当前位置:文档之家› 马尔文激光粒度仪分析方法验证

马尔文激光粒度仪分析方法验证

马尔文激光粒度仪分析方法验证
马尔文激光粒度仪分析方法验证

残留溶剂顶空分析报告方法验证方案设计模版2

方案批准 注:在方案批准部分签字表明签字者同意方案中规定的检测项目检测方法和记录要求。在执行本方案的过程中可能会出现影响严格执行本方案的偏差,对较小的偏差将通过偏差报告的形式来解决,对于关键性偏差,如对方法的调整、对参数或接受标准的调整必须制定出增补方案并按照原方案批准程序得到批准才能进行。所有的偏差报告和增补方案必须在提交验证报告供批准时一同提交。

目录 1.概述 (3) 2.参考资料 (4) 3. 职责 (4) 4. 色谱系统及色谱条件 (4) 5. 器材与试剂 (5) 6. 验证试验 (5) 6.1系统适应性 (5) 6.2专属性 (6) 6.3耐用性 (7) 6.4定量限 (8) 6.5检测限 (8) 6.6线性与围 (8) 6.7准确度 (9) 6.8精密度 (11) 7.再验证周期 (12) 8.偏差及纠正措施 (13) 9.最终审核和批准 (13) 药品残留溶剂顶空分析方法草案 (14)

1.概述 1.1根据ICH对药品中残留溶剂含量的要求及盐酸噻氯匹定生产工艺,必须控制盐酸噻氯匹定生产工艺中使用到的溶剂乙醇、丁酮、甲苯、N,N-二甲基甲酰胺(DMF)的残留量。限度分别为:乙醇≤5000ppm、丁酮≤5000ppm、甲苯≤890ppm、DMF≤880ppm。 1.2分析方法草案见附件。 1.3本分析方法属于杂质定量分析,因此需要验证的项目有:系统适应性、专属性、线性、 准确度、检测限、定量限、精密度、耐用性,具体参数及接受标准要求见下表:

2.参考资料 ICH Q3C (R3), November 2005. ICH Q2 (R1), November 2005. <467> Residual Solvents, United States Pharmacopoeia 31, November 2007. <20424> Residual Solvents, European Pharmacopoeia 6.0, June 2007. 3. 职责 4.1色谱系统

粒度分析的基础知识

什么叫颗粒? 颗粒其实就是微小的物体,是组成粉体的能独立存在的基本单元。这个问题似乎很简单,但是要真正了解各种粒度测试技术所得出的测试结果,明确颗粒的定义又是十分重要的。各种颗粒的复杂形状使得粒度分析比原本想象的要复杂得多。 粒度测试复杂的原因 比如,我们用一把直尺量一个火柴盒的尺寸,你可以回答说这个火柴盒的尺寸是 20×10×5mm。但你不能说这个火柴盒是20mm或10mm或5mm,因为这些只是它大小尺寸的一部分。可见,用单一的数值去描述一个三维的火柴盒的大小是不可能的。同样,对于一粒砂子或其它颗粒,由于其形状极其复杂,要描述他们的大小就更为困难了。比如对一个质保经理来说,想用一个数值来描述产品颗粒的大小及其变化情况,那么他就需要了解粉体经过一个处理过程后平均粒度是增大了还是减小了,了解这些有助于正确进行粒度测试工作。那么,怎样仅用一个数值描述一个三维颗粒的大小?这是粒度测试所面临的基本问题。等效球体 只有一种形状的颗粒可以用一个数值来描述它的大小,那就是球型颗粒。如果我们说有一个50μ的球体,仅此就可以确切地知道它的大小了。但对于其它形状的物体甚至立方体来说,就不能这样说了。对立方体来说,50μ可能仅指该立方体的一个边长度。对复杂形状的物体,也有很多特性可用一个数值来表示。如重量、体积、表面积等,这些都是表示一个物体大小的唯一的数值。如果我们有一种方法可测得火柴盒重量的话,我们就可以公式(1)把这一重量转化为一球体的重量。 重量= 4/3π×r3×ρ-------------------------------- (1) 由公式(1)可以计算出一个唯一的数(2r)作为与火柴盒等重的球体的直径,用这个直径来代表火柴盒的大小,这就是等效球体理论。也就是说,我们测量出粒子的某种特性并根据这种特性转换成相应的球体,就可以用一个唯一的数字(球体的直径)来描述该粒子的大小了。这使我们无须用三个或更多的数值去描述一个三维粒子的大小,尽管这种描述虽然较为准确,但对于达到一些管理的目的而言是不方便的。我们可以看到用等效法描述描述粒子的大小会产生了一些有趣的结果,就是结果依赖于物体的形状,见图2中圆柱的等效球体。如果此圆柱改变形状或大小,则体积/重量将发生变化,我们至少可以根据等效球体模型来判断出此圆柱是变大了还是变小了等。 假设有一直径D1=20μm(半径r=10μm),高为100μm的圆柱体。由此存在一个与该圆柱体积相等球体的直径D2。我们可以这样计算这一直径(D2):

