当前位置:文档之家› [理学]习题07利用留数定理计算定积分

[理学]习题07利用留数定理计算定积分

[理学]习题07利用留数定理计算定积分
[理学]习题07利用留数定理计算定积分

使用留数定理计算实积分

用留数定理计算实积分 一:教学内容(包括基本内容、重点、难点): 基本内容:用留数定理计算实积分的几种方法 重点:用留数定理计算实积分的方法 难点:定理的应用 二:教学目标或要求: 真正掌握用留数定理计算实积分的几种方法 三、教学手段与方法: 讲授、练习 四、思考题、讨论题、作业与练习:5-7 用留数定理计算实积分 留数定理的一个重要应用是计算某此实变函数的积分. 如,在研究阻尼振动时 计算积分,在研究光的衍射时,需要计算菲涅耳积分. 在热学中将遇到积分(,b为任意实数)如用实函数分析中的方法计算这些积分几乎是不可能的,既使能计算,也相当复杂.如果能把它们化为复积分,用哥西定理和留数定理,那就简单了.当然最关键的是设法把实变函数是积分跟复变函数回路积分联系起来. 把实变积分联系于复变回路积分的要点如下:定积分的积分区 间可以看作是复数平面上的实轴上的一段,于是,或者利用自变数的变换把变成某个新的复数平面上的回路,这样就可以应用留数定理了;或者另外补上一段曲线,使和合成回路l,l包围着区域B,这样

左端可应用留数定理,如果容易求出,则问题就解决了,下面具体 介绍几个类型的实变定积分. 一 计算? π20 d )sin ,(cos R θ θθ型积分 令θi e =z ,则θc o s 与θsin 均可用复变量z 表示出来,从而实现将 )sin ,(cos R θθ变形为复变量z 的函数的愿望,此时有 z z z z i 21sin ,21cos 2 2 -= += θθ 同时,由于θi e =z ,所以1=z ,且当θ由0变到π2时,z 恰好在圆周1:=z c 上变动一周。故使积分路径也变成了所期望的围线。 至此,有 ?? =?-+=1 2 2π20 d i 1 )i 21,21(R d )sin ,(cos R z z z z z z z θθθ 于是,计算积分? π20 d )sin ,(cos R θ θθ的方法找到了,只需令θi e =z 即可。 例 求。 解 当 时, ;当 时,令 , 当 时,在 内, 仅以 为一级极点, 在 上无奇点,故由留数定理

留数定理在定积分计算中的应用论(参考模板)

留数定理在定积分计算中的应用 引言 在微积分或数学分析中,不少积分( 包括普通定积分与反常积分) 的计算用微积分教材里的知识很难解决或几乎是无能为力. 如果我们能结合其他数学分支的理论方法来讨论解决这类问题,会达到化难为易、化繁为简的效果.本文主要利用复变函数中的留数定理,将实积分转换为复积分的方法,讨论了几类定积分的计算,首先我们来给出留数的定义及留数定理. 1留数定义及留数定理 1.1 留数的定义 设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域0z a R

证明:以k a 为心,充分小的正数k ρ为半径画圆周:k k z a ρΓ?=(1,2,k =…,n )使这些圆周及内部均含于D ,并且彼此相互隔离,利用复周线的柯西定理得 ()()1k n k C f z dz f z dz =Γ=∑??, 由留数的定义,有 ()()2Re k k z a f z dz i s f z π=Γ=?. 特别地,由定义得 ()2Re k k z a f z dz i s π=Γ=?, 代入(1)式得 ()()1 2Re k n z a k C f z dz i s f z π===∑?. 2.留数定理在定积分中的应用 利用留数计算定积分活反常积分没有普遍的实用通法,我们只考虑几种特殊类型的积分. 2.1形如 ()20 cos ,sin f x x dx π ?型的积分 ()cos ,sin f x x 表示cos ,sin x x 的有理函数,且在[]0,2π上连续,解决此类积分要注意两点,一:积分上下限之差为2π,这样当作定积分时x 从0到2π,对应的复变函数积分正好沿闭曲线绕行一周.二:被积函数是以正弦和余弦函数为自变量。满足这两点之后,我们可以设ix z e =,则dz izdx =, 21sin 22ix ix e e z x i iz ---==,21 cos 22ix ix e e z x z -++== 得 ()22210 11cos ,sin ,22z z z dz f x x dx f z iz iz π =??--= ????? ()1 2Re k n z z k i s f z π===∑.

