当前位置:文档之家› 疲劳强度设计方法研究

疲劳强度设计方法研究

疲劳强度设计方法研究
疲劳强度设计方法研究

疲劳强度设计方法研究

摘要

疲劳强度是当前机械产品的主要失效形式,在机械强度设计中占有重要的位置。正确地应用疲劳理论于强度设计上,可以得到合理的设计,包括选材、结构尺寸及加工工艺等,或根据工况及给定的零部件估算其寿命。本文从疲劳断裂的过程出发,通过对疲劳强度三种思路的分析,介绍了相应疲劳强度设计及寿命估算的三种方法。

关键词:疲劳强度,寿命估算,疲劳设计,S-N曲线

1. 引言

所谓疲劳,是指材料或构件在长期的循环变应力作用下的失效现象,也称疲劳破坏。当循环变应力远小于强度极限时,经过一定的循环周次,也能使构件发生疲劳破坏。疲劳破坏是机械工程中常见的失效形式。近数十年来,疲劳破坏危及各个领域,飞机由于疲劳破坏而造成机毁人亡的灾难性事故;二次世界大战期间有上万艘焊接船舶、几十座焊接桥梁毁于疲劳破坏;对于车轴、车轨以及机架,曲轴,齿轮、螺栓联接等的疲劳破坏事故更是屡见不鲜。据统计,现代工业中零部件的失效80%是由于疲劳引起的。因此,疲劳问题引起了人们的极大关注。

对在循环变应力作用下的构件,以往的机械设计常常采用静强度设计,靠选取较大的安全系数来保证其使用的可靠性。而实际上是在变载荷作用下的构件由于强度储备大,在按静强度设计有时会将疲劳问题暂时掩盖起来。随着近代机械向高速、高温、大功率和轻重量的方向发展,对机械产品的零构件采用合理的疲劳设计,是提高设计水平、保证产品质量和提升经济效益的一个重要环节。

2. 疲劳断裂的形成

现行的疲劳设计思想与疲劳断裂的过程有关。从疲劳断裂的破坏过程来看一般分为三个阶段:

(1)裂纹萌生阶段,或称裂纹成核或形成阶段

由于观察仪器的精密度和分辨率不同,所能观察到的裂纹长度也

不同

,那末对裂纹萌生的定义也不一样。工程上一般规定初始裂纹尺寸0a =0.01mm-0.2mm (也有规定0a =0.01mm-0.5mm ,深为0.15mm 的表面裂纹)。把形成0a 所需的循环周数称为疲劳裂纹形成寿命或无裂纹寿命,用0N 表示。

(2)裂纹扩展阶段

裂纹从初始裂纹0a 扩展到临界裂纹c a 所需的应力循环周数为裂纹扩展寿命,用

p N 表示,也称剩余寿命。 (3)瞬断阶段

当裂纹扩展至临界裂纹c a 时,就产生失稳扩展迅速断裂。由于这一阶段是在瞬间进行的,所需的循环周数很少,故这一阶段的寿命可以忽略不计。

如果用f N 表示疲劳总寿命,则:p 0f N N N +=

3. 疲劳设计的三种方法

从疲劳断裂的过程来考虑,现行的疲劳强度设计思想主要有如下三种。

(1)无限寿命设计

要求零部件在无限长的使用期间内不发生疲劳破坏。其设计依据是通过材料或构件的疲劳试验所得到的疲劳极限1-σ,只要零构件的工作应力小于其疲劳极限就可以有无限的使用寿命。用常规的疲劳设计方法可就以进行无限寿命设计。

(2)安全寿命设计,又称有限寿命设计

要求零部件在一定的使用期间内不发生疲劳破坏。设计的主要依

据是通过疲劳试验得到材料或构件的S

-N 曲线,并运用线性累积损伤理论(Miner 理论)来估算构件的寿命。这种设计思想,由于它允许有较高的工作应力,同时使用的实验也较丰富,是当前主要的设计思想。

(3)破损安全设计,又称损伤容损设计

这种设计的基本原则是容许构件可以存在缺陷而带伤工作,但必须具有足够裂纹亚临界扩展寿命,以保证构件在使用期间内安全工作。此时,正确的计算裂纹扩展寿命是破损安全设计的关键。

4. 对三种设计方法的具体讨论

下面对这三种设计方法分述如下:

4.1 常规疲劳设计方法

(1)交变应力的形式

随时间呈周期性循环的应力称为交变应力。循环中代数值最大的应力称为最大应力,用m ax σ表示。代数值最小的应力称最小应力,用

min σ表示。最大应力和最小应力的代数平均值称为平均应力,用m σ表示,则2min

max m σσσ+=,最大应力和最小应力差值的一半称为应力幅,

用a σ表示,2min max a σσσ-=。最小应力与最大应力的代数比值称为应

力比,也叫循环特性,用R 表示,m in m ax R σσ=

。 一个交变应力的m ax σ、min σ、m σ、a σ、R 五个量之间只有二个量是独立的,任意给定二个量就可以由上面的公式求出另外三个量,

所以一个交变应力的应力水平也需要用两个量来表示。

应力循环的类型主要有以下几种:对称循环(R=-1),脉动循环(R=0),非对称循环(m σ和a σ为任意值,当m σ和a σ不随时间变化时称为稳定的非对称循环。

(2)材料的S-N 曲线及疲劳极限

材料的S-N 曲线是用一组标准试件在疲劳试验机上按同一循环特性进行疲劳试验来测定的。对每个试件施加不同的交变应力直到破坏,记录相应破坏循环数N (简称寿命),再以每个试件的最大应力m ax σ为纵坐标,以达到破坏的循环周数为纵坐标,得到σ-N 曲线。如果在扭转疲劳试验机上进行试验,可得到τ-N 曲线,统称S-N 曲线,S 表示强度,N 表示寿命,图1是以双对数坐标画得的曲线示意图,分别由两段直线组成,上面一根为倾斜线,为有限寿命部分,用它可以进行有限寿命设计。下面一根为水平线,表示材料经无限次循环而不会破坏,与水平线对应的最大应力表示光滑试件在对称循环时的疲劳极限用1-σ表示。一般规定,钢试件经710次循环仍不破坏时就认为它可以受无限次循环。在S-N 曲线上,小于710循环数的点所对应的最大应力称为材料在该循环数下的“条件疲劳极限”。

疲劳极限1-σ是进行常规疲劳设计的依据。为了准确测定1-σ值,目前常采用升降法。

工程上一般给出的S-N 曲线,是指破坏概率P=50%的疲劳曲线,为了满足工程安全设计的需要,有时需要测出不同破坏概率的P-S-N 曲线。

图1双对数S-N 曲线示例

(3)常规疲劳设计方法

常规疲劳设计主要是将用标准试件试验得到的疲劳数据用于具体的零部件疲劳设计中。由于用标准试件测定的S-N 曲线只能代表材料本身的性能,故在具体应用时需引入由零部件的几何形状与试件不同的应力集中系数;由于零部件表面加工情况不同而引入表面系数。由于不同情况选用的系数也各不相同,所以构件的许用应力值不再是一个固定值,因此疲劳设计常采用以安全系数表示的强度条件。 a )对称循环的强度条件

