当前位置:文档之家› 第二章之一 电磁波谱与电磁辐射-1

第二章之一 电磁波谱与电磁辐射-1

移动通信基站电磁辐射基础知识

1、GSM基站频率900MHz、1800 MHz、cdma2000分配的频率是1920~1935 MHz(上行) 2、什么是基站? 基站子系统主要包括两类:基站发射台(BTS)和基站控制器(BSC)3、基站监测 2007年7月《移动通信基站电磁辐射环境监测方法》 移动通信监测依据的标准: (1)移动通信。。。 2G发射天线的特点:(1)发射源全向定向;(2)标称发射功率2~60W;(3)频率800~1000MHz;(4)固定方式屋顶重力支架,地面铁塔,屋面拉线塔,窗户,阳台或屋顶悬挂 全向天线县城及乡镇:水平瓣宽360°,垂直瓣宽20°以内。 定向天线城区:(1)板状定向天线俯角在3°~15°不等;(2)水平瓣宽分为90°和65°两种; 对于基站的监测现在主要以《移动通信基站电磁辐射环境监测方法》作为我们监测的规范要求。 (1)适用范围:适用于超过GB8702(电磁辐射防护规定)规定豁免水平,工作频率范围在110 MHz~40GH内的移动通信基站的。。。可豁免的电磁辐射体的等效辐射功率 频率范围MHz 等效辐射功率,W 0.1~3 300 >3~300000

P有效=P标称×G G:天线增益。 监测范围:监测点位一般布设在以发射天线为中心半径50m的范围内可能受到影响的保护目标,根据现场环境情况可对点位进行适当调整。 探头(天线)尖端与操作人员之间距离不少于0.5m。 在室内监测,一般选取房间中央位置,点位与家用电器等设备之间距离不小于1m。 每个测点连续测5次,每次监测时间不小于15s,并读取稳定状态下的最大值。 测量仪器探头(天线)尖端距地面(或立足点)1.7m。

1 电磁波基础知识

1 电磁波基础知识 1.1电磁场基本定义 交变电磁场的性质 在某空间内,任何电荷由于它本身的存在,受有一种与电荷成比例的力,则这空间内所存在的物质,也就是给电荷以作用力的物质称为电场。如果电场的存在是由于电荷的存在,则这种电场是符合库仑定律的,称为库仑电场。静止电荷周围所存在的电场,则称为静电场,它是库仑电场的一种特殊情形。运动电荷受到作用力的空间称为有磁场存在的空间。而且将这种了称为磁力。 此外,一个变动的磁场产生一个电场,此电场不但存在于变动磁场的范围里,并且还存在于邻近的范围里。同样,一个变动的电场在发生变动的范围和变动附近的范围里产生一磁场。 可见,不仅电荷可以产生电场,变化的磁场也能产生电场,不仅传导电流可以产生磁场,变化的电场(位移电流)也能产生磁场。 电磁波的性质 在空间的一定范围里无论是电或磁的情况有了一个扰动,那么这个扰动就不能被限制在该范围之内。在该范围里变动的场也在它附近的范围里产生场,这些场又在更外围的空间产生场,于是能量便被传播开来。当这种现象连续进行时,即有一含有电磁能量的波向外传播电磁波。 电磁发射:从源向外发射电磁能的现象。 电磁环境:存在于给定场所(空间)的所有电磁现象(包括全部时间和全部频谱)的总和。 电磁兼容:设备或系统在其中电磁环境中能正常工作且不对该环境中任何事务构成不能承受的电磁骚扰的能力。 电磁干扰:电磁骚扰引起的设备、传输通道或系统性能的下降。 近场和远场: 我们知道,静电场、静磁场等静态场中是没有近场和远场之分,有场源就有场。静电荷周围的静电场,是随着与场源距离的增大而成平方反比的关系衰减的;而恒定电流产生的静磁场,则随着与场源距离的增大而成立方反比的关系衰减。当电磁场由静态场过渡到时变场时,电荷、电流周围依然存在电磁场,称为感应场或近场;此外,还出现一种新的电磁场成分,称为辐射场或远场,它是脱离电荷、电流并以电磁波的形式向外传播的电磁场。它一旦从电荷、电流等场源辐射出去,就按自身的规律运动,与场源后来的状态没有关系。感应场或近场是随着与场源距离的增大而成平方反比关系衰减的,而辐射场或远场仅与距离成反比关系衰减。 由于近场离场源较近,其场强要比远场大得多。随着离天线距离的增加,电场强度和磁场强度迅速减少。所以,近场的空间不均匀度较大,是一个复杂的非均匀场。场中包括储存的能量和辐射的能量,有驻波也有行波,等相位面很不规则,电磁波极化不易确定,场强变化梯度大等。 无论场源是电场源还是磁场源,当离场源距离大于λ/2π以后就变成了远场,这里λ为波长。这时电场和磁场方向垂直并且都和传播方向垂直成为平面电磁波。电场和磁场的比值为固定值,即波阻抗为120π,等于377欧姆。 由于远场距离场源远,场强一般较弱。由于电场和磁场随场源的距离成反比衰减,所以比近场的衰减慢的多,因此空间变化梯度小,比较均匀。 总之,近场的电场和磁场之间存在π/2的相位差,由它们构成的平均坡印亭矢量为零,大部分能量在电场和磁场之间,以及场和源之间交换而不辐射,很小一部分能量向外辐射,并在λ/2π距离以