激光粒度仪讲解

激光粒度仪测定粒度分布组成 一、试验目的 本实验目的是测定粒子尺寸及粒度大小分布,通过试验了解激光粒度仪的工作原理及组成,学习激光粒度仪的使用及操作;掌握分布曲线所显示的粒度大小及分布情况。颗粒及颗粒行为是无机非金属材科研究的基础。因此,颗粒的表征和颗粒的测试具有同样的重要性。粉体的粒度是颗粒在空间范围所占大小的线性 尺度。粒度越小,粒度的微细程度越大。颗粒群是指含有许多颗粒的粉体或分散体系中的分散相。若颗粒进度都相等或近似相等,称为单进度或单分散的体系或颗粒群。实际颗粒所含颗粒的粒度大都有一个分散范围,常称为多进度的、多谱的或多分散的体系或颗粒群。粒度分布是表征多分散体系中颗粒大小不均一程度的。粒度分布范围越窄,其分布的分散程度就越小,集中度也就越高。 粒度分布测量中分为频率分布和累积分布。累积分布横坐标表示各粒级的粒度;纵坐标表示在某Df以下的颗粒所占总颗粒的个数或质量百分数。通过粒度 分布曲线分析所显示的粒度大小和粒度大小分布,了解材料的研磨情况,推断出材料粒度不同其性能不同。同时可以反映出材料性能不同与材料颗粒粒径的大小 有关系。 二、试验仪器 RISE—2008型激光粒度分析仪,1000ml烧杯二只,试样若干种类 三、试验原理 根据光学衍射和散射的原理,从激光器发出的激光束经显微物镜聚集,针孔滤波和准直后,变成直径约10mm的平行光束,该光束照射到待测的颗粒上,就 发生了散射,散射光经傅立叶透镜后,照射到光电探测器上的任一点都对应于某一确定的散射角,光电探测器阵列由一系列同心环带组成,每个环带是一个独立的探测器,能将投射到上面的散射光线形地转换成电压,然后送给数据采集卡, 该卡将电信号放大,再进行AID转化后送入计算机。Rise-2008型激光粒度仪依据全量程米氏散射理论,充分考虑到被测颗粒和分散介质的折射率等光学性质, 根据激光照射在颗粒上产生的散射光能量反演出颗粒群的粒度大小和粒度分布 规律。

“颗粒粒径分析方法”汇总大全

“颗粒粒径分析方法”汇总大全 来源:材料人2016-08-05 一、相关概念: 1、粒度与粒径:颗粒的大小称为粒度,一般颗粒的大小又以直径表示,故也称为粒径。 2、粒度分布:用一定方法反映出一系列不同粒径区间颗粒分别占试样总量的百分比称为粒度分布。 3、等效粒径:由于实际颗粒的形状通常为非球形的,难以直接用直径表示其大小,因此在颗粒粒度测试领域,对非球形颗粒,通常以等效粒径(一般简称粒径)来表征颗粒的粒径。等效粒径是指当一个颗粒的某一物理特性与同质球形颗粒相同或相近时,就用该球形颗粒的直径代表这个实际颗粒的直径。其中,根据不同的原理,等效粒径又分为以下几类:等效体积径、等效筛分径、等效沉速径、等效投影面积径。需注意的是基于不同物理原理的各种测试方法,对等效粒径的定义不同,因此各种测试方法得到的测量结果之间无直接的对比性。 4、颗粒大小分级习惯术语:纳米颗粒(1-100 nm),亚微米颗粒(0.1-1 μm),微粒、微粉(1-100 μm),细粒、细粉(100-1000 μm),粗粒(大于1 mm)。 5、平均径:表示颗粒平均大小的数据。根据不同的仪器所测量的粒度分布,平均粒径分、体积平均径、面积平均径、长度平均径、数量平均径等。 6、D50:也叫中位径或中值粒径,这是一个表示粒度大小的典型值,该值准确地将总体划分为二等份,也就是说有50%的颗粒超过此值,有50%的颗粒低于此值。如果一个样品的D50=5 μm,说明在组成该样品的所有粒径的颗粒中,大于5 μm的颗粒占50%,小于5 μm的颗粒也占50%。 7、最频粒径:是频率分布曲线的最高点对应的粒径值。 8、D97:D97指一个样品的累计粒度分布数达到97%时所对应的粒径。它的物理意义是粒径小于它的的颗粒占97%。这是一个被广泛应用的表示粉体粗端粒度指标的数据。 二、粒度测试的基本方法及其分析 激光法 激光法是通过一台激光散射的方法来测量悬浮液,乳液和粉末样品颗粒分布的多用途仪器。纳米型和微米型激光料度仪还可以通过安装的软件来分析颗粒的形状。现在已经成为颗粒测试的主流。 1、优点:(1)适用性广,既可测粉末状的颗粒,也可测悬浮液和乳浊液中的颗粒;(2)测试范围宽,国际标准ISO 13320 - 1 Particle Size Analysis 2 Laser Diffraction Meth 2 ods 2 Part 1: General Principles中规定激光衍射散射法的应用范围为0.1~3000 μm;(3)准确性高,重复性好;(4)测试速度快;(5)可进行在线测量。 2、缺点:不宜测量粒度分布很窄的样品,分辨率相对较低。 激光散射技术分类: 1、静态光散射法(即时间平均散射):测量散射光的空间分布规律采用米氏理论。测试的有效下限只能达到50纳米,对于更小的颗粒则无能为力。纳米颗粒测试必须采用“动态光散射”技术。 2、动态光散射法:研究散射光在某固定空间位置的强度随度时间变化的规律。原理基于ISO 13321分析颗粒粒度标准方法,即利用运动着的颗粒所产生的动态的散射光,通过光子相关光谱分析法分析PCS颗粒粒径。 按仪器接受的散射信号可以分为衍射法、角散射法、全散射法、光子相关光谱法,光子交叉相关光谱法(PCCS)等。其中以激光为光源的激光衍射散射式粒度仪(习惯上简称此类仪器为激光粒度仪)发展最为成熟,在颗粒测量技术中已经得到了普遍的采用。 激光粒度分析仪:

马尔文激光粒度仪(MS2000)操作规程-干湿法

马尔文MS2000操作规程 一.开机顺序:先开仪器主机和湿法或干法进样器,再开电脑,仪器需要预热15到30分钟。 关机顺序:先关电脑软件,再关湿法或干法进样器和仪器主机。 二.湿法测量程序: a)手指轻轻按键控制面板第一个显示中间的on/off键盘,让水循环起来。 b)在桌面上双击Mastersizer2000操作软件,进入操作软件,输入操作者姓 名,然后鼠标左键点击确定。 c)在文件那里点击打开,打开已有的文件或新建一个文件,确保记录存放 在你所需要的文件名下。 d)单击“测量”菜单中的“手动”按钮,进入测量窗口。 e)然后点击“对光”,对光好后,如果背景状态正常,就不需要换水了(如 果是第一次打开软件的话,对光按键是隐藏在测量背景下面的,只要点 击“开始”键,仪器就会对光接着测量背景的)。 f)然后进入“选项”菜单,选择合适的光学参数,在“物质”那里选择好 催化剂,或者新鲜催化剂,再进入“文档”菜单,输入样品名称,然后 “确定”退出。 g)然后单击“开始”按钮,系统开始测量背景,当背景测量完成以后并提 示“加入样品”后,开始加入样品到遮光度10%,到控制的遮光度范围 内,然后单击“开始”或按“测量样品”仪器会进行测量样品。每测量 一次,结果会按记录编号和时间存在已经指定的文件里。 h)测量结束后,抬起烧杯上方盖子到两个黑线中间,附近会自动把样品池 的水排除,然后换新鲜的水并清洗两到三次(以背景正常为准)。三.干法测量步骤:干法测量可用SOP(标准操作规程)来进行测量。 1.把样品放入干法进样器的样品盘中 2.点击测量窗口中的“启用SOP” 3.选择已经设置好的SOP 4.根据仪器运行SOP提示输入样品的编号

欧美克LS-POP激光粒度分析仪作业指导书

1. 目的: 为了规范对激光粒度分析仪的操作使用,从而确保产品粒度检验结果的正确性、真实性、可靠性,特制定本文件。 2. 内容: 2.1 工作原理 利用颗粒对光的散射现象,根据散射光能的分布推算被测颗粒的粒度分布。 2.2 技术指标 测试范围:0.2~500μm 进样方式:湿法,循环进样器和静态样品池 重复性误差:<3% 测试时间:1-2分钟 独立探测单元数:32 光源种类:氦-氖激光 功率:2.0 mW 波长:0.6328 μm 2.3工作环境 2.3.1 仪器应安装在洁净、少尘、无烟、带空调的环境中。仪器的组件中含有激光管、光学镜头、针孔和测量窗口等。这些光学部件如果受到灰尘、油脂、石油产品或其他有害物质的侵蚀,将会造成光洁度下降、腐蚀、堵塞、功率下降等损害。 2.3.2 室温要稳定,没有明显的气流,没有直射阳光,否则会引起激光功率不稳,光束准直欠佳和外界杂散光的干扰,从而造成测量的重复性下降。 2.3.3 ,仪器的工作环境要求温度在5-35℃之间,空气湿度不可高于85% ,否则光学镜头表面可能会结露,致使光线不能聚焦,时间长了还会使镜头发霉。 2.3.4 地面不能有明显的震动,否则会导致光路系统偏移,引起测量结果异常。 2.3.5 电源电压220V,50/60HZ,有三头插座且接地线良好。 2.3.6严禁将零线和地线合接。 2.3.7本仪器的接地线不可与其他地线专用。 2.4 输出项目 粒度分布表、粒度分布曲线、平均粒径、中位径、比表面积等。

2.5 相关名词解释 2.5.1 粒径:又称颗粒尺寸,用以表征颗粒的大小。除了球形颗粒这一特例外,粒径并不是真实的物理尺寸,而是会随测量原理变化的等效尺寸。在激光散射法技术中,粒径是指与待测颗粒有相同的化学性质并有最相近的光散射特性的球形颗粒(组合)的直径(分布)。 2.5.2 粒度分布:是指一个粉体样品中各种粒径的颗粒所占的比例。因为任何一个粉体样品都是由大小不同的颗粒组成的,所以用粒度分布才能确切地描述其粗细情况。 2.5.3 悬浮介质:测量粒度时需要把样品分散在液体或气体中。这里的液体或气体就称为悬浮介质。合适的悬浮介质应该是既能让样品在其中分散,又不让样品在其中分解或发生化学反应的。 2.5.4 光能分布:即散射光的能量分布,就是照射到粒度仪各光电探测器上的散射光的能量。背景光能代表被光路上的尘埃粒子或各光学镜面的疵点散射的光能分布;而样品颗粒的散射光能是被待测样品的颗粒散射的光能,其分布与样品颗粒的粒度相对应,但不等于粒度分布。 2.5.5 遮光比:指测量用的照明光束被测量的样品颗粒阻挡的部分与照明光的比值。颗粒在测量介质中的浓度越高,则遮光比越大。 2.5.6 平均粒径:是指样品中所有颗粒的粒径的平均值,可以根据粒度分布计算而得。 2.5.7粒度分布宽度:用以表征样品粒径的均匀程度。粒度分布宽,表示样品颗粒的粗细不均匀;反之,则表示均匀。 2.6 准备阶段 2.6.1系统开机 打开电源开关 测量单元(预热半小时后进行下面步骤) 循环进样器 打印机 显示器 计算机主机 2.6.2 测量单元预热 2.6.2.1如关机超过半小时再重新开机,必须预热半小时。 2.6.2.2打开测量单元电源,半小时后,激光率才能稳定。如果环境温度较低,等待时间还要延长。 2.6.2.3判断激光功率是否达到稳定的依据是,背景光能分布的零环高度是否稳定。正常