][e K n a 1

n ≥?=-σβσσ

式中:σK ——有效应力集中系数,

e ——表面系数

1-σ——材料在对称循环下的疲劳极限

n ——计算安全系数

[n]——许用安全系数

a σ——应力幅值

b )简单非对称循环(应力比R=常数)的强度条件

][e K n m a 1

n ≥+?=-σψσβσσσ

式中:m σ——平均应力

σψ——平均应力对疲劳极限的影响系数,或称不对称系数

在非对称循环下,由于m ax σ可能很高,故还需同时满足静强度条件。 c )非对称循环弯扭组合变应力强度条件

][n 1n 11

n 22n ≥??????+??????=τσ, 式中m a 1

e K n σψσβσσσσ+?=-,m a 1e K n τψτβττττ+?=-

1-τ——材料在扭转时的疲劳极限

a τ——应力幅值

m τ——平均应力

τψ——不对称系数

令上式中m τ=0,m σ=0就可以得到对称循环弯扭组合变应力的强度条件。

以上公式中的有效应力集中系数、尺寸系数、表面系数、不对称系数,可通过试验或从有关设计手册中查阅得到。表面系数应包括表面加工系数、腐蚀系数和表面强化系数。

4.2 安全寿命设计

安全寿命设计一般指破坏循环数在8

310

10之间的有限寿命设

~

计。与常规疲劳设计一样也是用应力水平进行寿命估算的,又称名义应力法。名义应力是指缺口试件或要计算的构件的工作载荷被试件的净面积或毛面积除得到的应力值。用名义应力法进行安全寿命估算的步骤如下:

(1)确定结构中的危险部位

根据应力实测,应力分析,综合考虑缺口附近的应力集中大小,确定结构危险部位及其应力水平。

(2)建立构件的S-N曲线

安全寿命设计的基础是由实验测定材料的S-N曲线。

(3)作古德曼图

对于稳定的非对称循环进行疲劳设计时,还需考虑平均应力对疲劳寿命的影响。最简单的办法是用古德曼图来建立交变应力值aσ、平

σ和破坏循环数N三者的关系。简化的古德曼图是假定疲劳极均应力m

限是经过对称循环变应力的疲劳极限点和静强度极限的点的一条直线,这条直线是等寿命线,符合直线方程,其表达式为

)1b

1-σσσσm -=(,若取纵坐标为x σ,横坐标为m σ,当x σ为不同的值时。就得到不同的等寿命线,如图2所示。

图2古德曼图

若已知危险点的m σ、σ、b σ,则可从古德曼图上连结A (m σ,a σ)、

B (b σ,0)两点,延长AB 直线交纵坐标于

C ,则直线BC 是一条等寿命线,也就是说A 点的寿命与C 点相同,而A 点为稳定的非对称循环,C 点为对称循环,则A 点的寿命就可以由C 点应力σ查带系数的S-N 曲线来确定了。通过古德曼图线就可以把稳定的非对称循环的应力水平转化成对称循环的应力水平,从而进行寿命估算。

(4)安全寿命估算

a) 稳定对称循环的寿命估算

首先有实测或计算得到构件危险部位危险点的应力幅值土a σ后,就可以从带系的S-N 曲线上直接得到对应于此应力幅值的破坏循环数N (即寿命)。

b) 稳定的非对称循环的寿命估算

应力幅值及平均应力不随时间变化的非对称循环为稳定的非对

称循环

,一般形式为σσ±m 。要确定构件稳定的非对称循环的寿命,需要用带系数的古德曼图。

c) 不稳定的非对称循环

平均应力和应力幅值随时间不断变化的非对称循环称为不稳定的非对称循环。工程中大量存在的是这种循环。对于这种循环的寿命估算首先要实测构件在典型工况下的载荷时间历程,然后用概率统计的方法对所集采的连续效据进行离散化处理,编制成便于程序加载的实验载荷谱,载荷谱要能够客现的反映机构在各种工况环境下所承受的载荷随时间的变化规律。载荷谱不仅是寿命估算的依据,而且是结构疲劳实验的基础。有了载荷谱就可以由S-N 曲线和Miner 线性累积损伤理论来进行寿命估算。

Miner 线性累积损伤理论是1945年提出来的。他假设金属材料承受高于疲劳极限的应力时,每循环一次都要使材料产生一定的损伤,而且这种损伤是线性累积的,当损伤累积到临界值时,就发生疲劳破坏。如界全属村料所承受的等幅循环应力为σ,在N 次循环后破坏,那末一次循环所造成的损伤是1/N 。损伤既然是线性累积的,那么N 次循环后破坏,显然N 次循环所造成的总损伤和为1。根据这个简单的理论,若已知构件的载荷谱和S-N 曲线就可估活算寿命了。用线性累积损伤理论和S-N 曲线估算寿命示意图3。

设零件在不稳定变应力下工作,z 21N N N 、、

、??为各应力z 21σσσ、、、??相对应的材料发生疲劳时的循环次数,z 21n n n ??、、为

各应力z 21σσσ、、、??下相应的工作循环次数,如图3所示,则Miner

的疲劳损伤累积假说可用下式表示:

1N n

N n N n N n z z 332211=+??+++

1N n z 1i i i =∑=

图3不稳定变应力下在σ-N 坐标上

疲劳曲线在无限寿命之前的部分可用方程C N m rN =σ表示。

在做材料试验时,根据材料特性常取一规定的应力循环循环次数0N ,称为循环基数,把相应于这一循环次数的疲劳极限,称为材料

的疲劳极限,记为r σ,0m r m rN N N σσ=,可得

m

m m ???? ??=?????? ??=???? ??=---i 10i 21021101N N N N N N σσσσσσ;;; 即得到不稳定变应力是极限条件为

()1n n n n N 1

m 10z 1i m m z z m 22m 11m 10==+??++-=-∑σσσσσσN i i

如果材料在上述应力作用下还未达到破坏,则

1n m 10z 1i m <-=∑σσN i

i

或m i i N 1z 1i 0m n -=∑<σσ

如以1σ作为计算时所采用的应力值,则上式变为

1z 1i m

1i i 01n N 1-=

当材料发生破坏时,利用上式计算临界状态下材料的疲劳极限应力值。

d) 用全尺寸构件试验进行疲劳寿命验证

用分析计算的方法进行疲劳寿命估算是必不可少的一步,但由于影响疲劳寿命的因素很多,且计算时所采用的公式都进行过一些假设和简化,所以算出的寿命不十分准确。在有条件的情况下最好同时进行真实构件的全尺寸疲劳试验,以便对计算寿命进行验证。由全尺寸疲劳实验得出的寿命也需进行分散系数的修正。

4.3 损伤容限设计

由于其基本假设是认为材料或构件具有初始裂纹和缺陷,所以断裂力学的理论是设计的基础。在进行设计时第一步首先要确定初始裂纹尺寸0a 。第二步根据构件形状、加载方式、裂纹尺寸等确定裂纹尖端应力强度因子表达式。第三步按照不同的断裂力学判据确定临界裂纹尺寸c a 。第四步选用一定的裂纹扩展率表达式通过计算裂纹扩展速

率估算裂纹扩展的寿命。

损伤容限设计的关键问题是正确估算裂纹扩展寿命。目前,国内外介绍的裂纹扩展速率的表达式不下十几种,但工程中广泛使用的是Paris 公式

m K C dN

da )(?= 式中:C 、m 一与材料有关由实验确定的参数

△K一应力强度因子幅值

由于Paris 公式没有反应平均应力的影响,也没有反映当K 到Kc 时,dN

da 急速增大的事实。后来Forman 在这两个方面对公式进行了修正。提出了Forman 公式:

K

K R 1K C dN da c m ?--?=)()( 式中:C 、m 为与材料有关由实验确定的参数

R ——应力比

c K ——材料的断裂韧度。

以上两个公式仅适用于高周疲劳,所涉及的参数也是线弹性断裂力学的应力强度因子,而对于低周疲劳由于允许构件进入塑性区工作,所以线弹性条件已不成立,近年来有人用积分参量和裂纹张开位移COD 参量进行裂纹速率的研究,提出了与Paris 扩展公式类似的的裂纹扩展速率的表达式:

τδD =dN da ,τCJ =dN

da 式中:C 、D 为与材料有关的参数

δ——裂纹张开位移

J ——J 积分

有了裂纹扩展速率的公式,就可以通过积分得到裂纹扩展寿命

???==c a a m

K da C dN N 0)(1 da K K K R C dN N c a a m c ????--==0)

