硼B、稀土RE等合金元素,均属微合金元素,虽然含量很低,仍应在钢号中 标出。例如20MnVB钢中钒为0.07-0.12%,硼为0.001-0.005%。 4、高级优质钢应在钢号最后加“A”,以区别于一般优质钢。 5、专门用途的合金结构钢,钢号冠以(或后缀)代表该钢种用途的符号。例如铆螺专用的30CrMnSi钢, 钢号表示为ML30CrMnSi。 6、对专业用低合金高强度钢,应在钢号最后标明。例如16Mn钢,用于桥梁的专用钢种为“16Mnq”,汽 车大梁的专用钢种为“16MnL”,压力容器的专用钢种为“16MnR”。

合金钢管力学性能

合金钢管理论重量计算公式(外径-壁厚)×壁厚×0.02486=KG/M

钢材力学性能实用实用标准一览表

钢材力学性能指标汇总表钢筋的公称横截面积与公称重量 公称直径,mm 公称横截面积mm 2 公称重量,Kg/m 6.5 33.18 8 50.27 0.395 10 78.54 0.617 12 113.1 0.888 14 153.9 1.21 16 201.1 1.58 18 254.5 2.00 20 314.2 2.47 22 380.1 2.98 25 490.9 3.85 28 615.8 4.83 32 804.2 6.31 36 1018 7.99 40 1257 9.87 50 1964 15.42 注:表中公称重按密度为7.85g/cm3计算。 一、钢筋混凝土用热轧带肋钢精GB1499-1998 1、力学性能 牌号公称直径mm 屈服点σsMpa 抗拉强度σbMpa 伸长率δs%

不小于 HRB335 6~25 28~50 335 490 16 HRB400 6~25 28~50 400 570 14 HRB500 6~25 28~50 500 630 12 2、弯曲性能(按下表规定的弯心直径弯曲180°后,钢筋受弯曲部位表面不得产生裂纹)牌号公称直径mm 弯曲试验弯心直径 HRB335 6~25 28~50 3a 4a HRB400 6~25 28~50 4a 5a HRB500 6~25 28~50 5a 7a 二、钢筋混凝土用热轧光圆钢筋GB13013-91 表面形状钢筋级别强度等级代号公称直径mm 屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 冷弯d弯心直径a公称直径 不小于 光圆ΙR235 8~20 235 370 25 180°d=a 三、低碳钢热轧圆盘条GB/T701-1997 牌号屈服点σsMpa 抗拉强度σbMpa 伸长率δs% 冷弯180°d弯心直径a公称直径 不小于 Q215 215 375 27 d=0 Q235 235 410 23 d=0.5a 四、冷轧扭钢筋JG3046-1999 表一轧扁厚度、节距

工程力学复习资料

工程力学复习资料 一、填空题(每空1分,共16分) 1.物体的平衡是指物体相对于地面__________或作________运动的状态。 2.平面汇交力系平衡的必要与充分条件是:_____。该力系中各力构成的力多边形____。 3.一物块重600N,放在不光滑的平面上,摩擦系数f=0.3, 在左侧有一推力150N,物块有向右滑动的趋势。 F max=__________,所以此物块处于静止状态,而其 F=__________。 4.刚体在作平动过程中,其上各点的__________相同,每一 瞬时,各点具有__________的速度和加速度。 A、O2B质量不计,且 5.AB杆质量为m,长为L,曲柄O O1A=O2B=R,O1O2=L,当θ=60°时,O1A杆绕O1轴转 动,角速度ω为常量,则该瞬时AB杆应加的惯性力大 小为__________,方向为__________ 。 6.使材料丧失正常工作能力的应力称为极限应力。工程上一 般把__________作为塑性材料的极限应力;对于脆性材 料,则把________作为极限应力。 7.__________面称为主平面。主平面上的正应力称为______________。 8.当圆环匀速转动时,环内的动应力只与材料的密度ρ和_____________有关,而与 __________无关。 二、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在 题干的括号内。每小题3分,共18分) 1.某简支梁AB受载荷如图所示,现分别用R A、R B表示支座A、B处的约束反力,则它们的 关系为( )。 A.R AR B C.R A=R B D.无法比较 2.材料不同的两物块A和B叠放在水平面上,已知物块A重0.5kN,物块B重0.2kN,物块 A、B间的摩擦系数f1=0.25,物块B与地面间的摩擦系数f2=0.2,拉动B物块所需要的最 小力为( )。 A.0.14kN B.0.265kN C.0.213kN D.0.237kN 3.在无阻共振曲线中,当激振力频率等于系统的固有频率时,振幅B趋近于( )。 A.零 B.静变形 C.无穷大 D.一个定值 4.虎克定律应用的条件是( )。 A.只适用于塑性材料 B.只适用于轴向拉伸 C.应力不超过比例极限 D.应力不超过屈服极限 5.梁的截面为T字型,Z轴通过横截面的形心,弯矩图如图所示,则有( )。 A.最大拉应力和最大压应力位于同一截面C

