当前位置:文档之家› 泰勒公式的各种余项形式及其多种证明

泰勒公式的各种余项形式及其多种证明

泰勒公式的各种余项形式及其多种证明
泰勒公式的各种余项形式及其多种证明

泰勒公式的证明及应用(1)

一.摘要 (3) 前言 (3) 二、泰勒公式极其极其证明........................ (3) (一)带有皮亚诺型余项的泰勒公式 (3) (二)带有拉格朗日型余项的泰勒公式 (4) (三)带有柯西型余项的泰勒公式 (5) (四)积分型泰勒公式 (6) (五)二元函数的泰勒公式 (7) 三、泰勒公式的若干应用 (8) (一)利用泰勒公式求极限 (8) (二)利用泰勒公式求高阶导数 (9) (三)利用泰勒公式判断敛散性 (10) (四)利用泰勒公式证明中值定理 (12) (五)利用泰勒公式证明不等式 (13) (六)利用泰勒公式求近似和值误差估计 (15) (七)利用泰勒公式研究函数的极值 (16) 四、我对泰勒公式的认识 (16) 参考文献 (17) 英文翻译 (17)

Taylor 公式的证明及应用 【摘要】数学中的著名的公式都是一古典的数学问题,它们在数学,化学与物理领域都有很广泛的运用。在现代数学中Taylor 公式有着重要地位,它对计算极限,敛散性的判断,不等式的证明、中值问题及高阶导的计算以及近似值的计算等方面都有很大的作用。在本文中,我将谈到关于公式的几种形式及其证明方法并对以上几个方面进一步的运用,和我对几者之间的一些联系和差异的看法。并通过具体事例进行具体的说明相关运用方法 【关键词】泰勒公式 佩亚诺余项 拉格朗日余项 极限 级数 1、常见Taylor 公式定义及其证明 我们通常所见的Taylor 公式有皮亚诺型、拉格朗日型、柯西型与积分型,还有常用的二元函数的Taylor 公式和高阶函数的Taylor 公式。 定义:设函数存在n 阶导数,由这些导数构成n 次多项式,称为函数在该点处的泰勒多项式各项系数称为泰勒系数。 1.1首先是带皮亚诺型余项的Taylor 公式: 若函数f 在点0x 存在且有n 阶导数,则有0()()(())n n f x T x x x =+ο-即 "' 200000() ()()()()()2! f x f x f x f x x x x x =+-+-+? ()00() ()! n n f x x x n +-0(())n x x +ο-. (2) 其中()n T x 是由这些导数构造的一个n 次多项式, "()' 2 0000000()()()()()()()()2!! n n n f x f x T x f x f x x x x x x x n =+-+-+?+- (3) 称为函数f 在点0x 处的Taylor 多项式,()n T x 的各项系数 ()0() !k f x k (1,2,,)k n =?称为Taylor 系数。从上易知()f x 与其Taylor 多项式()n T x 在点0x 有相同的函数值和相同

泰勒公式的证明及应用

摘要:泰勒公式是数学分析中的重要组成部分,是一种非常重要的数学工具。它集中体现了微积分“逼近法”的精髓,在微积分学及相关领域的各个方面都有重要的应用。本文通过对泰勒公式的证明方法进行介绍,归纳整理其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用,从而进一步加深对泰勒公式的认识。 关键词:泰勒公式,佩亚诺余项,拉格朗日余项,验证,应用

绪论 随着近代微积分的发展,许多数学家都致力于相关问题的研究,尤其是泰勒,麦克劳林、费马等人作出了具有代表性的工作。泰勒公式是18世纪早期英国牛顿学派最优秀代表人物之一的英国数学家泰勒,在微积分学中将函数展开成无穷级数而定义出来的。泰勒将函数展开成级数从而得到泰勒公式,对于一般函数f ,设它在点0x 存在直到 n 阶的导数,由这些导数构成一个n 次多项式 () 2 0000000()()() ()()()()(),1! 2! ! n n n f x f x f x T x f x x x x x x x n '''=+ -+ -++ - 称为函数f 在点0x 处的泰勒多项式,若函数f 在点0x 存在直至n 阶导数,则有 0()()(()),n n f x T x x x ο=+- 即() 2 00000000()() ()()()()()()(()).2! ! n n f x f x f x f x f x x x x x x x x x n ο'''=+-+ -++ -+- 称为泰勒公式. 众所周知,泰勒公式是数学分析中非常重要的内容,是研究函数极限和估计误差等方面不可或缺的数学工具,集中体现了微积分“逼近法”的精髓,在近似计算上有着独特的优势,利用它可以将非线性问题化为线性问题,且有很高的精确度,在微积分的各个方面都有重要的应用。它可以应用于求极限、判断函数极值、求高阶导数在某些点的数值、判断广义积分收敛性、近似计算、不等式证明等方面。

