当前位置:文档之家› 金属断裂失效分析

金属断裂失效分析

金属断裂失效分析
金属断裂失效分析

根据失效分析的目的和要求,一般还要进行实验研究。其内容包括以下几个方面。

1、宏观检验

用肉眼或放大镜检验金属表面,纵横断面、断口上的各种组织和缺陷的方法叫做宏观检验。通过宏观检验能揭示金属的全貌,显示其组织的不均匀性和各种缺陷的形态、分布,对颜色、腐蚀、断裂裂纹的萌生位置及裂纹的走向等都能迅速而准确地识别出来。

进行断口的宏观分析。能得到断裂表面整体的概貌特征,并在一定程度上了解破坏的原因。可确定失效件断裂的裂纹萌生位置,裂纹的扩展方向,判别断裂的类型,构件所承受的应力类型,环境介质、温度对构件断裂的影响,变形程度及磨损情况。

常用的宏观检验方法有酸浸试验、塔形车削发纹试验以及硫印试验等。

(1)酸浸试验

酸浸试样制备时取样部位及数量按有关标准进行,并严防因温度升高而引起组织变化。切取试样用锯、剪、气割和砂轮切割等方式:当用气割试样时,必须将热影响区除去,以免影响检验结果。试样检验面可用车、刨、磨和金相砂纸磨制(02号砂纸),使表面粗糙度不低于3.2,并用汽油、酒精、苯等清洗去油。酸浸试验方法有三种。第一种是热酸浸蚀试验法。主要用于表面缺陷、夹杂物、偏析区等被浸蚀剂有选择性地浸蚀,表现出可看得见的浸蚀特征。酸蚀试验效果决定于浸蚀剂成分;浸蚀的温度;浸蚀时间及浸蚀面的光洁度。第二种是冷酸浸蚀试验法。冷酸浸蚀试验法是检查钢的宏观组织和缺陷的一种简易方法。冷酸浸蚀是采用室温下的酸溶液浸蚀和擦蚀样面,以显示试样的缺陷。通常,对于不使用热酸浸蚀的钢材或工件(例如工件已加工好,不便切开,又不得损坏工件的表面粗糙度),以及有些组织缺陷用热酸不易显现,有些奥氏体不锈钢用热盐酸不易腐蚀时,均可用冷酸浸蚀法进行试验。第三种电解酸蚀法。电解酸蚀法,就是用15%~20%(容积比)工业盐酸水溶液电解试样表面的试验方法。这种方法的优点是,可以用较稀(15%~20%)的盐酸水溶液在室温下进行浸蚀,可以缩短腐蚀时间,大大地改善劳动条件和卫生环境。此外,因电解腐蚀后盐酸的性质改变不大,一般可循环使用,节约酸液,用电解法显示试样的宏观组织及缺陷比热酸浸蚀法更清晰。

(2)塔形试验

塔形试验是用以检验发纹不同深度的分布的一种特殊试验:由于检验的试样制成“塔”的形状即三级阶梯形,故通常称为塔形试验。塔形试验一般均分为三个阶梯。

试样加工的要求、基本与热酸浸试样相同。试样检验前,也要进行热酸浸,其酸浸液、酸浸规范基本上与热酸浸试验相同,只是一般浸蚀程度略轻,否则会对其后的检验和鉴别造成不利影响。酸浸后,在各个阶梯上会出现一些具有一定长度和一定深度的细小裂纹,即发纹。最后用肉眼或不大于10倍的放大镜进行检查和鉴别。发纹是沿轧制方向分布的,具有一定长度和深度的细小裂纹。一般由于该裂纹很窄,光线射不到底,故只能看到有深度的黑色线条。顺光时,个别较宽的发纹,可以看到灰暗色的底部。

(3)硫印试验

硫在钢中以硫化物的形式存在(FeS、MnS),硫化铁与铁共晶温度为989℃,呈网状分布于晶界,在热压力加工时极易产生“热脆”现象,直接影响钢材质量。硫印的目的就是要显示硫在钢中的分布和偏析程度。硫印就是利用稀硫酸与钢中的硫发生反应,生成硫化氢气体。硫化氢再与印相纸乳剂层中的溴化银作用,在印相纸上生成棕色硫化银沉淀。根据硫化银棕色斑点的数量、大小、色泽深浅及分布的均匀性,来评定碳钢、低中合金钢的质量。

宏观检验的方法有多种,各自有它们的特点及适用范围。酸浸试验对疏松、偏析、流线、裂纹等最适用;塔形发纹检验一般用于有特殊用途的材料或高级优质材料上,用来检验它们在各个部位上的发纹多少和分布;硫印试验是用来测定钢锭或钢材上硫的分布,同时也可以间接地对其他元素的分布概况和趋势进行推测和估计。各种方法在使用上各有侧重,可单独使用也可同时并用,相互补充,以期达到准确测试的目的。

2、微观检验

宏观检验能够获得很多信息,但要了解更多的细节和情况还必须再进行微观观察。通过对断口的微观分析,除可以进一步澄清断裂的途径、断裂的性质,环境介质及温度对断裂的影响外,还能进一步确定断裂的原因及其断裂机理等详细情况。对断口进行显微分析时,可使用光学显微镜、透射电镜,扫描电镜.俄歇电子能谱仪,离子探针,X射线衍射仪等仪器来研究。

3、金相检验

金相检验是一种常规的实验分析方法.它在失效分析中能提供被检材料的大概种类和组织状况。从检验出的显散组织来推断或证实被检材料制造过程中经历的工艺过程,以及执行这些工艺是否属正常,同时还可提供失效件在发生事故时是否发生塑性变形等情况,以及失效件在使用过程中无意造成的热处理效果等。反映出失效件在工作条件下发生的腐蚀(大致可以定性和对腐蚀程度的半定量)、磨损、氧化和严重的表面加工硬化等,并可初步确定其程度。从失效件上存在的裂纹,通过光学金相,大致可看出裂纹的发生及延伸分布的特征以及裂纹两侧的显微组织,来判断裂纹的性质,从而可提供失效件裂纹的产生原因;夹杂物的类型、级别及分布;相的类型、大小及分布。

4、无损检验

在进行断裂部件的性能测定时,需从断裂件上取样,这是有损检验。为了对原有构件的缺陷及裂纹分布情况做一次了解,应该首先进行无损探伤。

无损探伤有了解表面裂纹的着色探伤、磁粉探伤、探测内部缺陷及裂纹分布的超声探伤、X光探伤、涡流探伤等方法。

超声波探测深度可达几米,特别适用于检查零件内部的裂纹、气孔、夹渣、砂眼、疏松、未焊透等,能准确测出缺陷的位置、大小和形状。但是,它不能用于奥氏体钢的铸件和焊缝等粗晶材料和复杂形状或表面粗糙的工件检测。近年来,超声波广泛用来检验金属材料的质量,并逐步成为金属材料预检或正式检验的手段。

涡流探伤能对表面或表皮下的缺陷及全部导电材料进行检验,可实现自动记录和高速检验,适于连续监测,但难以确定缺陷的种类。

X射线探伤能够探查材料内部的变化和体积型缺陷,如气孔、夹渣、缩孔、疏松等,能提供永久性的照片记录。但是,射线照相方法,不能用于检测锻件和型材中的缺陷。

磁粉探伤适用于探测铁磁性材料和工件的缺陷,如锻件、焊缝、型材、铸件等,并确定缺陷的位置,大小和形状,但难以确定缺陷的深度。该方法不适用于探测非铁磁性材料,如奥氏体钢、铜、铝等缺陷。

渗透探伤的应用范围更加广泛,可以用于探测所有金属材料和致密性非金属材料的缺陷,能确定缺陷的位置,大小和形状,但不能确定缺陷的深度。该方法不能用于探测疏松的多孔性材料的缺陷。

5、化学成分分析

在失效分析中,化学成分分析是必不可少的。它能为失效分析提供有用的信息。如由于选材错误所造成的失效,只需要用化学成分分析就能得到结果。利用X射线和荧光分析、能谱分析、俄歇分析、电子探针、离子探针、激光探针等方法,对金属的表面或内部的成分进行分析和研究。在进行化学我分分析时,宏观化学成分分析最常用,对于特殊情况,可采用微区化学成分分析。