()1(1 损伤容限设计方法是一种新的有前途的疲劳设计方法,断裂力学

金属材料屈服强度的影响因素

材料屈服强度及其影响因素 1. 屈服标准 工程上常用的屈服标准有三种: (1)比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp时即认为材料开始屈服。 (2)弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。国际上通常以σel表示。应力超过σel时即认为材料开始屈服。 (3)屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。 2. 影响屈服强度的因素 影响屈服强度的内在因素有: 结合键、组织、结构、原子本性。如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:(1)固溶强化; (2)形变强化; (3)沉淀强化和弥散强化; (4)晶界和亚晶强化。 沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。 影响屈服强度的外在因素有: 温度、应变速率、应力状态。随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度。 3.屈服强度的工程意义 传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力[σ]=σys/n,安全系数n一般取2或更大,对脆性材料,以抗拉强度为标准,规定许用应力[σ]=σb/n,安全系数n一般取6。 需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。 屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。因此,屈服强度是材料性能中不可缺少的重要指标。 材料开始屈服以后,继续变形将产生加工硬化。 4.加工硬化指数n的实际意义 加工硬化指数n反应了材料开始屈服以后,继续变形时材料的应变硬化情况,它决定了材料开始发生颈缩时的最大应力。n还决定了材料能够产生的最大均匀应变量,这一数值在冷加工成型工艺中是很重要的。 对于工作中的零件,也要求材料有一定的加工硬化能力,否则,在偶然过载的情况下,会产生过量的塑性变形,甚至有局部的不均匀变形或断裂,因此材料的加工硬化能力是零件安全使用的可靠保证。 形变硬化是提高材料强度的重要手段。不锈钢有很大的加工硬化指数n=0.5,因而也有很高的均匀变形量。不锈钢的屈服强度不高,但如用冷变形可以成倍地提高。高碳钢丝经过

影响金属材料疲劳强度的八大因素

影响金属材料疲劳强度的八大因素 Via 常州精密钢管博客 影响金属材料疲劳强度的八大因素 材料的疲劳强度对各种外在因素和内在因素都极为敏感。外在因素包括零件的形状和尺寸、表面光洁度及使用条件等,内在因素包括材料本身的成分,组织状态、纯净度和残余应力等。这些因素的细微变化,均会造成材料疲劳性能的波动甚至大幅度变化。 各种因素对疲劳强度的影响是疲劳研究的重要方面,这种研究将为零件合理的结构设计、以及正确选择材料和合理制订各种冷热加工工艺提供依据,以保证零件具有高的疲劳性能。 应力集中的影响 常规所讲的疲劳强度,都是用精心加工的光滑试样测得的,然而,实际机械零件都不可避免地存在着不同形式的缺口,如台阶、键槽、螺纹和油孔等。这些缺口的存在造成应力集中,使缺口根部的最大实际应力远大于零件所承受的名义应力,零件的疲劳破坏往往从这里开始。 理论应力集中系数Kt :在理想的弹性条件下,由弹性理论求得的,缺口根部的最大实际应力与名义应力的比值。 有效应力集中系数(或疲劳应力集中系数)Kf:光滑试样的疲劳极限σ-1与缺口试样疲劳极限σ-1n的比值。 有效应力集中系数不仅受构件尺寸和形状的影响,而且受材料的物理性质、加工、热处理等多种因素的影响。 有效应力集中系数随着缺口尖锐程度的增加而增加,但通常小于理论应力集中系数。 疲劳缺口敏感度系数q:疲劳缺口敏感度系数表示材料对疲劳缺口的敏感程度,由下式计算。 q的数据范围是0-1,q值越小,表征材料对缺口越不敏感。试验表明,q并非纯粹是材料常数,它仍然和缺口尺寸有关,只有当缺口半径大于一定值后,q值才基本与缺口无关,而且对于不同材料或处理状态,此半径值也不同。 尺寸因素的影响

304不锈钢抗拉强度试验影响因素分析

龙源期刊网 https://www.doczj.com/doc/c53523066.html, 304不锈钢抗拉强度试验影响因素分析 作者:林剑峰 来源:《科学与财富》2016年第25期 摘要:文章通过试验,对比分析了不同试验速率与温度对奥氏体304不锈钢拉伸性能测试结果的影响规律,总体上的试验结果表明,试验速率对测定结果的影响较小,环境的温度变化才是测定结果波动的主要影响因素,以期本试验研究分析可指导生产检测与产品验收。 关键词:奥氏体304不锈钢;拉伸试验;马氏体;环境温度;试验速率 拉伸试验是力学性能试验中最基础、最常用的试验,拉伸试验中给出的性能指标也是在工业上应用最广泛的材料性能指标。304不锈钢是一种通用型奥氏体不锈钢,它的金属制品耐高温,韧性高,加工性能好,广泛使用于工业和家具装饰行业和食品医疗行业。拉伸性能是其力学性能测试中最基本、最通用的检验指标,也是304不锈钢产品的最基本交货依据。由于304不锈钢属于非稳态奥氏体不锈钢,在拉伸试验变形过程中会发生应变诱发相变产生马氏体,但金属材料本身材质的不均匀性以及在应变强化过程中温度、速率、应变量等均可影响应变诱发马氏体的转变量、转变速率等方面的情况,使得抗拉强度测定结果存在差异,不利于测试的进行。因此,有必要对拉伸试验检测结果波动的影响因素进行分析,掌握不同测试条件下拉伸性能测试结果的变化规律,从而对所检验的材料做出科学的评价。 1试验材料与试验方法 1.1试验材料 试验材料选用厚度为20mm、共3个炉号的热轧固溶态304不锈钢板,不同炉号钢板的化学成分略有不同。 1.2 试验方法 采用不同试验温度(在GB/T228.1-2010规定的温度范围内10~35℃)和不同拉伸试验速率(上、下限分别略大于和略小于GB/T228.1-2010规定的拉伸速率范围0.005~0.008s-1)对 上述304不锈钢板进行拉伸试验。拉伸试验用试样为螺纹头棒状试样,试样形状及尺寸如图1所示。拉伸试验前后分别测试试样均匀变形段的马氏体含量。拉伸试验采用德国产Z300高低温电子拉伸试验机完成,马氏体含量测定用瑞士产FeritscopeFMP30铁素体含量测定仪完成。 2 试验结果与讨论 2.1 304不锈钢加工硬化分析

公路桥梁结构桥梁抗疲劳设计方法应用

公路桥梁结构桥梁抗疲劳设计方法应用 摘要:随着我国社会既经济的发展,公路桥梁工程建设越发的完善,但是由于我国人口众多,私家车拥有量也是与日俱增,这就导致我国公路桥梁工程的消耗使用比较严重,部分公路桥梁由于长期处于疲劳工作状态下使得其结构出现严重破损,影响交通工程的安全性。其中,桥梁工程出现疲劳的现象比较多,所以,在进行公路桥梁结构看疲劳设计时要将工作重点放在桥梁抗疲劳设计上,从而促进公路桥梁抗疲劳性能。 关键词:公路桥梁;结构桥梁;抗疲劳设计;方法应用 引言 随着我国社会经济的发展,结构桥梁工程的建设越来越多,但是在发展的同时也会越到需索刁钻的问题,其中,抗疲劳设计就是一项比较复杂而且艰难的工作。在施工与运行的过程中如果略了各类问题,就会导致工程在启动之后出现抗疲劳强度不足,出现桥梁使用年限缩小的情况。 一、影响桥梁结构抗疲劳强度因素 1.残余应力 在我国现阶段的桥梁建设中普遍采用钢结构作为桥梁的主要材料,而钢结构的抗疲劳性能基本上是受加工材料性能的影响,例如在加工阶段中冶炼、轧制、焊接等过程,都与可能会出现受热不均的现象,致使钢结构内部存在残余应力,对于钢结构桥梁来说,其一般只能承受翼缘内周期性压力应力,在高残余拉应力范围内便会出现开裂问题,而影响桥梁结构抗疲劳性能。针对钢结构中的残余应力,如果不能够完全掌握受力的峰值,还有受力的分布区域,这就很可能会造成残余应力影响钢结构质量的问题出现,尤其是对桥梁结构疲劳强度影响十分明显。 2.低温冷脆循环作用 在一般情况下,钢结构桥梁工程的施工过程对下弦和桥墩支座连接位置的集中应力以及流限状态的研究不够全面,这种钢结构桥梁受到低温冷脆循环很容易会发生脆断的现象。除此之外,当钢结构材料厚度为B≥2.5(KIC/σys)2时,钢结构平面应力逐渐趋于脆性状态,是钢结构桥梁施工设计的要点。 3.其余因素 3.1钢结构的材料特性

