当前位置:文档之家› 细胞生物学重点总结

细胞生物学重点总结

细胞生物学重点总结
细胞生物学重点总结

第一章:细胞生物学绪论

1.什么是细胞,什么是细胞生物学?

细胞:是细胞宇宙有机界一个非常重要的层次。它一方面是由质膜包围的,相对独立的功能单位,能够自我调节和独立生存;另一方面它又是不断与外界进行物质、能量和信息交换的开放体系。细胞是生命结构和功能的基本单位。一切生命现象,诸如生长、发育、增殖、分化、遗传、代谢、应激、运动、衰老和死亡等都在细胞的基本属性中得到体现。

细胞生物学:细胞生物学以“完整细胞的生命活动”为着眼点,从分子、亚细胞、细胞和细胞社会的不同水平,用动态和系统的观点来探索和阐述生命这一基本单位的特征。

2.请说明细胞生物学研究的层次和内容?

层次:分子、亚细胞、细胞、细胞社会。

内容:细胞这一生命基本单位的特征。

3.请阐述细胞生物学与医学的关系?

细胞生物学是基础医学的一门重要课程,它和基础医学的其他学科,尤其是医学分子生物学、发育生物学、遗传学、生理学等学科的关系非常密切。细胞生物学也是临床医学的基础学科。目前细胞生物学研究的主要热点领域及其在医学中的意义举例如下:细胞分化;细胞信号转导;肿瘤发生;干细胞。

第二章:细胞的概念和分子基础

1.如何理解细胞是生命活动的基本单位及细胞整体在生命科学和医学研究中的重要性?

细胞是生命活动的基本单位:所有生物都是由细胞组成的——细胞是构成有机体的基本单位;细胞具有独立完整的代谢体系,是代谢与功能的基本单位;细胞是有机体生长与发育的基础;细胞是遗传的基本单位,细胞具有遗传的全能性;没有细胞就没有完整的生命。

细胞整体在生命科学和医学研究中的重要性:所有的生物都是由细胞组成的,细胞是生命活动的基本单位:细胞是构成有机体的基本单位;细胞具有独立完整的代谢体系,是代谢与功能的基本单位;细胞是有机体生长与发育的基础;细胞是遗传的基本单位,细胞具有遗传的全能性;没有细胞就没有完整的生命。

2.真核细胞和原核细胞的差异?

进化地位;结构的复杂程度;遗传装置的类型;主要生命活动的方式。具体而言:在进化地位上,由原核细胞构成的原核生物处于较低等的进化地位,由真核细胞构成的真核生物处于较高等的进化地位,在进化上真核细胞高于原核细胞;在结构的复杂程度上,原核细胞是仅由细胞膜包绕的结构相对简单的生命体,真核细胞的细胞质内分布着多种细胞器,真核细胞复杂于原核细胞;在遗传装置的类型上,原核细胞的细胞质内含有DNA区域,但无被膜包围,该区域一般称为拟核,拟核内仅含有一条不与蛋白质结合的裸露DNA链,真核细胞拥有由核膜包被的细胞核,细胞核中含有与组蛋白结合的染色体(染色质)DNA;在主要生命活动的方式上,原核细胞的各种生命活动及生化反应在细胞质中混合进行,真核细胞的各种生命活动分别在不同的细胞器中完成。

第三章:细胞生物学的研究方法和策略

1.人眼、普通光学显微镜、透射电镜、扫描电镜的光分辨率?

人眼:0.2毫米;普通光学显微镜:0.2微米;透射电镜:0.2纳米;扫描电镜:6-10纳米。

2.普通光学显微镜、荧光显微镜、激光共聚焦显微镜、电镜的光源?

普通光学显微镜:可见光;荧光显微镜:紫外线;激光共聚焦显微镜:激光;电镜:电子束。

3.何为细胞培养与细胞融合?

细胞培养:细胞培养也被称为组织培养,是指从体内组织取出细胞在体外模拟体内环境下,使其生长繁殖,并维持其结构和功能的一种培养技术。

细胞融合:细胞融合又称细胞杂交,是指用自然或人工的方法使两个或几个不同细胞融合为

一个细胞的过程。

4.请阐述流式细胞技术的原理并请说明应用特点?

原理:应用免疫细胞化学原理,用荧光特异性抗体与相应抗原结合,标定欲分离的细胞(或细胞器),再通过自动化的激光/光电检测系统高速检测移动中的细胞悬液荧光,从混合的细胞群体中分选出特定的目标细胞。

应用特点:细胞分选,细胞含量测定,细胞凋亡检测,细胞基因检测,细胞免疫表型分析等。

5.列举三种常见的显微镜技术,说明相关的原理与应用特点?

①普通光学显微镜:原理:经物镜形成倒立实像,经目镜进一步放大成像;应用特点:以可见光为光源,分辨率不高,只能进行生物组织和细胞一般结构的观察。

②荧光显微镜:原理:激发光激发标本内多种荧光物质生成不同的特定发射光进入目镜;应用特点:观察能激发出荧光的结构,用于免疫荧光观察、基因定位、疾病诊断等。

③相差显微镜:原理:利用光的衍射和干涉特性,将穿过生物标本的可见光的相位差转变为振幅差,同时吸收部分直射光线以增加反差;应用特点:可以提高样品中各种结构的明暗对比度,对样品密度的差异可以起到放大反应,使用强光工作,如果观察活细胞时间较长,可能对细胞造成伤害。

④微分干涉差显微镜:原理:偏振光在不同的时间穿过标本的相邻部位时产生光程差;应用特点:可以观察到“浮雕样”的立体图像。

⑤激光共聚焦扫描显微境:原理:用激光作光源,逐点、逐行、逐面地快速扫描;应用特点:能显示细胞样品的立体结构,分辨力是普通光学显微镜的3倍。

⑥暗视野显微镜:原理:聚光镜中央有挡光片,照明光线不直接进人物镜,只允许被标本反射和衍射的光线进入物镜,因而视野的背景是黑的,物体的边缘是亮的;应用特点:分辨率比普通显微镜高50倍。

⑦倒置显微镜:原理:物镜与照明系统颠倒,前者在载物台之下,后者在载物台之上,用于观察培养的活细胞;应用特点:可以直接观察培养瓶中的细胞。

第四章:细胞膜与物质穿膜运输

1.真核细胞生命活动中质膜有哪些重要功能?

细胞膜不是一种机械屏障,它不仅为细胞的生命活动提供了稳定的内环境,还行使着物质转运、信号传递、细胞识别等多种复杂功能,并且与生命科学中的许多基本问题,如细胞的增殖、分化、细胞的识别黏附、代谢、能量转换等密切相关,是细胞之间、细胞与细胞外环境之间相互交流的重要通道。细胞膜的改变与多种遗传病、神经退行性疾病、恶性肿瘤等的发生相关。

2.细胞膜的化学组成与膜功能的关系?

膜脂构成细胞膜的结构骨架;膜蛋白以多种方式与脂双分子层结合,细胞膜的不同特性和功能由与细胞膜相结合的膜蛋白决定;膜糖类覆盖细胞膜表面,基本功能是保护细胞抵御各种物理、化学损伤,同时参与细胞的识别、黏附、迁移等功能活动。

3.细胞膜的特性?

不对称性和流动性。膜的不对称性是指细胞膜中各种成分的分布是不均匀的,包括种类和数量上都有很大差异,这与细胞膜的功能有密切关系。膜的流动性是细胞膜的基本特性之一,也是戏班进行生命活动的必需条件;膜是一个动态的结构,其流动性主要是指膜脂的流动性和膜蛋白的流动性。

4.比较离子通道和载体蛋白介导的物质运输有何异同?

相同点:化学本质为蛋白质、分布在细胞的膜结构中、能控制特定物质跨膜运输。

不同点:分布上:离子通道位于可兴奋的细胞,载体蛋白位于全身组织细胞;运输物质上:离子通道为强极性水化离子,载体蛋白中易化扩散为非脂溶性物质,主动运输为特定离子;

运输方式上:离子通道为被动运输,载体蛋白既有主动又有被动;能量消耗上:离子通道不耗能,载体蛋白主动运输耗能;类型上:离子通道包含配体门、电压门、应力激活通道,载体蛋白被动运输为易化扩散,主动运输包含ATP驱动泵(P、V、F型离子泵和ABC转运体)和协同运输(共运输和对向运输);影响因素上:离子通道为膜电位,载体蛋白易化扩散为载体蛋白饱和状态,主动运输为细胞代谢状态;特点上:离子通道为双向运输,是不连续开放的,载体蛋白易化扩散上为顺浓度梯度,主动运输上位逆浓度梯度或电化学梯度。

5.细胞膜囊泡运输的类型及特点?

类型:胞吞:吞噬作用、胞饮作用和受体介导的胞吞。胞吐:连续性分泌和受调分泌。

特点:胞吞是物质入胞作用方式:吞噬作用是吞噬细胞摄入颗粒物质的过程;胞饮作用是细胞吞入液体和可溶性物质的过程;受体介导的胞吞提高摄取特定物质的效率。暴徒是物质出胞作用方式:连续性分泌是不受调节持续不断的细胞分泌;受调分泌是细胞外信号调控的选择形分泌。

第五章:细胞内膜系统与囊泡转运

1.微粒体及类型?

微粒体:应用对细胞组分超速分级分离方法,可从细胞匀浆中分离出直径在100nm左右,被称为微粒体的球囊状封闭小泡。

类型:

2.糙面内质网的功能?

糙面内质网与外输性蛋白的分泌合成、加工修饰及转运过程密切相关:作为核糖体附着的支架;新生多肽链的折叠与装配;蛋白质的糖基化;蛋白质的胞内运输。

3.高尔基体的结构组成及功能?

组成:扁平囊泡;小囊泡;大囊泡。

功能:高尔基复合体具有胞内物质合成与蛋白质加工转运功能:高尔基复合体是细胞内蛋白质运输分泌的中转站;高尔基复合体是胞内物质加工合成的重要场所;高尔基复合体在胞内蛋白质的分选和膜泡定向运输中有重要的枢纽作用。

4.溶酶体的特点?

溶酶体是一类富含多种酸性水解酶的膜性结构细胞器:高度的特异性是溶酶体显著的理化特性之一;含有丰富的酸性磷酸酶是溶酶体共同的标志性特征;溶酶体膜糖蛋白家族具有高度的同源性。

5.简要归纳溶酶体的形成过程?

内溶酶体是由运输小泡合并晚期内体形成的:酶蛋白的N-糖基化与内质网转运;N-连接甘露糖残基磷酸化及酶蛋白在高尔基器中的加工与转移;酶蛋白在奥尔基复合体中的分选与转运;内溶酶体的形成与成熟。

吞噬性溶酶体是内溶酶体与来源于细胞内外的作用底物融合形成的。

6.内膜系统各种细胞器的标志酶?

内质网:葡萄糖-6-磷酸酶。

高尔基复合体:糖基转移酶。

溶酶体:酸性磷酸酶。

过氧化物酶体:过氧化物酶,过氧化氢酶。

第六章:细胞骨架与细胞运动

1.细胞骨架包括那些类别?简述各类化学成分与结构特征?