用留数定理计算实积分的再讨论分析

毕业论文 (2014届) 题目用留数定理计算实积分的再讨论 学院数计学院 专业数学与应用数学(师范) 年级2010级(2)班 学生学号12010244185 学生姓名刘艳 指导教师汪文帅 2014年5月8日 用留数定理计算实积分的再讨论

数学计算机学院数学与应用数学师范专业2014届刘艳 摘要:正确运用留数定理计算实积分就是要理解它的实质并且在计算实积分的过程中构造容易求解的积分路径,然而大量教材或者相关文献长期或者有意无意的按照既定思维对某些实积分计算问题选择基本固定不变的积分路径进行求解,在一定程度上给学生造成思维定势. 本文用例证的方法讨论了用留数定理计算实积分的过程中积分曲线的选择方法,从不同的角度体现了求解过程中选择积分路径的核心思想.这为进一步开拓思维,更为深刻理解留数定理有积极的意义. 关键词:留数定理;实积分;积分曲线 中图分类号:O174 Further discussion of Calculation on real integral by the residue theorem Abstract: The correct use of the residue theorem to calculate real integration means to understand its essence and to construct easy-solved integral path, but a lot of materials or the relevant studies always select the same integral path to solve the similar problem, which give the students wrong understanding when most teachers did not pay attention to the ideological inspiration in teaching. T o some extent, this limits students’ thinking. In this paper, the selection method of integral curve is given with examples in view of the different integral path and the core idea of the residue theorem is shown in calculating process, which has a positive significance for further development of thinking and more understanding of the residue theorem. Key words: real integral;residue theorem;integral curve

2016年专项练习题集-定积分的计算

2016年专项练习题集-定积分的计算 一、选择题 1.dx x )5(1 22-?=( ) A.233 B. 31 C.3 4 D .83 【分值】5分 【答案】D 【易错点】求被积函数的原函数是求解关键。 【考查方向】求定积分 【解题思路】求出被积函数的原函数,应用微积分基本定理求解。 【解析】dx x )5(122-?=123153x x -=83 . 2.直线9y x =与曲线3 y x =在第一象限内围成的封闭图形的面积为( ) A 、 B 、 C 、2 D 、4 【分值】5分 【答案】D 【易错点】求曲线围成的图形的面积,可转化为函数在某个区间内的定积分来解决,被积函

数一般表示为曲边梯形上边界的函数减去下边界的函数. 【考查方向】定积分求曲线围成的图形的面积 【解题思路】先求出直线与曲线在第一象限的交点,再利用牛顿-莱布尼茨公式求出封闭图形的面积. 【解析】由? ??==39x y x y ,得交点为()()()27,3,27,3,0,0--, 所以()4 81034129942303 =??? ??-=-=?x x dx x x S ,故选D. 3.2 2-?2412x x -+dx =( ) A.π 4 B.π 2 C.π D.π3 【分值】5分 【答案】A 【易错点】利用定积分的几何意义,一般根据面积求定积分,这样可以避免求原函数,注意理解所涉及的几何曲线类型. 【考查方向】求定积分 【解题思路】利用定积分的几何意义,转化为圆的面积问题。 【解析】设y =2412x x -+,即(x -2)2+y 2=16(y ≥0).∵2 2-?2412x x -+dx 表示以4为半径的圆的四分之一面积.∴2 2-?2412x x -+dx =π4. 4.F4遥控赛车组织年度嘉年华活动,为了测试一款新赛车的性能,将新款赛车A 设定v =3t 2+1(m/s)的速度在一直线赛道上行驶,老款赛车B 设定在A 的正前方5 m 处,同时以v

使用留数定理计算实积分

用留数定理计算实积分 一:教学容(包括基本容、重点、难点): 基本容:用留数定理计算实积分的几种方法 重点:用留数定理计算实积分的方法 难点:定理的应用 二:教学目标或要求: 真正掌握用留数定理计算实积分的几种方法 三、教学手段与方法: 讲授、练习 四、思考题、讨论题、作业与练习:5-7 用留数定理计算实积分 留数定理的一个重要应用是计算某此实变函数的积分. 如,在研究阻尼振动时计算积分,在研究光的衍射时,需要计算菲涅耳积分. 在热学中将遇到积分(,b为任意实数)如用实函数分析中的方法计算这些积分几乎是不可能的,既使能计算,也相当复杂.如果能把它们化为复积分,用哥西定理和留数定理,那就简单了.当然最关键的是设法把实变函数是积分跟复变函数回路积分联系起来. 把实变积分联系于复变回路积分的要点如下:定积分的积分区间可以看作是复数平面上的实轴上的一段,于是,或者利用自变数的变换把变成某个新的复数平面上的回路,这样就可以应用留数定理了;或者另外补上一段曲线,使和合成回路l,l包围着区域B,这样

