当前位置:文档之家› 传递函数矩阵的状态空间实现

传递函数矩阵的状态空间实现

传递函数矩阵的状态空间实现

传递函数矩阵的状态空间实现

传递函数矩阵的状态空间最小实现

传递函数矩阵最小实现方法 降阶法人们在设计复杂系统时,总是希望在构造系统之前用模拟计算机或数字计算机对所设计的系统进行仿真,以检查系统性能是否达到指标要求。给定严格真传递函数矩阵G(s),为寻找一个维数最小的(A,B,C),使C(sl - A)」B二G(s),则称该(A,B,C )是G(s)的最小实现,也称为不可约实现。最小实现是系统实现的一种非常重要的实现方式,关于最小实现的特性,有下列几个重要结论: (1)( A,B,C )为严格真传递函数矩阵G(s)的最小实现的充要条件是(A,B) 能控且(A,C)能观测。 (2)严格真传递函数矩阵G(s)的任意两个最小实现(A,B,C)与(A,B,C5之 间必代数等价,即两个最小实现之间由非奇异线性变换阵T使得式子 A =T」AT, B =T J B, C =CT 成立。 (3)传递函数矩阵G(s)的最小实现的维数为G(s)的次数n.,或G(s)的极点多项式的最高次数。 为了寻求传递函数矩阵的最小实现,就意味着要把系统中不能控和不能观测的状态变量消去而不至于影响系统的传递函数。求最小实现的方法有三种: 1、降阶法。根据给定的传递函数矩阵G(s),第一步先写出满足G(s)的能控型实现,第二步从中找出能观测子系统;或者第一步先写出满足G(s)的能观测型实现,第二步从中找出能控子系统,均可求得最小实现。 2、直接求取约当型最小实现的方法。若G(s)诸元容易分解为部分分式形式,运用直接求取约当型最小实现的方法是较为方便的。 3用汉克尔矩阵法求取最小实现的方法。 下面主要研究降阶法(先求能控型再求能观测子系统的方法)并举例说明。 先求能控型再求能观测子系统的方法设(px q)传递函数矩阵G(s),且p v q时,

传递函数矩阵的状态空间小实现

传递函数矩阵的状态空间最小实现

————————————————————————————————作者:————————————————————————————————日期:

传递函数矩阵最小实现方法 ——降阶法 人们在设计复杂系统时,总是希望在构造系统之前用模拟计算机或数字计算机对所设计的系统进行仿真,以检查系统性能是否达到指标要求。给定严格真传递函数矩阵()G s ,为寻找一个维数最小的(A,B,C ),使1()()C sI A B G s --=,则称该(A,B,C )是()G s 的最小实现,也称为不可约实现。最小实现是系统实现的一种非常重要的实现方式,关于最小实现的特性,有下列几个重要结论: (1)(A,B,C )为严格真传递函数矩阵()G s 的最小实现的充要条件是(A,B )能控且(A,C )能观测。 (2)严格真传递函数矩阵()G s 的任意两个最小实现(A,B,C )与(,,)A B C 之间必代数等价,即两个最小实现之间由非奇异线性变换阵T 使得式子 11,,A T AT B T B C CT --===成立。 (3)传递函数矩阵()G s 的最小实现的维数为()G s 的次数n δ,或()G s 的极点多项式的最高次数。 为了寻求传递函数矩阵的最小实现,就意味着要把系统中不能控和不能观测的状态变量消去而不至于影响系统的传递函数。求最小实现的方法有三种: 1、降阶法。根据给定的传递函数矩阵()G s ,第一步先写出满足()G s 的能控型实现,第二步从中找出能观测子系统;或者第一步先写出满足()G s 的能观测型实现,第二步从中找出能控子系统,均可求得最小实现。 2、直接求取约当型最小实现的方法。若()G s 诸元容易分解为部分分式形式,运用直接求取约当型最小实现的方法是较为方便的。 3用汉克尔矩阵法求取最小实现的方法。 下面主要研究降阶法(先求能控型再求能观测子系统的方法)并举例说明。 先求能控型再求能观测子系统的方法设(p ×q )传递函数矩阵()G s ,且p <q 时,优先采用本法。取出()G s 的第j 列,记为j ()G s ,是j u 至()y s 的传递函