类别:微管、微丝、中间丝。

微管:化学成分:微管蛋白;结构特征:在α微管蛋白和β微管蛋白上各有一个GTP结合位点,微管蛋白上还含有而甲氧离子结合位点、秋水仙碱结合位点、长春碱结合位点。

微丝:化学成分:肌动蛋白;结构特征:每条微丝是由两条平行的肌动蛋白单链以右手螺旋方式相互盘绕而成。每条肌动蛋白单链由肌动蛋白单体首尾相连成螺旋状排列,螺距为37nm。

中间丝:化学成分:不同类型的中间丝蛋白;结构特征:由头部、杆状部和尾部三部分组成。

2.抑制微管和微丝组装和去组装的特异性药物及作用机制?

微管:抑制组装:秋水仙碱、秋水仙酰胺;作用机制:抑制β微管蛋白E位上的GTP水解,从而抑制了微管的组装。抑制去组装:紫杉醇;作用机制:结合于β微管蛋白特定位点上,可以促进微管的装配和保持稳定。

微丝:抑制组装:细胞松弛素;作用机制:可以将肌动蛋白丝切断,并结合在末端阻止新的G-肌动蛋白加入,从而干扰F-肌动蛋白的聚合,破坏微丝的组装。抑制去组装:鬼笔环肽;作用机制:可与F-肌动蛋白结合,使F-肌动蛋白保持稳定。

3.简述马达蛋白的三个不同家族成员的物质运输特点?

驱动蛋白:利用水解A TP提供的能量引导沿微管负极向正极运输,背离中心体。

动力蛋白:利用水解A TP提供的能量引导沿微管正极向负极运输,朝向中心体。

肌球蛋白:以肌动蛋白纤维作为运行轨道。

4.微管与微丝的功能?

微管:微管的主要功能是细胞形态维持、细胞运动和包内物质运输:微管构成细胞内的网状支架,支持和维持细胞的形态;微管为细胞内物质的运输提供了轨道;维持细胞内细胞器的空间定位和分布;微管与细胞运动关系密切;微管参与染色体的运动和调节细胞分裂;微管参与细胞内信号传递。

微丝:微丝的主要功能是参与细胞运动、分裂和信号转导:微丝组成细胞的支架并维持细胞形态;微丝以多种方式参与细胞的运动;微丝作为运输轨道参与了细胞内的物质运输活动;微丝参与细胞质的分裂;微丝参与肌肉收缩;微丝参与受精作用;微丝参与细胞内信息传递。

第七章:线粒体与细胞的能量转换

1.线粒体有何结构特征?

线粒体是由双层单位膜套叠而成的封闭性膜囊结构:线粒体外模是一层单位膜;线粒体内模向基质折叠形成特定的内部空间;内外膜转位接触点形成核编码蛋白质进入线粒体的通道;机制为物质氧化代谢提供场所。

2.线粒体在细胞死亡中起何作用?

线粒体介导了某些类型的细胞死亡:许多证据显示线粒体是控制细胞死亡的中心环节之一;线粒体的改变构成了细胞死亡的原因或表现;线粒体控制着某些细胞死亡过程的中心环节。

3.线粒体DNA的特征?

线粒体的基因只有一条DNA,称为线粒体DNA,mtDNA是裸露的,不与组蛋白结合,存在于线粒体的基质内或依附于线粒体内膜。在一个线粒体内往往有1至数个mtDNA分子,平均5~10个。它主要编码线粒体的tRNA、rRNA及一些线粒体蛋白质,如电子传递链酶复合体中的亚基。

第八章:细胞核与遗传信息储存

1.简述核膜的结构与功能?

结构:蛋白质与脂质是核膜重要组成成分;和模式不对称的双层膜结构。

功能:核膜将核质与胞质分隔并控制和之间的物质交换:核膜为基因表达提供了时空隔离屏障;核膜参与了生物大分子的合成;核膜控制着核质间的物质交换。

2.常染色质与异染色质在结构与功能上有何异同?

区别:常染色质是间期核中处于功能活跃呈伸展状态的染色质纤维,螺旋化程度低,染色较

浅,间期位于核中央,分裂期位于染色体臂,在S期的早、中期复制,具有转录活性;异染色质是处于功能惰性呈凝缩状态的染色质纤维,螺旋化程度高,染色较深,间期位于核边缘,分裂期位于着丝粒区合端粒区,在S期的晚期复制,具有明显的遗传惰性,不转录也不编码蛋白质。

联系:都是分裂间期细胞核中存在的染色质;都经有序折叠包装形成染色体:核小体为染色质的基本结构单位,核小体进一步螺旋形成螺线管构成染色体的二级结构。

3.两种染色质蛋白质有何特性和功能?

组蛋白:特性:组蛋白富含带正电荷的精氨酸和赖氨酸等碱性氨基酸,等电点一般在pH10.0以上,属碱性蛋白质。功能:与DNA结合,装配形成染色质;与带正电的DNA结合可一直DNA的复制与RNA的转录;一些组蛋白的修饰可影响染色质的活性。

非组蛋白:特性:带负电荷的酸性蛋白质,富含天冬氨酸、谷氨酸等。功能:参与染色体的构建;启动DNA的复制;调控基因转录。

4.解释染色体的功能元件及其主要作用?

自主复制序列是DNA进行复制的起始点;着丝粒序列保证姐妹染色单体的均等分裂;端粒序列在维持染色体的独立性和稳定性中起作用(具体指:保证染色体末端的完全复制,端粒DNA提供了复制线性DNA末端的模版;在染色体的两端形成保护性的帽结构,使DNA免受核酸酶和其他不稳定因素的破坏和影响,是染色体的末端不会与其他染色体的末端融合,保证染色体的结构完整;在细胞的寿命、衰老和死亡以及肿瘤的发生和治疗中起作用。)。5.简述中期染色体的形态特征?

着丝粒将两条姐妹染色单体相连;次缢痕并非存在所有染色体上;随体是位于染色体末端的球形或棒状结构;端粒是染色体末端的特化部分。

6.试述核仁的超微结构及功能?

结构:核仁结构的纤维中心由具有rRNA基因的人色织构成;核仁结构的致密纤维组分包含处于不同转录阶段的rRNA分子;核仁结构的颗粒组分由正在加工的rRNA及蛋白质构成。核仁的结构呈现周期性动态变化。

功能:核仁是rRNA合成和核糖体亚基装配的场所。

第十章:细胞分裂与细胞周期

1.简述纺锤体的结构与功能?

结构:纺锤体是一种出现于前期末,对细胞分裂及染色体分离有重要作用的临时细胞器,呈纺锤样,具有双极性,由纵向排列的微管及其相关蛋白组成,包括星体微管、动粒微管和极间微管。

功能:纺锤体功能其一为排列和分裂染色体;其二是决定细胞质分裂的分裂面。具体而言,星体微管排列于中心体周围,在中心体向细胞两极的移动中起作用;动粒微管由纺锤体的一极发出,末端附着于染色体动粒上;极间微管为一些来自纺锤体两极,彼此在纺锤体赤道面重叠、交叉的微管,也被称为重叠微管,极间微管通过侧面相连,可从纺锤体的一极通向另一极。

2.何为联会及联会复合体?

联会:染色质进一步凝集,分别来自父母双方的、形态及大小相同的同源染色体间两两配对,称为联会。

联会复合体:在联会的同源染色体之间,沿纵轴方向可形成一种特殊的、在进化上高度保守的结构,及联会复合体,在电镜下显示为三个平行的部分:侧生成分位于复合体的两侧,电子密度较高;两侧生成分之间,为中央成分;侧生成分和中央成分之间由横向排列的纤维相连。

3.比较减数分裂与有丝分裂区别与联系?

区别:发生部位不同:有丝分裂发生于高等真核生物体细胞中,而减数分裂仅发生于有性生殖中配子的产生过程;分裂次数及子细胞数量不同:有丝分裂分裂一次产生两个子细胞,而减数分裂分裂两次产生四个子细胞;子细胞染色体数不同:有丝分裂后子细胞染色体数不变,而减数分裂后子细胞染色体数减半;染色体行为不同:减数分裂中,染色体除发生有丝分裂中的行为外,还发生联会、产生联会分体以及同源染色体分离、非同源染色体自由组合的行为;持续时间不同:有丝分裂持续时间较短,而减数分裂持续时间较长。

联系:过程中都有同源染色体,纺锤体,中心体。染色体形态相似。

4. 细胞周期包括哪几个时期?各期的特点是什么?

构成:细胞周期的过程包括分裂期及分裂间期两个阶段,其中分裂期又包括G1期、S期和G2期(有的细胞还包含G0期)。

各期特点:G1期是DNA复制的准备期,此期的主要特点是进行活跃的RNA及蛋白质合成,细胞迅速整张,体积显著增大;在S期中DNA完成其复制,此期细胞在的主要特征是进行大量的DNA复制,同时也合成组蛋白及非组蛋白,最后完成染色体的复制,组蛋白的持续磷酸化和中心粒的复制完成于S期;G2期为细胞分裂准备期,改期细胞中大量合成RNA、ATP及一些与M期结构功能相关的蛋白质,中心粒体积逐渐增大,开始分离并移向细胞两极;M期为细胞有丝分裂期,细胞形态结构发生显著变化,染色体凝集及分离,核膜核仁解体及重建,纺锤体、收缩环在胞质形成,细胞核分裂为两个子核,胞质一分为二,细胞完成分裂。

5.何为G0细胞?与G1期细胞有何联系与区别?

G0细胞:高等生物中,肝、肾等器官实质细胞在一般情况下不进行DNA估值及细胞分裂、但受到一定的刺激后,即可进入细胞周期,开始分裂,此类细胞即暂不增值性细胞,又称为G0细胞。

与G1期细胞关系:联系为G0细胞由G1期细胞转化而来,在实质上为停留在G1期的细胞;区别为G0细胞不能像G1期细胞一样自由向M期转变。

第十一章:细胞分化

1.细胞转分化、去分化的条件和生物医学意义?

条件:细胞核必须处于有利于分化逆转环境中;分化能力的逆转必须具有相应的遗传物质基础。

生物学意义:特定条件下不同细胞类型的转换。

2.细胞决定的概念、机制及其与细胞分化的关系?

概念:在个体发育过程中,细胞在发生可识别的分化特征之前就已经决定了未来的发育命运,只能像特定的方向分化的状态,称之为细胞决定。

机制:卵细胞的极性与早期胚胎细胞的不对称分裂;发育早期胚胎细胞的位置及胚胎细胞间的相互作用。

关系:细胞的分化去向源于细胞决定。

3.为什么说细胞分化的本质是基因组中不同基因的选择性表达?

分化成熟细胞的细胞核支持卵的发育;细胞融合能改变已分化细胞的基因表达活性;一个细胞的分化状态能够通过转分化而改变。

4.染色质共价修饰的机制及其与细胞分化的关系?

机制:DNA的甲基化;组蛋白的乙酰化、甲基化、磷酸化、泛素化、糖基化和羰基化,其中乙酰化和甲基化是组蛋白修饰的主要形式。

关系DNA甲基化在转录水平上调控细胞分化的基因表达;组蛋白的化学修饰决定了转录因子是否能够与基因表达调控区结合。

第十二章:细胞的衰老与死亡

1.简述细胞衰老的主要特征?

衰老细胞中水分含量减少;衰老细胞中出现色素蓄积;细胞膜系统的改变与细胞衰老密切相关;线粒体的变化是细胞衰老的重要指标;细胞骨架的改变导致细胞内信息传递和代谢功能变化;衰老细胞中出现和膜内折和染色质固缩;衰老细胞的蛋白质合成发生变化;成体干细胞的衰老导致干细胞增殖与分化能力衰退。

2.什么是Hayflick界限?