19泰勒公式在证明不等式中的几个应用

泰勒公式在证明不等式中的几个应用 摘 要:泰勒公式作为一种重要的数学工具,无论对科研还是在证明、计算等方面,它都起着很重要的作用。特别在高等数学畴,灵活运用泰勒公式,对不等式问题进行分析、构造、转化、放缩等是解决不等式证明问题的常用方法与思想。本文主要通过对各类典型不等式证明问题的分析处理,归纳了用泰勒公式来证明有关定积分不等式问题、含有初等函数与幂函数的不等式和一般不等式问题,以及泰勒公式在一元函数、二元函数不等式中的推广、证明与应用. 关键词:泰勒公式;偏导数;不等式 引言 泰勒公式是高等数学中的重点,也是一个难点,它贯穿于高等数学的始终。泰勒公式的重点就在于使用一个n 次多项式()n p x ,去逼近一个已知的函数()f x ,而且这种逼近有很好的性质:()n p x 与()f x 在x 点具有相同的直到阶n 的导数 ] 31[-.所以泰勒公式能很好的 集中体现高等数学中的“逼近”这一思想精髓。泰勒公式的难点就在于它的理论性比较强,一般很难接受,更不用说应用了。但泰勒公式无论在科研领域还是在证明、计算应用等方面,它都起着很重要的作用.文献[3-6]介绍了运用泰勒公式,对不等式问题进行分析、构造、转化、放缩是解决不等式证明问题的常用方法与基本思想.本文拟在前面文献研究的基础上通过举例归纳,总结泰勒公式在证明不等式中的应用方法. 1 泰勒公式知识的回顾: 定理1[1] 设函数()f x 在点0x 处的某邻域具有1n +阶导数,则对该邻域异于0x 的任意点 x ,在0x 与x 之间至少存在一点ξ,使得: ()f x =()0f x +()0' f x 0(x -x )+ ()0f''x 2!02 (x -x )+???+ ()()0n f x n! 0n (x -x )+()n R x , 其中()n R x =() (1)(1)! n f n ξ++称为余项,上式称为n 阶泰勒公式; 若0x =0,则上述的泰勒公式称为麦克劳林公式, 即()f x = ()0f +()0' f x + ()02!f''2x +???+()()0! n f n n x +0()n x . 2 泰勒公式在证明不等式中的应用 不等式是高等数学和近代数学分析的重要容之一,它反映了各变量之间很重要的一种关系即他们之间的大小关系。不等式的容也极其丰富,证明方法很多,而泰勒公式在证明不等式问题中起着举足轻重的作用。 2.1 泰勒公式在证明有关定积分不等式问题的应用 对于被积函数具有二阶或二阶以上连续可导,且又知最高阶数符号的命题.通过作辅助

同济大学高等数学教学大纲

《高等数学A》课程教学大纲 (216学时,12学分) 一、课程的性质、目的和任务 高等数学A是理科(非数学)本科个专业学生的一门必修的重要基础理论课,它是为培养我国社会主义现代化建设所需要的高质量专门人才服务的。 通过本课程的学习,要使学生获得:1、函数与极限;2、一元函数微积分学;3、向量代数与空间解析几何;4、多元函数微积分学; 5、无穷级数(包括傅立叶级数); 6、微分方程等方面的基本概念、基本理论和基本运算技能,为学习后继课程和进一步获取数学知识奠定必要的数学基础。 在传授知识的同时,要通过各个教学环节逐步培养学生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力和自学能力,还要特别注意培养学生具有综合运用所学知识去分析问题和解决问题 的能力。 二、总学时与学分 本课程的安排三学期授课,分为高等数学A(一)、(二)、(三),总学时为90+72+54,学分为5+4+3。 三、课程教学基本要求及基本内容 说明:教学要求较高的内容用“理解”、“掌握”、“熟悉”等词表述,要求较低的内容用“了解”、“会”等词表述。 高等数学A(一) 一、函数、极限、连续、 1. 理解函数的概念及函数奇偶性、单调性、周期性、有界性。 2. 理解复合函数和反函数的概念。 3. 熟悉基本初等函数的性质及其图形。 4. 会建立简单实际问题中的函数关系式。 5. 理解极限的概念,掌握极限四则运算法则及换元法则。 6. 理解子数列的概念,掌握数列的极限与其子数列的极限之间的关系。