疲劳强度考试整理

1.疲劳的定义:材料在循环应力或循环应变作用下,由于某点或某些点产生了局部的永久 结构变化,从而在一定的循环次数以后形成裂纹或发生断裂的过程称为疲劳。 2.疲劳的分类: (1)按研究对象可以分为材料疲劳和结构疲劳 材料疲劳——研究材料的失效机理,化学成分和微观组织对疲劳强度的影响,使用标准试件。结构疲劳——则以零部件、接头以至整机为研究对象,研究它们的疲劳性能、抗疲劳设计方法、寿命估算方法和疲劳试验方法。 (2)按失效周次可以分为高周疲劳和低周疲劳 高周疲劳——材料在低于其屈服强度的循环应力作用下,经104-105以上循环产生的失效。低周疲劳——材料在接近或超过其屈服强度的应力作用下,低于104-105次塑性应变循环产生的失效。 (3)按应力状态可以分为单轴疲劳和多轴疲劳 单轴疲劳——单向循环应力作用下的疲劳,零件只承受单向正应力或单向切应力。 多轴疲劳——多向应力作用下的疲劳,也称复合疲劳。 (4)按载荷变化情况分为恒幅疲劳、变幅疲劳、随机疲劳 恒幅疲劳——所有峰值载荷均相等和所有谷值载荷均相等。 变幅载荷——所有峰值载荷不等,或所有谷值载荷不等,或两者均不等。 随机疲劳——幅值和频率都是随机变化的,而且是不确定的。 (5)按载荷工况和工作环境可以分为常规疲劳、高低温疲劳、热疲劳、热—机械疲劳、腐 蚀疲劳、接触疲劳、微动磨损疲劳和冲击疲劳 常规疲劳——在室温和空气介质中的疲劳。 高低温疲劳——低于室温的疲劳和高于室温的疲劳。 热疲劳——温度循环变化产生的热应力所导致的疲劳。 热-机械疲劳——温度循环与应变循环叠加。 腐蚀疲劳——腐蚀环境与循环应力的复合作用。 接触疲劳——滚动接触零件在循环应力作用下产生损伤。 微动磨损疲劳——接触面的微幅相对振动造成磨损疲劳。 冲击疲劳——重复冲击载荷所导致的疲劳。 3.金属疲劳破坏机理

简述哪些因素对钢材性能有影响

三、简答题 1.简述哪些因素对钢材性能有影响? 化学成分;冶金缺陷;钢材硬化;温度影响;应力集中;反复荷载作用。2.钢结构用钢材机械性能指标有哪几些?承重结构的钢材至少应保证哪几项指标满足要求? 钢材机械性能指标有:抗拉强度、伸长率、屈服点、冷弯性能、冲击韧性; 承重结构的钢材应保证下列三项指标合格:抗拉强度、伸长率、屈服点。3.钢材两种破坏现象和后果是什么? 钢材有脆性破坏和塑性破坏。塑性破坏前,结构有明显的变形,并有较长的变形持续时间,可便于发现和补救。钢材的脆性破坏,由于变形小并突然破坏,危险性大。 4.选择钢材屈服强度作为静力强度规范值以及将钢材看作是理想弹性一塑性材料的依据是什么? 选择屈服强度f y 作为钢材静力强度的规范值的依据是:①他是钢材弹性及塑性工作的分界点,且钢材屈服后,塑性变开很大(2%~3%),极易为人们察觉,可以及时处理,避免突然破坏;②从屈服开始到断裂,塑性工作区域很大,比弹性工作区域约大200倍,是钢材极大的后备强度,且抗拉强度和屈服强度的比例又较 大(Q235的f u /f y ≈1.6~1.9),这二点一起赋予构件以f y 作为强度极限的可靠安 全储备。 将钢材看作是理想弹性—塑性材料的依据是:①对于没有缺陷和残余应力影响的 试件,比较极限和屈服强度是比较接近(f p =(0.7~0.8)f y ),又因为钢材开始屈服 时应变小(ε y ≈0.15%)因此近似地认为在屈服点以前钢材为完全弹性的,即将屈服点以前的б-ε图简化为一条斜线;②因为钢材流幅相当长(即ε从0.15%到2%~3%),而强化阶段的强度在计算中又不用,从而将屈服点后的б-ε图简化为一条水平线。 5.什么叫做冲击韧性?什么情况下需要保证该项指标? 韧性是钢材抵抗冲击荷载的能力,它用材料在断裂时所吸收的总能量(包括弹性和非弹性能)来度量,韧性是钢材强度和塑性的综合指标。在寒冷地区建造的结构不但要求钢材具有常温(℃ 20)冲击韧性指标,还要求具有负温(℃ 0、℃ 20 -或℃ 40 -)冲击韧性指标。

第三章疲劳强度计算练习题dayin

第三章机械零件的疲劳强度设计 三、设计计算题 3-47 如图所示某旋转轴受径向载荷F=12kN作用,已知跨距L=1.6m,直径d=55mm,轴的角速度为ω,求中间截面上A点的应力随时间变化的表达式,并求A点的σmax、σmin、σa和σm。 3-48 一内燃机中的活塞连杆,当气缸发火时,此连杆受压应力σmax=-150MPa,当气缸进气开始时,连杆承受拉应力σmin=50MPa,试求:(1)该连杆的平均应力σm、应力幅σa 和应力比r;(2)绘出连杆的应力随时间而变化的简图。 3-49 一转动轴如图所示,轴上受有轴向力F a=1800N,径向力F r=5400N,支点间的距离L=320mm,轴是等截面的,直径d=45mm。试求该轴危险截面上的循环变应力的σmax、σmin、σm、σa和r。 题3-49图题3-50图 3-50 某一转轴的局部结构如图所示,轴的材料为Q235普通碳钢,精车制成。若已知直径D=120mm,d=110mm,圆角半径r=5mm,材料的力学性能为:σb=450MPa,σs=220MPa,试求截面变化处的疲劳强度综合影响系数KσD和KτD。 3-51 由脆性材料制成的受弯平板的平面尺寸如图所示,板厚30mm。A、B两处各有一个直径5mm的穿透小孔,弯矩M=20kN·m。试分别计算Ⅰ、Ⅱ两截面上的最大应力值。疲劳缺口系数查题3-53附图。 3-52 一转轴的各段尺寸及其受载情况如图所示。所有圆角半径均为r=3mm。试分别计算Ⅰ—Ⅰ至Ⅶ—Ⅶ各截面上的最大弯曲应力的名义值和实际值。疲劳缺口系数查题3-53附图。