X射线分析技术是失效分析的有效技术之一。粉末照相法能识别基体金属腐蚀产物,耐火材料和矿物中的各种相。用X射线衍射和荧光分析能对化学成分作定性和定量分析,能测定基体和析出的相以及它们间的取向、电化学萃取的第二相粒子、表面沉淀和腐蚀产物的成分和结构。X射线衍射法还能对材料的晶格参数、晶体缺陷、残余内应力进行测量。然而,由于它不是像显微镜那样直观可见的观察?也无法把形貌观察与晶体结构分析微观同位地结合起来,其分析样品的最小区域仅在毫米数量级?不能进行微米及纳米级的微区选择分析。下表是常用实验分析方法的性能与用途比较。

6、力学性能测定

对零部件进行失效分析常要测定材料的硬度和力学性能。由于硬度的测量简便易行,对失效分析常常是最有用的手段之一,可用于估计金属材料的拉伸强度,估计热处理是否合乎质量要求,检验由于过热、脱碳、渗碳、渗氮和加工硬化等所引起的软化和硬化等。

力学性能测定常要进行金属的拉伸试验及冲击试验,以便于比较。有时还需要做一些比使用温度稍高或稍低的力学性能测量,以便对零部件在服役中是否有

超温情况作出判断。此外还需考虑特殊性能测定,如疲劳试验、应力腐蚀试验、韧脆转变温度测定、断裂韧性测定等。

在钢材的初步检验中,用简单的弯曲试验就能查明材料是韧性还是脆性的。硬度测量能指示钢材的抗拉强度。但对铸铁和大多数非铁金属材料还不能用弯曲和硬度测量来评估,而只能用拉伸来测量,这是因为他们还没有建立起硬度与拉伸强度的对应关系。一般非铁金属如铝、铜及其合金的塑性较大,用简单弯曲不能反映脆性或塑性的程度。与说明书的数据比较时,应注意到试样取向与材料加工方向之间的关系。通常,横向试样的拉伸强度比纵向的小些。

一般来说,由于拉伸强度不足而引起损坏的例子并不多见。因此,力学性能测试主要起到复检的作用和确定排除力学性能引起损坏的顾虑。

7、断裂力学分析

失效分析应用断裂力学测量的目的,在于通过断裂韧性的测试和分析,确定一个部件安全使用所能容纳的裂纹尺寸,以及确定含有裂纹部件的寿命。前者判断部件成品材料的断裂韧度是否合理,如不合理必须设法提高该部件的断裂韧度,以免同样的失效重复发生;后者在于判断现有裂纹的部件还能使用多久,而不至于误判它过早的退役。

断裂力学是从有韧口的实际情况出发来考虑切口效应和裂纹扩展的速率。目前常用的评价断裂韧性的方法有。平面应变断裂韧度(K1c)测试,动态撕裂试验(DT),J积分断裂判据(J1c),裂纹张开位移(COD)测试和动态断裂韧度(K1d)测试。

金属--断裂与失效分析报告 刘尚慈

金属断裂与失效分析(尚慈编) 第一章概述 失效:机械装备或机械零件丧失其规定功能的现象。 失效类型:表面损伤、断裂、变形、材质变化失效等。 第二章金属断裂失效分析的基本思路 §2—1 断裂失效分析的基本程序 一、现场调查 二、残骸分析 三、实验研究 (一)零件结构、制作工艺及受力状况的分析 (二)无损检测 (三)材质分析,包括成分、性能和微观组织结构分析 (四)断口分析 (五)断裂力学分析 以线弹性理学为基础,分析裂纹前沿附近的受力状态,以应力强度因子K作为应力场的主要参量。 K I=Yσ(πα)1/2 脆性断裂时,裂纹不发生失稳扩展的条件:K I<K IC 对一定尺寸裂纹,其失稳的“临界应力”为:σc=K IC / Y(πα)1/2 应力不变,裂纹失稳的“临界裂纹尺寸”为:αc=(K IC / Yσ)2/π 中低强度材料,当断裂前发生大围屈服时,按弹塑性断裂力学提出的裂纹顶端开位移[COD(δ)]作为材料的断裂韧性参量,当工作应力小于屈服极限时: δ=(8σsα/πE)ln sec(πσ/2σs) 不发生断裂的条件为:δ<δC(临界开位移) J积分判据:对一定材料在大围屈服的情况下,裂纹尖端应力应变场强度由形变功差率J来描述。开型裂纹不断裂的判据为:

J<J IC K IC——断裂韧性;K ISCC——应力腐蚀门槛值 (六)模拟试验 四、综合分析 分析报告的涵:①失效零部件的描述;②失效零部件的服役条件;③失效前的使用记录;④零部件的制造及处理工艺;⑤零件的力学分析;⑥材料质量的评价;⑦失效的主要原因及其影响因素;⑧预防措施及改进建议等。 五、回访与促进建议的贯彻 §2—2 实效分析的基本思路 一、强度分析思路 二、断裂失效的统计分析 三、断裂失效分析的故障树技术 第三章金属的裂纹 §3—1 裂纹的形态与分类 裂纹:两侧凹凸不平,偶合自然。裂纹经变形后,局部磨钝是偶合特征不明显;在氧化或腐蚀环境下,裂缝的两侧耦合特征也可能降低。 发纹:钢中的夹杂物或带状偏析等在锻压或轧制过程中,沿锻轧方向延伸所形成的细小纹缕。发纹的两侧没有耦合特征,两侧及尾端常有较多夹杂物。 裂纹一般是以钢中的缺陷(发纹、划痕、折叠等)为源发展起来的。 一、按宏观形态分为: (1)网状裂纹(龟裂纹),属于表面裂纹。产生的原因,主要是材料表面的化学成分、金相组织、力学性能、应力状态等与中心不一致;或者在加工过程中发生过热与过烧,晶界性能降低等,导致裂纹沿晶界扩展。如: ①铸件表面裂纹:在1250~1450℃形成的裂纹,沿晶界延伸,

金属力学性能与失效分析

五,金属的断裂韧性 传统的机械设计是建立在一个基本假设的基础上,即认为材料是连续的、均匀的、各项同性的可变形体。设计构件时不仅要满足强度、刚度和稳定性这三点要求,同时还要满足成本低、重量轻、耗能小、容量大的要求。而原来的传统设计方法已不能合理的解决以上问题,断裂力学则是为适应这一要求而发展起来的学科,是现代强度学科的重要组成部分。 断裂力学是从实际材料中存在缺陷和裂纹出发,把构建看成是连续和间断的统一体。研究带裂纹材料中裂纹拓展的规律,分析裂纹尖端应力、应变分布,并建立断裂判据,用以解决工程构建中的低应力脆性断裂问题。这一整套计算方法和设计原则,使工程中低应力脆断得到合理的说明和解决,使灾难性事故减少发生。宏观断裂理论包括线弹性断裂理论和弹塑性断裂理论。线弹性断裂理论主要研究脆性断裂。而脆性断裂主要以格里菲斯(Griffith)理论为基础。格里菲斯关系式是根据弹性材料和非常尖锐裂纹的应力分布推导出来的。平面应力下的格里菲斯公式为: σ= (5-1) 平面应变下的格里菲斯公式: σ= 5-2) 式中σ—工作应力; E—弹性模量; a—裂纹半长; r s ——比表面能; 图5-1 裂纹扩展三种类型 a-张开型;b-滑开型;c-撕开型 5.1.1应力强度因子 5.1.1.1 裂纹扩展方式 根据裂纹面的位移方式,将裂纹分为三种类型:Ⅰ型或张开型(拉伸型);Ⅱ型