7. 理解极限存在的夹逼准则,了解实数域的完备性(确界原理、单界有界数列必有极限的原理,柯西(Cauchy),审敛原理、区间套定理、致密性定理)。会用两个重要极限求极限。 8. 理解无穷小、无穷大、以及无穷小的阶的概念。会用等价无穷小求极限。 9. 理解函数在一点连续和在一个区间上连续的概念,了解间断点的概念,并会判别间断点的类型。 10.了解初等函数的连续性和闭区间上连续函数的性质(介值定理,最大最小值定理,一致连续性)。 二、一元函数微分学 1.理解导数和微分的概念,理解导数的几何意义及函数的可导性与连续性之间的关系。会用导数描述一些物理量。 2.掌握导数的四则运算法则和复合函数的求导法,掌握基本初等函数、双曲函数的导数公式。了解微分的四则运算法则和一阶微分形式不变性。 3.了解高阶导数的概念。 4.掌握初等函数一阶、二阶导数的求法。 5.会求隐函数和参数式所确定的函数的一阶、二阶导数。会求反函数的导数。 6.理解罗尔(Ro lle)定理和拉格朗日(Lagrange)定理,了解柯西(Cauchy)定理和泰勒(Taylo r)定理。 7.会用洛必达(L’Ho sp ital)法则求不定式的极限。 8.理解函数的极值概念,掌握用导数判断函数的单调性和求极值的方法。会求解较简单的最大值和最小值的应用问题。 9.会用导数判断函数图形的凹凸性,会求拐点,会描绘函数的图形(包括水平和铅直渐进线)。 10.了解有向弧与弧微分的概念。了解曲率和曲率半径的概念并会计算曲率和曲率半径。 11.了解求方程近似解的二分法和切线法。 三、一元函数积分学 1.理解原函数与不定积分的概念及性质,掌握不定积分的基本公式、换元法和分步积分法。会求简单的有理函数及三角函数有理式的积分。 2.理解定积分的概念及性质,了解函数可积的充分必要条件。

泰勒公式的证明及其应用

泰勒公式的证明及其应用 数学与应用数学专业胡心愿 [摘要]泰勒公式的相关理论是函数逼近论的基础。本文主要探索的是泰勒公式的一些证明方法,并对不同的证明方法进行相应的比较分析,在此基础上讨论泰勒公式在证明不等式、求函数极限、求近似值、求行列式的值、讨论了函数的凹凸性,判别拐点,判断级数敛散性等方面的应用.本文还针对多元函数的泰勒公式的推导和应用做了简单的论述. [关键词]泰勒公式;不等式;应用; Proof of Taylor's Formula and Its Application Mathematics and Appliced Mathematics Major HU Xin-yuan Abstract: The theory about Taylor's Formula is the basic content of Approximation Theory . What this paper explores is some methods that proof the Taylor's Formula, and the paper analyse and compare them. On that basis, the paper discuss the application of Taylor's Formula in some respects,such as Inequality proof, functional limit, approximate value, determinant value, convexity-concavity of function, the decision of inflection point, divergence of the series.The paper explore the derivation of Taylor's Formula of the function of many variables and its application. Key words:Taylor's Formula;inequality;application

同济高数上册公式大全

第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法 1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次

) ()! 12()1(...!5!3sin ) (! ...!3!211 2125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(!2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! )) 1()...(1(...! 2) 1(1)1(2n n x o x n n x x x +---+ +-+ +=+ααααααα )(1 2)1(...53arctan 1212153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则 定理1 设函数)(x f 、)(x F 满足下列条件: (1)0)(lim 0 =→x f x x ,0)(lim 0 =→x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; (3)) ()(lim x F x f x x ''→存在(或为无穷大),则 这个定理说明:当) ()(lim x F x f x x ''→存在时,)()(lim 0x F x f x x →也存在且等于)() (lim 0x F x f x x ''→;当 ) ()(lim x F x f x x ''→为无穷大时,)() (lim 0x F x f x x →也是无穷大. 这种在一定条件下通过分子分母分别求导再求极限来确定未定式的极限值的方法称为洛必达(H L 'ospital )法则. ∞ ∞ 型未定式 定理2 设函数)(x f 、)(x F 满足下列条件: (1)∞=→)(lim 0 x f x x ,∞=→)(lim 0 x F x x ; (2))(x f 与)(x F 在0x 的某一去心邻域内可导,且0)(≠'x F ; )() (lim )()(lim 00x F x f x F x f x x x x ''=→→) ()(lim )()(lim 00x F x f x F x f x x x x ''=→→

泰勒公式的证明及应用 开题报告

题目泰勒公式的证明及推广应用 一、选题背景和意义 在初等函数中,多项式是最简单的函数。因为多项式函数的运算只有加、减、 乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。 通过对数学分析的学习,我感觉到泰勒公式是高等数学中的重要内容,在各个 领域有着广泛的应用,例如在函数值估测及近似计算,用多项式逼近函数,求函数的极限和定积分不等式、等式的证明,求函数在某点的高阶导数值等方面。 除此以外,泰勒公式及泰勒级数的应用,往往能峰回路转,使问题变得简单易解。 二、国内外研究现状、发展动态 本人以1999—2010十一年为时间范围,以“泰勒公式”、“泰勒公式的应用”为关键词,在中国知网以及万方数据等数据库中共搜索到30余篇文章,发现国内外对泰勒公式的其研究进展主要分配在以下领域: 一、带不同型余项泰勒公式的证明; 二、泰勒公式的应用举例。 三、研究内容及可行性分析 在高等数学中,泰勒公式占有重要的地位,并以各种形式出现而贯穿全部内容,因此掌握好泰勒公式是学习高等数学的关键一环。本论文将主要研究泰勒公式的证明及其在其他方面的应用。 本文将通过对泰勒公式的探讨,给出了泰勒公式在其它方面的应用,,显现出泰勒公式的应用之广泛。希望其研究结果在求极限等问题时可以提供一些方法的参考,也同时能给相关学科研究人员在解决比较复杂的不定式极限问题时能有一定的思路指导。 接下来我将分两方面的应用来阐述本次论文的主要内容。 一、带不同型余项泰勒公式的证明: 本次证明将涉及到三种不同余项的泰勒公式的证明,即: 1.带皮亚诺余项的泰勒公式; 2.带拉格朗日余项的泰勒公式; 3.带积分型余项的泰勒公式; 二、泰勒公式的应用: 本次论文将涉及到泰勒公式在以下七个方面的应用: 1、泰勒公式在极限计算中的应用; 在函数极限运算中,不定式极限的计算始终为我们所注意,因为这是比较困难的一类问题。计算不定式极限我们常常使用洛必达法则或者洛必达法则与等价无穷小结合使用。但对于有些未定式极限问题若采用泰勒公式求解,会更简单明了。我将在论文中就例题进行探讨。 2、泰勒公式在判定级数及广义积分敛散性中的应用;