题3-51图题3-52图 3-53 用高强度碳钢制成的构件 的平面尺寸如图所示,厚8mm,受拉力 F=50kN。该构件的Ⅰ、Ⅱ、Ⅲ截面上分别 有φ15mm的圆孔、R7.5mm的半圆缺口 和R7.5mm的圆角。试分别计算这三个截 面上的最大应力。 题3-53附图 附注:这三种结构的疲劳缺口系数值可从上图曲线中查得。 3-54 题3-53中如载荷F在25~85kN之间做周期性的变化,材料改为20CrMnTi,其力学性能为σs=835MPa,σ-1=345MPa,σ0=615MPa。危险截面上的疲劳缺口系数Kσ=1.45,尺寸系数εσ=0.75,表面状态系数βσ=0.9,按无限寿命考虑。试画出σm-σa极限应力图,并用图解法和解析法确定安全系数Sσ。 3-55 用题3-54的条件画出σm-σmax和σmin极限应力图,并用图解法和解析法确定安全系数。可参阅[5]。 3-56 按题3-54的条件,除载荷F变为在-32~64kN之间作周期性变化外,其余条件不变。试画出σmin-σmax极限应力简图,并用图解法和解析法确定安全系数。可参阅[5]。 3-57 一阶梯轴轴肩处的尺寸为D=60mm,d=50mm,r=4mm,如材料的力学性能为:σb=650MPa,σs=360MPa,σ-1=200MPa,σ0=320MPa。试绘制此零件的简化极限应力线图。 3-58 如上题中危险截面处的平均应力σm=30MPa,应力幅σa=45MPa,试分别按(1)r=c;(2)σm=c求出该截面上的计算安全系数Sσ。 3-59 一转轴的危险截面上作用有周期性波动的载荷:弯矩M=100~200N·m,转矩T=0~100N·m。轴的材料为45钢,力学性能:σs=400MPa,σ-1=270MPa,σ0=480MPa,τs=216MPa,τ-1=156MPa,τ0=300MPa。若截面直径d=25mm,疲劳缺口系数Kσ=1.78,Kτ=1.45,尺寸系数εσ=0.9,ετ=0.93,表面状态系数βσ=0.91,βτ=0.95。试确定安全系数S。计算时可

影响材料性能的因素

1.0影响材料性能的因素 2.01.1碳当量对材料性能的影响字串9 决定灰铸铁性能的主要因素为石墨形态和金属基体的性能。当碳当量()较高时,石墨的数量增加,在孕育条件不好或有微量有害元素时,石墨形状恶化。这样的石墨使金属基体能够承受负荷的有效面积减少,而且在承受负荷时产生应力集中现象,使金属基体的强度不能正常发挥,从而降低铸铁的强度。在材料中珠光体具有好的强度、硬度,而铁素体则质底较软而且强度较低。当随着 C、Si的量提高,会使珠光体量减少,铁素体量增加。因此,碳当量的提高将在石墨形状和基体组织两方面影响铸铁铸件的抗拉强度和铸件实体的硬度。在熔炼过程控制中,碳当量的控制是解决材料性能的一个很重要的因素。 1.2合金元素对材料性能的影响 在灰铸铁中的合金元素主要是指Mn、Cr、Cu、Sn、Mo等促进珠光体生成元素,这些元素含量会直接影响珠光体的含量,同时由于合金元素的加入,在一定程度上细化了石墨,使基体中铁素体的量减少甚至消失,珠光体则在一定的程度上得到细化,而且其中的铁素体由于有一定量的合金元素而得到固溶强化,使铸铁总有较高的强度性能。在熔炼过程控制中,对合金的控制同样是重要的手段。 1.3炉料配比对材料的影响字串4 过去我们一直坚持只要化学成分符合规范要求就应该能够获得符合标准机械性能材料的观点,而实际上这种观点所看到的只是常规化学成分,而忽略了一些合金元素和有害元素在其中所起的作用。如生铁是Ti的主要来源,因此生铁使用量的多少会直接影响材料中Ti的含量,对材料机械性能产生很大的影响。同样废钢是许多合金元素的来源,因此废钢用量对铸铁的机械性能的影响是非常直接的。在电炉投入使用的初期,我们一直沿用了冲天炉的炉料配比(生铁:25~35%,废钢:30~35%)结果材料的机械性能(抗拉强度)很低,当我们意识到废钢的使用量会对铸铁的性能有影响时及时调整了废钢的用量之后,问题很快得到了解决,因此废钢在熔化控制过程中是一项非常重要的控制

提高零件疲劳强度的方法

提高零件疲劳强度的方法 【摘要】机械零件的抗疲劳破坏是造成机械运行故障的主要原因,因此,提高机械零件的疲劳强度是机械结构设计中不容忽视的问题。针对影响零件疲劳强度的因素并结合实际,对在设计过程中如何提高零件的疲劳强度的方法及措施做简要的叙述和相关分析,且对工程中常见的问题,提出相应的控制方法和解决措施。【关键词】疲劳强度;应力集中 1概述 在19世纪初,随着蒸汽机车的发明和铁路建设的迅速发展,机车车辆的疲劳破坏现象时有发生,使工程技术人员认识到交变应力对金属强度的不良影响。很多结构物都承受交变应力的作用,例如飞机,火车,船舶等交通运输工具由于大气紊流,波浪及道路不平引起的颠簸都承受交变应力,即使是房屋,桥梁等看来似乎完全不动的结构物也同样承受变应力作用,因为桥梁上驶过车辆时,房屋中的机器设备运转和振动时,甚至刮风等均会引起交变应力。所以交变应力对于结构物来说是经常遇到的。 绝大多数的机械零件是在循环变应力作用下工作的,如弹簧,齿轮,轴等都是在循环载荷下工作的,承受交变应力或重复应力,如在工作过程中工作应力低于屈服强度时就会发生疲劳破坏,造成重大的经济损失。为避免这些现象的发生,提高零件的疲劳强度,在设计阶段应考虑它的使用环境和受力状态,材料性能,加工工艺等因素。我将基于材料的疲劳特性,对提高零件疲劳强度的方法及措施进行简要的叙述。 2零件的疲劳特性 材料的疲劳特性可用最大应力,应力循环次数,应力比(循环特性)来表述。 10时,属静应力强度,当循环次数在在一定的应力比下,当循环次数低于3 4 310 10时属于低周疲劳,然而一般零件承受变应力时,其应力循环次数通常大~ 10,属高周疲劳,此阶段,如果作用的变应力小于持久疲劳极限,无论应力于4 变化多少次,材料都不会破坏。由于零件受加工质量及强化因素等影响,使得零件的疲劳极限小于材料的疲劳极限,通常等于材料疲劳极限与其疲劳极限的综合影响系数的比值。故可通过改善零件受力状况,将作用在零件上的变应力降低到持久疲劳极限以下,对延长材料的使用寿命具有重要的意义。 3提高零件疲劳强度的方法 影响零件的疲劳强度的因素很多,比如材料的最大应力,工作环境,应力状态,加工质量与加工工艺等。为提高零件的疲劳强度,经查阅资料得出以下方法。(1)材料的选择 材料的选择原则是:在满足静强度要求的同时,还应具备良好的抗疲劳性能。过去静强度选材的一个基本原则是要求强度高,但在疲劳设计中,需从疲劳强度的观点选材: a在达到使用期限的应力值时,材料的疲劳极限必须满足要求。 b材料的切口敏感性和擦伤疲劳敏感性小,在交变载荷作用处要特别注意。 c裂纹扩展速率慢,许用临界裂纹大些,及要求零件的断裂韧性值大,使零件或结构在使用中出现裂纹后,不会很快导致灾难性的破坏。