电磁波谱

二、电磁波谱互动思维导图:

1 、波的描述量 (1)对波的认识 水波的涟漪,音乐的律动,光都是波动 温馨提示:同学们对波是刚刚接触,浪”,水波向远处传播。如图 (2)对波的描述 ○1 用字母λ表示 ○2、频率:在1s 用f表示,单位Hz ○3 电磁波的速度用C表示。 的速度为3×108m/s (3)波的物理量之间的关系 波速=波长×频率 C=λ f 电磁波在真空中的速度C=3×108m/s 波长是多少 λ=C/f=3×108/2450×106=0.122m 0.6μm 是 A、其在真空中的传播速度为3.0×108 B、其频率是5×1014HZ C、传播10m的距离需要的时间是1.0×10 D、在10m的距离中有1.7×107个波长 解析: 长、频率,应借助c=λf求解。 意λ=0.6μm=0.6×10-6m,根据公式,B

电信号,然后将这些信号由高频振荡的电磁波带着向周围空间传播。而在另一地点,人们利用接收机接收到这些电磁波后,又将其中的电信号还原成声音信号,这就是无线广播的大致过程。而在电视中,除了要像无线广播中那样处理声音信号外,还要将图像的光信号转变为电信号,然后也将这两种信号一起由高频振荡的电磁波带着向周围空间传播,而电视接收机接收到这些电磁波后又将其中的电信号还原成声音信号和光信号,从而显示出电视的画面和喇叭里的声音。 电磁波谱的频度范围非常宽,其中最长的电磁波波长是最短的1021以上.不同的电磁波产生的机理不同,可见光是电磁波谱中相当狭小的一部分,并且不同的色光具有不同的频率,即光的颜色是由光的频率决定的.电磁波按波长由大到小的顺序排列为:无线电波、红外线、可见光、紫外线、x射线(又称伦琴射线)、γ射线.它们的特性、用途比较如下表 的物理现象。请将相应的字母填写在运用这种现象的医疗器 械后面的空格上。 (1)X光机________;(2)紫外线灯________;(3)理疗 医用“神灯”照射伤口,可使伤口愈合得较好。这里的“神 灯”是利用了________________________________。 A.光的全反射B.紫外 线具有很强的荧光作用 C.紫外线具有杀菌消毒作用D.X射 线的很强的贯穿力 E.红外线具有显著的热作用F.红外 线波长较长易发生衍射 解析:X射线能够穿透肌肉物质,可以用来检查人体 内部器官;紫外线具有较高的能量,足以破坏细菌中的物质, 因此可以用杀菌消毒;红外线有加热物体的能力,可以使伤 口升温,加快血液循环,使伤口愈合。 答:(1)D;(2)C;(3)E 三、电磁波的共性和区别 1.相同之处 (1)都有共同的电磁本性. (2)都具有波的性质,会反射、折射,也会产生干涉、 衍射等现象.另外,它们在真空中的波速都相等. 2.相异之处 (1)不同的电磁波由于其波长的不同,表现出不同 的特性.如波长较长的无线电波、红外线,很容易发生于涉、 衍射现象;而波长较短的紫外线、x射线、γ射线则表现 出直线传播和穿透性. (2)不同的电磁波,其性质和应用范围也不同.红 外线的主要性质是热效应,应用于加热和遥感技术;紫外线 的主要性质是化学效应,应用于消毒杀菌;伦琴射线穿透能 力强,应用于透视和检查金属部件的缺陷 (3)不同频率的电磁波在同种介质中的传播速度也不 同.光波在同种透明介质中传播时,频率越高传播速度越低. 是长度单位,符号为nm,1nm=10-9m.从 电磁波谱图中可知,可见光波长的数量级是 A.10-6 nm B.102 nm C.105 nm D.1014nm 答案:B 四、电磁波的能量 1.电磁波是一种物质,它是客观存在的真实物质,是一种