泰勒公式证明必须看word资料11页

泰勒公式(提高班) 授课题目: §3.3泰勒公式 教学目的与要求: 1.掌握函数在指定点的泰勒公式; 2.了解泰勒公式在求极限及证明命题中的应用. 教学重点与难点: 重点:几个常用函数的泰勒公式 难点:泰勒公式的证明 讲授内容: 对于一些较复杂的函数,为了便于研究,往往希望用一些简单的函数来近似表达.由于用多项式表示的函数,只要对自变量进行有限次加、减、乘三种算术运算,便能求出它的函数值来,因此我们经常用多项式来近似表达函数。 在微分的应用中已经知道,当x很小时,有如下的近似等式: ≈1,x e x+ x ln(. 1 +) x≈ 这些都是用一次多项式来近似表达函数的例子.显然.在0 x处这些— = 次多项式及其一阶导数的值,分别等于被近似表达的函数及其导数的相应值.

但是这种近似表达式还存在着不足之处:首先是精确度不高,它所产生的误差仅是关于x 的高阶无穷小;其次是用它来作近似计算时,不能具体估算出误差大小.因此,对于精确度要求较高且需要估计误差的时候,就必须用高次多项式来近似表达函数,同时给出误差公式. 于是提出如下的问题:设函数)(x f 在含有0x 的开区间内具有直到 (1+n )阶导数,试找出一个关于(0x x -)的n 次多项式 n n n x x a x x a x x a a x p )()()()(0202010-++-+-+=Λ (1) 来近似表达)(x f ,要求)(x p n 与)(x f 之差是比n x x )(0-高阶的无穷小,并给出误差)()(x p x f n -的具体表达式. 下面我们来讨论这个问题.假设)(x p n 在0x 处的函数值及它的直到n 阶导数在0x 处的值依次与)(0x f ,)(0x f ',)(,0)(x f n Λ相等,即满足 )()(00x f x p n =,)()(00x f x p n '=', )()(00x f x p n ''='',)(,0)()(x f p n n n =Λ, 按这些等式来确定多项式(1)的系数n a a a a Λ,,,210.为此,对(1)式求各 阶导数,然后分别代人以上等式,得 )(00x f a =,)(101x f a '=?,)(!202x f a ''=,)(!,0)(x f a n n n =Λ , 即得 )(00x f a =,)(01x f a '=,)(!2102x f a ''=,)(! 1,0)(x f n a n n =Λ. (2)

高等数学(同济第七版)上册-知识点总结

高等数学(同济第七版)上册-知识点总结 第一章 函数与极限 一. 函数的概念 1.两个无穷小的比较 设0)(lim ,0)(lim ==x g x f 且l x g x f =) () (lim (1)l = 0,称f (x)是比g(x)高阶的无穷小,记以f (x) = 0[)(x g ],称g(x)是比f(x)低阶的无穷小。 (2)l ≠ 0,称f (x)与g(x)是同阶无穷小。 (3)l = 1,称f (x)与g(x)是等价无穷小,记以f (x) ~ g(x) 2.常见的等价无穷小 当x →0时 sin x ~ x ,tan x ~ x ,x arcsin ~ x ,x arccos ~ x , 1? cos x ~ 2/2^x , x e ?1 ~ x ,)1ln(x + ~ x ,1)1(-+αx ~ x α 二.求极限的方法 1.两个准则 准则 1. 单调有界数列极限一定存在 准则 2.(夹逼定理)设g (x ) ≤ f (x ) ≤ h (x ) 若A x h A x g ==)(lim ,)(lim ,则A x f =)(lim 2.两个重要公式 公式11sin lim 0=→x x x 公式2e x x x =+→/10 )1(lim 3.用无穷小重要性质和等价无穷小代换 4.用泰勒公式 当x 0→时,有以下公式,可当做等价无穷小更深层次 ) ()! 12()1(...!5!3sin ) (! ...!3!2112125332++++-+++-=++++++=n n n n n x x o n x x x x x x o n x x x x e )(! 2)1(...!4!21cos 2242n n n x o n x x x x +-+++-= )()1(...32)1ln(132n n n x o n x x x x x +-++-=++ )(! ))1()...(1(...!2)1(1)1(2n n x o x n n x x x +---++-++=+ααααααα )(1 2)1(...53arctan 121 2153+++++-+-+-=n n n x o n x x x x x 5.洛必达法则