螺栓疲劳强度计算分析

螺栓疲劳强度计算分析 摘要:在应力理论、疲劳强度、螺栓设计计算的理论基础之上,以疲劳强度计算所采取的三种方法为依据,以汽缸盖紧螺栓连接为研究对象,进行本课题的研究。假设汽缸的工作压力为0~1N/mm2=之间变化,气缸直径D2=400mm,螺栓材料为5.6级的35钢,螺栓个数为14,在F〞=1.5F,工作温度低于15℃这一具体实例进行计算分析。利用ProE建立螺栓连接的三维模型及螺杆、螺帽、汽缸上端盖、下端盖的模型。先以理论知识进行计算、分析,然后在分析过程中借助于ANSYS有限元分析软件对此螺栓连接进行受力分析,以此验证设计的合理性、可靠性。经过近几十年的发展,有限元方法的理论更加完善,应用也更广泛,已经成为设计,分析必不可少的有力工具。然后在其分析计算基础上,对于螺栓连接这一类型的连接的疲劳强度设计所采取的一般公式进行分类,进一步在此之上总结。 关键词:螺栓疲劳强度,计算分析,强度理论,ANSYS 有限元分析。

Bolt fatigue strength analysis Abstract:In stress fatigue strength theory, bolt, design calculation theory foundation to fatigue strength calculation for the three methods adopted according to the cylinder lid, fasten bolt connection as the object of research, this topic research. Assuming the cylinder pressure of work is 0 ~ 1N/mm2 changes, cylinder diameters between = = 400mm, bolting materials D2 for ms5.6 35 steel, bolt number for 14, in F "= 1.5 F below 15 ℃, the temperature calculation and analysis of concrete examples. Using ProE establish bolt connection three-dimensional models and screw, nut, cylinder under cover, cover model. Starts with theoretical knowledge calculate,analysis, and then during analysis, ANSYS finite element analysis software by this paper analyzes forces bolt connection, to verify the rationality of the design of and reliability. After nearly decades of development, the theory of finite element method is more perfect, more extensive application, has become an indispensable design, analysis the emollient tool. Then in its analysis and calculation for bolt connection, based on the type of connection to the fatigue strength design of the general formula classification, further on top of this summary. Keywords: bolt fatigue strength, calculation and analysis, strength theory,ANSYS finite elements analysis.

影响材料力学性能测试的因素

影响材料力学性能测试的因素 1 拉伸实验强度和延性丈量的准确度和偏向取决于能否严厉恪守指定实验办法并受设备和材料要素、试样制备和实验、丈量误差的影响。 2 关于相同材料的复验协商分歧取决于材料的平均性、试样制备的反复性、实验条件和拉伸实验参数的测定。 3 可影响实验结果的设备要素包括:拉伸实验机的刚性、减震才能、固有的频率和运动部件重量;力的指针准确度和实验机不同范围内力的运用;恰当的加力速度、用适宜的力使试样对中、夹具的平行度、夹持力、控制力的大小、引伸计的适用性和标定、热的消散(经过夹具、引伸计或辅助安装)等等。 4 能影响实验结果的材料要素包括:实验材料的代表性和平均性、试样型式、试样制备(外表光亮度,尺寸准确度,标距端部过渡圆弧,标距内锥度,弯曲试样,螺纹质量等等)。 a、有些材料对试样外表光亮度十分敏感(见注8) 必需研磨至理想光亮度,或者抛光至得到正确结果。 b、关于铸造的、轧制的、锻造的或其他非加工外表状态的试样,实验结果可能受外表特性影响(见注14)。 c、取自部件或构件隶属部位的试样,像外延局部或冒口,或者独立消费的铸件(例如, 脊形试块)可能产生不具部件或构件代表性的实验结果。 d、试样尺寸可能影响实验结果。关于圆柱形的或矩形的试样,改动试样尺寸普通对屈从强度和抗拉强度影响很小,但假如呈现改动,则可影响上屈从强度、伸长率和断面收缩率。用下式比拟不同试样测定的伸长率值: L0/(A0)1 / 2 ( 1) 其中: L0 = 试样的原始标距 A0 = 试样的原始横截面积 1 具有较小的L0/(A0)1 / 2 比值的试样普通会得出较大的伸长率和断面收缩率,例如矩形拉伸试样的宽度或厚度增加后,状况即如此。 2 坚持L0/(A0)1 / 2r比值固定最小值,但影响不大。由于增加图8比例试样的尺寸可发现伸长率和面积收缩有所增加或减少,这取决于材料和实验条件。 e、标距内有一个允许的1 %的锥度可招致伸长率值降低。1 %的锥度会使伸长率降低15 % 。

影响钢材力学性能的因素2.

2.3影响钢材力学性能的因素 影响钢材力学性能的因素有: 化学成分冶金和轧制过程时效冷作硬化温度 应力集中和残余应力复杂应力状态 1.化学成分 钢的基本元素为铁(Fe),普通碳素钢中占99%,此外还有碳(C)、硅(Si)、锰(Mn)等杂质元素,及硫(S)、磷(P)、氧(O)、氮(N)等有害元素,这些总含量约1%,但对钢材力学性能却有很大影响。 碳:除铁以外最主要的元素。碳含量增加,使钢材强度提高,塑性、韧性,特别是低温冲击韧性下降,同时耐腐蚀性、疲劳强度和冷弯性能也显著下降,恶化钢材可焊性,增加低温脆断的危险性。一般建筑用钢要求含碳量在0.22%以下,焊接结构中应限制在 0.20%以下。 硅:作为脱氧剂加入普通碳素钢。适量硅可提高钢材的强度,而对塑性、冲击韧性、冷弯性能及可焊性无显著的不良影响。一般镇静钢的含硅量为0.10%~0.30%,含量过高(达1%),会降低钢材塑性、冲击韧性、抗锈性和可焊性。 锰:是一种弱脱氧剂。适量的锰可有效提高钢材强度,消除硫、氧对钢材的热脆影响,改善钢材热加工性能,并改善钢材的冷脆倾向,同时不显著降低钢材的塑性、冲击韧性。 普通碳素钢中锰的含量约为0.3%~0.8%。含量过高(达1.0%~1.5%以上)使钢材变脆变硬,并降低钢材的抗锈性和可焊性。 硫:有害元素。引起钢材热脆,降低钢材的塑性、冲击韧性、疲劳强度和抗锈性等。一般建筑用钢含硫量要求不超过0.055%,在焊接结构中应不超过0.050%。 磷:有害元素。虽可提高强度、抗锈性,但严重降低塑性、冲击韧性、冷弯性能和可焊性,

尤其低温时发生冷脆,含量需严格控制,一般不超过0.050%,焊接结构中不超过 0.045%。 氧:有害元素。引起热脆。一般要求含量小于0.05%。 氮:能使钢材强化,但显著降低钢材塑性、韧性、可焊性和冷弯性能,增加时效倾向和冷脆性。一般要求含量小于0.008%。 为改善钢材力学性能,可适量增加锰、硅含量,还可掺入一定数量的铬、镍、铜、钒、钛、铌等合金元素,炼成合金钢。钢结构常用合金钢中合金元素含量较少,称为普通低合金钢。 2.冶金轧制过程 ?按炉种分: 结构用钢我国主要有三种冶炼方法:碱性平炉炼钢法、顶吹氧气转炉炼钢法、碱性侧吹转炉炼钢法。 平炉钢和顶吹转炉钢的力学性能指标较接近,而碱性侧吹转炉钢的冲击韧性、可焊性、时效性、冷脆性、抗锈性能等都较差,故这种炼钢法已逐步淘汰。 ?按脱氧程度分: 沸腾钢、镇静钢和半镇静钢。 沸腾钢脱氧程度低,氧、氮和一氧化碳气体从钢液中逸出,形成钢液的沸腾。沸腾钢的时效、韧性、可焊性较差,容易发生时效和变脆,但产量较高、成本较低;半镇静钢脱氧程度较高些,上述性能都略好;而镇静钢的脱氧程度最高,性能最好,但产量较低,成本较高。 3.其他因素 时效