或滑开型(面内剪切型);Ⅲ型或撕开型(面外剪切型);如图5-1所示。 5.1.1.2裂纹尖端的应力场和位移场 (1)Ⅰ型裂纹尖端的应力分量,如图5-2所示。 ) 23 s i n 2s i n 1(2c o s 2y θ θθπσ+=r K I 23c o s 2s i n 2c o s 2θ θθπτr K I xy = 图5-2 双向拉伸作用下的格里菲斯裂纹 图5-3 Ⅱ型Griffithlith 裂纹 Ⅰ型裂纹中y σ是引起断裂的关键性的应力。当0=θ时,则 r K I y πσ2= ) 23sin 2sin 1(2cos 2x θ θθπσ-= r K I

材料断裂理论与失效分析知识点

作业:(8)航空发动机涡轮盘-叶片结构 ◆材料为镍基高温合金,为什么? ◆服役环境的要素有哪些? ◆有可能发生的失效类型是什么? ◆如何设计实验确定失效的类型? ◆改进的建议和措施 一.涡轮叶片的材料 涡轮叶片处于温度最高、应力最复杂、环境最恶劣的部位,是一种特殊的零件,它的数量多,形状复杂,要求高,加工难度大,而且是故障多发的零件,一直以来各发动机厂的生产的关键。所以对涡轮叶片材料就有更高的要求。 涡轮叶片的材料一般选择镍基高温合金。镍基合金就是以镍为基础,加入其他的金属,比如钨、钴、钛、铁等金属,做成以镍为基础的合金。有的镍基高温合金含镍量达到70%左右,其次Cr含量也比较高。其性能主要有: 1.物理性能。具有较高的熔点和弹性模量;各温度下均有较低的热膨胀系数,且随温度变化不大;没有磁性。 2.耐腐蚀性。镍基合金由于含Cr,在氧化性的腐蚀环境中的耐腐蚀性优于纯镍。同时,由于Ni含量高,在还原性腐蚀环境下也能维持良好的耐腐蚀性能。还具有良好的耐应力腐蚀开裂性能,也能抵抗氨气和渗氮、渗碳气氛。 3.机械性能。镍基高温合金在零下、室温及高温时都具有很好的机械性能。 4.高温特性。高温下耐氧化性极佳,对氮、氢以及渗碳也具有极佳的耐受性。 5.热处理及加工、焊接性。高温镍基合金不能通过热处理进行失效硬化,但可以进行固溶热处理和退火处理等。高温镍基合金比较容易进行热加工,冷加工性能比奥氏体不锈钢好。焊接性能与标准奥氏体钢一样,可采用TIG焊接、MIG焊接以及手工电弧焊。 总的来说,镍基合金具有优良的热强热硬性能、热稳定性能及热疲劳性能,可以承受复杂应力,组织稳定,有害相少,高温时抗氧化热腐蚀性好,蠕变特性出色,能够在相当苛刻的高温环境下进行服役。所以涡轮叶片的材料选择高温镍基合金。 二.涡轮叶片的服役环境 涡轮处于燃烧室后面的一个高温部件,而涡轮叶片处于温度最高、应力最复杂、环境最恶劣的部位,即涡轮叶片的服役环境特别的复杂与恶劣。总得来说,涡轮叶片服役环境的要素主要有: 1.不均匀的高温条件下工作。涡轮处于燃烧室后面的一个高温部件,涡轮工作叶片的工作温度大约在720℃~1120℃,其在工作时已达到红热状态,并且其温度场不均匀,随着飞行状态的变化而承受不同的温度,而且还存在高温氧化,这些都使得涡轮叶片的服役环境非常恶劣。 2.高转速条件下工作。涡轮发动机靠涡轮叶片快速旋转将燃气压缩排出,装化为机械能,为航天器提供动力。 3.高应力和复杂应力条件下工作。涡轮工作叶片承受很大的离心力及其弯矩,还要承受燃气施加的很高的弯曲载荷、热应力,还有振动应力和气动力等复杂的应力作用。 4.受到燃气高频脉动及燃气腐蚀的影响。涡轮工作叶片直接接触高温高压燃气,燃烧产生的燃气含有大量的Na,V,S等热腐蚀性元素,使得涡轮工作叶片的工作环境更为苛刻。 三.可能发生的失效类型 根据涡轮叶片的服役环境,可以推断出涡轮叶片的失效方式大概分为正常失效和非正常失效两种。 1.正常失效中的叶片损伤包括由磨损、掉块、内裂等构成的表观损伤和内部冶金组织损伤两类。其中,内部冶金组织损伤是指叶片在低于规定使用温度和应力的服役环境下发生的诸如γ'相粗化,晶界及晶界碳化物形貌的变化,脆性相生成等显微组织的变化。导致的主要失效形式是蠕变失效,但同时还有高温腐蚀、热疲劳和低周疲劳及其交互作用等。蠕变损伤主要表现为蠕变孔洞和蠕变裂纹的产生。 大多数涡轮叶片的失效方式为正常失效方式,即蠕变失效、蠕变-疲劳交互作用导致的失效和腐蚀失效。 2.非正常失效是由于叶片设计不当、制备缺陷或人员操作不当引起的失效行为,主要表现为高周疲劳、超温服役引起的过热甚至过烧等失效形式。 总的来说,涡轮叶片可能的失效类型主要为:疲劳失效、蠕变失效和过载断裂等。 四.设计实验确定失效的类型 1.疲劳失效。金属零件再使用中发生的疲劳断裂具有突发性、高度局部性及对各种缺陷的敏感性等特点;引起疲劳断裂的应力一般很低,端口上经常可观察到特殊的、反映断裂各阶段宏观及微观过程的特殊花样。典型的疲劳端口的宏观形貌结构可分为疲劳核心、疲劳源区、疲劳裂纹的选择发展区、裂纹的快速扩展区及瞬时断裂区等五个区域。 2.蠕变失效。蠕变断裂是材料在恒定应力(应力水平低于材料的断裂强度)作用下应变时间逐渐增加,最后发生断裂。明显的塑性变形是蠕变断裂的主要特征,在端口附近产生许多裂纹,使断裂件的表面呈现龟裂现象。

金属的断裂条件及断口

金属的断裂条件及断口 金属在外加载荷的作用下,当应力达到材料的断裂强度时,发生断裂。断裂是裂纹发生和发展的过程。 1. 断裂的类型 根据断裂前金属材料产生塑性变形量的大小,可分为韧性断裂和脆性断裂。韧性断裂:断裂前产生较大的塑性变形,断口呈暗灰色的纤维状。脆性断裂:断裂前没有明显的塑性变形,断口平齐,呈光亮的结晶状。韧性断裂与脆性断裂过程的显著区别是裂纹扩散的情况不同。 韧性断裂和脆性断裂只是相对的概念,在实际载荷下,不同的材料都有可能发生脆性断裂;同一种材料又由于温度、应力、环境等条件的不同,会出现不同的断裂。 2. 断裂的方式 根据断裂面的取向可分为正断和切断。正断:断口的宏观断裂面与最大正应力方向垂直,一般为脆断,也可能韧断。切断:断口的宏观断裂面与最大正应力方向呈45°,为韧断。 3. 断裂的形式 裂纹扩散的途径可分为穿晶断裂和晶间断裂。穿晶断裂:裂纹穿过晶粒内部,韧断也可为脆断。晶间断裂:裂纹穿越晶粒本身,脆断。

机器零件断裂后不仅完全丧失服役能力,而且还可能造成不应有的经济损失及伤亡事故。断裂是机器零件最危险的失效形式。按断裂前是否产生塑性变形和裂纹扩展路径做如下分类。 韧性断裂的特征是断裂前发生明显的宏观塑性变形,用肉眼或低倍显微镜观察时,断口呈暗灰色纤维状,有大量塑性变形的痕迹。脆性断裂则相反,断裂前从宏观来看无明显塑性变形积累,断口平齐而发亮,常呈人字纹或放射花样。 宏观脆性断裂是一种危险的突然事故。脆性断裂前无宏观塑性变形,又往往没有其他预兆,一旦开裂后,裂纹迅速扩展,造成严重的破坏及人身事故。因而对于使用有可能产生脆断的零件,必须从脆断的角度计算其承载能力,并且应充分估计过载的可能性。. 金属材料产生脆性断裂的条件 (1)温度任何一种断裂都具有两个强度指标,屈服强度和表征裂纹失稳扩散的临界断裂强度。温度高,原子运动热能大,位错源释放出位错,移动吸收能量;温度低反之。 (2)缺陷材料韧性裂纹尖端应力大,韧性好发生屈服,产生塑性变形,限制裂纹进一步扩散。裂纹长度裂纹越长,越容易发生脆性断裂。缺陷尖锐程度越尖锐,越容易发生脆性断裂。 (3)厚度钢板越厚,冲击韧性越低,韧-脆性转变温度越高。原因:(A)越厚,在厚度方向的收缩变形所受到的约束作用越大,