8 传递函数矩阵的零极点

第七章:矩阵分式描述 传递函数矩阵的矩阵分式描述是复出频域理论中表征线性时不变系统输入输出关系的一种基本模型。 采用矩阵分式描述(MFD )和多项式矩阵理论可使线性时不变系统的频域分析和综合的理论和方法简便和实用。 主要介绍:1、矩阵分式描述的形式和构成 2、矩阵分式描述的真性和严真性 3、矩阵分式描述的不可简约性 7-1 矩阵分式描述的基本概念 矩阵分式描述(MFD )的实质:就是把有理分式矩阵形式的传递函数矩阵G(s)表示为两个多项式矩阵之比。 MFD 形式上是对标量有理分式形式传递函数g(s)相应表示的一种推广 右MFD : 对p 输入,q 输出线性时不变系统。有理分式矩阵G(s),存在多项式矩阵p q s N ?)(和多项式矩阵p p s D ?)(使下式成立: 称p p p q s D s N ?-?)()(1为G(s)的一个右MFD 。 左MFD :p q L q q L p q s N s D s G ??-?=)()()(1 称p q L q q L s N s D ??-)()(1 为G(s)的一个左MFD 。 例:8.1 构造G(s)的一个右MFD ,=)(s G ?? ???++++?????210 210 1 1 2s s s s s s 方法:先确定各列的最小公分母,)2(1+=s s d c 22s d c = )2(3+=s d c 1 2 22)2(10)1(012210 ) 2() 1(01 ) 2(2)(-???? ? ?????++?? ???+++???? ? =?????++++++????? =s s s s s s s s s s s s s s s s s s s G p p p q p q s D s N s G ?-??=)()()(1

传递函数矩阵的状态空间最小实现

传递函数矩阵最小实现方法 ——降阶法 人们在设计复杂系统时,总是希望在构造系统之前用模拟计算机或数字计算机对所设计的系统进行仿真,以检查系统性能是否达到指标要求。给定严格真传递函数矩阵()G s ,为寻找一个维数最小的(A,B,C ),使1()()C sI A B G s --=,则称该(A,B,C )是()G s 的最小实现,也称为不可约实现。最小实现是系统实现的一种非常重要的实现方式,关于最小实现的特性,有下列几个重要结论: (1)(A,B,C )为严格真传递函数矩阵()G s 的最小实现的充要条件是(A,B )能控且(A,C )能观测。 (2)严格真传递函数矩阵()G s 的任意两个最小实现(A,B,C )与(,,)A B C 之间必代数等价,即两个最小实现之间由非奇异线性变换阵T 使得式子 11,,A T AT B T B C CT --===成立。 (3)传递函数矩阵()G s 的最小实现的维数为()G s 的次数n δ,或()G s 的极点多项式的最高次数。 为了寻求传递函数矩阵的最小实现,就意味着要把系统中不能控和不能观测的状态变量消去而不至于影响系统的传递函数。求最小实现的方法有三种: 1、降阶法。根据给定的传递函数矩阵()G s ,第一步先写出满足()G s 的能控型实现,第二步从中找出能观测子系统;或者第一步先写出满足()G s 的能观测型实现,第二步从中找出能控子系统,均可求得最小实现。 2、直接求取约当型最小实现的方法。若()G s 诸元容易分解为部分分式形式,运用直接求取约当型最小实现的方法是较为方便的。 3用汉克尔矩阵法求取最小实现的方法。 下面主要研究降阶法(先求能控型再求能观测子系统的方法)并举例说明。 先求能控型再求能观测子系统的方法设(p ×q )传递函数矩阵()G s ,且p <q 时,优先采用本法。取出()G s 的第j 列,记为j ()G s ,是j u 至()y s 的传递函

相关主题
文本预览
相关文档 最新文档