Taylor公式的唯一性证明

Tayloy 公式的唯一性证明 作者:卢晓峰 1. 引理:设0 lim ()0x x g x →=,()g x 在0x 的某邻域内可导,且()g x ' 在0x 处连续。若0()(())n g x x x ο=-,则10()(())n g x x x ο-'=-。 证明: 00001 11 00 000 ()()()()() () lim lim lim lim lim ()()()()()n n n n n x x x x x x x x x x g x g x g x x x g x g x g x x x x x x x x x x x ---→→→→→-''-===------又 0()(())n g x x x ο=-,0 0lim ()()0x x g x g x →== ∴0 0() lim 0()n x x g x x x →=-;0 00 ()lim 0()n x x g x x x →=- ∴0 1 0()lim 0() n x x g x x x -→'=-,即1 0()(())n g x x x ο-'=-。 2. 唯一性证明: ()f x 在0x 处存在n 阶导,设0()()(())n n f x P x x x ο=+-<1>。(其中() n P x 为n 次多项式) 设<1>式中0(())()n x x g x ο-=。易证:()g x 满足引理的条件。 ∴10()(())n g x x x ο-'=-,20()(())n g x x x ο-''=-, ,(1)0()()n g x x x ο-=-。 ∴ ()()() n f x P x g x '''=+, ()()() n f x P x g x ''''''=+, , (1)(1)(1)()()()n n n n f x P x g x ---=+<2> 对<2>中的所有等式,均取0x x →的极限,则有: 00()()n f x P x ''=,00()()n f x P x ''''=, ,(1)(1)00()()n n n f x P x --= 又

泰勒公式证明及应用讲解

泰勒公式及其应用 佟梅 (渤海大学数学系辽宁锦州121000 中国) 摘要:数学是一门很重要的学科,许多的数学家研究出了各种定理、公式,并且都证实了它们的正确性,应用这些定理公式解决了许多疑难问题,泰勒公式就是其一。泰勒公式是数学分析中的一个重要公式,它在解决分析中的问题时应用广泛、灵活,也是解决各种数学问题的一个强有力的工具之一,本文对泰勒公式进行了简单的介绍,重点介绍了它的各种应用,作了一个较系统和规律性的分析综述。首先,介绍了泰勒定理及其几种表示形式的泰勒公式,在后面的应用中会应用到。其次,就是本文的重点——泰勒公式的应用,介绍了九个方面,主要包括:研究级数和广义积分的敛散性、利用泰勒公式求极限、近似计算和误差估计、确定和比较无穷小的阶、证明不等式等等,通过许多的例题分析,体现出了泰勒公式在解决数学问题时的重要性和简洁性。 关键词:泰勒公式,极限,误差估计,敛散性,不等式。 Taylor’s formula and its application Tong Mei (Department of Mathematics Bohai University,Liaoning Jinzhou 121000 China) Abstract:Mathematics is a very important discipline. Many mathematicians studied all kinds of theorem and formula, proved their correctness, and applied them to solve a number of difficult problems. Taylor formula is one of them.Taylor’s formula is a important formula in mathematical analysis. It can be used widely and conveniently to solve the problems in analysis. In addition, it is one of powerful tools to solve all kinds of mathematics problems. This article provides a simple introdu ction to Taylor’s formula, emphasizes its various applications, and makes a systematic and inerratic analysis summary. Firstly, this article introduces the Taylor theorem and some Taylor’s formula of different _expression forms, which will be applied later. Next, it is the emphasis of this article -- the application of Taylor’s formula. Here nine aspects are introduced: studying the convergence and divergence of series and the improper integral, using the Taylor’s formnla to calculate limit, the approximate calculation and error estimate, determining and comparing the order of infinitesimals, the application in theorem proof, proving inequality, and so on. Through many example analysis, the importance and conciseness of Taylor’s formula in solving mathematic s questions are well illustrated. Key Words: Taylor’s formula; limit; error estimate ;convergent or divergent; inequality.