失效分析

失效分析 第三章失效分析的基本方法 1.按照失效件制造的全过程及使用条件的分析方法:(1)审查设计(2)材料分析(3)加工制 造缺陷分析(4)使用及维护情况分析 2.系统工程的分析思路方法:(1)失效系统工程分析法的类型(2)故障树分析法(3)模糊故 障树分析及应用 3.失效分析的程序:调查失效时间的现场;收集背景材料,深入研究分析,综合归纳所有信息 并提出初步结论;重现性试验或证明试验,确定失效原因并提出建议措施;最后写出分析报告等内容。 4.失效分析的步骤:(1)现场调查①保护现场②查明事故发生的时间、地点及失效过程③收集 残骸碎片,标出相对位置,保护好断口④选取进一步分析的试样,并注明位置及取样方法⑤询问目击者及相关有关人员,了解有关情况⑥写出现场调查报告(2)收集背景材料①设备的自然情况,包括设备名称,出厂及使用日期,设计参数及功能要求等②设备的运行记录,要特别注意载荷及其波动,温度变化,腐蚀介质等③设备的维修历史情况④设备的失效历史情况⑤设计图样及说明书、装配程序说明书、使用维护说明书等⑥材料选择及其依据⑦设备主要零部件的生产流程⑧设备服役前的经历,包括装配、包装、运输、储存、安装和调试等阶段⑨质量检验报告及有关的规范和标准。(3)技术参量复验①材料的化学成分②材料的金相组织和硬度及其分布③常规力学性能④主要零部件的几何参量及装配间隙(4)深入分析研究(5)综合分析归纳,推理判断提出初步结论(6)重现性试验或证明试验 5.断口的处理:①在干燥大气中断裂的新鲜断口,应立即放到干燥器内或真空室内保存,以防 止锈蚀,并应注意防止手指污染断口及损伤断口表面;对于在现场一时不能取样的零件尤其是断口,应采取有效的保护,防止零件或断口的二次污染或锈蚀,尽可能地将断裂件移到安全的地方,必要时可采取油脂封涂的办法保护断口。②对于断后被油污染的断口,要进行仔细清洗。③在潮湿大气中锈蚀的断口,可先用稀盐酸水溶液去除锈蚀氧化物,然后用清水冲洗,再用无水酒精冲洗并吹干。④在腐蚀环境中断裂的断口,在断口表面通常覆盖一层腐蚀产物,这层腐蚀产物对分析致断原因往往是非常重要的,因而不能轻易地将其去掉。 6.断口分析的具体任务:①确定断裂的宏观性质,是延性断裂还是脆性断裂或疲劳断裂等。② 确定断口的宏观形貌,是纤维状断口还是结晶状断口,有无放射线花样及有无剪切唇等。③查找裂纹源区的位置及数量,裂纹源的所在位置是在表面、次表面还是在内部,裂纹源是单个还是多个,在存在多个裂纹源区的情况下,它们产生的先后顺序是怎样的等。④确定断口的形成过程,裂纹是从何处产生的,裂纹向何处扩展,扩展的速度如何等。⑤确定断裂的微观机理,是解理型、准解理型还是微孔型,是沿晶型还是穿晶型等。⑥确定断口表面产物的性质,断口上有无腐蚀产物,何种产物,该产物是否参与了断裂过程等。 7.断口的宏观分析(1)最初断裂件的宏观判断①整机残骸的失效分析;②多个同类零件损坏的 失效分析;③同一个零件上相同部位的多处发生破断时的分析。(2)主断面(主裂纹)的宏观判断①利用碎片拼凑法确定主断面;②按照“T”形汇合法确定主断面或主裂纹;③按照裂纹

材料失效分析

材料失效分析 ——金属的疲劳破坏 1.1材料失效简介 材料失效分析在工程上正得到日益广泛的应用和普遍的重视。失效分析对改进产品设计、选材等提供依据,并可防止或减少断裂事故的发生;可以提高机械产品的信誉,并能起到技术反馈作用,明显提高经济效益。大力开展失效分析研究,无论对工业、民生、科技发展,都具有极其重要的作用。 所谓失效——主要指机械构件由于尺寸、形状或材料的组织与性能发生变化而引起的机械构件不能完满地完成指定的功能。亦可称为故障或事故。一个机械零部件被认为是失效,应根据是否具有以下三个条件中的一个为判据: (1)零件完全破坏,不能工作; (2)严重损伤,继续工作不安全; (3)虽能暂时安全工作,但已不能满意完成指定任务。 上述情况的任何一种发生,都认为零件已经失效。 机械零部件最常见的失效形式有以下几种: 1.断裂失效:通常包括塑性(韧性)断裂失效;低应力脆性断裂失效;疲劳断裂失效; 蠕变断裂失效;应力腐蚀断裂失效。 2.表面损伤失效:通常包括磨损失效;腐蚀失效;表面疲劳失效 3.变形失效:包括塑性变形失效;弹性变形失效,同一种零件可有几种不同失效形式。一个零件失效,总是由一种形式起主导作用,很少以两种形式主导失效的。但它们可以组合为更复杂的失效形式,例如腐蚀磨损、腐蚀疲劳等。 2.1疲劳破坏 飞机、船舶、汽车、动力机械、工程机械 、冶金、石油等机械以及铁路桥梁等的主要零件和构件,大多在循环变化的载荷下工作,疲劳是其主要的失效形式。 金属疲劳是指材料、零构件在循环应力或循环应变作用下,在一处或几处逐渐产生局部永久性累积损伤,经一定循环次数后产生裂纹或突然发生完全断裂的过程。当材料和结构受到多次重复变化的载荷作用后,应力值虽然始终没有超过材料的强度极限,甚至比弹性极限还低的情况下就可能发生破坏,这种在交变载荷重复作用下材料和结构的破坏现象,就叫做金属的疲劳破坏。 2.2疲劳断裂的特征 1、疲劳断裂应力1σ(周期载荷中的最大应力 max σ)远比静载荷下材料的抗拉强度 b σ低,甚至比屈服强度s σ也低得多。 2、不管是脆性材料或延性材料,其疲劳断裂在宏观上均表现为无明显塑性变形的脆性突然断裂,故疲劳断裂一般表现为低应力脆断。 3、疲劳破断是损伤的积累,积累到一定程度,即裂纹扩展到一定程度后才突然断裂。 断裂前要经过较长时间的应力循环次数N (=104;105;106……)才断裂,所以疲劳断 裂是与时间有关的断裂。在恒应力或恒应变下,疲劳将由三个过程组成:裂纹的形成(形核);裂纹扩展到临界尺寸;余下断面的不稳定断裂。在宏观上可清楚看到后二个过程。 4、材料抵抗疲劳载荷的抗力比一般静载荷要敏感得多。疲劳抗力不仅决定于材料本 身,而且敏感地决定于构件的形状,尺寸、表面状态、服役条件和所处环境等。