体外培养的二倍体细胞的增值能力和寿命不是无限的,而是有一定的限度。

3.简述细胞凋亡的形态学特征及其与坏死的主要区别?

形态学特征:①凋亡的起始:主要表现为细胞表面的特化结构,如微绒毛、细胞间接触消失;内质网腔膨胀,并于质膜结合;染色质固缩形成新月形边集等现象。②凋亡小体的形成:染色质断裂为大小不等的片段,与一些细胞其一起被返折的细胞膜包围,以出泡的方式形成芽状凸起,逐渐与细胞分离,形成凋亡小体。③凋亡小体被邻近的细胞吞噬清除。

区别:从细胞死亡原因看,细胞坏死是细胞受到外界急性强力伤害所致,如由于局部缺血、高热、物理、化学和生物因素等作用,使细胞出现一种被动性死亡,因此,细胞坏死多没有潜伏期:而细胞调亡是由死亡信号诱发的受调节的细胞死亡过程,是一种主动性细胞死亡,因此往往有数小时的潜伏期。从细胞死亡过程看,坏死细胞的膜通透性增高,细胞水肿,内质网扩张,线粒体肿胀,溶酶体膜破裂,内部的酶释放导致细胞溶解,内容物外溢,早期细胞核无明显形态学变化。而细胞凋亡过程中,质膜始终保持良好的整合性,细胞萎缩,核染色质高度凝集与周边化,内质网扩张并与细胞膜融合发生内陷,形成许多有膜包围的含有核和细胞质结构碎片的凋亡小体。从细胞死亡结局来看,由于坏死细胞膜的破裂,释放出大量内容物,故常引起严重的炎症反应。坏死细胞常常是成群细胞丢失,在愈合过程中常伴随组织器官的纤维化,形成瘢痕。而细胞凋亡过程,凋亡细胞膜及其凋亡小体的膜整合性良好,没有内溶物的外溢,所以不发生炎症反应。凋亡小体可迅速被邻近的细胞或巨噬细胞识别吞噬,细胞被清除的过程不伴有炎症反应。细胞凋亡是单个细胞的丢失,在组织中不形成瘢痕。

4.简述细胞凋亡的生物学意义?

细胞凋亡是生物界普遍存在的一种基本生命现象,贯穿个体生长、发育、衰老死亡的整个过程,是生命活动过程中保证个体发育成熟、维持正常生理功能必不可少的内容,主要表现在:发育过程中清除多余的细胞、清除正常生理活动过程中无用的细胞、清除病理活动过程中有潜在危险的细胞,细胞凋亡在个体发育、维持机体生理功能以及细胞数量稳定中起了非常重要的作用,是保持机体内环境平衡的一种自我调节机制。

5.简述动物细胞凋亡主要的两条信号通路?

死亡受体介导的细胞凋亡信号通路和线粒体介导的细胞凋亡信号通路。

死亡受体介导的细胞凋亡信号通路:细胞外的许多信号分子可以与细胞表面相应的死亡受体结合,激活凋亡信号通路,导致细胞死亡。

线粒体介导的细胞凋亡信号通路:当细胞受到内部或外部的凋亡信号刺激时,线粒体外膜通透性改变,是线粒体内的凋亡因子释放到细胞质中,与细胞质中凋亡蛋白酶活化因子结合,活化Caspase9,进而激活Caspase3,导致细胞凋亡。

6.何谓Caspase家族? 在细胞凋亡过程中起何作用?

Caspase家族:近年来在哺乳动物中发现了与线虫主要死亡基因产物相对应的同源物。ced-3的同源物是一类半胱氨酸蛋白水解酶,简称胱天蛋白酶(Caspase)家族。Caspase家族的共同特点是富含半胱氨酸,被激活后能特异地切割靶蛋蛋的天冬氨酸残基后的肽键。

作用:凋亡上游的起始者主要负责对执行者前体进行切割,从而产生诱惑性的执行者;凋亡下游的执行者负责切割细胞核内、细胞质中的结构蛋白和调节蛋白。Caspase家族可使得凋亡信号在短时间内迅速扩大并传递到整个细胞,产生凋亡效应。

第十三章:细胞连接与细胞黏附

1.试述动物细胞间特化的连接方式及特点?

封闭连接:紧密连接—相邻细胞膜形成封闭索。锚定连接:黏着连接—肌动蛋白丝参与的锚定连接;黏着带—细胞-细胞连接;黏着斑—细胞-细胞外基质连接;桥粒连接—中间纤维参与的锚定连接;桥粒—细胞-细胞连接;半桥粒—细胞-细胞外基质连接。通讯连接:间隙连接—由连接子介导细胞通讯连接;化学突触—神经细胞突触通讯连接。

2.什么是细胞黏附,细胞黏附分子的分类作用方式和主要功能?

细胞黏附:动物细胞通过细胞黏附分子介导使细胞与细胞或细胞与细胞外基质之间发生黏着,称为细胞黏附。

分类作用方式:钙黏着蛋白;选择素;免疫球蛋白超家族;整联蛋白家族。

功能:钙黏着蛋白:介导细胞之间同亲性细胞黏附;在个体发育过程中影响细胞分化,参与组织器官的形成;参与细胞之间稳定的特化连接结构。

选择素:参与白细胞或血小板与血管内皮细胞之间的识别与黏附,帮助白细胞从血液进入炎症部位。

免疫球蛋白超家族:对神经系统的发育、轴突生长及突触的形成有重要作用。

整联蛋白家族:整联蛋白介导细胞与细胞外基质间的黏着;整联蛋白介导细胞间的相互作用;整联蛋白参与细胞内环境的信号转导。

plasma membrane:质膜(细胞膜市包围在细胞质表面的一层薄膜,又称质膜。)biomembrane:生物膜(目前把质膜盒细胞内膜统称为生物膜。)

lipid rafts:脂筏(质膜双层内含有由特殊脂质和蛋白质组成的微区,微区中富含胆固醇和鞘脂,其中聚集一些特定种类的膜蛋白。由于鞘脂的脂肪酸尾比较长,因此这一区域比膜的其他部位厚,更有秩序且较少流动,被称为脂筏。)

passive transport:被动运输(转运由高浓度向低浓度方向进行,所需要的能量来自高浓度本身所包含的势能,不需要细胞提供能量,故称被动运输。)

facilitated diffusion:易化扩散(一些非脂溶性(或亲水性)物质,不能以简单扩散的方式通过细胞膜,但她们可在载体蛋白的介导下,不消耗细胞的代谢能量,顺物质浓度梯度或电化学梯度进行转运,这种方式称为易化扩散。)

endocytosis:胞吞(胞吞又称内吞作用,它是质膜内陷,包围细胞外物质形成胞吞泡,脱离质膜进入细胞内的转运过程。)

exocytosis:胞吐(胞吐作用又称外派作用或出胞作用,指细胞内合成的物质通过膜泡转运至细胞膜,与质膜融合后将物质排出细胞外的过程,与胞吞作用过程相反。)

prokaryotic cell:原核细胞(原核细胞是仅有细胞膜包绕的相对简单的生命体。)eukaryotic cell:真核细胞(针和细胞是拥有由核膜包绕的细胞核、细胞质内分布着多种细胞器的细胞。)

archaebacteria:古细菌(古细菌是一类很特殊的细菌,多生活在极端的生态环境中。)virus:病毒(病毒式这能再活细胞中生长的核酸-蛋白质复合体。)

viroid:类病毒(仅由RNA组成的病毒。)

prion:朊病毒(仅由蛋白质组成的病毒。

cell culture:细胞培养(细胞培养也被称为组织培养,是指从体内组织取出细胞在体外模拟体内环境下,使其生长繁殖,并维持其结构和功能的一种培养技术。)

cell line:细胞系(原代培养的动物及人组织细胞,在体外经过第一次传代培养后,所获得的细胞群体即可称为细胞系。)

cell fusion:细胞融合(细胞融合又称细胞杂交,是指用自然或人工的方法使两个或几个不

同细胞融合为一个细胞的过程。)

differential centrifugation:差速离心(常用于体积差别较大的颗粒的分离。通过一组离心速度逐渐递增的离心操作步骤使悬浮液重的各种颗粒分离开。)

endomembrane system:内膜系统(细胞内在结构、功能以及发生上相互密切关联的其他所有膜性结构细胞器统称为内膜系统,其主要包括:内质网、高尔基复合体、溶酶体、过氧化物酶体、各种转运小泡及核膜等功能结构。)

chaperonin:分子伴侣(能够通过对其各自作用对象的识别、结合来协助它们折叠组装和转运,但其本身并不参与最终产物的形成,也不会改变其自身的基本分子生物学特性的蛋白。)signal recognition partical(SRP):信号识别颗粒(SRP是由6个多肽亚单位和一个沉降值为7S的小分子RNA构成的复合体。)

autophagolysosome:自噬溶酶体(又称“自体吞噬泡”,系由初级溶酶体融合自噬体后形成的一类次级溶酶体,其作用底物主要是细胞内衰老蜕变或残损破碎的细胞器火糖原颗粒等其他胞内物质。)

vesicular transport:囊泡转运(指囊泡以出芽的方式,从一种细胞器膜产生,脱离后又定向地与另一种细胞器膜相互融合的过程。)

cytoskeleton:细胞骨架(细胞骨架是指真核细胞中与保持细胞形态结构和细胞运动有关的蛋白纤维网络。)

MTOC:微管组织中心(在空间上为微管装配提供始发区域,控制着细胞质中微管的数量、位置及方向。)

motor protein:马达蛋白(一类利用ATP水解产生的能量驱动自身携带运载物沿着微管或肌动蛋白丝运动的蛋白质。)

cell cortex:细胞皮层(细胞质膜下有一些层由微丝与肌动蛋白结合蛋白相互作用形成的网状结构,称谓细胞皮层。)

stress fiber:应力纤维(在细胞内有一种较稳定的纤维状结构,称为应力纤维,是由肌动蛋白丝和肌球蛋白Ⅱ丝组成的可收微缩丝束。)

actin binding protein:肌动蛋白结合蛋白(一大类能与肌动蛋白单体火肌动蛋白纤维结合的、能改变其特性的蛋白,称为肌动蛋白结合蛋白。)

elementary particle:基粒(内膜(包括嵴)的内表面附着许多突出于内腔的颗粒称为基粒。)matrix-targeting sequence:基质导入顺序(输入到线粒体的蛋白质都在其N-端有一段线粒体靶序列称谓基质导入序列。)

mitochondrial disorders:线粒体疾病(以线粒体结构和功能缺陷为主要疾病原因的疾病常称为线粒体疾病。)

nuclear pore complex:核孔复合体(核孔并非单纯由内外两层核膜融合形成的简单孔洞,而是由多种核孔蛋白质以特定的方式排列形成的复合结构,称为核孔复合体。)

importin:输入蛋白(仅有NLS的蛋白质自身不能通过核孔复合体,它必须通过和NLS受体结合才能通过核孔复合体,这种受体称为输入蛋白。)

euchromatin:常染色质(常染色质是指间期核中处于伸展状态,螺旋化程度低,用碱性染料染色浅而均匀的染色质。)