泰勒公式与拉格朗日中值定理在证明不等式中的简单应用

高三数学培优资料(10)教师版 泰勒公式与拉格朗日中值定理在证明不等式中的简单应用 泰勒公式是高等数学中的重点,也是一个难点,它贯穿于高等数学的始终。泰勒公式的重点就在于使用一个n 次多项式()n p x ,去逼近一个已知的函数()f x ,而且这种逼近有很好的性质:()n p x 与()f x 在x 点具有相同的直到阶n 的导数 ] 31[-.所以泰勒 公式能很好的集中体现高等数学中的“逼近”这一思想精髓。泰勒公式的难点就在于它的理论性比较强,一般很难接受,更不用说应用了。但泰勒公式无论在科研领域还是在证明、计算应用等方面,它都起着很重要的作用.运用泰勒公式,对不等式问题进行分析、构造、转化、放缩是解决不等式证明问题的常用方法与基本思想.本文拟 在前面文献研究的基础上通过举例归纳,总结泰勒公式在证明不等式中的应用方法. 泰勒公式知识:设函数()f x 在点0x 处的某邻域内具有1n +阶导数,则对该邻域内异于0x 的任意点x ,在0x 与x 之间至少存在一点ξ,使得: ()f x =()0f x +()0'f x 0(x -x )+ ()0f''x 2!02(x -x )+???+ ()()0 n f x n! 0n (x -x )+()n R x , 其中()n R x = ()(1)(1)! n f n ξ++10)(+-n x x 称为余项,上式称为n 阶泰勒公式; 若0x =0,则上述的泰勒公式称为麦克劳林公式, 即()f x = ()0f +()0' f x +()02!f''2x +???+()()0! n f n n x +0()n x . 利用泰勒公式证明不等式:若函数)(x f 在含有0x 的某区间有定义,并且有 直到)1(-n 阶的各阶导数,又在点0x 处有n 阶的导数)(0) (x f n ,则有公式 )()(! )()(!2)()(!1)()()()(00)(2 00000x R x x n x f x x x f x x x f x f x f n n n +-++-''+-'+= 在上述公式中若0)(≤x R n (或0)(≥x R n ),则可得 )(00)(2 00000)(!)()(!2)()(!1)()()(n n x x n x f x x x f x x x f x f x f -++-''+-'+≥ 或)(00)(2 00000)(! )()(!2)()(!1)()()(n n x x n x f x x x f x x x f x f x f -++-''+-'+≤

泰勒公式的证明

泰勒公式 定理(peano 余项型,洛必达法则法证明) 若()0()n f x 存在, 则0()x x ?∈ , 0()(,)n f x T x x =+()0()n x x - . ()200000000()()(,)()()()()()2!! n n n f x f x T x x f x f x x x x x x x n '''=+-+-++- . 0(,)n T x x 叫做f 在0x 的n 次泰勒多项式,也叫f 在0x 的n 次密切( “切线”). 证法 洛必达法则法的分析. 按照洛必达法则往证0()()lim 0()n n x a f x T x x x →-=-即可. 记()()()n n R x f x T x =-,0()()n n Q x x x =-, 注意到 (1)()000()()()0n n n n n R x R x R x -==== , (1)00()()0n n n Q x Q x -=== ,()0()!n n Q x n = ()0()n f x 存在,意味着(1)()n f x -在0()U x 内还可导.允许()0lim ()0n x a n R x Q x →?? ???反复使用洛必达法则1n -次. 证明 连续1n -次使用洛必达法则,得 (1)(1)()()00lim lim ()0()0n n n n x a x a n n R x R x Q x Q x --→→????= ? ?????不断添入0,使结论成为两个函数值之差的比. (1)(1)()0000()()()()lim (1)2() n n n x a f x f x f x x x n n x x --→---=-- (1)(1)()000()()1lim ()0!n n n x a f x f x f x n x x --→??-=-= ?-?? . 注1 即使函数能表成()00()(,)()n n f x P x x x x =+- ,0(,)n P x x 不一定是泰勒多项式. 如1()(),n f x x D x n N ++=∈,由100()()lim lim 0n n n x x f x x D x x x +→→==,故()()(0)n f x x x =→ . 虽然能写成()2()0000n n f x x x x x =+++++ ,但是,根据海因定理,1()()n f x x D x += ,n N +∈仅在0点仅1阶可导(0)0f '=(0的邻域内()f x '无定义). 故2()0000n n p x x x x =++++ 并不是()f x 在0处的泰勒多项式. 注2 若f 能表成()00()(,)()n n f x P x x x x =+- ,则多项式0(,)n P x x 是唯一的 (不论可导性). 因为 若 () 00()(,)()n n f x P x x x x =+- ()20102000()()()()n n n a a x x a x x a x x x x =+-+-++-+- (1) 则由(1) 00lim ()x x f x a →=, 反代入(1)式又得 0010 ()lim x x f x a a x x →-=-, 反代入(1)式又得 0010220()[()]lim ()x x f x a a x x a x x →-+-=-

(完整版)同济大学___高数上册知识点

高等数学上册复习要点 一、 函数与极限 (一) 函数 1、 函数定义及性质(有界性、单调性、奇偶性、周期性); 2、 反函数、复合函数、函数的运算; 3、 初等函数:幂函数、指数函数、对数函数、三角函数、反三角函数; 4、 函数的连续性与间断点; 函数)(x f 在 0x 连续 )()(lim 00 x f x f x x =→ 第一类:左右极限均存在. 间断点 可去间断点、跳跃间断点 第二类:左右极限、至少有一个不存在. 无穷间断点、振荡间断点 5、 闭区间上连续函数的性质:有界性与最大值最小值定理、零点定理、介值定 理及其推论. (二) 极限 1、 定义 1) 数列极限 εε<->?N ∈?>??=∞ →a x N n N a x n n n , , ,0lim 2) 函数极限 εδδε<-<-?>??=→A x f x x x A x f x x )( 0 , ,0 ,0)(lim 00 时,当 左极限:)(lim )(0 0x f x f x x - →-= 右极限:)(lim )(0 0x f x f x x +→+=