工程力学中断裂理论在材料中的应用

工程力学中断裂理论在材料中的应用 11级粉体(2)张子龙 1103012022 摘要:介绍了工程力学中的断裂力学发展史及它的主要内容,线弹性和弹塑性断裂力学。它被广泛的应用于现代材料研究中。它的发展解决了许多工程中灾难性的低应力脆断问题,已成为失效分析的重要研究方法之一。 关键词:断裂材料应用 断裂是材料或构件最危险的失效形式,在很多情况下可能造成灾难性的后果。材料的断裂是一个很复杂的过程,受很多因素影响,如材料本身的性质、环境因素、工作应力状态、构件形状及材料的尺寸、结构及缺陷等控制,所以断裂一般是多种因素综合作用的结果。这使得对断裂过程的分析增加了更多的不确定因素,增加了对断裂控制的难度。特别是二次世界大战以来,随着高强材料和大型结构的广泛应用,一些按传统强度理论和常规设计方法、制造的产品,先后发生了不少灾难性断裂事故,特别是国防尖端产品的脆断,引起了人们的震惊和警觉。因为事故往往发生在断裂应力远远Sn 的情况δ/]=甚至低于许用应力[δ低于材料的屈服应力Sδ下。从大量的断裂事故分析中发现,断裂皆与结构中存在缺陷或裂纹有关。传统的设计思想把材料视为无缺陷的理想连续体,而现今工程实际中的构件或材料都不可避免地存在着缺陷和裂纹,因而实际构件的真实强度大大低于理想模型的强度。断裂力学则是从构件或材料内部存在的缺陷或裂纹发了传

统设计思想的严重不足。断裂. 力学是以变形体力学为基础,研究含缺陷(或裂纹)材料和结构的抗裂纹性能,以及在各种工作条件下裂纹的平衡、扩展、失稳及止裂规律的一门学科[1]。断裂力学的发展解决了许多工程中灾难性的低应力脆断问题,已成为失效分析的重要研究方法之一。 1 断裂力学的发展历史 断裂力学理论最早是在1920 年提出。当时Griffith为了研究玻璃、陶瓷等脆性材料的实际强度比理论强度低的原因,提出了在固体材料中或在材料的运行过程中存在或产生裂纹的设想,计算了当裂纹存在时,板状构件中应变能的变化进而得出了一个十分重要的结C a Ca 为裂纹半长常数其中,δ是裂纹扩展的临界应力;果:δ= 度。他成功的解释了玻璃等脆性材料的开裂现象但是应用于金属材料时却并不成功。1949 年Orowan在分析了金属构件的断裂现象后对Griffith 的公式提出了修正,他认为产生裂纹所释放的应变能不仅能转化为表面能,也应转化为裂纹前沿的塑性应变功,而且由于塑性应变功比表面能大得多以至于可以不考虑表面能的影响,其提出的公式为 C a EU/λ)1/δ2 =(2=常数该公式虽然有所进步,但仍U是Griffith 公式范围,而且同表面能一样,应变功未超出经典的难以测量的,因而该公式仍难以应用在工程中。断裂力学的重大突破应归功于Irwin 应力场强度因子概念的提出,以及以后断裂韧性概念的形成。1957 年,Irwin 应用Westergaard·H·M在1939年提出的解

材料断裂理论与失效分析知识点

?材料为镍基高温合金,为什么? ?服役环境的要素有哪些? ?有可能发生的失效类型是什么? ?如何设计实验确定失效的类型? ?改进的建议和措施 一.涡轮叶片的材料涡轮叶片处于温度最高、应力最复杂、环境最恶劣的部位,是一种特殊的零件,它的数量多,形状复杂,要求高,加工难度大,而且是故障多发的零件,一直以来各发动机厂的生产的关键。所以对涡轮叶片材料就有更高的要求。 涡轮叶片的材料一般选择镍基高温合金。镍基合金就是以镍为基础,加入其他的金属,比如钨、钴、钛、铁 等金属,做成以镍为基础的合金。有的镍基高温合金含镍量达到70殊右,其次Cr含量也比较高。其性能主要有: 1. 物理性能。具有较高的熔点和弹性模量;各温度下均有较低的热膨胀系数,且随温度变化不大;没有磁性。 2. 耐腐蚀性。镍基合金由于含Cr,在氧化性的腐蚀环境中的耐腐蚀性优于纯镍。同时,由于Ni含量高,在还原性腐蚀环境下也能维持良好的耐腐蚀性能。还具有良好的耐应力腐蚀开裂性能,也能抵抗氨气和渗氮、渗碳气 氛。 3. 机械性能。镍基高温合金在零下、室温及高温时都具有很好的机械性能。 4. 高温特性。高温下耐氧化性极佳,对氮、氢以及渗碳也具有极佳的耐受性。 5. 热处理及加工、焊接性。高温镍基合金不能通过热处理进行失效硬化,但可以进行固溶热处理和退火处理等。高温镍基合金比较容易进行热加工,冷加工性能比奥氏体不锈钢好。焊接性能与标准奥氏体钢一样,可采用TIG焊接、MIG旱接以及手工电弧焊。 总的来说,镍基合金具有优良的热强热硬性能、热稳定性能及热疲劳性能,可以承受复杂应力,组织稳定,有害相少,高温时抗氧化热腐蚀性好,蠕变特性出色,能够在相当苛刻的高温环境下进行服役。所以涡轮叶片的材料选择高温镍基合金。 二. 涡轮叶片的服役环境涡轮处于燃烧室后面的一个高温部件,而涡轮叶片处于温度最高、应力最复杂、环境最恶劣的部位,即涡轮叶片的服役环境特别的复杂与恶劣。总得来说,涡轮叶片服役环境的要素主要有: 1. 不均匀的高温条件下工作。涡轮处于燃烧室后面的一个高温部件,涡轮工作叶片的工作温度大约在720°C- 1120C,其在工作时已达到红热状态,并且其温度场不均匀,随着飞行状态的变化而承受不同的温度,而且还存在高温氧化,这些都使得涡轮叶片的服役环境非常恶劣。 2. 高转速条件下工作。涡轮发动机靠涡轮叶片快速旋转将燃气压缩排出,装化为机械能,为航天器提供动力。 3. 高应力和复杂应力条件下工作。涡轮工作叶片承受很大的离心力及其弯矩,还要承受燃气施加的很高的弯曲载荷、热应力,还有振动应力和气动力等复杂的应力作用。 4. 受到燃气高频脉动及燃气腐蚀的影响。涡轮工作叶片直接接触高温高压燃气,燃烧产生的燃气含有大量的Na, V, S等热腐蚀性元素,使得涡轮工作叶片的工作环境更为苛刻。 三.可能发生的失效类型根据涡轮叶片的服役环境,可以推断出涡轮叶片的失效方式大概分为正常失效和非正常失效两种。 1. 正常失效中的叶片损伤包括由磨损、掉块、内裂等构成的表观损伤和内部冶金组织损伤两类。其中,内部冶金组织损伤是指叶片在低于规定使用温度和应力的服役环境下发生的诸如丫/相粗化,晶界及晶界碳化物形貌的变化,脆性相生成等显微组织的变化。导致的主要失效形式是蠕变失效,但同时还有高温腐蚀、热疲劳和低周疲劳及其交互作用等。蠕变损伤主要表现为蠕变孔洞和蠕变裂纹的产生。 大多数涡轮叶片的失效方式为正常失效方式,即蠕变失效、蠕变-疲劳交互作用导致的失效和腐蚀失效。 2. 非正常失效是由于叶片设计不当、制备缺陷或人员操作不当引起的失效行为,主要表现为高周疲劳、超温服役引起的过热甚至过烧等失效形式。 总的来说,涡轮叶片可能的失效类型主要为:疲劳失效、蠕变失效和过载断裂等。四.设计实验确定失效的类型 1. 疲劳失效。金属零件再使用中发生的疲劳断裂具有突发性、高度局部性及对各种缺陷的敏感性等特点;引起疲劳断裂的应力一般很低,端口上经常可观察到特殊的、反映断裂各阶段宏观及微观过程的特殊花样。典型的疲劳端口的宏观形貌结构可分为疲劳核心、疲劳源区、疲劳裂纹的选择发展区、裂纹的快速扩展区及瞬时断裂区等五个区域。 2. 蠕变失效。蠕变断裂是材料在恒定应力(应力水平低于材料的断裂强度)作用下应变时间逐渐增加,最后发生断裂。明显的塑性变形是蠕变断裂的主要特征, 在端口附近产生许多裂纹, 使断裂件的表面呈现龟裂现象。