NOR:核仁组织区(有随体染色体的次缢痕部位含有多拷贝rRNA基因,是具有组织形成核仁能力的染色质区,称谓核仁组织区,nucleolar organizer region。)

cell division:细胞分裂(细胞分裂实质一个亲代细胞一分为二、形成两个子代细胞的过程。)mitosis:有丝分裂(有丝分裂市高等真核生物体细胞分裂的主要方式,其形成与生物长期进化有关。在有丝分裂的过程中,档细胞和发生一系列复杂的变化(DNA复制、染色体组装

等)后,细胞通过形成有丝分裂器,将遗传物质平均分配到两个字细胞中,从而保证了细胞在遗传上的稳定性。)

meiosis:减数分裂(减数分裂是一种与有性生殖中配子产生相关的特殊细胞分裂,其主要特征是DNA只复制一次,细胞连续分裂两次,所产生的子细胞中染色体数目比亲代细胞减少一半,这对于维持生物世代间遗传的稳定性有重要意义。减数分裂中可发生遗传物质互换、重组及自由组合,由此构成生物变异及多样性的基础。)

cell cycle:细胞周期(细胞周期,是指能持续分裂的真核细胞从一次有丝分裂结束后生长,再到下一次分裂结束的循环过程。)

synapsis:联会(染色质进一步凝集,分别来自父母双方的、形态及大小相同的同源染色体间两两配对,称为联会。)

homologous chromosomes:同源染色体(分别来自父母双方的、形态及大小相同的染色体。)cyclin-dependent kinase:细胞周期蛋白依赖性激酶(细胞周期蛋白依赖性激酶,为一类必须语细胞周期蛋白结合,才具有激酶活性的蛋白激酶,通过磷酸化多种与细胞周期相关的蛋白,Cdk可在细胞周期调控中起关键作用。)

cell differentiation:细胞分化(由单个受精卵产生的细胞,在形态结构、生化组成和功能等方面均发生了明显的差异,形成这种稳定性差异的过程称为细胞分化。)

totipotent cell:全能性细胞(具有在一定条件下分化发育为完整个体的特异性的细胞称为全能性细胞。)

cell determination:细胞决定(在个体发育过程中,细胞在发生可识别的分化特征之前就已经决定了未来的发育命运,只能像特定的方向分化的状态,称之为细胞决定。)dedifferentiation去分化(在某些条件下,分化了的细胞也不稳定,其基因活动模式也可发生可逆性的变化,又回到未分化的状态,这一变化过程称为去分化。)

luxury protein:奢侈蛋白(多细胞生物在个体发育过程中,其基因组DNA并不全部表达,而是按照一定的时空顺序,在不同细胞和统一细胞的不同发育阶段发生差异表达,这就导致了所谓的奢侈蛋白即细胞特异性蛋白质的产生。)

house-keeping gene:持家基因(生物体各类细胞中都表达,为维持细胞存活和生长所必须的蛋白质编码的基因。)

maternal gene:母体基因(在卵子发生过程中表达,表达产物(母体因子)存留与卵子中,受精后通过这些母体因子影戏那个胚胎发育的基因。)

cell aging:细胞衰老(是指随着时间的推移,细胞增殖能力和生理功能逐渐下降的变化过程。)apoptosis:细胞凋亡(是指由死亡信号诱发的受调节的细胞死亡过程,是细胞生理性死亡的普遍形式。)

necrosis:坏死(是指由于损伤、缺血或感染引起的细胞死亡显现,伴生炎症。)

医用细胞生物学知识点

医用细胞生物学知识点 细胞生物学 (cell biology ):细胞生物学是以细胞为研究对象,经历了从显微水平到亚显微和分子水平 的发展过程,成为今天在分子层次上研究细胞精细结构和生命活动规律的学科。 医学细胞生物学 (medical cell biology):医学细胞生物学以揭示人体各种细胞在生理和病理过程中 的生 命活动规律为目的,期望能对人体各种疾病的发病机制予以深入阐明,为疾病的诊断、治疗和预防提 供理论依据和策略。 对细胞概念理解的五个角度: ①细胞是构成有机体的基本单位; ②细胞是代谢与功能的基本单位; ③ 细胞是有机体生长与发育的基础; ④细胞是遗传的基本单位; ⑤没有细胞就没有完整的生命。 生物界划分的三个类型:原核细胞、古核细胞和真核细胞。 原核细胞与真核细胞的比较: p13 表 2-1 生物大分子:是由有机小分子构成的,大约有 3000种,分子量从 10000到 1000000。 核酸 (nucleic acid ) 的基本单位 :核苷酸。 核苷酸:核苷的戊糖羟基与磷酸形成酯键,即成为核苷酸。 DNA 分子的双螺旋结构模型( p18图 2-8):DNA 分子由两条相互平行而方向相反的多核苷酸链组成, 即一条链中磷酸二酯键连接的核苷酸方向是 5'→3',另一条是 3'→ 5',两条链围绕着同一个中心轴 以右手方向盘绕成双螺旋结构。 基因组:细胞或生物体的一套完整的单倍体遗传物质称为基因组。 动物细胞内含有的主要 RNA 种类及功能: p20 表 2-3 核酶 (ribozyme ) :核酶是具有酶活性的 RNA 分子。 蛋白质 ( protein )的基本单 位:氨基酸。 肽键:肽键是一个氨基酸分子上的 羧基 与另一个氨基酸分子上的 氨基经脱水缩合 而成的化学键。 肽 (peptide) :氨基通过肽键而连接成的化合物称为肽。 蛋白质分子的二级结构: α -螺旋, β-片层。 酶 (enzyme):酶是由生物体细胞产生的具有催化剂作用的蛋白质。 酶的特性:高催化效率,高度专一性,高度不稳定性。 光学显微镜的种类:普通光学显微镜,荧光显微镜,相差显微镜,暗视野显微镜,共聚焦激光扫描显 微镜。 细胞培养:细胞培养是指细胞在体外的培养技术,即无菌条件下,从机体中取出组织或细胞,模拟机 体内正常生理状态下生存的基本条件,让它在培养器皿中继续生存、生长和繁殖的方法。 细胞膜 (cell membrane ):细胞膜是包围在细胞质表面的一层薄膜,又称质膜 ( plasma membrane ) 生物膜 ( biomembrane ):目前把 质膜 和细胞内膜系统 总称为生物膜。 细胞膜的组成:主要由脂类、蛋白质和糖类组成 磷脂 (phospholipid)可分为两类:甘油磷脂 由于磷脂分子具有亲水头和疏水 尾,故称为 膜蛋白可分为三种基本类型:膜内在蛋白 蛋白 (lipid anchored protein) 。 细胞外被 ( cell coat ):在大多数真核细胞表面有富含糖类的周缘区,称为细胞外被或糖萼。 细胞外被的基本功能: 保护细胞抵御各种物理、化学性损伤 ,如消化道、呼吸道等上皮细胞的细胞外 被有助于润滑、防止机械损伤,保护黏膜上皮不受消化酶的作用。 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11 . 12 . 13 . 14 . 15 . 16 . 17 . 18 . 19. 20. 21 . 22 . 23 . 24 . 25 . 26. 27. 28. (phosphoglycerides )和鞘磷脂 (sphingomyelin,SM) 。 两亲性分子 或兼性分子 。 intrinsic protein )、膜外在蛋白 (extrinsic

最新细胞生物学知识点总结

细胞通讯的方式 (1)细胞通过分泌化学信号进行细胞间通讯,这是多细胞生物普遍采用的通讯方式。 (2)细胞间接触依赖性的通讯,指细胞间直接接触,通过与质膜结合的信号分子影响其它细胞。 (3)动物相邻细胞间形成间隙连接以及植物细胞间通过胞间连丝使细胞间相互沟通,通过交换小分子来实现代谢耦联或电耦联。 细胞分泌化学信号可长距离或短距离发挥作用,其作用方式分为: (1)内分泌,由内分泌细胞分泌信号分子到血液中,通过血液循环运送到体内各个部位,作用于靶细胞。 (2)旁分泌,细胞通过分泌局部化学介质到细胞外液中,经过局部扩散作用于邻近靶细胞。在多细胞生物中调节发育的许多生长因子往往是通过旁分泌起作用的。此外,旁分泌方式对创伤或感染组织刺激细胞增殖以恢复功能也具有重要意义。 (3)自分泌,细胞对自身分泌的物质产生反应。自分泌信号常存在于病理条件下,如肿细胞合成并释放生长因子刺激自身,导致肿瘤细胞的持续增殖。 (4)通过化学突触传递神经信号,当神经元接受刺激后,神经信号以动作电位的形式沿轴突快速传递至神经末梢,电压门控的Ca2+通道将电信号转换为化学信号。 通过胞外信号介导的细胞通讯步骤 (1)产生信号的细胞合成并释放信号分子。 (2)运送信号分子至靶细胞。 (3)信号分子与靶细胞受体特异性结合并导致受体激活。 (4)活化受体启动胞内一种或多种信号转导途径。 (5)引发细胞功能、代谢或发育的改变。 (6)信号的解除并导致细胞反应终止。 核被膜所具有的功能

一方面,核被膜构成了核、质之间的天然选择性屏障,将细胞分成核与质两大结构与功能区域,使得DNA复制、RNA转录与加工在核内进行,而蛋白质翻译则局限在细胞质中。这样既避免了核质问彼此相互干扰,使细胞的生命活动秩序更加井然,同时还能保护核内的DNA分子免受损伤。 另一方面,核被膜调控细胞核内外的物质交换和信息交流。核被膜并不是完全封闭的,核质之间进行着频繁的物质交换与信息交流。这些物质交换与信息交流主要是通过核被膜上的核孔复合体进行的。 核被膜的结构组成及特点 (1)核被膜由内外两层平行但不连续的单位膜构成。面向核质的一层膜被称作内(层)核膜,而面向胞质的另一层膜称为外(层)核膜。两层膜厚度相同,约为7。5 nm。两层膜之间有20~40nm的透明空隙,称为核周间隙或核周池。核周间隙宽度随细胞种类不同而异,并随细胞的功能状态而改变。 (2)核被膜的内外核膜各有特点:①外核膜表面常附有核糖体颗粒,且常常与糙面内质网相连,使核周间隙与内质网腔彼此相通。从这种结构上的联系出发,外核膜可以被看作是糙面内质网的一个特化区域。②内核膜表面光滑,无核糖体颗粒附着,但紧贴其内表面有一层致密的纤维网络结构,即核纤层。内核膜上有一些特有的蛋白成分,如核纤层蛋白B受体。③双层核膜互相平行但并不连续,内、外核膜常常在某些部位相互融合形成环状开口,称为核孔,:在核孔上镶嵌着一种复杂的结构,叫做核孔复合体。核孔周围的核膜特称为孔膜区,它也有一些特有的蛋白成分。

细胞生物学知识点总结

细胞生物学知识点总结 导读:细胞生物学知识点总结 细胞通讯的方式 (1)细胞通过分泌化学信号进行细胞间通讯,这是多细胞生物 普遍采用的通讯方式。 (2)细胞间接触依赖性的通讯,指细胞间直接接触,通过与质 膜结合的信号分子影响其它细胞。 (3)动物相邻细胞间形成间隙连接以及植物细胞间通过胞间连 丝使细胞间相互沟通,通过交换小分子来实现代谢耦联或电耦联。 细胞分泌化学信号可长距离或短距离发挥作用,其作用方式分为:(1)内分泌,由内分泌细胞分泌信号分子到血液中,通过血液 循环运送到体内各个部位,作用于靶细胞。 (2)旁分泌,细胞通过分泌局部化学介质到细胞外液中,经过 局部扩散作用于邻近靶细胞。在多细胞生物中调节发育的许多生长因子往往是通过旁分泌起作用的。此外,旁分泌方式对创伤或感染组织刺激细胞增殖以恢复功能也具有重要意义。 (3)自分泌,细胞对自身分泌的物质产生反应。自分泌信号常 存在于病理条件下,如肿细胞合成并释放生长因子刺激自身,导致肿瘤细胞的'持续增殖。 (4)通过化学突触传递神经信号,当神经元接受刺激后,神经 信号以动作电位的形式沿轴突快速传递至神经末梢,电压门控的Ca2+