)()( )(lim 000 + -→=?=x f x f A x f x x 存在 2、 极限存在准则 1) 夹逼准则: 1))(0n n z x y n n n ≥≤≤ 2 ) a z y n n n n ==→∞ →∞ lim lim a x n n =∞ →lim 2) 单调有界准则:单调有界数列必有极限. 3、 无穷小(大)量 1) 定义:若0lim =α则称为无穷小量;若∞=αlim 则称为无穷大量. 2) 无穷小的阶:高阶无穷小、同阶无穷小、等价无穷小、k 阶无穷小 Th1 )(~ ααββαo +=?; Th2 αβαβαβββαα' ' =''''lim lim lim ,~,~存在,则(无穷小代换) 4、 求极限的方法 1) 单调有界准则; 2) 夹逼准则; 3) 极限运算准则及函数连续性; 4) 两个重要极限: a) 1sin lim 0=→x x x b) e x x x x x x =+=++∞→→)11(lim )1(lim 1 0 5) 无穷小代换:(0→x ) a) x x x x x arctan ~arcsin ~tan ~sin ~ b) 2 2 1~cos 1x x -

泰勒公式的几种证明法及其应用 -毕业论文

泰勒公式的几种证明法及其应用 -毕业论文 【标题】泰勒公式的几种证明法及其应用 【作者】张廷兵 【关键词】泰勒公式构造函数法数学归纳法柯西中值定理应用【指导老师】陈波涛 【专业】数学与应用数学 【正文】 1引言 泰勒公式在分析和研究数学问题方面有着重要的应用。但是它的证明大多数是重复运用柯西中值定理来推导,这给初学者从理解到接受有一定的困难。为了给不同层次的学习者理解和接受泰勒公式提供方便。本文研究不同的证明方法,给学习者提供了选择的余地。归根结底,使学习者更好运用泰勒公式,为此就对泰勒公式的应用及技巧的总结。 2 带佩亚诺型余项泰勒公式的证明方法 在初等函数中,最简单的函数就是多项式,对于数值计算和理论分析都很方便。如果将一类复杂的函数用多项式来近似表示出来,其误差又能满足一定的要求。那么,我们就可以表示出此函数。若函数是n次多项式 令 .于是 对任意一个函数,只要函数在a点存在n阶导数,我们就可以写出一个相应的多项式 称为函数在a点的n次泰勒多项式,那么n次泰勒多项式与函数在在点a 的邻域上有什么联系呢,下面的定理回答了这个问题( 定理1[1] 若函数在a点存在n阶导数 ,则 其中 ,则上式就为在a点的泰勒公式, 为泰勒公式的余项.

2.1方法一 证明:将上式改为 ,有 分子是函数 ,分母是函数 .应用n-1次柯西中值定理[2] 其中 其中 其中 (至此已应用了n-1次柯西定理) 当根据右导数定义,有 同法可证: 于是 , 表示余项是佩亚诺型. 证毕. 2.2方法二 证明在的一个邻域内有一阶导数,则存在且在处连续,即有则由极限与无穷小量的关系有: ( 是无穷小量), 又 则 (2—1) 从(2—1)式推出: 比较无穷小量与 = = (因为二阶可导) 又由极限与无穷小量的关系有: 将上边代入(2—1)式: 设 .则在处有阶导数,且设当时仍有: + (2—2) 从(2—2)中推出 比较与 :

《泰勒公式及其应用》的开题报告

《泰勒公式及其应用》的开题报告 《泰勒公式的验证及其应用》的开题报告 关键词:泰勒公式的验证数学开题报告范文中国论文开题报告 1.本课题的目的及研究意义 目的:泰勒公式集中体现了微积分、逼近法的精髓,在微积分学及相关领域的各个方面都有重要的应用。泰勒公式是非常重要的数学工具,现对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。 研究意义:在初等函数中,多项式是最简单的函数,因为多项式函数的的运算只有加、减、乘三种运算。如果能将有理分式函数,特别是无理函数和初等超越函数以一种“逼近”的思想,用多项式函数近似代替,而误差又能满足要求,显然,这对函数性态的研究和函数值的近似计算都有重要意义。对泰勒公式的研究就是为了解决上述问题的。 2.本课题的研究现状 数学计算中泰勒公式有广泛的应用,需要选取点将原式进行泰勒展开,如何选取使得泰勒展开后,计算的结果在误差允许的范围内,并且使计算尽量简单、明了。泰勒公式是一元微积分的一个重要内容,不仅在理论上有重要的地位,而且在近似计算、极限计算、函数性质的研究方面也有重要的应用。对于泰勒公式在高等代数中的应用,还在研究中。