(完整word版)方法验证试验的一般内容及要求

方法验证试验的一般内容及要求---青岛科标检测 方法验证一般要求: 1.标准编制组应编制方法验证方案,根据影响方法的精密度和准确度的主要因素和数理统计学的要求,选择合适的实验室、样品类型、含量水平、分析人员、分析设备、分析时间等内容。 2.标准编制组除可以使用有证标准物质/标准样品外,还应提供实际样品进行方法验证,实际样品应尽量覆盖方法标准的适用范围。 3.在方法验证前,参加验证的操作人员应熟悉和掌握方法原理、操作步骤及流程,必要时应接受培训。 4.方法验证过程中所用的试剂和材料、仪器和设备及分析步骤应符合方法相关要求。 5.参加验证的操作人员及标准编制组应按照要求如实填写《方法验证报告》中的“原始测试数据表”,若有必要,应附上与该原始测试数据表内容相符的图谱或其他由仪器产生的记录打印条等。 6.标准编制组根据方法验证数据及统计、分析、评估结果,最终形成《方法验证报告》。 具体要求 1.检出限的验证 确定检出限,按方法操作步骤及流程进行分析操作,计算结果的平均值、标准偏差、相对标准偏差、检出限等各项参数。最终的方法检出限为各验证实验室所得数据的最高值。 2.精密度的验证

有证标准物质/标准样品的测定:采用高、中、低3 种不同含量水平(应包括一个在测定下限附近的浓度或含量)的统一样品,每个样品平行测定6 次以上,分别计算不同浓度或含量样品的平均值、标准偏差、相对标准偏差等各项参数。实际样品的测定:各验证实验室应对1 ~3 个含量水平的同类型样品进行分析测试,按每个样品平行测定6 次以上,分别计算不同样品的平均值、标准偏差、相对标准偏差等 各项参数。 对各验证实验室的数据进行汇总统计分析,计算实验室间相对标准偏差、重复性限r 和再现性限R。 3.准确度的验证 若各验证实验室使用有证标准物质/标准样品进行分析测定确定准确度,则需对1 ~3个不同含量水平的有证标准物质/标准样品进行测定,按全程序每个有证标准物质/标准样品平行测定6 次以上,分别计算不同浓度或含量水平有证标准物质/标准样品的平均值、标准偏差、相对误差等各项参数。 若实验室对实际样品进行加标分析测定确定准确度,则需对每个样品类型的1 ~3 个不同含量水平的统一样品中分别加入一定量的有证标准物质/标准样品进行测定, 每个加标样品平行测定6 次以上,分别计算每个统一样品的加标回收率。 对各验证实验室的数据进行汇总统计分析,计算其相对误差或加标回收率的均值及变动范围。

粒度分析的基本原理

粒度分析的基本原理 (作者:Malvern 仪器有限公司Alan Rawle 博士,翻译:焉志东,整理:董青云) 什么叫颗粒? 颗粒其实就是微小的物体,是组成粉体的能独立存在的基本单元。这个问题似乎很简单,但是要真正了解各种粒度测试技术所得出的测试结果,明确颗粒的定义又是十分重要的。各种颗粒的复杂形状使得粒度分析比原本想象的要复杂得多。 (见图1略) 粒度测试复杂的原因 比如,我们用一把直尺量一个火柴盒的尺寸,你可以回答说这个火柴盒的尺寸是20×10×5mm 。但你不能说这个火柴盒是20mm 或10mm 或5mm ,因为这些只是它大小尺寸的一部分。可见,用单一的数值去描述一个三维的火柴盒的大小是不可能的。同样,对于一粒砂子或其它颗粒,由于其形状极其复杂,要描述他们的大小就更为困难了。比如对一个质保经理来说,想用一个数值来描述产品颗粒的大小及其变化情况,那么他就需要了解粉体经过一个处理过程后平均粒度是增大了还是减小了,了解这些有助于正确进行粒度测试工作。那么,怎样仅用一个数值描述一个三维颗粒的大小?这是粒度测试所面临的基本问题。 等效球体 只有一种形状的颗粒可以用一个数值来描述它的大小,那就是球型颗粒。如果我们说有一个50 u 的球体,仅此就可以确切地知道它的大小了。但对于其它形状的物体甚至立方体来说,就不能这样说了。对立方体来说,50u 可能仅指该立方体的一个边长度。对复杂形状的物体,也有很多特性可用一个数值来表示。如重量、体积、表面积等,这些都是表示一个物体大小的唯一的数值。如果我们有一种方法可测得火柴盒重量的话,我们就可以公式(1)把这一重量转化为一球体的重量。 重量= )1(r 3 4 3-----------------------ρ??π 由公式(1)可以计算出一个唯一的数(2r )作为与火柴盒等重的球体的直径,用这个直径来代表火柴盒的大小,这就是等效球体理论。也就是说,我们测量出粒子的某种特性并根据这种特性转换成相应的球体,就可以用一个唯一的数字(球体的直径)来描述该粒子的大小了。这使我们无须用三个或更多的数值去描述一个三维粒子的大小,尽管这种描述虽然较为准确,但对于达到一些管理的目的而言是不方便的。我们可以看到用等效法描述描述粒子的大小会产生了一些有趣的结果,就是结果依赖于物体的形状,见图2中圆柱的等效球体。如果此圆柱改变形状或大小,则体积/重量将发生变化,我们至少可以根据等效球体模型来判断出此圆柱是变大了还是变小了等等。如图2(略)。 假设有一直径D1=20um (半径r=10um ),高为100 um 的圆柱体。由此存在一个与该圆柱体积相等球体的直径D2。我们可以这样计算这一直径(D2): 圆柱体积V 1=)2()m (10000h r 3 2 ----------------μπ=??π