金属塑性变形与断裂

金属塑性变形与断裂集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

金属材料塑性变形与断裂的关系 摘要:金属的断裂是指金属材料在变形超过其塑性极限而呈现完全分开的状态。材料受力时,原子相对位置发生了改变,当局部变形量超过一定限度时,原于间结合力遭受破坏,使其出现了裂纹,裂纹经过扩展而使金属断开。任何断裂都是由裂纹形成和裂纹扩展两个过程组成的,而裂纹形成则是塑性变形的结果。金属塑性的好坏表明了它抑制断裂能力的高低。 关键词:塑性变形解理断裂准解理断裂沿晶断裂冷脆疲劳应力腐蚀 氢脆高温断裂 一、解理断裂与塑变的关系 解理断裂在主应力作用下,材料由于原子键的破断而产生的沿着某一晶面的快速破断过程。解理断裂的的产生条件是位错滑移必须遇到阻力,且位错滑移聚集到一定程度。断裂面沿一定的晶面发生,这个平面叫做解理面。解理台阶是沿两个高度不同的平行解理面上扩展的解理裂纹相交时形成的。形成过程有两种方式:通过解理裂纹与螺型位错相交形成;通过二次解理或撕裂形成。 第一种,当解理裂纹与螺型位错相遇时,便形成一个台阶,裂纹继续向前扩展,与许多螺型位错相交便形成众多台阶,他们沿裂纹前端滑动而相互交汇,同号台阶相互汇合长大,异号台阶相互抵消,当汇合台阶足够大的时候便在电镜下观察为河流状花样。

第二种,二次解理是指在解理裂纹扩展的两个互相平行解理面间距较小时产生的,但若解理裂纹的上下两个面间距远大于一个原子间距时,两解理裂纹之间的金属会产生较大的塑性变形,结果由于塑性撕裂而形成台阶,称为撕裂棱晶界。舌状花样是由于解理裂纹沿孪晶界扩散留下的舌头状凹坑或凸台。 从宏观上看,解理断裂没有塑性变形,但从微观上看解理裂纹是以塑性变形为先导的,尽管变形量很小。解理断裂是塑性变形严重受阻,应力集中非常严重的一种断裂。 二、准解理断裂与塑变的关系 准解理断裂介于解理断裂和韧窝断裂之间,它是两种机制的混合。产生原因: (1)、从材料方面考虑,必为淬火加低温回火的组织,回火温度低,易产生此类断裂。 (2)、构件的工作温度与钢材的脆性转折温度基本相同。 (3)、构件的薄弱环节处处于平面应变状态。 (4)、材料的尺寸比较粗大。 (5)、回火马氏体组织的缺陷,如碳化物在回火时的定向析出。 准解理断裂往往开始是因为碳化物,析出物或者夹杂物在外力作用下产生裂纹,然后沿某一晶面解理扩展,之后以塑性变形方式撕裂,其断裂面上显现有较大的塑性变形,特征是断口上存在由于几个地方的小裂纹分别扩展相遇发生塑性撕裂而形成的撕裂岭。准解理断裂面不是一

金属断裂与失效分析刘尚慈

金属断裂与失效分析(刘尚慈编) 第一章概述 失效:机械装备或机械零件丧失其规定功能的现象。 失效类型:表面损伤、断裂、变形、材质变化失效等。 第二章金属断裂失效分析的基本思路 §2—1 断裂失效分析的基本程序 一、现场调查 二、残骸分析 三、实验研究 (一)零件结构、制作工艺及受力状况的分析 (二)无损检测 (三)材质分析,包括成分、性能和微观组织结构分析 (四)断口分析 (五)断裂力学分析 以线弹性理学为基础,分析裂纹前沿附近的受力状态,以应力强度因子K作为应力场的主要参量。 K I=Yσ(πα)1/2 脆性断裂时,裂纹不发生失稳扩展的条件:K I<K IC 对一定尺寸裂纹,其失稳的“临界应力”为:σc=K IC / Y(πα)1/2 应力不变,裂纹失稳的“临界裂纹尺寸”为:αc=(K IC / Yσ)2/π 中低强度材料,当断裂前发生大范围屈服时,按弹塑性断裂力学提出的裂纹顶端张开位移[COD(δ)]作为材料的断裂韧性参量,当工作应力小于屈服极限时: δ=(8σsα/πE)ln sec(πσ/2σs) 不发生断裂的条件为:δ<δC(临界张开位移) J积分判据:对一定材料在大范围屈服的情况下,裂纹尖端应力应变场强度由形变功差率J来描述。张开型裂纹不断裂的判据为:

J<J IC K IC——断裂韧性;K ISCC——应力腐蚀门槛值 (六)模拟试验 四、综合分析 分析报告的内涵:①失效零部件的描述;②失效零部件的服役条件;③失效前的使用记录;④零部件的制造及处理工艺;⑤零件的力学分析;⑥材料质量的评价;⑦失效的主要原因及其影响因素;⑧预防措施及改进建议等。 五、回访与促进建议的贯彻 §2—2 实效分析的基本思路 一、强度分析思路 二、断裂失效的统计分析 三、断裂失效分析的故障树技术 第三章金属的裂纹 §3—1 裂纹的形态与分类 裂纹:两侧凹凸不平,偶合自然。裂纹经变形后,局部磨钝是偶合特征不明显;在氧化或腐蚀环境下,裂缝的两侧耦合特征也可能降低。 发纹:钢中的夹杂物或带状偏析等在锻压或轧制过程中,沿锻轧方向延伸所形成的细小纹缕。发纹的两侧没有耦合特征,两侧及尾端常有较多夹杂物。 裂纹一般是以钢中的缺陷(发纹、划痕、折叠等)为源发展起来的。 一、按宏观形态分为: (1)网状裂纹(龟裂纹),属于表面裂纹。产生的原因,主要是材料表面的化学成分、金相组织、力学性能、应力状态等与中心不一致;或者在加工过程中发生过热与过烧,晶界性能降低等,导致裂纹沿晶界扩展。如: ①铸件表面裂纹:在1250~1450℃形成的裂纹,沿晶界延伸,周围有严重的氧化和脱碳。

金属材料及零部件的失效分析

金属材料及零部件失效分析 随着科学技术和工业生产的迅速发展,人们对机械零部件的质量要求也越来越高。材料质量和零部件的精密度虽然得到很大的提高,但各行业中使用的机械零部件的早期失效仍时有发生。通过失效分析,找出失效原因,提出有效改进措施以防止类似失效事故的重复发生,从而保证工程的安全运行是必不可少的。 相关行业 汽车零部件、精密零部件、模具制造、铸锻焊、热处理、表面防护等金属相关行业。 常见失效模式 断裂:韧性断裂、脆性断裂、疲劳断裂、应力腐蚀断裂、疲劳断裂、蠕变断裂、液态金属脆化、氢脆 腐蚀:化学腐蚀、电化学腐蚀 磨损:磨粒磨损、粘着磨损、疲劳磨损、微动磨损、变形磨损 其他:功能性失效、物理性能降级等等 金属失效分析的意义

1. 减少和预防产品同类失效现象重复发生,减少经济损失,提高产品质量; 2. 为裁决事故责任,制定产品质量标准等提供可靠的科学技术依据。 失效分析常用手段 (1)断口分析: 分析断裂源、断口特征形貌,并分析这些特征与失效过程的相互关系。 解理断裂沿晶断裂 (2)金相组织分析 评估组织级别、工艺匹配程度、缺陷等级等等。

(3)成分分析: SEM/EDS; ICP-OES; XRF; 火花直读光谱。 (4)痕迹分析: 分析失效件与成型、使用、环境交互影响留下的细微痕迹。

(5)热学分析:评判材料在热环境使用的合理性。 (6)机械性能分析:评估力学强度、硬度、热性能等指标是否符合使用要求。(7)微区分析:分析表面形貌及微区成分,为失效机理推断提供定性定量依据。(8)极表面分析:对极表面腐蚀产物、微量异物进行定性定量分析。