左端可应用留数定理,如果容易求出,则问题就解决了,下面具体 介绍几个类型的实变定积分. 一 计算?π 20d )sin ,(cos R θθθ型积分 令θi e =z ,则θcos 与θsin 均可用复变量z 表示出来,从而实现将 )sin ,(cos R θθ变形为复变量z 的函数的愿望,此时有 z z z z i 21 sin ,21cos 22-= +=θθ 同时,由于θi e =z ,所以1=z ,且当θ由0变到π2时,z 恰好在圆周1:=z c 上变动一周。故使积分路径也变成了所期望的围线。 至此,有 ?? =?-+=1 22π20 d i 1)i 21,21(R d )sin ,(cos R z z z z z z z θθθ 于是,计算积分?π20 d )sin ,(cos R θθθ的方法找到了,只需令θi e =z 即可。 例 求。 解 当 时, ;当 时,令 , 当 时,在 , 仅以 为一级极点, 在 上无奇点,故由留数定理

定积分典型例题11198

定积分典型例题 例1 求21lim n n →∞L . 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1 i x n ?=,然后把2111n n n =?的一个因子1n 乘 入和式中各项.于是将所求极限转化为求定积分.即 21lim n n →∞+L =1lim n n →∞+L =34 =?. 例2 ? =_________. 解法1 由定积分的几何意义知,0 ?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故0 ?= 2 π . 例18 计算2 1 ||x dx -?. 分析 被积函数含有绝对值符号,应先去掉绝对值符号然后再积分. 解 2 1||x dx -?=0 2 10()x dx xdx --+??=220210[][]22x x --+=5 2 . 注 在使用牛顿-莱布尼兹公式时,应保证被积函数在积分区间上满足可积条件.如 3 322 2111 []6 dx x x --=-=?,则是错误的.错误的原因则是由于被积函数21x 在0x =处间断且在被积区间内无界. 例19 计算2 20 max{,}x x dx ?. 分析 被积函数在积分区间上实际是分段函数 212()01x x f x x x ?<≤=?≤≤? . 解 232 12 2 2 12010 1 1717max{,}[][]23236 x x x x dx xdx x dx =+=+=+=? ?? 例20 设()f x 是连续函数,且10 ()3()f x x f t dt =+?,则()________f x =. 分析 本题只需要注意到定积分()b a f x dx ?是常数(,a b 为常数). 解 因()f x 连续,()f x 必可积,从而10 ()f t dt ?是常数,记1 ()f t dt a =?,则 ()3f x x a =+,且11 (3)()x a dx f t dt a +==??.

应用留数定理计算实变函数定积分

应用留数定理计算物理学中实变函数定积分 1问题 在物理学中,研究阻尼振动时计算积分 sin x dx x ∞ ? ,研究光的衍射时计算菲涅耳积分20sin()x dx ∞?, 在热学中遇到积分 cos (0,ax e bxdx b a ∞ ->? 为任意实数)如果用实函数分析中的方法计算这些积分几乎不 可能。而在复变函数的积分计算中,依据留数定理,我们可以将实变函数 定积分跟复变函数回路积分联系起来。 2应用留数定理求解实变函数定积分的类型 将实变函数定积分联系于复变函数回路积分的要点如下: 1)利用自变数变换把1l 变换为某个新的复数平面上的回路; 2)另外补上一段曲线2l ,使1l 和2l 合成回路l ,l 包围着区域B ,则 1l 上的()f x 延拓为B 上的()f z ,并将它沿l 积分,有 1 2 ()()()l l l f z dz f x dx f z dz =+? ??; 3) ()l f z dz ? 可以应用留数定理,1 ()l f x dx ?就是所求的定积分。如果2 ()l f z dz ?较易求出(往往是 证明为零)或可用第一个积分表示出,问题就解决了. 类型一 20 (cos ,sin )R x x dx π ? .被积函数是三角函数的有理式;积分区间为[0,2π]. 求解方法:因为被积函数是以正弦和余弦函数为自变量,积分上下限之差为2π,可以当作定积分x 从 0变到2π,对应的复变函数积分正好沿比曲线绕行一周,实变积分化为复变回路积分就可以应用留数定理. 可以设ix z e =,则dz izdx =∴dz dx iz = 而1 1cos ()22ix ix e e x z z --+= =+,11sin ()22ix ix e e x z z i i ---==- 则原积分化为111(,)2()22k z k z z z z dz I R i Resf z i iz π--=+-==∑? 类型二 -()f x dx ∞ ∞ ? .积分区间为(-∞,+∞);复变函数()f z 在实轴上有奇点,在上半平面除有限 个奇点外是解析的;当z 在上半平面及实轴上→∞时,()zf z 一致地→0. 求解方法:如果f(x)是有理分式()/()x x ?ψ,上述条件意味着()x ψ没有实的零点,()x ψ的次数至 图1