通道将电信号转换为化学信号。 通过胞外信号介导的细胞通讯步骤 (1)产生信号的细胞合成并释放信号分子。 (2)运送信号分子至靶细胞。 (3)信号分子与靶细胞受体特异性结合并导致受体激活。 (4)活化受体启动胞内一种或多种信号转导途径。 (5)引发细胞功能、代谢或发育的改变。 (6)信号的解除并导致细胞反应终止。 核被膜所具有的功能 一方面,核被膜构成了核、质之间的天然选择性屏障,将细胞分成核与质两大结构与功能区域,使得DNA复制、RNA转录与加工在核内进行,而蛋白质翻译则局限在细胞质中。这样既避免了核质问彼此相互干扰,使细胞的生命活动秩序更加井然,同时还能保护核内的DNA分子免受损伤。 另一方面,核被膜调控细胞核内外的物质交换和信息交流。核被膜并不是完全封闭的,核质之间进行着频繁的物质交换与信息交流。这些物质交换与信息交流主要是通过核被膜上的核孔复合体进行的。 核被膜的结构组成及特点 (1)核被膜由内外两层平行但不连续的单位膜构成。面向核质的一层膜被称作内(层)核膜,而面向胞质的另一层膜称为外(层)核膜。两层膜厚度相同,约为7。5 nm。两层膜之间有20~40nm的

医学细胞生物学复习(带答案)

细胞衰老与死亡 1.衰老细胞的特征之一是常常出现下列哪种结构的固缩 A.核仁B.细胞核 C.染色体 D.脂褐质 E.线粒体 2.小鼠成纤维细胞体外培养平均分裂次数为 A.25 次B.50 次 C.100 次 D.140 次 E.12 次 3.细胞凋亡与细胞坏死最主要的区别是后者出现 A.细胞核肿胀 B.内质网扩张 C.细胞变形D.炎症反应 E.细胞质变形 4.细胞凋亡指的是 A.细胞因增龄而导致的正常死亡 B.细胞因损伤而导致的死亡 C.机体细胞程序性的自杀死亡 D.机体细胞非程序性的自杀死亡 E.细胞因衰老而导致死亡 5.下列哪项不属细胞衰老的特征 A.原生质减少,细胞形状改变 B.细胞膜磷脂含量下降,胆固醇含量上升C.线粒体数目减少,核膜皱襞D.脂褐素减少,细胞代谢能力下降 E.核明显变化为核固缩,常染色体减少 6.迅速判断细胞是否死亡的方法是 A.形态学改变 B.功能状态检测 C.繁殖能力测定D.活性染色法 E.内部结构观察 7.机体中寿命最长的细胞是 A.红细胞 B.表皮细胞 C.白细胞 D.上皮细胞E.神经细胞

细胞的统一性与多样性 1. 肠上皮细胞由肠腔吸收葡萄糖,是属于 A.单纯扩散 B.易化扩散 C.主动转运 D.入胞作用 E.吞噬 2. 在一般生理情况下,每分解一分子ATP,钠泵转运可使 A. 2个Na+移出膜外 B. 2个K+移入膜内 C. 2个Na+移出膜外,同时有2个K+移入膜内 D. 3个Na+移出膜外,同时有2个K+移入膜内 E. 2个Na+移出膜外,同时有3个K+移入膜内 小分子的跨膜运输 1.肠上皮细胞由肠腔吸收葡萄糖,是属于 A. 单纯扩散 B. 易化扩散 C. 主动转运 D. 入胞作用 E. 吞噬核糖体 1.多聚核糖体是指 A.细胞中有两个以上的核糖体集中成一团 B.一条mRNA 串连多个核糖体的结构组合 C.细胞中两个以上的核糖体聚集成簇状或菊花状结构D.rRNA 的聚合体 E.附着在内质网上的核糖体

细胞生物学实验社会实践报告

建立一个动物细胞培养室与植物细胞培养室所需的条件与社会价值无菌环境是细胞离体培养的最基本条件,所以构建一个细胞培养室需要保证工作环境不受微生物和其他有害物质污染,并且干燥无烟尘。细胞培养室的设计原则一般是无菌操作区设在室内较少走动的内侧,常规操作和封闭培养于一室,而洗刷消毒在另一室。 一、基础实验室配置 ⑴消毒间:消毒间主要为了处理实验器材以及实验材料,营造一个无菌的试验环境,一般消毒间会配备超净实验台、高压灭菌锅、排风灭火设备、细菌过滤设备、干热消毒柜、电炉、酸缸等。 ⑵无菌操作间:一般由缓冲间和操作间两部分组成。缓冲间在外侧,多用于实验之前的准备,例如:更衣,准备实验材料,处理实验数据等,可放置电冰箱,冷藏器及消毒好的无菌物品等。操作间放置净化工作台及二氧化碳培养箱,离心机,倒置显微镜等。工作人员进入操作间一定要消毒并更衣。 (3)培养基配制间:主要用于配置细胞培养所用的培养基。主要包括冰箱、天平、微波炉、pH计、培养基分装器、药品柜、器械柜、抽气泵、电炉、各种规格的培养瓶、培养皿、移液管、烧杯、量筒、容量瓶、储藏瓶等。 (4)培养室:用于培养细胞,放置以接种的培养基等。为了控制培养室的温度和光照时间及其强度,培养室的房间不要窗户,但应当留一个通气窗,并安上排气扇。室内温度由空调控制,光照由日光灯控制。天花板和内墙最好用塑料钢板装修,地面用水磨石或瓷砖铺

设,一般要分两间,一为光照培养室,一为暗培养室。培养室外应有一预备间或走廊。培养室应配有培养架、转床、摇床、光照培养箱、生化培养箱、自动控时器等。 (5)洗涤间:主要用于清洗实验之后的用具。除配置水槽外,还需配置洗液皿、落水架、干燥箱、柜子、超声波清洗器等,有需求的还可以配置洗瓶机。 以上基础设施若实验室条件不够,可将消毒间,培养基配制间,洗涤间合并一起,但注意实验室卫生以及仪器摆放,房间要保持清洁,明亮。 二、辅助实验室 细胞学鉴定室:其功能是对培养材料进行细胞学鉴定和研究。要求清洁、明亮、干燥,使各种光学仪器不受潮湿和灰尘污染。应配置各种显微镜、照相系统等。 生化分析室:在以培养细胞产物为主要目的的实验室中,应建立相应的分析化验实验室,以便于对培养物的有效成分随时进行取样检查。离心机、酶联免疫检测仪、天平、PCR仪等。 温室:用于试管苗的锻炼和移植,为试管苗提供满足生长的适宜环境条件。常用设备有:温室、弥雾装置、荫棚、移栽床、钵、盆、基质等(用于植物细胞培养室)。 实验器材汇总:

医学细胞生物学知识点归纳

线粒体: 1.呼吸链(电子传递链)Respiratory chain一系列能够可逆地接受和释放H+和e-的化学物质所组成的酶体系在线粒体内膜上有序地排列成互相关联的链状。 2.化学渗透假说(氧化磷酸化偶联机制):线粒体内膜上的呼吸链起质子泵的作用,利用高能电子传递过程中释放的能量将H+泵出内膜外,造成内膜内外的一个H+梯度(严格地讲是离子的电化学梯度),A TP合酶再利用这个电化学梯度来合成A TP。 3.电子载体:在电子传递过程中与释放的电子结合并将电子传递下去的物质称为电子载体。参与传递的电子载体有四种∶黄素蛋白、细胞色素、铁硫蛋白和辅酶Q,在这四类电子载体中,除了辅酶Q以外,接受和提供电子的氧化还原中心都是与蛋白相连的辅基。 4.阈值效应:突变所产生的效应取决于该细胞中野生型和突变型线粒体DNA的比例,只有突变型DNA达到一定数量(阈值)才足以引起细胞的功能障碍,这种现象称为阈值效应。 5.导向序列:将游离核糖体上合成的蛋白质的N-端信号称为导向信号,或导向序列,由于这一段序列是氨基酸组成的肽,所以又称为转运肽。 6.信号序列:将膜结合核糖体上合成的蛋白质的N-端的序列称为信号序列,将组成该序列的肽称为信号肽。 7.共翻译转运:膜结合核糖体上合成的蛋白质通过定位信号,一边翻译,一边进入内质网,由于这种转运定位是在蛋白质翻译的同时进行的,故称为共翻译转运。 8.蛋白质分选:在膜结合核糖体上合成的蛋白质通过信号肽,经过连续的膜系统转运分选才能到达最终的目的地,这一过程又称为蛋白质分选。 核糖体: 1.原核生物mRNA中与核糖体16S rRNA结合的序列称为SD序列(SD sequence) 。 2.核酶:将具有酶功能的RNA称为核酶。 3.N-端规则(N-end rule): 每一种蛋白质都有寿命特征,称为半衰期(half-life)。研究发现多肽链N-端特异的氨基酸与半衰期相关,称为N-端规则。 4.泛素介导途径:蛋白酶体对蛋白质的降解通过泛素(ubiquitin)介导,故称为泛素降解途径。蛋白酶体对蛋白质的降解作用分为两个过程:一是对被降解的蛋白质进行标记,由泛素完成;二是蛋白酶解作用,由蛋白酶体催化。 细胞核: 1.核内膜:有特有的蛋白成份(如核纤层蛋白B受体),膜的内表面有一层网络状纤维蛋白质,即核纤层(nuclear lamina),可支持核膜。 核外膜:靠向细胞质的一层,是内质网的一部分,胞质面附有核糖体 核周隙:内、外膜之间有宽20~40nm的腔隙,与粗面内质网腔相通 核孔复合体:内、外膜融合处,物质运输的通道 核纤层:内核膜内表面的纤维网络,支持核膜,并与染色质、核骨架相连。 2.核孔复合体:是细胞核内外膜融合形成的小孔,直径约为70 nm,是细胞核与细胞质间物质交换的通道。 3.核孔蛋白:参与构成核孔的蛋白质,可能在经核孔的主动运输中发挥作用。 核运输受体:参与物质通过核孔的主动运输。 核周蛋白: 是一类与核孔选择性运输有关的蛋白家族,相当于受体蛋白。 5.输入蛋白:核定位信号的受体蛋白, 存在于胞质溶胶中, 可与核定位信号结合, 帮助核蛋白进入细胞核。 输出蛋白:存在于细胞核中识别并与输出信号结合的蛋白质, 帮助核内物质通过核孔复合