马尔文激光粒度仪简介

laParticle size analysis-Laser diffraction methods (ISO-13320-1) Introduction Laser diffraction methods are nowadays widely used for particle sizing in many different applications. The success of the technique is based on the tact that it can be applied to various kinds of particulate systems, is fast and can be automated and that a variety of commercial instruments is available. Nevertheless, the proper use of the instrument and the interpretation of the results require the necessary caution. Therefore, there is a need for establishing an international standard for particle size analysis by laser diffraction methods. Its purpose is to provide a methodology for adequate quality control in particle size analysis. Historically, the laser diffraction technique started by taking only scattering at small angles into consideration and, thus, has been known by the following names: -fraunhofer diffraction; -(near-) forward light scattering; -low-angle laser light scattering (LALLS). However, the technique has been broadened to include light scattering in a wider angular range and application of the Mie theory in addition to approximating theories such as Fraunhofer and anomalous diffraction. The laser diffraction technique is based on the phenomenon that particles scatter light in all directions with an intensity pattern that is dependent on particle size. All present instruments assume a spherical shape for the particle. Figure 1 illustrates the characteristics of single particle scattering patterns: alternation of high and low intensities, with patterns that extend for smaller particles to wider angles than for larger particles[2-7,10,15 in the bibliography]. Within certain limits the scattering pattern of an ensemble of particles is identical to the sum of the individual scattering patterns of all particles present. By using an optical model to compute scattering for unit volumes of particles in selected size classes and a mathematical deconvolution procedure, a volumetric particle size distribution is calculated, the scattering pattern of which fits best with the measured pattern (see also annex A).

激光粒度仪实验报告

实验一LS230/VSM+激光粒度仪测定果汁饮料粒度 1实验目的 了解激光粒度仪的基本操作; 了解激光粒度仪测定的基本原理。 2实验原理 激光粒度分析仪的原理是基于激光的散射或衍射,颗粒的大小可直接通过散射角的大小表现出来,小颗粒对激光的散射角大,大颗粒对激光的散射角小,通过对颗粒角向散射光强的测量(不同颗粒散射的叠加),再运用矩阵反演分解角向散射光强即可获得样品的粒度分布。 激光粒度仪原理图如图1所示,来自固体激光器的一束窄光束经扩充系统扩充后,平行地照射在样品池中的被测颗粒群上,由颗粒群产生的衍射光或散射光经会聚透镜会聚后,利用光电探测器进行信号的光电转换,并通过信号放大、A/D 变换、数据采集送到计算机中,通过预先编制的优化程序,即可快速求出颗粒群的尺寸分布。 3实验试剂与仪器 实验样品:果汁饮料。 实验仪器:LS230/VSM+激光粒度仪。 4实验步骤 按照粒度仪、计算机、打印机的顺序将电源打开,并使样品台里充满蒸馏水,开泵,仪器预热10分钟。

进入LS230的操作程序,建立连接,再进行相应的参数设置: 启动Run-run cycle(运行信息) (1)选择measure offset(测量补偿),Alignment(光路校正),measure background(测量空白),loading(加样浓度),Start 1 run(开始测量(2)输入样品的基本信息,并将分析时间设为60秒,点击start(开始)。 如需要测量小于μm以下的颗粒,选择Include PIDS,并将分析时间改 为90秒后,点击start(开始) (3)泵速的设定根据样品的大小来定,一般设在50,颗粒越大,泵速越高,反之亦然。 在测量补偿,光路校正,测量空白的工作通过后,根据软件的提示,加入样品控制好浓度,Obscuration应稳定在8-12%:假如选择了PIDS,则要把PIDS稳定在40-50%,待软件出现ok提示后,点击Done(完成)。 分析结束后,排液,并加水清洗样品台,准备下一次分析。 作平行试验,保存好结果,根据要求打印报告。 退出程序,关电源,样品台里加满水,防止残余颗粒附着在镜片上。 5实验结果与讨论 实验结果 由实验结果显示: 平均粒径:μm

检验方法验证方案(含量测定)

检验方法验证方案 目的:证明所采用的检验方法适于相应的检测要求,具有可靠的准确度、精密度。范围:含量的检定方法的前验证 编定依据:《药品生产质量管理规范》1998年修订版及验证管理办法 职责:验证小组人员 目录 1.概述 2.验证目的 3.职责 3.1验证小组 3.2品质部 3.3化验室 4.验证内容 4.1验证的准备工作 4.2适用性验证 4.2.1准确度试验 4.2.2精密度试验 4.3拟订验证周期 4.4验证结果评定与结论 5.附件

1. 概述 对小容量注射剂的含量测定,本公司采用福林酚测定法,该检验方法具有测量准确、精密度高、专属性强、定量准确可靠、方法简便易行的特点,可满足小容量注射剂含量测定的要求。检验方法标准操作规程。用本方法进行转移因子注射液、胸腺肽注射液的含量测定。 2. 验证目的 为确认对转移因子注射液、胸腺肽注射的含量测定的紫外分光光度法,适合相应的检测要求,特制订本验证方案,进行验证。 验证过程应严格按照本方案规定的内容进行,若因特殊原因确需变更时,应填写验证方案变更申请及批准书,报验证工作小组批准。 验证前,应首先对验证所需的仪器、设备进行验证,对所需仪器、仪表、量具等进行校正。 3. 职责 3.1 验证工作小组 负责验证方案的审批。 负责验证的协调工作,以保证本验证方案规定项目的顺利实施。 负责验证数据及结果的审核。 负责验证报告的审批。 负责发放验证合格证书。 负责再验证周期的确认。 3.2 品质部 负责验证所需仪器、设备的安装、调试,并做好相应的记录。 负责组织验证所需仪器、设备的验证。 负责仪器、仪表、量具等的校正。 负责拟订检验方法的再验证周期 3.3 化验室 负责验证所需的标准品、样品、试剂、试液等的准备。 负责验证方案指定的试验的实施。 负责收集各项验证、试验记录,并对试验结果进行分析后,报验证工作小组。 4. 验证内容 4.1 验证的准备工作 4.1.1 验证所需文件资料 品质部负责提供验证所需的文件资料,包括该检验方法的标准操作规程。以及负责提供验证所需仪器、设备的验证报告以及仪器、仪表、量具等的校正报告。 检查人:日期:

激光粒度分析结果在形貌分析中的应用讲解

实验技术与方法 激光粒度分析结果在形貌分析中的应用 胡汉祥1,2,丘克强1 (1.中南大学化学化工学院,长沙410083; 2.湖南建材高等专科学校化学化工系,衡阳421008) 摘要:激光粒度分析仪通常只用于颗粒大小与分布的测定。通过比较粉体颗粒的激光粒度分 析与扫描电镜分析的结果,发现,激光粒度分析仪所测定的粒度分布函数同时包含了一些形貌分析信息。利用这些信息可为试样进一步作SEM测定创造了条件。关键词:粒度分布;形貌;分析方法 中图分类号:TB302.1文献标识码:A文章编 号:100124012(2006)THEIMAGINGINFORMAEGRAPH OFPARTICLTION 2,,QIUKe2qiang1 (1.SchoolofEngineering,CentralSouthUniversity,Changsha410083,China; 2.DepartmentofEngineering,HunanBuildingMaterialsCollege,Hengyang421008,China) Abstract:TheLaserParticlesSizersareoftenemployedtodeterminetheaverageparticlediamet erandthe particlesizedistribution.TherelationsbetweentheparticlesdistributiongraphandSEMimage softhepowdersweredescribedinthispaper.Authorproposedthatthedoublemodesofthepartic lesdistributionmayimplythetwo2dimensionalconstructionoftheparticle.ItisusefulforSEM ditermination. Keywords:Particlesizedistribution;Pattern;Analysismethod 1引言 常用于粒度测定的方法有X射线衍射法、BET测定法、激光粒度分布仪测定法及透射电镜与扫描电镜测定法。能直观提供形貌分析信息只有透射电镜与扫描电镜

如何判断和选择激光粒度分析仪

如何判断和选择激光粒度分析仪 阅读次数:535 文章日期:2003-5-12 22:03:13 以往的粒度分析方法通常采用筛分或沉降法。常用的沉降法存在着检测速度慢(尤其对小粒子)、重复性差、对非球型粒子误差大、不适用于混合物料(即粒子比重必须一致才能较准确)、动态范围窄等缺点。随着激光衍射法的发明,粒度测量完全克服了沉降法所带来的弊端,大大减轻了劳动强度及加快了样品检测速度(从半小时缩短到了1分钟)。 激光衍射法测量粒度大小基于以下事实:即小粒子对激光的散射角大,大粒子对激光的散射角小。通过散射角的大小测量即可换算出粒子大小。其依据的光学理论为米氏理论和弗朗霍夫理论。其中弗朗霍夫理论为大颗粒米氏理论的近似,即忽略了米氏理论的虚数子集,并且假定颗粒不透明;并忽略光散射系数和吸收系数,即设定所有分散剂和分散质的光学参数均为1,因此数学处理上要简单得多,对有色物质和小粒子误差也大得多。同样,近似的米氏理论对乳化液也不适用。 另外,根据瑞利散射定律,散射光的光强与颗粒直径的六次方成正比,与散射光的光源波长的四次方成反比。这意味着颗粒直径减少10倍,散射光强减弱100万倍!而光源波长越短,散射光强度越高。 再者,由于小粒子散射角大,而主检测器面积有限,一般只能接受到最多45度角的散射光(即大于0.5微米的粒子)。那么,如何检测小粒子,如何克服小粒子光散射能量低,超出主检测器范围的问题,就成为评价激光粒度分析技术的关键。 所以,判断激光粒度分析仪的优劣,主要看其以下几个方面: 1 粒度测量范围粒度范围宽,适合的应用广。不仅要看其仪器所报出的范围,而是看超出主检测器面积的小粒子散射(〈0.5μm〉如何检测。 最好的途径是全范围直接检测,这样才能保证本底扣除的一致性。不同方法的混合测试,再用计算机拟合成一张图谱,肯定带来误差。