疲劳强度设计方法研究

疲劳强度设计方法研究

摘要 疲劳强度是当前机械产品的主要失效形式,在机械强度设计中占有重要的位置。正确地应用疲劳理论于强度设计上,可以得到合理的设计,包括选材、结构尺寸及加工工艺等,或根据工况及给定的零部件估算其寿命。本文从疲劳断裂的过程出发,通过对疲劳强度三种思路的分析,介绍了相应疲劳强度设计及寿命估算的三种方法。 关键词:疲劳强度,寿命估算,疲劳设计,S-N曲线

1. 引言 所谓疲劳,是指材料或构件在长期的循环变应力作用下的失效现象,也称疲劳破坏。当循环变应力远小于强度极限时,经过一定的循环周次,也能使构件发生疲劳破坏。疲劳破坏是机械工程中常见的失效形式。近数十年来,疲劳破坏危及各个领域,飞机由于疲劳破坏而造成机毁人亡的灾难性事故;二次世界大战期间有上万艘焊接船舶、几十座焊接桥梁毁于疲劳破坏;对于车轴、车轨以及机架,曲轴,齿轮、螺栓联接等的疲劳破坏事故更是屡见不鲜。据统计,现代工业中零部件的失效80%是由于疲劳引起的。因此,疲劳问题引起了人们的极大关注。 对在循环变应力作用下的构件,以往的机械设计常常采用静强度设计,靠选取较大的安全系数来保证其使用的可靠性。而实际上是在变载荷作用下的构件由于强度储备大,在按静强度设计有时会将疲劳问题暂时掩盖起来。随着近代机械向高速、高温、大功率和轻重量的方向发展,对机械产品的零构件采用合理的疲劳设计,是提高设计水平、保证产品质量和提升经济效益的一个重要环节。 2. 疲劳断裂的形成 现行的疲劳设计思想与疲劳断裂的过程有关。从疲劳断裂的破坏过程来看一般分为三个阶段: (1)裂纹萌生阶段,或称裂纹成核或形成阶段 由于观察仪器的精密度和分辨率不同,所能观察到的裂纹长度也

屈服和抗拉强度的区别

屈服和抗拉强度的区别 1. 屈服标准 工程上常用的屈服标准有三种: (1)比例极限应力-应变曲线上符合线性关系的最高应力,国际上常采用σp表示,超过σp 时即认为材料开始屈服。 (2)弹性极限试样加载后再卸载,以不出现残留的永久变形为标准,材料能够完全弹性恢复的最高应力。国际上通常以σel表示。应力超过σel时即认为材料开始屈服。 (3)屈服强度以规定发生一定的残留变形为标准,如通常以0.2%残留变形的应力作为屈服强度,符号为σ0.2或σys。 2. 影响屈服强度的因素 影响屈服强度的内在因素有: 结合键、组织、结构、原子本性。如将金属的屈服强度与陶瓷、高分子材料比较可看出结合键的影响是根本性的。从组织结构的影响来看,可以有四种强化机制影响金属材料的屈服强度,这就是:(1)固溶强化; (2)形变强化; (3)沉淀强化和弥散强化; (4)晶界和亚晶强化。 沉淀强化和细晶强化是工业合金中提高材料屈服强度的最常用的手段。在这几种强化机制中,前三种机制在提高材料强度的同时,也降低了塑性,只有细化晶粒和亚晶,既能提高强度又能增加塑性。 影响屈服强度的外在因素有: 温度、应变速率、应力状态。随着温度的降低与应变速率的增高,材料的屈服强度升高,尤其是体心立方金属对温度和应变速率特别敏感,这导致了钢的低温脆化。应力状态的影响也很重要。虽然屈服强度是反映材料的内在性能的一个本质指标,但应力状态不同,屈服强度值也不同。我们通常所说的材料的屈服强度一般是指在单向拉伸时的屈服强度。 3.屈服强度的工程意义 传统的强度设计方法,对塑性材料,以屈服强度为标准,规定许用应力[σ]=σys/n,安全系数n一般取2或更大,对脆性材料,以抗拉强度为标准,规定许用应力[σ]=σb/n,安全系数n 一般取6。 需要注意的是,按照传统的强度设计方法,必然会导致片面追求材料的高屈服强度,但是随着材料屈服强度的提高,材料的抗脆断强度在降低,材料的脆断危险性增加了。 屈服强度不仅有直接的使用意义,在工程上也是材料的某些力学行为和工艺性能的大致度量。例如材料屈服强度增高,对应力腐蚀和氢脆就敏感;材料屈服强度低,冷加工成型性能和焊接性能就好等等。因此,屈服强度是材料性能中不可缺少的重要指标。 材料开始屈服以后,继续变形将产生加工硬化。 4.加工硬化指数n的实际意义 加工硬化指数n反应了材料开始屈服以后,继续变形时材料的应变硬化情况,它决定了材料开始发生颈缩时的最大应力。n还决定了材料能够产生的最大均匀应变量,这一数值在冷加工成型工艺中是很重要的。 对于工作中的零件,也要求材料有一定的加工硬化能力,否则,在偶然过载的情况下,会产生过量的塑性变形,甚至有局部的不均匀变形或断裂,因此材料的加工硬化能力是零件安全使用的可靠保证。 形变硬化是提高材料强度的重要手段。不锈钢有很大的加工硬化指数n=0.5,因而也有很

疲劳寿命设计方法

寿命设计方法 -王光建

目录 …什么是疲劳失效 …无限寿命设计方法 ?S-N曲线(wohler curve)及疲劳极限?基于疲劳极限的评判 ?考虑平均应力的损伤修正…有限寿命设计方法 ?Miner法则(疲劳损伤线性累积) ?雨流计数法?寿命计算…疲劳寿命仿真计算 …疲劳寿命计算的不足

疲劳失效 …疲劳是一种机械损伤过程 …特点: 在这一过程中即使名义应力低于材料屈服强度;破坏前无明显塑性变形,突然发生断裂…本质: ?交变载荷+金属缺陷?金属的循环塑性变形(微观) ?疲劳一般包含裂纹萌生和随后的裂纹扩展两个过程 ?疲劳是损伤的累积 金属内部缺陷微裂纹产生裂纹扩展断裂 (晶体位错) 疲劳发生过程 …疲劳的判断: 金属材料的疲劳断裂口上,有明显的光滑区域与颗粒区域,光滑区域是疲劳断裂区,颗粒区域是脆性断裂区 粗糙的脆性断裂区 光滑的疲劳区 裂纹源

-S-N曲线(Wohler curve)及疲劳极限…S-N曲线是根据材料的疲劳强度实验数据得出的应力和疲劳寿命N的关系曲线 …S-N曲线用于描述材料的疲劳特性 σ S-N curve 1871年,Wohler首先对铁路车轴进行了系统的疲劳研究,发展了S-N曲线及疲劳极限概念

-S-N曲线(Wohler curve)及疲劳极限…疲劳极限:一般规定,循环次数107所对应的最大应力为疲劳极限 σ σ limit S-N curve

-基于疲劳极限的评判 …Alternating stress 作为判断应力 Alternating stress=(σ - σmin)/2 max …判断标准 σAlternating stress<σ limit σσ limit σ √ 2 S-N curve σ × 1