细胞生物学复习总结

Chapter 2 Cell membrane 1.简述细胞膜的特性。 1)不对称性:细胞膜的两侧具有不同的组成,包括三种成分的不对称性和维持膜功能的方向性。 膜脂分布不对称:脂质双分子层两边组成不同; 膜蛋白不对称:膜蛋白不对称分布,膜蛋白的不同定向; 膜糖的不对称:膜糖分布朝向胞外。 2)膜的流动性:膜成分处于不断运动中,是保证膜功能的重要条件,包括膜脂流动性与膜蛋白流动性. 2.试述不同类型膜蛋白的特点。 1)膜内在蛋白: 部分或全部镶嵌在细胞膜中或内外两侧;以非极性、疏水性氨基酸与脂双分子层的非极性疏水区相互作用而结合在质膜上;分子中具有一个或多个富含疏水性氨基酸的疏水区,多呈α螺旋; 在膜上可单次穿膜或多次穿膜。 2)膜周边蛋白质: 分布于膜的外表面;通过非共价键与膜脂极性头部结合;通过与膜内在蛋白亲水部分相互作用间接与膜结合。 3.何为离子通道蛋白?在胞膜物质运输中该类蛋白有何作用? 概念:大多都与离子的转运有关,通道蛋白也称为离子通道。 作用:具有离子选择性,只允许一定体积和电荷的离子通过; 转运速率高,离子通道转运离子的速率极快,比载体蛋白所介导的最快转运速率高1 000倍; 介导的物质跨膜运输是被动运输,使物质从高浓度向低浓度运输,不需要细胞提供能量. 4.举例说明离子泵在主动运输中的作用。 (答题要点:什么是离子泵,钠钾泵的组成及作用过程) 离子泵实际上就是膜上的一种ATP酶,实现离子或小分子逆浓度或电化学梯度的跨膜运动,是直接利用水解ATP提供能量的主动运输。 Na+-K+-ATP酶由大小两个亚基组成,大亚基是一个多次跨膜的膜整合蛋白,具有ATP酶活性,为催化亚单位。其中,大亚基在其胞质面有一个ATP结合点和三个高亲和的Na+结合点,在膜的外表面有两个高亲和K+结合点和一个K+结合点。 钠钾泵的作用是通过ATP驱动的泵构型改变来完成的。首先由Na+结合到胞质面的结合点,刺激ATP水解,使泵磷酸化,引起蛋白质构型改变,暴露Na+结合点面向细胞外,使Na+释放到细胞外;于此同时也将K+结合点朝向细胞外表面,结合胞外K+后引起泵去磷酸化,导致蛋白质的构型再次发生变化,将K+结合点朝向细胞质面,然后释放K+至胞质溶胶内,蛋白构型恢复原状。钠钾泵每秒钟可发生1000次构象变化,每个循环消耗1个ATP分子,泵出3个Na+和泵入2个K+。 5.试述细胞连接的主要类型及特点。 紧密连接:无间隙,点状对合结构。其作用是封闭细胞间隙:阻止物质从细胞之间通过,保证转运方向性。 锚定连接:粘着连接:带状、15-20nm缝隙、内有丝状物质.与微丝相连. 桥粒连接:纽扣状、胞质内侧圆盘型斑;中间纤维附着。 间隙连接:1.5-2nm间隙,中有规则排列的横颗粒;最普遍的细胞连接的方式。 6.试述细胞黏连分子的类型及特点。 类型:钙黏素,免疫球蛋白超家族,整合素,选择素。 1)钙粘素: 属同亲性依赖Ca2+的细胞粘连糖蛋白,介导依赖Ca2+的细胞粘着和从ECM到细胞质传递信号; 分类有,E-钙黏蛋白、N-钙黏蛋白、P-钙黏蛋白; 钙黏素介导细胞间钙依赖同亲性粘着。钙黏素的细胞部分通过接头蛋白和肌动蛋白纤维相连。 2)免疫球蛋白超家族的CAM: 分子结构中具有与免疫球蛋白类似的结构域的CAM超家族;

华师细胞生物学简答题(个人复习总结)

1、何谓成熟促进因子(MPF)?包括哪些主要成分?如何证明某一细胞提取液含有MPF? 成熟促进因子是指M期细胞中存在的促进细胞分裂的因子,是由两个不同亚基组成的异质二聚体,其一为调节亚基,有周期蛋白组成;其二为催化亚基,是丝氨酸/苏氨酸型蛋白激酶,其活性有懒于周期蛋白,故称为周期依赖性蛋白激酶。可以通过蛙卵细胞质移植实验证实MPF。成熟蛙卵细胞的细胞质可以诱导未成熟的蛙卵细胞提前进入成熟期。 2、简述微管、微丝和中间纤维的主要异同点?(顺序为微管、微丝、中间纤维) 直径:22nm、7nm、10nm;基本构件:α、β—微管蛋白,肌动蛋白,中间纤维丝蛋白;相对分子量(乘10的3次):50,43,40~200;结构:13根原丝围成的α—螺旋中空管状,双股α—螺旋,多级螺旋;极性:有,有,无;单体蛋白库:有,有,无;踏车现象:有,有,无;特异性药物:秋水仙素、长春花碱,细胞松弛素B、鬼笔环肽,无;运动相关蛋白:驱动蛋白、动力蛋白,肌球蛋白,无;主要功能:细胞运动、胞内运输、支持作用,变形运动、形状维持、胞质环流、胞质分裂环的桶状结构,骨架作用、细胞连接、信息传递;细胞分裂:纺锤体,无,包围纺锤体。 3、为什么将内质网比喻“开放的监狱”? KDEL信号序列为内质网驻守信号,如果内质网驻守蛋白被错误的包装进了COPII,并运输到顺面高尔基体,高尔基体膜上存在KDEL识别受体,能识别错误运输来的内质网驻守蛋白,并形成COP I小泡,将内质网驻守蛋白运输返回内质网。 4、在研究工作中分离得到一个与动物减数分裂直接相关的基因A,如果想由此获得该基因的单克隆抗体,请简要叙述实验方案及其实验原理。 英国科学家Milstein和Kohler因提出单克隆抗体而获得1984年诺贝尔生理学或医学奖。它是将产生抗体的单个B淋巴细胞同肿瘤细胞杂交,获得既能产生抗体又能无线增值的杂种细胞,并一次生产抗体的技术。其原理是:B淋巴细胞能够产生抗体,但在体外不能进行无限分裂;而肿瘤细胞虽然可以在体外进行无限传代,但不能产生抗体。将这两种细胞融合后得到的杂交瘤细胞具有两种亲本细胞的特性。 实验方案:a、表达基因A的蛋白,免疫小老鼠,获得免疫的淋巴细胞;b、将经过免疫的小老鼠的淋巴细胞与Hela细胞融合;c、利用选择培养基对融合细胞进行培养筛选,只有真正融合的细胞才能继续生长;d、融合细胞的培养,抗体的纯化。 5、微管是体内膜泡运输的导轨,请分析体内膜泡定向运输的机制? 微管是有极性的,微管的马达蛋白(动力蛋白和驱动蛋白)运输小泡也是单向的。动力蛋白向微管的负极运输小泡,驱动蛋白向微管的正极运输小泡。,另外,起始膜泡上有V-SNARE,靶膜上有T-SNARE。V-SNARE与T-SNARE选择性识别并定向融合。这两种因素共同导致了膜泡的定向运输。 6、简述细胞周期蛋白B的结构特点和动态调控机制?

细胞生物学部分总结

细胞生物学 1. 细胞生物学是从细胞的显微、亚显微、和分子三个水平对细胞的各种生命活动开展研的学科。 2. 细胞生物学发展的几个主要阶段:a细胞的发现与细胞学说的创立:细胞学说——一切生物,从单细胞生物到高等动物和植物均由细胞组成,细胞是生物形态结构和功能活动的基本单位。b光学显微镜下细胞的研究(19世纪中叶到20世纪初期)。C实验细胞学阶段(20世纪初期到20世纪中叶)——光镜+实验。D亚显微结构与分子水平的细胞生物学:1933年第一台电子显微镜。 3. 细胞:细胞是生命活动的基本单位1.细胞是构成有机体的基本单位2.细胞具有独立完整的代谢体系,是代谢与功能的基本单位3.细胞是有机体生长与发育的基本单位4细胞是遗传的基本单位,具有遗传的全能性5.没有细胞就没有完整的生命 4. 真核细胞的结构特点:1.脂质和蛋白质成分为基础的膜相结构体系——生物膜系统2.以核酸—蛋白质为主要成分的遗传信息表达体系——遗传信息表达系统 3.由特异蛋白质分子构成的细胞骨架体系——细胞骨架系统4.核糖体与细胞质溶胶。 5. 6. 内共生起源说:真核细胞是由原始厌氧菌的后代吞入了需氧菌逐步演化而来,进而使真核细胞能够在氧气充足的地球上生存下来。 7. 细胞膜:是包围在细胞质表面的一层薄膜,又称质膜。由脂类蛋白质糖类组成。 8. 骨骼肌收缩:1.动作电位的产生,每一肌纤维上都有神经分支分布,神经冲动是神经细胞向外释放乙酰胆碱,乙酰胆碱与细胞膜上受体结合,使肌细胞去极化并传至肌质网。2.Ca2+的释放,肌质网去极化后将钙离子释放到肌浆中。3.原肌球蛋白移位,在肌动蛋白细丝上,被原肌球蛋白占据的结合部位暴露出来,暴露的部位可与肌球蛋白分子头部结合。4.肌动蛋

细胞生物学总结复习重点细胞信转导

4、细胞通讯:一个细胞发出的信息通过介质传递到另一个细胞产生相应的反应。对于多细胞生物体的发生和组织的构建,协调细胞的功能,控制细胞的生长、分裂、分化和凋亡是必须的。包括分泌化学信号(内、旁、自、化学突触)、细胞间接触、和相邻细胞间间隙连接。 5、细胞识别:细胞通过其表面的受体与胞外信号物质分子(配体)选择性地相互作用,进而导致胞内一系列生理生化变化,最终表现为细胞整体的生物学效应的过程。 20、信号分子:生物体内的某些化学分子,如激素、神经递质、生长因子、气体分子等,在细胞间和细胞内传递信息,特称为信号分子。 21、信号通路:细胞接受外界信号,通过一整套的特定机制,将胞外信号转导为胞内信号,最终调节特定基因的表达,引起细胞的应答反应,这种反应系列称为细胞信号通路。 22、受体:一种能够识别和选择性地结合某种配体(信号分子)的大分子,当与配体结合后,通过信号转导作用将胞外信号转导为胞内化学或物理的信号,以启动一系列过程,最终表现 偶联型受体和酶偶联的受体。 23、第一信使:一般将胞外信号分子称为第一信使。 24、第二信使:细胞表面受体接受胞外信号后最早在胞内产生的信号分子。细胞内重要的第二信使有:cAMP、cGMP、DAG、IP3等。第二信使在细胞信号转导中起重要作用,能够激活级联系统中酶的活性以及非酶蛋白的活性,也控制着细胞的增殖、分化和生存,并参与基因转录的调节。 10、IP3IP2IP4。DG通过两种途径终止 其信使作用:一是被 水解成单脂酰甘油。 13、分子开关:在细胞内一系列信号传递的级联反应中,必须有正、负两种相辅相成的反馈机制精确调控,也即对每一步反应既要求有激活机制,又必然要求有相应的失活机制,使细胞内一系列信号传递的级联反应能在正、负反馈两个方面得到精确控制的蛋白质分子称为分子开关。 25、G—蛋白:由GTP控制活性的蛋白,当与GTP结合时具有活性,当与GDP结合时没有活性。既有单体形式(ras蛋白),也有三聚体形式(Gs活Gi抑)。在信号转导过程中起着分子开关的作用。 28、蛋白激酶A:称为依赖于cAMP的蛋白激酶A,是由四个亚基组成的复合物,其中两个是调节亚基,两个是催化亚基;PKA的功能是将ATP上的磷酸基团转移到特定蛋白质的丝氨酸或苏氨酸残基上,使蛋白质被磷酸化,被磷酸化的蛋白质可以调节下游靶蛋白的活性。29、双信使系统:胞外信号分子与细胞表面G蛋白偶联的受体结合后,激活质膜上的磷脂酶C(PLC),使质膜上的二磷酸磷脂酰肌醇分解成三磷酸肌醇(IP3)和二酰基甘油(DG)两个第二信使,将胞外信号转导为胞内信号,两个第二信使分别激动两个信号传递途径即IP3—Ca+和DG—PKC途径,实现对胞外信号的应答,因此将这一信号系统称为“双信使系统”。 12、目前已知的这类受体都 是跨膜蛋白,当胞外配体与受体结合即激活受体胞内段的酶活性。 个氨基酸残基组成,分布于质膜胞质侧,结合GTP 时为活化状态,结合GDP时失活状态,因此Ras蛋白属于GTP结合蛋白,具有GTP酶活性,具有分子开关的作用。突变后的Ras蛋白不能水解GTP …………………………………… 1.细胞质基质中Ca2+浓度低的原因是什么?