粒度分析报告的基本概念与知识

粒度测试的基本概念和基本知识 前言 1. 什么是颗粒? 颗粒是具有一定尺寸和形状的微小的物体,是组成粉体的基本单元。它宏观很小,但微观却包含大量的分子、原子。 2. 什么叫粒度? 颗粒的大小称为颗粒的粒度。 3. 什么叫粒度分布? 不同粒径的颗粒分别占粉体总量的百分比叫做粒度分布。 4. 常见的粒度分布的表示方法? ?表格法:用列表的方式表示粒径所对应的百分比含量。通常有区间分布和累计分布。 ?图形法:用直方图和曲线等图形方式表示粒度分布的方法。 5. 什么是粒径? 颗粒的直径叫做粒径,一般以微米或纳米为单位来表示粒径大小。 6. 什么是等效粒径? 当一个颗粒的某一物理特性与同质球形颗粒相同或相近时,我们就用该球形颗粒的直径来代表这个实际颗粒的直径。根据不同的测量方法,等效粒径可具体分为下列几种: ?等效体积径:即与所测颗粒具有相同体积的同质球形颗粒的直径。激光法所测粒径一般认为是等效体积径。 ?等效沉速粒径:即与所测颗粒具有相同沉降速度的同质球形颗粒的直径。重力沉降法、离心沉降法所测的粒径为等效沉速粒径,也叫Stokes径。 ?等效电阻径:即在一定条件下与所测颗粒具有相同电阻的同质球形颗粒的直径。库尔特法所测的粒径就是等效电阻粒径。 ?等效投影面积径:即与所测颗粒具有相同的投影面积的球形颗粒的直径。图像法所测的粒径即为等效投影面积直径。 7. 为什么要用等效粒径概念? 由于实际颗粒的形状通常为非球形的,因此难以直接用粒径这个值来表示其大小,而直径又是描述一个几何体大小的最简单的一个量,于是采用等效粒径的概念。简单地说,粒径就是颗粒的直径。从几何学常识我们知道,只有圆球形的几何体才有直径,其他形状的几何体并没有直径,如多角形、多棱形、棒形、片形等不规则形状的颗粒是不存在真实直径的。但是,由于粒径是描述颗粒大小的所有概念中最简单、直观、容易量化的一个量,所以在实际的粒度分布测量过程中,人们还都是用粒径来描述颗粒大小的。一方面不规则形状并不存在真实的直径,另一方面又用粒径这个概念来表示它的大小,这似乎是矛盾的。其实,在粒度分布测量过程中所说的粒径并非颗粒的真实直径,而是虚拟的“等效直径”。等效直径是当被测颗粒的某一物理特性与某一直径的同质球体最相近时,就把该球体的直径作为被测颗粒的等效直径。就是说大多数情况下粒度仪所测的粒径是一种等效意义上的粒径。 不同原理的粒度仪器依据不同的颗粒特性做等效对比。如沉降式粒度仪是依据颗粒的沉降速度作等效对比,所测的粒径为等效沉速径,即用与被测颗粒具有相同沉降速度的同质球形颗粒的直径来代表实际颗粒的大小。激光粒度仪是利用颗粒对激光的散射特性作等效对比,所测出的等效粒径为等效散射粒径,即用与实际被测颗粒具有相同散射效果的球形颗粒的直径来代表这个实际颗粒的大小。当被测颗粒为球形时,其等效粒径就是它的实际直径。 8. 平均径、D50、最频粒径 定义这三个术语是很重要的,它们在统计及粒度分析中常常被用到。 ?平均径: 表示颗粒平均大小的数据。有很多不同的平均值的算法,如D[4,3]等。根据不同的仪器所测量的粒度分布,平均粒径分、体积平均径、面积平均径、长度平均径、数量平均径等。 ?D50: 也叫中位径或中值粒径,这是一个表示粒度大小的典型值,该值准确地将总体划分为二等份,也就是说有50%的颗粒超过此值,有50%的颗粒低于此值。如果一个样品的D50=5μm,说明在组 成该样品的所有粒径的颗粒中,大于5μm的颗粒占50%,小于5μm的颗粒也占50%。 ?最频粒径: 是频率分布曲线的最高点对应的粒径值。设想这是一般的分布或高斯分布。则平均值,中值和最频值将恰好处在同一位置,如下图。但是, 如果这种分布是双峰分布,则平均直径几乎恰 恰在这两个峰的中间。实际上并不存在具有该 粒度的颗粒。中值直径将位于偏向两个分布中

甲醛分析方法验证方案

工作场所空气中甲醛分光光度法验证方案 方案编号:

目录

1. 概述 本文件验证了工作场所空气中甲醛的分光光度法本检测方法实施细则参照 GBZ/T 《工作场所空气有毒物质测定脂肪族醛类化合物》中甲醛的酚试剂分光光度法的定量测定为主要依据,以及在此标准的基础上根据本检测中心实际配置的仪器和实验条件的情况下将标准中的技术要素编写了相关的作业指导书。 为了保证此分析方法的可行性、准确性、可操作性和适用性、用科学的方法进行相应的验证程序特别编写了此验证方案,为今后在实际工作中将起到指导和借鉴的作用。 在验证空气中甲醛的测定方法中,做了方法的线性范围实验、检出限实验、方法精密度实验、准确度实验,以证明该方法适用于测定工作场所空气中甲醛的的浓度。 2. 目的 通过验证工作,确保测定工作场所空气中甲醛浓度的分析方法在广德众康职业卫生检测服务有限公司适用。 3. 分光光度计操作条件: 4. 试剂 实验用水为蒸馏水 至刻度。 开机准备 检查仪器,准备10mm石英比色皿。 打开紫外可见分光光度计,同时预热分光光度计10min 预热完毕,仪器自检完毕后,准备实验。 在成套的石英比色皿中加入参比溶液,做基线校准与校准能量。 校准完毕后,输入本方法所需要的波长645nm,确认,实验开始。 5.方法验证 线形范围

在3操作条件下将紫外可见分光光度计调节至最佳测定状态,标准曲线的绘制:取7只 具塞比色管,分别加入、、、、、、甲醛标准溶液,加水至,各加2ml酚试剂溶液,摇匀,于43±1℃水浴中放置10min,期间摇动几次,加入硫酸铁铵溶液,摇匀,再放入水浴中加热10min,取出放冷至室温,在645nm 波长下测量吸光度。每个浓度重复测定3 次, 以吸光度均值对相应的甲醛的含量(g)绘制标准曲线。 见表1: 表1:方法验证线性范围数据表 序号 1 2 3 4 5 6 7 标准含量(μ g) 吸光度(A) 相关系数 线形方程Y=+ 检出限 在3工作条件下将仪器调至检测状态,连续测量10次空白溶液,按公式计算检出限: C L = 3σ/s 式中:C L —检出限,g/mL; σ—测量10次空白溶液的浓度标准偏差; s —方法的灵敏度,即工作曲线斜率,mL/μg。 表2:连续测定10次空白溶液检出线数据 序号 1 2 3 4 5 吸光度值 浓度(μg /mL) 序号 6 7 8 9 10 吸光度值 浓度(μg