钢筋的力学性能

.钢筋的应力—应变曲线和力学性能指标 钢筋混凝土及预应力混凝土结构中所用的钢筋可分为两类:有明显屈服点的钢筋(一般称为软钢)和无明显屈服点的钢筋(一般称为硬钢)。 有明显屈服点的钢筋的应力-应变曲线如图11-30所示。图中,a点以前应力与应变按比例增加,其关系符合虎克定律,这时如卸去荷载,应变将恢复到0,即无残余变形,a点对应的应力称为比例极限;过ad 点后,应变较应力增长为快;到达b点后,应变急剧增加,而应力基本上不变,应力—应变曲线呈现水平段cd,钢筋产生相当大的塑性变形,此阶段称为屈服阶段。b、c两点分别称为上屈服点和下屈服点。由于上屈服点b为开始进入屈服阶段的应力,呈不稳定状态,而下屈服点c比较稳定,因此,将下屈服点c的应力称为“屈服强度”。当钢筋屈服塑流到一定程度,即到达图中的d点,cd段称为屈服台阶,过d点后,应力应变关系又形成上升曲线,但曲线趋平,其最高点为e,de段称为钢筋的“强化阶段”,相应于e点的应力称为钢筋的极限强度,过e点后,钢筋薄弱断面显著缩小,产生“颈缩”现象(图11-31),此时变形迅速增加,应力随之下降,直至到达f点时,钢筋被拉断。

钢筋的力学性能指标有4个,即屈服强度、极限抗拉强度、伸长率和冷弯性能 (1)屈服强度 如上所述,对于软钢,取下屈服点c的应力作为屈服强度。对无明显屈服点的硬钢,设计上通常取残余应变为0.2%时所对应的应力作为假想的屈服点,称为条件屈服强度,用σ0.2来表示。对钢丝和热处理钢筋的0.2,规范统一取0.8倍极限抗拉强度。 (2)极限抗拉强度 对于软钢,取应力-应变曲线中的最高点e为极限抗拉强度;对于硬钢,规范规定,将应力—应变曲线的最高点作为强度标准值的依据。 (3)伸长率 伸长率是衡量钢筋塑性性能的一个指称,用δ表示。δ为钢筋试件拉断后的残余应变,其值为: 式中 l1——钢筋试件受力前的量测标距长度; 12——试件经拉断并重新拼合后的量测得到的标距长度。 应变量测标距按规定有l1=5d(d为试件直径)、10d,和按固定长度100mm三种,相应的伸长率分别为δ5、δ10、δ100,标距越短,平均残余应变越大,因此,一般δ5>δ10>δ100。 伸长率大的钢筋塑性性能好,拉断前有明显的预兆;伸长率小的钢筋塑性性能差,其破坏会突然发生,呈脆性特征,具有明显屈服点的钢筋有较大的伸长率,而无明显屈服点的钢筋伸长率很小。 (4)冷弯试验 冷弯试验是检验钢筋塑性的另一种方法。伸长率一般不能反映钢筋的脆化倾向,而冷弯性能可间接地反映钢筋的塑性性能和内在质量。冷弯试验的两个主要参数是弯心直径D和冷弯角度α。将要试验的钢筋(直径为d)绕某一规定直径的钢辊轴(直径为D)进行弯曲(图11-33)。冷弯试验合格的标准为在规定的D和α下

工程力学资料

2018级工程力学专业培养方案 培养目标 力学是现代工程科学的基础,其理论和方法是推动众多工程科学创新和发展的原动力。力学专业强调理论和工程实 际相结合,注重培养学生扎实的力学数学基础、优秀的工程实践能力、卓越的创新思维、宽广的国际视野以及全面的合作精神,铸就具有领导素质的在力学及相关工程领域,如航空航天、船舶海洋、机械、土木、交通、生物医学、电子信息等,从事科学研究的"创新型研究人才"或从事工程实践的"创造型技术人才"。 毕业要求 1. 在计划学制内修读培养方案规定的课程并达到最低毕业学分的要求; 2.系统掌握力学专业的理论基础和专业知识,奠定扎实的力学数学基础; 3. 具有运用力学专业知识(基本原理、分析手段、测试技术、数值模拟方法等),以及利用现代工程工具和信息技术工具等解决复杂工程实际问题和进行创新设计的能力; 4. 具备全面的个人素质和宽广的国际视野,能够就复杂工程问题与业界同行及社会公众进行有效沟通,能够在跨文化背景下进行交流谈判; 5. 胜任工程项目实施与管理的关键岗位; 6. 具有人文社会科学素养和社会责任感,能够在专业实践中理解并遵守职业道德和规范; 7. 具有自主学习和终身学习的意识,有不断学习深造和适应发展的能力; 专业主干课程 材料力学(甲) 弹性力学 工程流体实验技术 工程热力学 计算流体力学 理论力学 流体力学 现代固体力学实验技术 有限元方法 振动力学 推荐学制 4年 最低毕业学分 150+6+8 授予学位 工学学士 学科专业类别 力学类 交叉学习: 辅修:25学分,在专业必修课程中选择25学分修读,其中流体力学和弹性力学两门课程必选。 双专业:45学分,修读专业必修课程中的全部课程,计35.5学分,并在专业选修课程选修9.5学分。 双学位:61学分,在修读双专业课程的基础上,修读实践教学环节8学分和毕业论文8学分。 课程设置与学分分布 1.通识课程 6 2.5+6学分 (1)思政类 14+2学分 课程号课程名称学分周学时建议学年学期 371E0010形势与政策Ⅰ+1.00.0-2.0一(秋冬)+一(春夏) 551E0010思想道德修养与法律基础 3.0 2.0-2.0一(秋冬) 551E0020中国近现代史纲要 3.0 3.0-0.0一(秋冬) 551E0030马克思主义基本原理概论 3.0 3.0-0.0二(秋冬)/二(春夏)