最新医用细胞生物学知识点(完整版)

医用细胞生物学知识点 By 小羊,小生(修整)友情提示:知识点很多,重点加粗,书中的表格均有,有些重点需掌握绘图(请查阅书本)。主要考点:名词解释,细胞的结构与功能。建议系统总结一下内质网,高尔基复合体,溶酶体的标志酶和各自的功能。1.细胞生物学(cell biology):细胞生物学是从细胞的显微,亚显微和分子三个水平对细胞的各种生命活动开展研究的学科。 2.对细胞概念理解的五个角度: ①细胞是构成有机体的基本单位; ②细胞是代谢与功能的基本单位; ③细胞是有机体生长与发育的基础; ④细胞是遗传的基本单位; ⑤没有细胞就没有完整的生命。 ⑥细胞具有全能性。 3.生物界划分的三个类型:原核细胞、古核细胞和真核细胞。 4.原核细胞与真核细胞的比较:p13表2-1 5.真核细胞特点的理解: ①以脂质及蛋白质成分为基础的膜相结构体系-生物膜系统 ②以核酸,蛋白质为主要成分的遗传信息表达体系-遗传信息表达系统 ③由特异蛋白质分子构成的细胞骨架体系-细胞骨架系统 ④细胞质溶胶 6.生物大分子:细胞内主要的大分子有核酸,蛋白质,多糖。 7.核酸(nucleic acid)的基本单位:核苷酸。 8.核苷酸:核苷酸由戊糖,碱基和磷酸三部分组成。 9.DNA分子的双螺旋结构模型(p18图2-8):DNA分子由两条相互平行而方向相反的多核苷酸链组成,

即一条链中磷酸二酯键连接的核苷酸方向是5’→3’,另一条是3’→5’,两条链围绕着同一个中心轴以右手方向盘绕成双螺旋结构。简而言之:DNA分子是由两条反向平行的核苷酸链组成。 10.基因组:细胞或生物体的一套完整的单倍体遗传物质称为基因组。 11.动物细胞内含有的主要RNA种类及功能:p20表2-3 12.核酶(ribozyme):核酶是具有酶活性的RNA分子。 13.蛋白质(protein)的基本单位:氨基酸。 14.肽键:肽键是一个氨基酸分子上的羧基与另一个氨基酸分子上的氨基经脱水缩合而成的化学键。15.肽(peptide):氨基酸通过肽键而连接成的化合物称为肽。 16.蛋白质分子的二级结构:α-螺旋,β-片层。 17.酶(enzyme):酶是由生物体细胞产生的具有催化剂作用的蛋白质。 18.酶的特性:高催化效率,高度专一性,高度不稳定性。 19.光学显微镜的种类:普通光学显微镜,荧光显微镜,相差显微镜,暗视野显微镜,共聚焦激光扫描显微镜。 20.细胞培养:细胞培养是指细胞在体外的培养技术,即无菌条件下,从机体中取出组织或细胞,模拟机体内正常生理状态下生存的基本条件,让它在培养器皿中继续生存、生长和繁殖的方法。

细胞生物学重点总结

细胞生物学重点总结 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

细胞生物学期末复习资料整理 第一章:1、细胞生物学cell biology:是研究细胞基本生命活动规律的科学, 是在显微、亚显微和分子水平上,以研究细胞结构与功能,细胞增殖、分化、 衰老与凋亡,细胞信号传递,真核细胞基因表达与调控,细胞起源与进化等为 主要内容的一门学科。P2 1、什么叫细胞生物学试论述细胞生物学研究的主要内容。P3-5 答:细胞生物学是研究细胞基本生命活动规律的科学,它是在三个水平(显微、亚 显微与分子水平)上,以研究细胞的结构与功能、细胞增殖、细胞分化、细胞衰 老开发商地亡、细胞信号传递、真核细胞基因表达与调控、细胞起源与进化等 为主要内容的一门科学。 细胞生物学的主要研究内容主要包括两个大方面:细胞结构与功能、细胞重要 生命活动。涵盖九个方面的内容:⑴细胞核、染色体以及基因表达的研究;⑵ 生物膜与细胞器的研究;⑶细胞骨架体系的研究;⑷细胞增殖及其调控;⑸细 胞分化及其调控;⑹细胞的衰老与凋亡;⑺细胞的起源与进化;⑻细胞工程; ⑼细胞信号转导。 2、试论述当前细胞生物学研究最集中的领域。 P5-6 答:当前细胞生物学研究主要集中在以下四个领域:⑴细胞信号转导;⑵细胞 增殖调控;⑶细胞衰老、凋亡及其调控;⑷基因组与后基因组学研究。人类亟 待通过以上四个方面的研究,阐明当今主要威胁人类的四大疾病:癌症、心血 管疾病、艾滋病和肝炎等传染病的发病机制,并采取有效措施达到治疗的目 的。 3.细胞学说(cell theory) p9 细胞学说是1838~1839年间由德国的植物学家施莱登和动物学家施旺所提出, 直到1858年才较完善。它是关于生物有机体组成的学说,主要内容有: ①细胞是有机体,一切动植物都是由单细胞发育而来,即生物是由细胞和细 胞的产物所组成; ②所有细胞在结构和组成上基本相似; ③新细胞是由已存在的细胞分裂而来; ④生物的疾病是因为其细胞机能失常。 4、细胞学发展的经典时期 P10 ⑴原生质理论的提出;⑵细胞分裂的研究;⑶重要细胞器的发现。 第二章:试论述原核细胞与真核细胞最根本的区别。 P35-37 答:原核细胞与真核细胞最根本的区别在于:①生物膜系统的分化与演变:真 核细胞以生物膜分化为基础,分化为结构更精细、功能更专一的基本单位—— 细胞器,使细胞内部结构与职能的分工是真核细胞区别于原核细胞的重要标 志;②遗传信息量与遗传装置的扩增与复杂化:由于真核细胞结构与功能的复

(完整版)细胞生物学学习心得

细胞生物学学习体会 通过网络课程学习,有幸聆听到王金发教授对《细胞生物学》课程的讲授,使我不仅学到了细胞生物学专业新的知识与研究技术、方法,而且在教学方面也受益非浅。下面就我的学习谈一些体会。 一、全面学习了细胞生物学的专业知识 《细胞生物学》是一门包容量大、发展迅速的学科。内容涉及生物膜的结构与功能;内膜系统区室化形成及各种细胞器的结构与功能;细胞信号转导;细胞核、染色体以及基因表达;细胞骨架体系;细胞增殖及其调控;细胞分化、癌变及其调控;细胞的衰老与程序性死亡;细胞的起源与进化;细胞工程技术等多个方面。 (一)对细胞生物学的专业知识有了更深的认识。 1、细胞通讯方面 记得第一次听王老师的课就是讲授细胞的通讯,在多细胞生物中,细胞不是孤立存在的,而是生活在细胞社会中,它们必须协调一致,才能维持机体的正常生理机能,它们的协调是通过细胞通讯来完成的。细胞通讯是通过信号分子与受体的识别,从而在靶细胞内产生一系列反应的过程。信号分子有第一信使和第二信使之分,第二信使位于细胞内,由第一信使与受体识别后最先在胞内产生的,它主要与细胞内受体作用,所以受体也可分为表面受体和胞内受体。信号分子与受体的识别作用具有特异性。细胞信号传递所发生的反应有快速反应和慢速反应。快速反应是信号分子与受体作用后直接引起细胞内的一系列代谢反应;慢速反应则需要引起基因表达,再表现出各种代谢反应。细胞通讯过程是个复杂的过程,一个细胞的周围有上百种不同的信号分子,细胞要对这些信号分子进行分析,做出正确的反应。信号转换的研究在近年很热门,但进展缓慢,主要是因为信号转换的复杂性,不同信号的组合产生的效应是不一样的。 2、蛋白质的合成和分选机理 蛋白质的合成是在核糖体上,有两种合成体系,一种是在细胞质中游离的核糖体上,另一种是在膜旁核糖体上合成,它们合成的蛋白质将分布到不同的部

细胞生物学总结

细胞生物学总结 ——By 生科2005 狐狸要起早 第一章.绪论 三、简答论述: 为什么说细胞生物是重要的学科? 细胞生物主要研究的内容: 细胞生物学是研究细胞的基本生命活动规律的科学,它从不同层次(显微、亚显微与分子水平)研究细胞结构与功能、细胞增殖、分化、衰老与凋亡、细胞信号传递、细胞基因表达与调控、细胞起源与进化。 细胞生物学核心问题是将遗传与发育在细胞水平上结合起来。细胞生物学研究的重点领域: (1)染色体DNA与蛋白质相互作用; (2)细胞增殖、分化、调亡、衰老及其调控; (3)细胞信号转导; (4)细胞结构体系的装配; (5)蛋白质与蛋白质相互作用; (6)细胞内的网络调控。 第二章.细胞基本知识概要 二、名词解释: 病毒:由核酸和蛋白质等少数几种成分组成的超显微“非细胞生物”,营寄生生活。 古细菌:又称原细菌,是一些生长在极端特殊环境中(高温或高盐)的细菌。古核细胞的形态结构、遗传装置虽与原核细胞相似,但一些基本分子生物学特点又与真核细胞接近。 分辨率:指区分开两个质点间的最小距离。是判断显微镜性能好坏的标准。 三、简答论述: 怎样理解细胞是生命活动的基本单位? 细胞是有膜包围的能进行独立繁殖的最小原生质团,简单地说细胞是生命活动的基本单位,可以从以下角度去理解: (1)细胞是构成有机体的基本单位; (2)细胞具有独立完整的代谢体系,是代谢与功能的基本单位; (3)细胞是有机体生长与发育的基础; (4)细胞具有遗传的全能性,即具有一套基因组(基因组是指一种生物的基本染色体套即单个配子内所含有的全部基因,在原核生物中即是一个连锁群中所含的全部遗传信息); (5)没有细胞就没有完整的生命。