应用留数定理计算实变函数定积分

应用留数定理计算物理学中实变函数定积分 1问题 在物理学中,研究阻尼振动时计算积分0 sin x dx x ∞ ? ,研究光的衍射时计算菲涅耳积分20sin()x dx ∞?, 在热学中遇到积分 cos (0,ax e bxdx b a ∞ ->? 为任意实数)如果用实函数分析中的方法计算这些积分几乎不 可能。而在复变函数的积分计算中,依据留数定理,我们可以将实变函数定积分跟复变函数回路积分联系 起来。 2应用留数定理求解实变函数定积分的类型 将实变函数定积分联系于复变函数回路积分的要点如下: 1)利用自变数变换把1l 变换为某个新的复数平面上的回路; 2)另外补上一段曲线2l ,使1l 和2l 合成回路l ,l 包围着区域B ,则1l 上的()f x 延拓为B 上的()f z ,并将它沿l 积分,有 1 2 ()()()l l l f z dz f x dx f z dz =+?? ? ; 3) ()l f z dz ? 可以应用留数定理,1 ()l f x dx ? 就是所求的定积分。如果2 ()l f z dz ?较易求出(往往是证 明为零)或可用第一个积分表示出,问题就解决了. 类型一 20 (cos ,sin )R x x dx π ? .被积函数是三角函数的有理式;积分区间为[0,2π]. 求解方法:因为被积函数是以正弦和余弦函数为自变量,积分上下限之差为2π,可以当作定积分x 从 0变到2π,对应的复变函数积分正好沿比曲线绕行一周,实变积分化为复变回路积分就可以应用留数定理. 可以设ix z e =,则dz izdx =∴dz dx iz = 而1 1cos ()22ix ix e e x z z --+= =+,11sin ()22ix ix e e x z z i i ---==- 则原积分化为111(,)2()22k z k z z z z dz I R i Resf z i iz π--=+-==∑? 类型二 -()f x dx ∞ ∞ ? .积分区间为(-∞,+∞) ;复变函数()f z 在实轴上有奇点,在上半平面除有限个奇点外是解析的;当z 在上半平面及实轴上→∞时,()zf z 一致地→0. 求解方法:如果f(x)是有理分式()/()x x ?ψ,上述条件意味着()x ψ没有实的零点,()x ψ的次数至少 高于()x ?两次. 图1

定积分典型例题20例答案

定积分典型例题20例答案 例1 求33322 32 1lim (2)n n n n n →∞+++. 分析 将这类问题转化为定积分主要是确定被积函数和积分上下限.若对题目中被积函数难以想到,可采取如下方法:先对区间[0,1]n 等分写出积分和,再与所求极限相比较来找出被积函数与积分上下限. 解 将区间[0,1]n 等分,则每个小区间长为1i x n ?=,然后把2111n n n =?的一个因子1 n 乘 入和式中各项.于是将所求极限转化为求定积分.即 33322 32 1lim (2)n n n n n →∞+++=333 112 lim ()n n n n n n →∞++ +=1303 4 xdx =?. 例2 2 20 2x x dx -? =_________. 解法1 由定积分的几何意义知,2 20 2x x dx -?等于上半圆周22(1)1x y -+= (0y ≥) 与x 轴所围成的图形的面积.故220 2x x dx -? = 2 π . 解法2 本题也可直接用换元法求解.令1x -=sin t (2 2 t π π - ≤≤ ),则 2 2 2x x dx -? =2 2 2 1sin cos t tdt ππ- -? =2 2 21sin cos t tdt π -? =220 2cos tdt π ?= 2 π 例3 (1)若2 2 ()x t x f x e dt -=?,则()f x '=___;(2)若0 ()()x f x xf t dt =?,求()f x '=___. 分析 这是求变限函数导数的问题,利用下面的公式即可 () () ()[()]()[()]()v x u x d f t dt f v x v x f u x u x dx ''=-?. 解 (1)()f x '=42 2x x xe e ---; (2) 由于在被积函数中x 不是积分变量,故可提到积分号外即0()()x f x x f t dt =?,则 可得 ()f x '=0()()x f t dt xf x +?. 例4 设()f x 连续,且31 ()x f t dt x -=?,则(26)f =_________. 解 对等式310 ()x f t dt x -=? 两边关于x 求导得 32(1)31f x x -?=,