3.本课题的研究内容 对泰勒公式的证明方法进行介绍,并归纳整理了其在求极限与导数、判定级数与广义积分的敛散性、不等式的证明、定积分的证明等方面的应用。 本课题将从以下几个方面展开研究: 一、介绍泰勒公式及其证明方法 二、利用泰勒公式求极限、证明不等式、判断级数的敛散性、证明根的唯一存在性、判断函数的极值、求初等函数的幂级数展开式、进行近似计算、求高阶导数在某些点的数值、求行列式的值。 三、结论。 4.本课题的实行方案、进度及预期效果 实行方案: 1.对泰勒公式的证明方法进行归纳; 2.灵活运用公式来解决极限、级数敛散性等问题; 3.研究实际数学问题中有关泰勒公式应用题目,寻求解决问题的途径。 实行进度: 研究时间为第8学期,研究周期为9周。 1.前期准备阶段: 收集有关信息进行分析、归类,筛选有价值的信息,确定研究主题;制定课题计划,学习理论。 2.研究阶段:20XX年12月—20XX年4月

证明泰勒公式

泰勒中值定理:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于(x-x.)多项式和一个余项的和: f(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2,+f'''(x.)/3!?(x-x.)^3+……+f(n) (x.)/n!?(x-x.)^n+Rn 其中Rn=f(n+1)(ξ)/(n+1)!?(x-x.)^(n+1),这里ξ在x和x.之间,该余项称为拉格朗日型的余项。 (注:f(n)(x.)是f(x.)的n阶导数,不是f(n)与x.的相乘。) 证明:我们知道f(x)=f(x.)+f'(x.)(x-x.)+α(根据拉格朗日中值定理导出的有限增量定理有limΔx→0 f(x.+Δx)-f(x.)=f'(x.)Δx),其中误差α是在limΔx→0 即limx→x.的前提下才趋向于0,所以在近似计算中往往不够精确;于是我们需要一个能够足够精确的且能估计出误差的多项式: P(x)=A0+A1(x-x.)+A2(x-x.)^2+……+An(x-x.)^n 来近似地表示函数f(x)且要写出其误差f(x)-P(x)的具体表达式。设函数P(x)满足P(x.)=f(x.),P'(x.)=f'(x.),P''(x.)=f''(x.),……,P(n)(x.)=f(n)(x.),于是可以依次求出A0、A1、A2、……、An。显然,P(x.)=A0,所以 A0=f(x.);P'(x.)=A1,A1=f'(x.);P''(x.)=2!A2,A2=f''(x.)/2!……P(n) (x.)=n!An,An=f(n)(x.)/n!。至此,多项的各项系数都已求出,得: P(x)=f(x.)+f'(x.)(x-x.)+f''(x.)/2!?(x-x.)^2+……+f(n)(x.)/n!?(x-x.)^n. 接下来就要求误差的具体表达式了。设Rn(x)=f(x)-P(x),于是有 Rn(x.)=f(x.)-P(x.)=0。所以可以得出Rn(x.)=Rn'(x.)=Rn''(x.)=……=Rn(n) (x.)=0。根据柯西中值定理可得Rn(x)/(x-x.)^(n+1)=Rn(x)-Rn(x.)/(x-x.)^(n+1)-0=Rn'(ξ1)/(n+1)(ξ1-x.)^n(注:(x.-x.)^(n+1)=0),这里ξ1在x和x.之间;继续使用柯西中值定理得Rn'(ξ1)-Rn'(x.)/(n+1)(ξ1-x.)^n- 0=Rn''(ξ2)/n(n+1)(ξ2-x.)^(n-1)这里ξ2在ξ1与x.之间;连续使用n+1次后得出Rn(x)/(x-x.)^(n+1)=Rn(n+1)(ξ)/(n+1)!,这里ξ在x.和x之间。但 Rn(n+1)(x)=f(n+1)(x)-P(n+1)(x),由于P(n)(x)=n!An,n!An是一个常数,故P(n+1)(x)=0,于是得Rn(n+1)(x)=f(n+1)(x)。综上可得,余项 Rn(x)=f(n+1)(ξ)/(n+1)!?(x-x.)^(n+1)。一般来说展开函数时都是为了计算的需要,故x往往要取一个定值,此时也可把Rn(x)写为Rn。 麦克劳林展开式:若函数f(x)在开区间(a,b)有直到n+1阶的导数,则当函数在此区间内时,可以展开为一个关于x多项式和一个余项的和: f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+Rn 其中Rn=f(n+1)(θx)/(n+1)!?x^(n+1),这里0<θ<1。 证明:如果我们要用一个多项式P(x)=A0+A1x+A2x^2+……+Anx^n来近似表示函数f(x)且要获得其误差的具体表达式,就可以把泰勒公式改写为比较简单的形式即当x.=0时的特殊形式: f(x)=f(0)+f'(0)x+f''(0)/2!?x^2,+f'''(0)/3!?x^3+……+f(n)(0)/n!?x^n+f(n+1)

相关主题
文本预览
相关文档 最新文档