医学细胞生物学总复习提纲

细胞生物总复习提纲 特别提醒:每道题都有答题限制时间,若时间到了没有主动点提交,系统都会自动提交更新为下一道(系统会默认提交测试者点选得答案,若无点选则无答案),不能回瞧,所以要在注意时间得前提下认真思考作答。 一.主要题型 1.英译汉5道,合计5分(一些重点章节得重点单词,不 考汉译英); 2.问答题2个(以细胞膜、内膜系统、细胞核、细胞周期、 细胞凋亡等章节内容为主,2题分别为12分与8分, 合计20分); 3.实验图片题10道,合计15分。(电镜图片及光镜图片。 电镜图片以实验手册后面得图片为主;光镜图片以实验 课做过瞧过得重点结构为主); 4.选择题:单选60道,合计54分,多选6道,合计6分。 以上四项卷面满分合计100分,折算率90%后为90分; 5.平时3次实验到勤及实验报告平均分折算率10%后为 10分。 二.重点章节 第4、5、8、13章。就是出问答题最有可能得章节。 三.主要内容

第一章 1、细胞生物学发展史中得里程碑式事件(每个阶段1-2件事); 2、基本概念:医学细胞生物学(英文)。 第二章 1、细胞得形状要结合有关实例来记忆 影响细胞形态得几个方面因素,请瞧教材 2、最小得细胞 3、真核细胞得结构 4、真核细胞与原核细胞得区别 5、分子基础记忆氨基酸,核苷酸(基团及分类,化学键) 6、蛋白质掌握1,2级结构;DNA,RNA得基本结构特点与类型 7、英文:原核细胞、真核细胞、膜相结构、非膜相结构、氨基 酸、蛋白质、核酸、核苷酸 第三章 1、光学显微镜与电学显微镜得主要特点及其主要差别 2.分辨率,分辨力得概念理解 3、最高分辨率,最大放大倍数 4、老师PPT上有光镜及电镜标本制作厚薄及特殊要求。 5、荧光显微镜得光源,相差显微镜及暗视野显微镜得主要得适 用标本、优点。 6、细胞培养技术关注细胞融合得概念,诱导融合方法手段,成 功得例子

细胞生物学实验课知识点总结

细胞生物学实验课知识点总结 一.细胞基本结构(basic conformation of cells) 1.洋葱表皮细胞 ①实验材料:洋葱鳞片叶内表皮 ②步骤:撕取一层内表皮、展开置于载玻片上、滴加伊红染液、盖上盖玻片、吸取多余染液、观察 ③注意事项:盖玻片放置方法:将盖玻片一端以45度角接触载玻片,另一段缓缓放下(目的:使装片内的气泡尽可能少) 2.人口腔上皮细胞 ①实验步骤:滴加生理盐水于载玻片、牙签刮取口腔内壁、刮取物与生理盐水相混合、盖上盖玻片、滴加甲苯胺蓝、染色5min、洗去浮色(生理盐水)、观察 ②注意事项:刮取口腔:先用第一支牙签将口腔内壁的某一区域挂净,然后用另一支牙签在同一区域刮取口腔上皮; 3.血涂片 ①实验材料:新鲜蟾蜍血 ②实验步骤:滴加蟾蜍血细胞悬液、铺平液体、风干、观察 ③注意事项:制取血细胞悬液:先在试管内加入柠檬酸钠,然后加入新鲜鼠血液(采血方法:摘眼球法) 滴加与铺平液体:在载玻片上靠近一端边缘而不是正中央的部位滴加;用另一载玻片以45度角接触液体(确保接触后液体在第二块载玻片接触端的后侧,以免磨碎细胞)后向另一段一次性地、缓慢地平推以展开液体(切忌反复平推,以免磨碎细胞) 4.骨骼肌纤维

①实验材料:蟾蜍腿部肌纤维 ②实验步骤:取材、摘取肌束、展开置于载玻片上、滴加生理盐水、盖上盖玻片、观察 5.蟾蜍精子 ①实验材料:蟾蜍精子(睾丸) ②实验步骤:剪取睾丸、置于生理盐水中、剪碎睾丸、滴加精子混悬液、盖上盖玻片、观察 ③注意事项:蟾蜍睾丸位于下腹部 二.细胞器基本形态(basic shape and fine structure of organelles) 1.线粒体活体染色 ①染液:詹纳斯绿B是线粒体专一活性染色剂,呈碱性,具有脂溶性,能穿过细胞膜进入细胞,结合到线粒体内膜上,其上的细胞色素氧化酶可使詹纳斯绿保持氧化状态而呈蓝色 ②实验材料:洋葱鳞片叶内表皮 ③实验步骤:撕取一层内表皮、展开置于载玻片上、滴加一滴詹纳斯绿B、染色15min、盖上盖玻片、洗去浮色(生理盐水)、观察 三.细胞化学(cell chemistry) 1.多糖(淀粉) ①实验材料:马铃薯块茎切片 ②试剂:I-KI溶液 ③注意事项:马铃薯切片时刀片应单方向一次性切到底 ④结果:蓝紫色椭圆形颗粒 2.酸性蛋白与碱性蛋白 ①实验材料:新鲜蟾蜍血

细胞生物学心得体会

精心整理细胞生物学心得体会 舒斌水产301402 细胞生物学是现代生命科学的重要基础学科,它联系着生物科学的许多分支学科,尤其是与分子生物学、遗传学、生物化学等学科联系密切.从1665年英国人胡克发现第一个植物细胞后,历经170多年的研究探索,科学家们创立了被认为是19世纪的三大发现之一的细胞学说,细胞学说的创立对细胞学的发展起着极大的推动作用,在19世纪的最后25年的时间里,人们相继发现了有丝分裂、无丝分裂、减数分裂等细胞生命现象,同时还发现了染色体和多种细胞器,这段时间是细胞学的经典时期.1876年,O.Hertwig等发现了动物细胞的受精现象,于是实验细胞学得以迅速发展,人们广泛应用实验手段与分析方法来研究细胞学中的一些根本问题,于是 ,大大 年代随着分子 高. 1 种类型, ,(IP3PKG 2 ,具一级 3 , ,MPF 的活性达到最高峰.CDK通过对其底物丝氨酸和苏氨酸的磷酸化和去磷酸化进行调节.细胞周期中有3个关键的控制点;G1关卡、G2关卡、中期关卡.促后期复合物(APC)介导细胞周期蛋白降解使细胞退出有丝分裂. 哺乳动物细胞受多种CDK和多种Cyclin的调控,裂殖酵母只有一种CDK和一种Cyclin,芽殖酵母有一个CDK和多种Cyclin. 另外,对生物膜流动性的机理和功能上也有进一步的了解,科学家们发现了越来越多的参与跨膜运输的蛋白质种类,并对其作用机制研究得越来越深入.对细胞骨架体系的组成和装配机制有了更深入的理解,认识了分子发动机的概念.学习了核酶一节后,认识到并非所有的酶都是蛋白质,核酶的作用与蛋白酶的作用机制也有一定的差别.对目前的热门研究领域:程序性细胞死亡、癌细胞的发生机理及控制也有了一定的了解和认识.

医学细胞生物学要点

1.电镜与光镜的主要区别?什么叫显微镜分辨率?光学显微镜是以可见光为照明源,将微小的物体形成放大影像的光学仪器;而电子显微镜则是以电子束为照明源,通过电子流对样品的透射或反射及电磁透镜的多级放大后在荧光屏上成像的大型仪器。显微镜分辨率:分辨率或称分辨力是指在人眼明视距离处,能够清楚地分辨被检物体细微结构最小间隔的能力。 2.电镜主要分哪二类?透视和扫描 3.流式细胞术在科学研究中的应用?目前该技术广泛应用于生物大分子物质的定量,细胞周期分析,细胞表面抗原表达,细胞因子的检测,活细胞分类纯化等领域。 4.配制培养基时调节pH值的目的是什么?因为有的培养物对生长环境PH值要求高,有的则要求低,不同培养物的最适生长pH不同 5.细胞传代培养的目的是什么?传代培养是组织培养常规保种方法之一。也是几乎所有细胞生物学实验的基础。当细胞在培养瓶中长满后就需要将其稀释分种成多瓶,细胞才能继续生长。这一过程就叫传代。传代培养可获得大量细胞供实验所需。 6.蛋白质电泳的种类及特点?蛋白质电泳(一般指SDS-PAGE)一般使用的都是聚丙烯酰胺凝胶电泳,电泳的驱动力靠与蛋白质结合的SDS上所携带的负电荷。特点:分辨力高和固相免疫测定特异性高,敏感等 7.核酸杂交技术的分类?根据杂交对象的不同可分为:DNA与DNA;RNA与DNA另外:Western blot,根据杂交对象位置的不同可分为:固相杂交,液相杂交,原位杂交。 8.聚合酶链式反应PCR的实施步骤是什么?1.DNA变性(90℃-96℃):双链DNA模板在热作用下,氢键断裂,形成单链DNA2.退火(25℃-65℃):系统温度降低,引物与DNA模板结合,形成局部双链。3.延伸(70℃-75℃):在Taq酶(在72℃左右,活性最佳)的作用下,以dNTP为原料,从引物的5′端→3′端延伸,合成与模板互补的DNA链。4.还有就是体外快速DNA复制 9.细胞膜的基本特征是什么?细胞膜把细胞包裹起来,使细胞能够保持相对的稳定性,维持正常的生命活动。此外,细胞所必需的养分的吸收和代谢产物的排出都要通过细胞膜。所以,细胞膜的这种选择性的让某些分子进入或排出细胞的特性,叫做选择渗透性。这是细胞膜最基本的一种功能。如果细胞丧失了这种功能,细胞就会死亡.。细胞膜除了通过选择性渗透来调节和控制细胞内,外的物质交换外,还能以"胞吞"和"胞吐"的方式,帮助细胞从外界环境中摄取液体小滴和捕获食物颗粒,供应细胞在生命活动中对营养物质的需求。细胞膜也能接收外界信号的刺激使细胞做出反应,从而调节细胞的生命活动。细胞膜不单是细胞的物理屏障,也是在细胞生命活动中有复杂功能的重要结构。 10.细胞膜上膜脂和膜蛋白的种类?膜脂有磷脂,糖脂,胆固醇,膜蛋白有膜内在蛋白(整合膜蛋白)(2)膜外在蛋白(周边膜蛋白)(3)脂锚定蛋白(连接蛋白) 11.简述真核细胞中小分子和大分子的跨膜运输途径和主要特点?(1)小分子和离子(需载体蛋白,通道蛋白)被动运输(简单扩散和易化扩散)顺浓度梯度主动运输(消耗能量),(2)大分子物质胞吞胞吐(消耗能量) 12.载体蛋白和通道蛋白在物质跨膜运输中的作用?通道蛋白只参与被动运输,载体蛋白既参与主动运输又参与被动运输,(1)通道蛋白:在蛋白质中心形成一个亲水性的通道,使特定溶质穿越。被动运输②载体蛋白:通过蛋白质发生可逆的构象变化进行物质运输。 主动或被动; 13.胞饮作用和吞噬作用的区别?一、吞噬作用,细胞内吞较大的固体颗粒物质,如细菌、细胞碎片等,称为吞噬作用。吞噬现象是原生动物获取营养物质的主要方式,在后生动物中亦存在吞噬现象。如:在哺乳动物中,中性颗粒白细胞和巨噬细胞具有极强的吞噬能

相关主题
文本预览
相关文档 最新文档