留数定理与几类积分的计算

留数定理与几类积分的计算 中文摘要 本文主要总结几类可用留数定理计算的积分的特征并给出对应的用留数定理算积分的步骤以及可行性说明。其中类型3是对文献1中给出的结论的推广,类型3中的引理2是笔者对文献1的一道习题的推广并给出了证明。接着笔者补充了参考文献2中多值函数积分部分4个引理的证明并给出相应的应用例子,类型7笔者根据个人理解将分成瑕积分和黎曼积分两类给出计算方法。 关键词:留数定理,积分计算,单值函数,多值函数 …… 正文 (一)单值函数 类型1:形如20(sint,cost)dt I R π =?的实积分,其中(x,y)R 是有理函数,并且在圆 周22{(x,y):x y 1}+=上分母不为零。 解决技巧:令it z e =,将实积分转化为单位圆周上的复积分。 由sin ,cost ,22 it it it it it e e e e t dz ie dt i ---+= ==可得: 22221 111111 (,)2Re ((,),z )22222n k C k z z z z I R dz i s R iz z iz iz z i =-+-+==π∑?① 其中,12,,...,n z z z 是22111 (,)22z z R iz z zi -+在单位圆周的所有孤立奇点,22111 (,)22z z R iz z zi -+在单位闭圆盘除去12,,...,n z z z 外的其他点都解析。 例子: 类型2:形如(x)dx I R +∞ -∞ =? 的实反常积分,其中(x)R 是有理函数,在实轴上分 母不为零,并且分母的次数至少比分子次数高2。计算公式为 1 2Re (R(z),z )n k k I i s ==π∑(其中12,,...,n z z z 为R(z)在上半平面的所有孤立奇点,R(z ) 在上半平面除去这些点外的其他点解析)

高中数学定积分计算习题

定积分的计算 班级 姓名 一、利用几何意义求下列定积分 (1)dx x ? 1 1 -2-1 (2)dx x ? 2 2-4 (3) dx x ? 2 2-2x (4) ()dx x x ? -2 4 二、定积分计算 (1)()dx ?1 7-2x (2)( ) d x ?+2 1 x 2x 32 (3)dx ?3 1 x 3 (4)dx x ?π π - sin (5)dx x ?e 1 ln (6)dx ? +1 x 112 (7)() dx x x ?+-10 2 32 (8)()dx 2 31 1-x ? (9)dx ?+1 1 -2x x 2)( (10)( ) d x x ?+21 2x 1x (11)() dx x x ?-+1 1 -352x (12)() dx e e x x ?+ln2 x -e (13)dx x ?+π π --cosx sin ) ( (14)dx ? e 1 x 2 (15)dx x ?2 1 -x sin -2e )( (16)dx ?++2 1-3x 1 x x 2 (17)dx ? 2 1x 13 (18)()dx 2 2 -1x ?+

三、定积分求面积、体积 1求由抛物线y 2=2x 与直线y =4-x 围成的平面图形的面积。 2.求曲线y =x ,y =2-x ,y =-1 3 x 所围成图形的面积. 3.求由曲线y =cos x (0≤x ≤2π)与直线y =1所围成的图形面积 4.如图求由两条曲线y =-x 2 ,y =-14 x 2 及直线y =-1所围成的图形的面积. 5、求函数f(x)=???? ? x +1 (-1≤x<0)cosx (0≤x ≤π 2)的图象与x 轴所围成的封闭图形的面积。 6.将由曲线y =x 2,y =x 3所 围成平面图形绕x 周旋转一周,求所得旋转体的体积。 7.将由三条直线x =0、x =2、y =0和曲线y =x 3所围成的图形绕x 周旋转一周,求所得旋转体的体积。 8.由曲线y =x 与直线x =1,x =4及x 轴所围成的封闭图形绕x 周旋转一周,求所得旋转体的体积