英国马尔文激光粒度仪

英国马尔文激光粒度仪 仪器简介: Mastersizer 2000 粒度仪是马尔文仪器公司的最新激光衍射系统,技术先进,操作既简单又直观。采用模块化设计,配备一系列测量干湿样品的自动样品分散装置。采用内置的 SOP 系统进行控制,提供简便的开发和传输方法Mastersizer 系列激光粒度仪经过不断的发展,能够满足工业和学术界用户粒度测量的需要。Mastersizer 创造性地使用激光衍射技术,已成为世界上实验室粒度分析的首选产品。它可以精确、无损伤地测量从亚微米到几毫米的范围广泛的颗粒粒度,湿法和干法分散均可使用。 主要特点: 1,准确性和重复性 精度:根据马尔文质量审核标准, Dv50具有± 1% 的精度。仪器到仪器的重复性:根据马尔文质量审核标准, Dv50的重复性优于 1% RSD。 2,重复性保证 由软件驱动的 SOP 消除了用户间的差异,并且可以全面共享。所有测量参数自动嵌入结果文件,并可以通过电子邮件使收件人审阅。测量可以通过遵循同样的 SOP而重复出来。 3,广泛的测量范围 测量物质从0.02μm 到2000μm。 4,广泛的样品类型 适用于乳化液、悬浮液和干粉的测量。 5,简单易用 全自动,使用简单。消除了不同用户间的的可变性。减少对新用户的培训要求,并充分发挥熟练人员的潜力。 6,灵活性 多种样品分散装置。通过自动配置,快速地切换样品分散装置。"即插即用"盒式系统允许同时连接两个样品分散装置。 7,规范符合性 完整的 QSpec 验证文档,并符合 21 CFR 第 11 部分的规定要求。 8,界面友好的软件 由软件驱动的标准操作规程 (SOP) 消除了用户间的差异。

方法验证的具体内容

验证内容:准确度、精密度(包括重复性、中间精密度和重现性)、专属性、检测限、定量限、线性、范围和耐用性。 一、准确度:是指用该方法测定的结果与真实值或参考值接近的程度,一般以百分回收率表示。至少用9次测定结果进行评价。 二、精密度:是指在规定的条件下,同一个均匀样品,经过多次取样测定所得结果之间的接近程度。用偏差、标准偏差或相对标准偏差表示。 1、重复性:相同条件下,一个分析人员测定所得结果的精密度称为重复性。至少9次。 2、中间精密度:一个实验室,不同时间不同分析人员用不同设备测定结果的精密度。 3、重现性:不同实验室,不同分析人员测定结果的精密度。分析方法被法定标准采用应进行重现性试验。 三、专属性:指在其他成分可能存在的情况下,采用的方法能准确测定出被测物的特性,用于复杂样品分析时相互干扰的程度。鉴别反应、杂质检查、含量测定方法,圴应考察专属性。 四、检测限:指试样中被测物能被检测出的最低量,无须定量。用百分数、ppm或ppb 表示。 五、定量限:指样品中被测物能被定量测定的最低量,测定结果应具一定的精密度和准确度。 六、线性:系指在设计的范围内,测试结果与试样中被测物浓度直接呈正比关系的程度。 七、范围:能达到一定的精密度、准确度和线性的条件下,测试方法适用的高低限浓度或量的区间。 八、耐用性:指在一定的测定条件稍有变动时,测定结果不受影响的承受程度。

方法验证内容如下。 一、准确度 准确度系指用该方法测定的结果与真实值或参考值接近的程度,一般用回收率(%)表示。准确度应在规定的范围内测试。 1.含量测定方法的准确度 原料药可用已知纯度的对照品或样品进行测定,或用本法所得结果与已知准确度的另一个方法测定的结果进行比较。 制剂可用含已知量被测物的各组分混合物进行测定。如不能得到制剂的全部组分,可向制剂中加入已知量的被测物进行测定,或用本法所得结果与已知准确度的另一个方法测定结果进行比较。 如该分析方法已经测试并求出了精密度、线性和专属性,在准确度也可推算出来的情况下,这一项可不必再做。 2.杂质定量测定的准确度 可向原料药或制剂中加入已知量杂质进行测定。如不能得到杂质或降解产物,可用本法测定结果与另一成熟的方法进行比较,如药典标准方法或经过验证的方法。在不能测得杂质或降解产物的响应因子或对原料药的相对响应因子情况下,可用原料药的响应因子。应明确表明单个杂质和杂质总量相当于主成分的重量比(%)或面积比(%)。 3.数据要求 在规定范围内,至少用9个测定结果进行评价,例如,设计3个不同浓度,每个浓度各分别制备3份供试品溶液,进行测定。应报告已知加入量的回收率(%),或测定结果平均值与真实值之差及其相对标准偏差或可信限。 (意见3:是否对所设定的浓度范围作出要求,如:该方法用于药品的含量测定,回收率试验的样品浓度应设定于含量100%的±20%之间;用于溶出(释放)曲线考察时,回收率试验的样品浓度应设定于全曲线范围的上、中、下部位。) 二、精密度 精密度系指在规定的测试条件下,同一个均匀样品,经多次取样测定所得结果之间的接近程度。精密度一般用偏差、标准偏差或相对标准偏差表示。 在相同条件下,由一个分析人员测定所得结果的精密度称为重复性;在同一个实验室,不同时间由不同分析人员用不同设备测定结果之间的精密度,称为中间精密度;在不同实验室由不同分析人员测定结果之间的精密度,称为重现性。 含量测定和杂质的定量测定应考虑方法的精密度。 1.重复性 在规定范围内,至少用9个测定结果进行评价,例如,设计3个不同浓度,每个浓度各分别制备3份供试溶液,进行测定。或100%的浓度水平,用至少测定6次的结果进行评价。 2.中间精密度 为考察随机变动因素对精密度的影响,应设计方案进行中间精密度试验。变动因素为不同日期、不同分析人员、不同设备。 3.重现性 当分析方法将被法定标准采用,应进行重现性试验,例如,建立药典分析方法时通过协同检验得出重现性结果。协同检验的目的、过程和重现性结果均应记载在起草说明中。应注意重现性试验用的样品本身的质量均匀性和贮存运输中的环境影响因素,以免影响重现性结果。 4.数据要求 均应报告标准偏差、相对标准偏差和可信限。

相关主题
文本预览
相关文档 最新文档