金属--断裂与失效分析 刘尚慈

.. 金属断裂与失效分析(刘尚慈编) 第一章概述 失效:机械装备或机械零件丧失其规定功能的现象。 失效类型:表面损伤、断裂、变形、材质变化失效等。 第二章金属断裂失效分析的基本思路 §2—1 断裂失效分析的基本程序 一、现场调查 二、残骸分析 三、实验研究 (一)零件结构、制作工艺及受力状况的分析 (二)无损检测 (三)材质分析,包括成分、性能和微观组织结构分析 (四)断口分析 (五)断裂力学分析 以线弹性理学为基础,分析裂纹前沿附近的受力状态,以应力强度因子K作为应力场的主要参量。 K I=Yσ(πα)1/2 脆性断裂时,裂纹不发生失稳扩展的条件:K I<K IC 对一定尺寸裂纹,其失稳的“临界应力”为:σc=K IC / Y(πα)1/2 应力不变,裂纹失稳的“临界裂纹尺寸”为:αc=(K IC / Yσ)2/π 中低强度材料,当断裂前发生大范围屈服时,按弹塑性断裂力学提出的裂纹顶端张开位移[COD(δ)]作为材料的断裂韧性参量,当工作应力小于屈服极限时: δ=(8σsα/πE)ln sec(πσ/2σs) 不发生断裂的条件为:δ<δC(临界张开位移) J积分判据:对一定材料在大范围屈服的情况下,裂纹尖端应. . . 资

力应变场强度由形变功差率J来描述。张开型裂纹不断裂的判据为: J<J IC K IC——断裂韧性;K ISCC——应力腐蚀门槛值 (六)模拟试验 四、综合分析 分析报告的内涵:①失效零部件的描述;②失效零部件的服役条件;③失效前的使用记录;④零部件的制造及处理工艺;⑤零件的力学分析;⑥材料质量的评价;⑦失效的主要原因及其影响因素;⑧预防措施及改进建议等。 五、回访与促进建议的贯彻 §2—2 实效分析的基本思路 一、强度分析思路 二、断裂失效的统计分析 三、断裂失效分析的故障树技术 第三章金属的裂纹 §3—1 裂纹的形态与分类 裂纹:两侧凹凸不平,偶合自然。裂纹经变形后,局部磨钝是偶合特征不明显;在氧化或腐蚀环境下,裂缝的两侧耦合特征也可能降低。 发纹:钢中的夹杂物或带状偏析等在锻压或轧制过程中,沿锻轧方向延伸所形成的细小纹缕。发纹的两侧没有耦合特征,两侧及尾端常有较多夹杂物。 裂纹一般是以钢中的缺陷(发纹、划痕、折叠等)为源发展起来的。 一、按宏观形态分为: (1)网状裂纹(龟裂纹),属于表面裂纹。产生的原因,主要是材料表面的化学成分、金相组织、力学性能、应力状态等与中心不一致;或者在加工过程中发生过热与过烧,晶界性能降低

金属材料的断裂认识

金属材料的断裂 金属在外加载荷的作用下,当应力达到材料的断裂强度时,发生断裂。断裂是裂纹发生和发展的过程。 1. 断裂的类型 根据断裂前金属材料产生塑性变形量的大小,可分为韧性断裂和脆性断裂。韧性断裂:断裂前产生较大的塑性变形,断口呈暗灰色的纤维状。脆性断裂:断裂前没有明显的塑性变形,断口平齐,呈光亮的结晶状。韧性断裂与脆性断裂过程的显著区别是裂纹扩散的情况不同。 韧性断裂和脆性断裂只是相对的概念,在实际载荷下,不同的材料都有可能发生脆性断裂;同一种材料又由于温度、应力、环境等条件的不同,会出现不同的断裂。 2. 断裂的方式 根据断裂面的取向可分为正断和切断。正断:断口的宏观断裂面与最大正应力方向垂直,一般为脆断,也可能韧断。切断:断口的宏观断裂面与最大正应力方向呈45°,为韧断。 3. 断裂的形式 裂纹扩散的途径可分为穿晶断裂和晶间断裂。穿晶断裂:裂纹穿过晶粒内部,韧断也可为脆断。晶间断裂:裂纹穿越晶粒本身,脆断。 4. 断口分析 断口分析是金属材料断裂失效分析的重要方法。记录了断裂产生原因,扩散的途径,扩散过程及影响裂纹扩散的各内外因素。所以通过断口分析可以找出断裂的原因及其影响因素,为改进构件设计、提高材料性能、改善制作工艺提供依据。断口分析可分为宏观断口分析和微观断口分析。 (1)宏观断口分析 断口三要素:纤维区,放射区,剪切唇。纤维区:呈暗灰色,无金属光泽,表面粗糙,呈纤维状,位于断口中心,是裂纹源。放射区:宏观特征是表面呈结晶状,有金属光泽,并具有放射状纹路,纹路的放射方向与裂纹扩散方向平行,而且这些纹路逆指向裂源。剪切唇:宏观特征是表面光滑,断面与外力呈45°,位于试样断口的边缘部位。 (2)微观断口分析(需要深入研究) 5. 脆性破坏事故分析 脆性断裂有以下特征: (1)脆断都是属于低应力破坏,其破坏应力往往远低于材料的屈服极限。(2)一般都发生在较低的温度,通常发生脆断时的材料的温度均在室温以下20℃。(3)脆断发生前,无预兆,开裂速度快,为音速的1/3。(4)发生脆断的裂纹源是构件中的应力集中处。

端子断裂失效分析

端子断裂失效分析 美信检测失效分析实验室 1. 案例背景 失效样品为某汽车接地线束的固定端子,生产流程为:原料铜管→裁剪→冲压成型→表面镀锡→装配→振动试验(19万次)→断裂;其可靠性测试中6个成品经振动试验19万次后其中一个断裂,委托方要求分析该断裂失效端子的失效机理,并给出改进建议。 2. 分析方法简述 外观检查中可观察到失效样品断裂的2部分能无缝对接,断裂位置在冲压形成的台阶折线处。 断裂位置 正常样品失效样品将失效样品断口用超声波清洗干净,然后在SEM下放大观察断口形貌,高倍下发现断口存在明显的疲劳条带;低倍下观察到断口两侧低中间高,为两侧先开裂再向中间扩展形成的中间凸起断口形貌,结合据委托方提供的样品振动19万次后断裂信息,判断样品为双向高周疲劳断裂模式。 中间凸起失效样品先去镀层,再进行化学成分分析,结果表明失效样品材质为纯铜,材料不存在异常。

失效样品和正常样品分别镶样,进行金相分析,失效样品腐蚀前金相观察未发现明显缺陷,腐蚀后可观察到大变形区域的纤维状α相,小变形量区域为α相组织,伴有较多孪晶;正常样品腐蚀前金相观察发现样品表面的折弯处存在微裂纹,裂纹填充满锡,推断裂纹为冷加工成型造成的,腐蚀后可观察到金相组织为α相组织,伴有较多孪晶。 纤维状α相 铜管内壁裂纹 从断口分析可知,样品断口形貌主要为高周期疲劳断裂特征,根据客户提供的震动试验资料,样品试验过程是振幅为12mm左右的周期振动,19万次后断裂,符合低应力高疲劳周期的双向高周疲劳断裂特征,两侧裂纹无锡填充,说明为镀锡后开裂,为冷机加工造成应力折叠形成的开裂。 从化学成分可知失效样品的铜含量在99.99%,材质为纯铜,材料不存在异常。 从金相图片可知,失效样品与正常样品的金相组织都为α相组织,伴有较多孪晶,为冷机加工残留内应力较大的特征;正常样品可观察到填充锡的微裂纹,为冷机加工缺陷,这些表面微裂纹可能会成为开裂源。 4. 结论

工大金属材料失效分析(DOC)