留数定理及应用

留数及其应用 摘 要 数定理得知,计算函数)(z f 沿C 的积分,可归结为计算围线C 内各孤立 奇点处的留数之和.而留数又是该奇点处的罗朗级数的负一次幂的系数,因此我们只关心该奇点处罗朗留数理论是复积分和复级数理论相结合的产物,利用留数定理可 以把沿闭路的积分转化为计算孤立点处的留数.此外,在数学分析及实际问题中,往往一些被积函数的原函数不能用初等函数表示,有时即便可以,计算也非常复杂.我们利用留数定理可以把要求的积分转化为复变函数沿闭曲线的积分,从而把待求积分转化为留数计算.本文首先介绍留数定义及留数定理,然后针对具体不同的积分类型有不同的计算方法以及留数理论在定积分中的一些应用. 关键词 留数定理;留数计算;应用 引 言 对留数理论的学习不仅是前面知识的延伸,更为对原函数不易直接求得的定积分和反常积分的求法提供了一个较为方便的方法. 一. 预备知识 孤立奇点 1.设()f z 在点a 的把计算闭曲线上的积分值的问题转化为计算各个孤立奇点上的留数的问题,即计算在每一个孤立奇点处的罗朗展式中负幂一次项的系数1-C .在一般情况下,求罗朗展式也是比较麻烦的,因此,根据孤立奇点的不同类型,分别建立留数计算的一些简便方法是十分必要的. 1.1 若0z 为)(z f 的可去奇点 则)(z f 在R z z <-<00某去心邻域内解析,但在点a 不解析, 则称a 为f 的孤立奇点.例如sin z z ,1 z e 以0=z 为孤立奇点. z 以0=z 为奇点,但不是孤立奇点,是支点. 11sin z 以0=z 为奇点(又由1sin 0=z ,得1(1, 2...,)π ==±±z k k 故0=z 不是孤立奇点) 2.设a 为()f z 的孤立奇点,则()f z 在a 的某去心邻域内,有

留数定理在定积分中的应用

留数定理在定积分中的应用 1. 留数定义及留数定理 1.1 留数的定义 设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域0z a R

由留数的定义,有 ()()2Re k k z a f z dz i s f z π=Γ=?. 特别地,由定义得 ()2Re k k z a f z dz i s π=Γ=?, 代入(1)式得 ()()1 2Re k n z a k C f z dz i s f z π===∑?. 2.留数定理在定积分中的应用 利用留数计算定积分活反常积分没有普遍的实用通法,我们只考虑几种特殊类型的积分. 2.1 形如 ()20 cos ,sin f x x dx π ?型的积分 这里()cos ,sin f x x 表示cos ,sin x x 的有理函数,并且在[]0,2π上连续,把握此类积分要注意,第一:积分上下限之差为2π,这样当作定积分时x 从0经历变到2π,对应的复变函数积分正好沿闭曲线绕行一周.第二:被积函数是以正弦和余弦函数为自变量。当满足这两个特点之后,我们可设ix z e =,则dz izdx =, 21sin 22ix ix e e z x i iz ---==,21cos 22ix ix e e z x z -++== 得 ()222 10 11cos ,sin ,22z z z dz f x x dx f z iz iz π =??--= ???? ?

定积分计算例题

第5章 定积分及其应用 (一)、单项选择题 1.函数()x f 在区间[a ,b]上连续是()x f 在[a ,b]上可积的( )。 A .必要条件 B 充分条件 C 充分必要条件 D 既非充分也非必要条件 2.下列等式不正确的是( )。 A . ()()x f dx x f dx d b a =??????? B. ()()()[]()x b x b f dt x f dx d x b a '=???? ??? C. ()()x f dx x f dx d x a =??????? D. ()()x F dt t F dx d x a '=???? ??'? 3.? ?→x x x tdt tdt sin lim 的值等于( ). A.-1 B.0 C.1 D.2 4.设x x x f +=3 )(,则 ? -2 2 )(dx x f 的值等于( )。 A .0 B.8 C. ? 2 )(dx x f D. ?2 )(2dx x f 5.设广义积分 ? +∞ 1 dx x α收敛,则必定有( )。 A.1-<α B. 1->α C. 1<α D. 1>α 6.求由1,2,===y x e y x 围成的曲边梯形的面积时,若选择x为积分变量,则积分区间为( )。 A.[0,2e ] B.[0,2] C.[1,2] D.[0,1] 7.由曲线2,0,===y x e y x 所围成的曲边梯形的面积为( )。 A.dy y ? 2 1 ln B. dy e e x ? 2 C.dy y ? 2 ln 1ln D. ()d x e x ?-2 1 2 8.由直线1,+-==x y x y ,及x轴围成平面图形的面积为( )。 A. ()[]dy y y ?--1 1 B. ()[]dx x x ? -+-21 1 C. ()[]dy y y ? --210 1 D.()[]dx x x ? +--1 1 9.由e x x y x y e ===,log ,ln 1围成曲边梯形,用微法求解时,若选x为积分变量,面积微元为 ( )。 A.dx x x e ???? ? ? +1 log ln B.dy x x e ???? ? ?+1log ln C.dx x x e ???? ? ?-1log ln D.dy x x e ??? ? ? ?-1log ln 10.由0,1,1,2==-==y x x x y 围成平面图形的面积为( )。 A. ? -1 1 2dx x B. ? 1 2dx x C. ? 1 dy y D.? 1 2 dy y