疲劳强度设计

疲劳强度设计 对承受循环应力的零件和构件,根据疲劳强度理论和疲劳试验数据,决定其合理的结构和尺寸的机械设计方法。机械零件和构件对疲劳破坏的抗力,称为零件和构件的疲劳强度。疲劳强度由零件的局部应力状态和该处的材料性能确定,所以疲劳强度设计是以零件最弱区为依据的。通过改进零件的形状以降低峰值应力,或在最弱区的表面层采用强化工艺,就能显著地提高其疲劳强度。在材料的疲劳现象未被认识之前,机械设计只考虑静强度,而不考虑应力变化对零件寿命的影响。这样设计出来的机械产品经常在运行一段时期后,经过一定次数的应力变化循环而产生疲劳,致使突然发生脆性断裂,造成灾难性事故。应用疲劳强度设计能保证机械在给定的寿命内安全运行。疲劳强度设计方法有常规疲劳强度设计、损伤容限设计和疲劳强度可靠性设计。 简史19世纪40年代,随着铁路的发展,机车车轴的疲劳破坏成为非常严重的问题。1867年,德国A.沃勒在巴黎博览会上展出了他用旋转弯曲试验获得车轴疲劳试验结果,把疲劳与应力联系起来,提出了疲劳极限的概念,为常规疲劳设计奠定了基础。 20世纪40年代以前的常规疲劳强度设计只考虑无限寿命设计。第二次世界大战中及战后,通过对当时发生的许多疲劳破坏事故的调查分析,逐渐形成了现代的常规疲劳强度设计,它非但提高了无限寿命设计的计算精确度,而且可以按给定的有限寿命来设计零件,有限寿命设计的理论基础是线性损伤积累理论。早在1924年,德国 A.帕姆格伦在估算滚动轴承寿命时,曾假定轴承材料受到的疲劳损伤的积累与轴承转动次数(等于载荷的循环次数)成线性关系,即两者之间的关系可以用一次方程式来表示。1945年,美国M.A.迈因纳根据更多的资料和数据,明确提出了线性损伤积累理论,也称帕姆格伦-迈因纳定理。 随着断裂力学的发展,美国A.K.黑德于1953年提出了疲劳裂纹扩展的理论。1957年,美国P.C.帕里斯提出了疲劳裂纹扩展速率的半经验公式。1967年,美国R.G.福尔曼等又对此提出考虑平均应力影响的修正公式。这些工作使人们有可能计算带裂纹零件的剩余寿命,并加以具体应用,形成了损伤容限设计。 用概率统计方法处理疲劳试验数据,是20世纪20年代开始的。60年代后期,可靠性设计从电子产品发展到机械产品,于是在航天、航空工业的先导下,开始了可靠性理论在疲劳强度设计中的应用。 1961年联邦德国H.诺伊贝尔提出的关于缺口件中名义应力-应变与局部应力-应变之间的关系,称为诺伊贝尔公式。1968年加拿大R.M.韦策尔在诺伊贝尔公式的基础上,提出了估算零件裂纹形成寿命的方法,即局部应力-应变法,在疲劳强度设计中得到了应用和发展。 常规疲劳强度设计假设材料没有初始裂纹,经过一定的应力循环后,由于疲劳损伤的积累,才形成裂纹,裂纹在应力循环下继续扩展,直至发生全截面脆性断裂。裂纹形成前的应力循环数,称为无裂纹寿命;裂纹形成后直到疲劳断裂的应力循环数,称为裂纹扩展寿命。零件总寿命为两者之和。 根据零件所用材料的试样的疲劳试验结果,以最大应力为纵坐标、以达到疲劳破坏的循环数N为横坐标,画出一组试样在某一循环特征下的应力-

拉力试验影响因素

拉力试验机拉伸速度主要对于拉伸速度、断后延伸率、屈服强度的影响。拉伸速度试验机的影响随材料的不同而有所差异,因此做拉伸试验时必须严格按照标准试验方法规定的速率进行试验,否则会对试验结果的准确性造成影响。 1.抗拉强度:抗拉强度随着试验速度的上升,抗拉强度增大,但到达一定阶段后趋于稳定 2.屈服强度:试验速度较慢时,屈服强度与抗拉强度相差比较大;试验速度愈快,屈服强度与抗拉强度的差值逐渐减少。 3.断后延伸率:拉伸速度的提高使断后延伸率下降,到一定阶段后断后伸长率下降趋于缓慢。(另外塑性大的抗拉强度和断后伸长率对拉伸速度的敏感性大,而塑性小的抗拉强度和断后伸长率对拉伸速度敏感性则相对较小。) 一般情况拉伸速度的变化对试验结果的影响如上,但对于塑料材料,它属于粘弹性材料,它的应力松弛过程与变形速度紧密相连。当拉伸速度减小时,拉伸强度减小,断裂伸长率增大;拉伸速度增大时,塑料呈现脆性,拉伸强度增大,断裂伸长率减小。

由于材料种类繁多,性能差异很大,弹性阶段与塑性阶段的过渡情况很复杂,通过和残余应力等指标作为材料弹性阶段与塑性阶段的转折点的指标来反应材料的过渡过程的性能,其中屈服点与非比例应力是最常用的指标。虽然屈服点与非比例应力同是反应材料弹性阶段与塑性阶段“转折点”的指标,但它们反应了不同过渡阶段特性的材料的特点,因此它们的定义不同,求取方法不同,所需设备也不完全相同。因此笔者将分别对这两个指标进行分析。 从上面的描述,可以看出准确求取屈服点在材料力学性能试验中是非常重要的,在许多的时候,它的重要性甚至大于材料的极限强度值(极限强度是所有材料力学性能必需求取的指标之一),然而非常准确的求取它,在许多的时候又是一件不太容易的事。它受到许多因素的制约,归纳起来有: 1.夹具的影响; 2.试验机测控环节的影响; 3.结果处理软件的影响; 4.试验人员理论水平的影响等。 这其中的每一种影响都包含了不同的方面。下面逐一进行分析: 一、夹具的影响 这类影响在试验中发生的机率较高,主要表现为试样夹持部分打滑或试验机某些力值传递环节间存在较大的间隙等因素,它在旧机器上出现的概率较大。由于机器在使用一段时间后,各相对运动部件间

提高钢轨螺栓疲劳强度的有效方法

提高钢轨螺栓疲劳强度的有效方法 X X X 2011年5月20日 摘要:文章应用有限元方法分析了钢轨螺栓根部圆弧半径对其根部应力大小及分布的影响,并在此基础上进一步探讨了增大圆弧半径的方法与途径,为缓解螺纹根部的应力集中,改善应力分布,提高螺栓的疲劳强度提供了可靠的依据。 关键词:钢轨螺栓有限元法应力集中疲劳强度 螺栓是最常见的联接件之一,广泛应用于铁路、机械、汽车以及各种工程结构之中。很多研究成果表明,螺纹根部圆弧半径的尺寸影响螺纹根部应力的大小及分布[1,2],由于螺纹根部存在较大的应力集中,当承受较大载荷时可能出现局部应力超过材料流动极限的现象。虽然这种局部高应力区域较小,且对螺栓的静强度影响不大,但因疲劳裂纹大多发生在高应力区,因此可以说螺纹根部圆弧半径的大小直接关系到螺栓的疲劳强度和使用寿命。 本文在分析钢轨螺栓根部圆弧半径对其根部应力集中系数影响的基础上,进一步探讨了增大圆弧半径的方法和途径,为缓解螺纹根部的应力集中,改善应力分布,提高钢轨螺栓的疲劳强度提供了可靠的依据。 一、钢轨螺栓联接有限元模型 钢轨螺栓联接由钢轨、螺栓、螺母、缓冲垫等组成,如图1所示。本文采用的钢轨螺栓材料为20 MnTiB,弹性模量为210GPa,泊松比为0.28,抗拉强度为1040 MPa,屈服强度为940MPa 。螺栓长度为72mm,公称直径为24mm,螺距为3mm,螺纹中径为22.051mm,螺母直径为40mm,旋合长度为27mm。分析螺纹根部圆弧半径对螺栓最大轴向拉应力及应力集中系数的影响时,在不影响精度的前提下,为了减少计算量,可将螺栓、螺母单独作为研究对象,用接触载荷代替钢轨与螺母间的相互作用。根据螺栓联接结构及受力特点(轴对称),建立的有限元模型如图2所示。此外,由于螺栓和螺母相互接触,应进行非线性的接触分析,而不能将它们看作同一个物体进行有限元分析计算。 有限元模型的单元划分不但影响计算速度,而且影响计算精度。因此,单元

相关主题
文本预览
相关文档 最新文档