3.刚的晶内偏析不可以通过热处理方法予以消除·······(×) 4.钢中氢含量偏高容易导致钢中出现气孔和白点·······(√) 5.魏氏组织会降低刚的强度,但是可以提高钢的韧性···(×) 6.钢中夹杂物会降低钢的塑性、韧性和疲劳强度·······(√) 7.钢的脱碳会降低钢的疲劳程度·····················(√) 8.焊缝延迟裂纹一般与焊缝中的含氢量有关···········(√) 9.焊缝淬火裂纹一般与焊缝中的马氏体有关···········(√) 10.磨损失效是金属构件失效的主要方式··············(×) 11.河流花样和舌状花样是脆性断口和典型微观形貌特征(√) 12.应力腐蚀开裂是应力和腐蚀共同作用的结果·······(√) 13.能谱成分分析技术可以用于钢中碳含量分析·······(×) 14.扫描电镜分析技术是建立在可见光反射原理基础之上的(×) 15.就金属断裂而言,正断可能是韧性的,而切断总是韧性的(√) 1、钢的晶内偏析可以通过何种热处理方法予以消除? 扩散退火钢加热到上临界点(Ac3或Accm)以上的较高温度(一般为1050~1250℃),经过较长时间的充分保温,然后缓冷的热处理叫扩散退火,也叫均匀化退火。这种退火的目的是,借原子在高温下可以较快的扩散,减少或消除各种合金元素及非合金元素在钢中的显微偏析,使化学成分趋于均匀化,以达到改善钢的组织,提高钢的力学性能的目的。 2、钢中S、P杂质元素容易造成哪些性能缺陷? S以Fes形态存在于钢中,Fes和Fe形成低共熔化合物,引起热脆。

P虽然可以提高钢的强度和硬度,但会引起塑性和冲击韧性的下降,使韧脆转变温度上升,引起冷脆。 3、钢中H元素容易造成哪些性能缺陷? 钢中溶解的氢会导致氢脆,白点和氢致延迟断裂等缺陷 一是引起氢脆,即在低于钢材极限应力的作用下,经一定的时间后,突然断裂。二是导致钢材内部产生大量细微裂纹缺陷,即白点,白点使钢材的冲击韧性降低得很多。在钢材纵端面上呈光滑的银白的斑点,在酸洗后的端面上呈较多的发丝状裂纹,白点使钢材的延伸率显著下降,尤其是端面收缩率和冲击韧性降低得更多,有时可能接近于零值。因此具有白点的钢是不能用的,这类缺陷主要发生在合金钢中。 4、魏氏组织对钢有哪些危害作用? (1).在最终热处理会有增大变形的倾向;(2).使钢的力学性能尤其是塑性和冲击韧性显著降低,同时使脆性转折温度升高。魏氏组织不仅晶粒粗大,而且由于大量铁素体针片形成的脆弱面,使金属的韧性急剧下降,屈服强度当然也会降低。 5、钢中夹杂物会降低钢的哪些性能? 钢中夹杂物包括C、Si、Mn、S、P、N、H、O等 C:随着钢中碳含量的增加,碳钢硬度上升,塑性和韧性降低。在亚共析范围内随着碳含量增加,抗拉强度不断提高。超过共析范围后,抗拉强度随碳含量的增加减缓,最后发展到随碳含量的增加抗拉强度降低。另外,含碳量增加时碳钢的耐蚀性降低,同时碳也使碳钢的焊接性能和冷加工(冲压、垃拔)性能变坏。 Si:硅含量的提高,钢的抗拉强度提高,屈服点提高,伸长率下降,钢的面缩率和冲击韧性显著降低。 Mn:锰对碳钢的力学性能有良好的影响,它能提高钢热轧后的硬度和强度,原因是锰溶入铁素体中引起固溶强化。 S:产生热脆

金属材料断口分析的步骤与方法

金属材料断口分析的步骤与方法 断口分析通常是一个从宏观到微观,从定性到定量的分析过程,并且是应用多种仪器联合测试检验的结果,是综合性很强的技术分析工作。因此需要严格的科学态度,精心地、有步骤地进行研究分析。 断口分析步骤: (1)所有试样的选择、鉴定、保存以及清洗; (2)宏观检验和分析(断裂表面、二次裂纹以及其他的表面现象); (3)微观检验和分析; (4)金相剖面的检验和分析以及化学分析; (5)断口定量分析(断裂力学方法); (6)模拟试验。 1 断裂构件的处理及断口的保存 在确定了断裂的金属构件后,就要采取措施把断口保存好,尽快制定分析计划。通常金属构件的断裂不止一个断口,有时要立即判断主断口有困难,此时应该把所有断件收集好,在收集过程中切勿把断口碰伤或对接,也不要在断口上使用防蚀涂层。保护和清理断口是断口分析的一个重要前提。对断口和裂纹轨迹进行充分检查后方可进行清洗。 对于不同情况下的断口应该用不同方法处理: (1)大气中的新鲜断口,应立即放入干燥器内或真空干燥器内而不必清洗。 (2)对于带有油污的断口,首先用汽油,然后用丙酮、三氯甲烷、石油醚及苯等有机溶剂溶去油污,最后用无水乙醇清洗吹干。当浸没处理还不能去除油污时,可使用蒸汽或超声波方法进一步去除。 (3)在腐蚀环境下发生断裂的断口,通常在断口上覆盖一层腐蚀产物,这层产物对于分析断裂原因是非常有用的,但对断口形貌观察常常带来很大的麻烦。在这种情况下,需要用综合分析的方法来考虑。因为有许多腐蚀产物容易水解或分解,因此进行产物分析要抓紧时间,同时不要进行任何清洗和处理。通常把带

有腐蚀产物的断口试样,先用X射线、电子探针、电子扫描显微镜或俄歇能谱仪进行产物分析,得出结论后去掉产物再观察断口形貌。 去掉腐蚀产物有时可采用干剥法。用醋酸纤维纸(称AC纸,由7%的醋酸纤维素、丙酮溶液制成厚度0.1~1mm的均匀薄膜)复型进行清理是最有效的方法之一,尤其是断口表面已经受到腐蚀的时候。将一条厚约1mm合适的AC纸,放在丙酮中泡软,然后拿起来放在断口表面上,在第一张条带的背后衬上一块未软化的AC纸,然后用夹子将复型牢牢地压在断口表面上,干燥后用小镊子把干复型从断口上揭下来。如果断口玷污得很厉害,可将复型操作重复进行,直到获得一个洁净无污染的复型为止。这种方法的一个优点,就是能将从断口上除去的碎屑保存下来,供以后鉴定碎屑使用。还可以用复型法达到长期保存断口的目的。 (4)断口表面不能用酸溶液清洗,以免影响断口分析的准确性。 (5)在潮湿空气中暴露时间比较长、锈蚀比较严重的断口,以及高温下使用的有高温氧化的断口,一定要去除氧化膜后才能观察,以避免假象。若用一般有机溶液、超声波洗涤和复型都不能洁净断口表面时,可采用化学清洗。根据不同的金属材料及氧化层情况可采用不同的化学清洗液。 2 断口的宏观分析 用肉眼、放大镜和实体显微镜对断裂零件进行直接观察与分析的方法,称为宏观分析,其放大倍数通常为100倍以下。 宏观分析的优点是:(1)简便、迅速,试样尺寸不十分受限制,不必破坏断裂零件;(2)观察范围大,能够观察与分析断裂全貌,即裂缝和零件形状的关系、断口与变形方向的关系、断口与受力状态(主应力或切应力)的关系;(3)能够初步判断裂起源位置、断裂性质与原因,缩小进一步分析研究的范围,可为确定进一步分析的取样部位和数量提供线索和依据。因此宏观分析是断裂故障分析中最方便、最常用、最主要的不可缺少的步骤和方法,是整个断裂故障分析的基础。 断裂分析的一个主要内容,就是要确定断裂源的位置及裂纹的扩展方向。金属零件若已断裂成多块,则应把所有断块按原来形状拼起来,但要特别小心不能碰合,然后看其密合程度,密合得最差的为最早断裂,即主断口。分析断裂原因时,只需对主断口进行分析。

相关主题
文本预览
相关文档 最新文档