留数定理及其在积分中的运用

江西师范大学数学与信息科学学院 学士学位论文 留数定理及其在积分中的运用 (Residue theorem and the use in the Calculus) 姓名:刘燕 学号: 0507010122 学院:数学与信息科学学院 专业:数学与应用数学 指导老师:易才凤(教授) 完成时间:2009年*月*日

留数定理及其在积分中的应用 【摘要】本文首先在预备知识中介绍了复函数积分,并介绍了留数的计算 方法等。在此基础上,我们叙述并证明了本文的主要内容--留数定理,并得到留数定理的推广。然后利用留数定理探讨分析学中的积分计算问题,并利用积分技巧得到它们的一般计算方法和公式,进而更简捷的解决了分析学中积分的计算问题. 【关键词】解析孤立奇点留数留数定理

Residue theorem and the use in the Calculus 【Abstract】This paper, we first introduce the prior knowledge of complex function Calculus,and introduce the method of calculating the residue, etc.On this basis,We described and proved the main contents of this article--the Residue theorem,and the promotion of the Residue theorem . This paper discussed the calculating problems of intgral in analysis with the theorem of residue, got the general computating method and formula by using analysical skills, and then made it easier to resolve the calculating problems. 【Key words】Analysis Isolated singular point Residue Residue theorem

留数定理及应用

留数定理及应用

留数及其应用 摘 要 数定理得知,计算函数)(z f 沿C 的积分,可归结为计算围线C 内 各孤立奇点处的留数之和.而留数又是该奇点处的罗朗级数的负一次幂的系数, 因此我们只关心该奇点处罗朗 留数理论是复积分和复级数 理论相结合的产物,利用留数定理可以把沿闭路的积分转化为计算孤立点处的留数.此外,在数学分析及实际问题中,往往一些被积函数的原函数不能用初等函数表示,有时即便可以,计算也非常复杂.我们利用留数定理可以把要求的积分转化为复变函数沿闭曲线的积分,从而把待求积分转化为留数计算.本文首先介绍留数定义及留数定理,然后针对具体不同的积分类型有不同的计算方法以及留数理论在定积分中的一些应用. 关键词 留数定理;留数计算;应用 引 言 对留数理论的学习不仅是前面知识的延伸,更为对原函数不易直接求得的定积分和反常积分的求法提供了一个较为方便的方法. 一. 预备知识 孤立奇点 1.设()f z 在点a 的把计算闭曲线上的积分值的问题转化为计算各个孤立奇点上的留数的问题,即计算在每一个孤立奇点处的罗朗展式中负幂一次项的系数1-C .在一般情况下,求罗朗展式也是比较麻烦的,因此,根据孤立奇点的不同类型,分别建立留数计算的一些简便方法是十分必要的. 1.1 若0z 为)(z f 的可去奇点 则)(z f 在R z z <-<00某去心邻域内解析,但在点a 不解析, 则称a 为f 的孤立奇点.例如sin z z ,1 z e 以0=z 为孤立奇点. z 以0=z 为奇点,但不是孤立奇点,是支点.

11sin z 以0=z 为奇点(又由1sin 0=z ,得1(1, 2...,)π ==±±z k k 故0=z 不是孤立奇点) 2.设a 为()f z 的孤立奇点,则()f z 在a 的某去心邻域内,有1 ()()() , ∞ ∞ -===+-∑∑-n n n n n n f z c z a c z a 称()n=1 ∞ -∑-n n c z a 为()f z 在点a 的主要部分,称 () ∞ =-∑n n n z a c 为()f z 在点a 的正则部分, 当主要部分为0时,称a 为()f z 的可去奇点; 当主要部分为有限项时,设为 (1)11 (0)()()------+++≠---L m m m m m c c c c z a z a z a 称a 为()f z 的m 级极点;当主要部分为无限项时,称a 为本性奇点. 二. 留数的概念及留数定理 1. 留数的定义 设函数()f z 以有限点a 为孤立点,即()f z 在点a 的某个去心邻域 0z a R

定积分练习题

题型 1.定积分与极限的计算 2.计算下列定积分 3.计算下列广义积分 内容 一.定积分的概念与性质 1.定积分的定义 2.定积分的性质 3.变上限函数及其导数 4.牛顿—莱布尼茨公式 5.换元积分公式与分部积分公式 6.广义积分 题型 题型I 利用定积分定义求极限 题型II比较定积分的大小 题型III利用积分估值定理解题 题型IV关于积分上限函数以及牛顿—莱布尼茨公式问题 题型V定积分的计算