弹塑性力学讲义应力

第1章 应 力 1. 1 应力矢量 物体受外力作用后,其内部将产生内力,即物体本身不同部分之间相互作用的力。为了描述内力场,Chauchy 引进了应力的重要概念。对于处于平衡状态的物体,假想使用一个过P 点的平面C 将其截开成A 和B 两部分。如将B 部分移去,则B 对A 的作用应以分布的内力代替。考察平面C 上包括P 点在内的微小面积,如图1.1所示。设微面外法线(平面C 的外法线)为n ,微面面积为?S ,作用在微面上的内力合力为?F ,则该微面上的平均内力集度为?F /?S ,于是,P 点的内力集度可使用应力矢量T (n ),定义为 T (n ) =S F s ???0 lim → B ?S A C P n ?F x y z 图1.1 应力矢量定义 在笛卡儿坐标系下,使用e x ,e y 和e z 表示坐标轴的单位基矢量,应力矢量可以表示为 T (n ) = T x e x +T y e y +T z e z (1.1) 式中T x 、T y 和T z 是应力矢量沿坐标轴的分量。

上篇弹性力学第1章应力 8 除进行公式推导外,通常很少使用应力矢量的坐标分量T x、T y 和T z。实际应用 中,往往需要知道应力矢量沿微面法线方向和切线方向的分量,沿法线方向的应力分量称为正应力,沿切线方向的应力分量称为剪应力。 显而易见,应力矢量的大小和方向不仅取决于P点的空间位置,而且还与所取截面的法线方向n有关,即作用在同一点不同法线方向微面上的应力矢量不同。所有这些应力矢量构成该点的应力状态。 由应力矢量的定义并结合作用力与反作用力定律,在同一点,外法线为-n微面上的应力矢量为: T(-n)= -T(n) (1.2) 1.2 应力张量 人们讨论问题常常是在笛卡儿坐标中进行,因此,我们使用六个与坐标面平行的平面从图1.1中P点的邻域截取一个微六面体,如图1.2所示。在这个微六面体中,若微面的外法线方向与坐标正方向一致,则称为正面;若与坐标正方向相反,则称为负面。因此有三个正面和三个负面。 图1.2 一点的应力状态

《工程力学》复习资料

平面汇交力系平衡的必要与充分条件是: —该力系的合力为零 的力多边形—自行封闭__。 一物块重 600N ,放在不光滑的平面上,摩擦系数 f=0.3,在左侧有一 推力 150N ,物块有向右滑动 的趋势。F max = ____ 180N ____ ,所以此物块处于 静止状态,而其 F=_150N_。 刚体在作平动过程中,其上各点的 ________ 轨迹形状 ______ 相同,每一瞬时,各点具有 —相同 ______ 的速度和加 速度。 在考虑滑动摩擦的问题中,物体处于平衡状态时主动力的合力与接触面 法线间的最大 夹角称为—摩擦角__. 某简支梁AB 受载荷如图所示,现分别用 它 们的关系为( C )。 A. R A R B C. R A =R B D. 无法比较 材料不同的两物块 R A 、R B 表示支座A 、B 处的约束反力,则 物块A 、B 间的摩擦系数f i =0.25,物块B 与地面间的摩擦系数 f 2=0.2,拉动B 物 块所需要的最小力为(A ——)。 t 在无阻共振曲线中,当激振力频率等于系统的固有频率时, 振幅B 趋近于(C )。 A.零 B.静变形 -------- C 无穷大 J 值 虎克定律应用的条件是( C )。/. 「 A.只适用于塑性材料 B.只适用于轴向拉伸 C.应力不超过比例极限 D.应力不超过屈服极限 梁的截面为T 字型,Z 轴通过横截面的形心,弯矩图如图所示,则有 (B )。 A. 最大拉应力和最大压应力位于同一截面 C B. 最大拉应力位于截面 C ,最大压应力位于截面 D C. 最大拉应力位于截面 D ,最大压应力位于截面 C D. 最大拉应力和最大压应力位于同一截面 D 圆轴扭转时,表面上任一点处于 (B )应力状态。 A.单向 B.二向 C.三向 D.零 平面图形在什么情况下作瞬时平动 ?瞬时平动的特征是什么 ? 。该力系中各力构成 A 和 B 叠放在水平面上,已知物块 A 重0.5kN ,物块 B 重0.2kN ,

相关主题
文本预览
相关文档 最新文档