题型VI 积分等式证明 题型VII 积分不等式证明 题型VIII 广义积分的计算 自测题五 1.根据极限计算定积分 2.根据定积分求导 3.求极限 4.求下列定积分 5.证明题 4月21日定积分练习题 基础题: 一.选择题、填空题 1.将和式的极限)0(.......321lim 1 >+++++∞→p n n P p p p p n 表示成定积分 ( ) A .dx x ?1 01 B .dx x p ?10 C .dx x p ?10)1( D .dx n x p ?10)( 2.将和式)21 .........2111(lim n n n n +++++∞→表示为定积分 . 3.下列等于1的积分是 ( ) A . dx x ? 1 B .dx x ?+1 )1( C .dx ? 1 1 D . dx ?1 021 4.dx x |4|1 02 ? -= ( ) A . 321 B .322 C .3 23 D . 3 25 5.曲线]2 3 ,0[,cos π∈=x x y 与坐标周围成的面积 ( )

A .4 B .2 C .2 5 D .3 6. dx e e x x ?-+1 )(= ( ) A .e e 1+ B .2e C .e 2 D .e e 1- 7.若10x m e dx =?,11e n dx x =?,则m 与n 的大小关系是( ) A .m n > B .m n < C .m n = D .无法确定 8. 按万有引力定律,两质点间的吸引力2 2 1r m m k F =,k 为常数,21,m m 为两质点的质量,r 为两点间距离,若两质点起始距离为a ,质点1m 沿直线移动至离2m 的距离为b 处,试求所作之功(b >a ) . 9.由曲线2 1y x =-和x 轴围成图形的面积等于S .给出下列结果: ① 1 21 (1)x dx --? ;②121 (1)x dx --?;③120 2(1)x dx -?;④0 21 2(1)x dx --?. 则S 等于( ) A .①③ B .③④ C .②③ D .②④ 10.0 (sin cos sin )x y t t t dt =+? ,则y 的最大值是( ) A .1 B .2 C .7 2 - D .0 11. 若()f x 是一次函数,且1 ()5f x dx =? ,1 017 ()6xf x dx =?,那么21()f x dx x ?的值是 . 12.???????=≠?=0 ,0,)()(2 x c x x dt t tf x F x ,其中)(x f 在0=x 处连续,且0)0(=f 若)(x F 在 0=x 处连续,则=c ( ) 。 (A).0=c ; (B).1=c ; (C).c 不存在; (D).1-=c .

(完整版)高考定积分练习题

高考定积分应用常见题型大全 一.选择题(共21小题) 1.(2012?福建)如图所示,在边长为1的正方形OABC中任取一点P,则点P恰好取自阴影部分的概率为() A.B.C.D. 2.(2010?山东)由曲线y=x2,y=x3围成的封闭图形面积为() A.B.C.D. 3.设f(x)=,函数图象与x轴围成封闭区域的面积为() A.B.C.D. 4.定积分的值为() A.B.3+ln2 C.3﹣ln2 D.6+ln2 5.如图所示,曲线y=x2和曲线y=围成一个叶形图(阴影部分),其面积是() A.1B.C.D. 6.=() A.πB.2C.﹣πD.4 7.已知函数f(x)的定义域为[﹣2,4],且f(4)=f(﹣2)=1,f′(x)为f(x)的导函数,函数y=f′(x)的图象如图所示,则平面区域f(2a+b)<1(a≥0,b≥0)所围成的面积是()

A.2B.4C.5D.8 8.∫01e x dx与∫01e x dx相比有关系式() A. ∫01e x dx<∫01e x dx B. ∫01e x dx>∫01e x dx C. (∫01e x dx)2=∫01e x dx D. ∫01e x dx=∫01e x dx 9.若a=,b=,则a与b的关系是() A.a<b B.a>b C.a=b D.a+b=0 10.的值是() A.B.C.D.11.若f(x)=(e为自然对数的底数),则=() A. +e2﹣e B. +e C. ﹣e2+e D. ﹣+e2﹣e 12.已知f(x)=2﹣|x|,则() A.3B.4C.3.5 D.4.5 13.设f(x)=3﹣|x﹣1|,则∫﹣22f(x)dx=() A.7B.8C.7.5 D.6.5 14.积分=() A.B.C.πa2D.2πa2 15.已知函数的图象与x轴所围成图形的面积为()A.1/2 B.1C.2D.3/2

相关主题
文本预览
相关文档 最新文档