认识电磁波谱

认识电磁波谱 电磁波按照波长(频率)标度,可以分为无线电波、红外线、可见光、紫外线、X射线和γ射线。不同波长的电磁波产生的机理不同,具有不同的物理效应,在军事中有着各具特色的应用。 无线电波是由人工控制的振荡偶极子产生的。由于电磁波的辐射强度随频率的减少而急剧下降,因此波长为几百千米的无线电波没有实际利用的价值,实际用的无线电波的范围是几十千米到0.1毫米。无线电波波谱一般按波长来划分,习惯上,可以分为极长波、超长波、长波、中波、短波超短波、微波、毫米波和亚毫米波。 被用于海岸电台对潜艇和远洋水面舰艇的通信和导航。中波和短波主要用于无线电广播和通信,在心理战和远距离通信方面应用比较广泛。超短波和微波波段是业务种类最多、使用最频繁的波段、对抗最激烈的波段,主要用于军事通信、军用雷达和航空导航。超短波和微波波段在军事通信方面主要应用有卫星通信、地面微波中继通信、散射通信和电视广播等。在雷达方面,波长较长的波段探测距离远而测量精度和分辨率较差,适用于远程监视雷达;波长较短的波段测控距离不远而测量精度较高,适用于各种火控雷达;波长折中的波段,性能也是折中的,适用于中程监视雷达和较远的火控雷达。亚毫米波的技术发展很快,在军事侦查与监视、雷达、军事通信等方面有良好的应用前景,只是技术和器件不是很成熟,还没有得到广泛的应用。 红外线、可见光和紫外线都是由原子或分子振荡激发的。红外线的波长范围是十分之几毫米到760nm,它的热效应特别显著,并且在室温,物体辐射的电磁波能量集中分布在红外区域。工作在红外波段的红外热像仪和红外探测仪在导弹预警、夜间侦查、成像、搜索、跟踪、观瞄和制导等诸多方面有着广泛的应用。它们具有被动方式工作的特点,抗干扰能力强,作用距离远,可在全黑的夜间工作,能透过烟尘、雾、霾发现目标以及识别伪装,因而受到各国军队的高度重视。可见光的波长范围是400nm到760nm,是人的视觉唯一能够感受的波段。它主要应用于观察和照相,产品有普通望远镜、星光望远镜和航天(航空)照相机等,其中低地轨道侦查卫星装配的可见光照相机的分辨率已经达到一米以内。紫外线的波长范围是400nm到5nm,它具有显著的化学效应和荧光效应。许多痕迹和物证在可见光下是模糊不清或不可见的,但经紫外线激发后能产生较强的荧光,并且不同物质可发出不同颜色和亮度的荧光,如果把这些荧光拍照下来,就可以显现该痕迹物证的细节特征,为物证鉴定提供可靠依据。因此,紫外荧光摄影在显现潜指纹、显示难读字迹、检验伪造文件和票证等方

电磁辐射

一、电磁辐射(EMF)项目背景介绍 随着技术革命的更新和不同波段新的应用的不断发现,许多频率电磁辐射(EMF)的暴露水平显著增加,生活中的每个人都处在0-300GHz频率的复合电磁场(EMF)暴露中,电磁污染(EMF)已成为最广泛的环境影响因素之一。 电磁污染的主要来源有:各种输变电系统;运输系统、长途通讯设施和便携式通讯工具如移动电话;医药、商业和工业设备;雷达;电台和电视台发射天线等。 随着对电磁场(EMF)暴露会引起各种健康问题担忧的增加,1996年世界卫生组织(WHO)设立了国际电磁辐射(EMF)项目以寻求解决问题的方法。 由于对电磁辐射所造成的健康危害的不同理解,不同国家所制定的电磁辐射标准有很大的差异。其中,俄罗斯、中国、意大利、比利时等国家在制定标准时考虑了电磁辐射对人体的神经效应方面的影响,标准限值较严厉,美国、澳大利亚、德国等国在制定标准时采用了国际非电离协会(ICNIRP)的推荐标准,没有考虑电磁辐射对人体的神经效应方面的影响,而只是考虑已有明确研究结果的热效应,标准限值较宽松,将来仍然有进一步提高标准限值的可能。 二、电磁辐射(EMF)的环境影响 由于电磁辐射对环境所造成的影响主要有两方面,一是对人类健康的影响,二是对各种电气设备的影响,因此在考虑电磁辐射的环境影响时将从两个方面入手。如图示: 1.电磁辐射对人类健康的影响 在评价电磁辐射生物效应的不良健康后果时,应该区分相互作用、生物效应和健康危害这几个概念: o 相互作用是由电感和电容的耦合或力作用于带电颗粒引起的,可能导致微小的身体变化。 o 生物效应是可被检测的分子水平以上的功能或结构改变,生理性变化可能或无法被衡量。活的生物体在生命过程中对许多刺激产生反应,这种反应便是一种生物效应。 o 在人体生理正常代偿范围内以及尚未损害人的身体与精神健康的生物效应不能视为危害性效应。 o 相互作用所导致的生物效应若超出了人体生理正常代偿范围,则构成真正的或潜在的健康危害。 o 生物效应若有损于个体行使正常功能或从刺激中恢复的能力,应视为健康危害。 o 经过证实(即,以科学的态度进行的研究、结果有显著性意义、直接的因果关系)的主观感觉,若对个体的身体和精神健康造成损害,应视为健康危害。 1.1 电磁辐射不良健康效应 电磁辐射对人体的健康影响主要有两方面:躯体热效应和神经效应。根据频率的不同电磁辐射对体的影响有所不同,一般而言低频电磁辐射对人体的影响以神经效应为主,高频电磁辐射对体的影响以热效应为主。如图一示: 图一、电磁辐射对人体的健康影响示意图 神经效应热效应

电磁辐射的测量基础知识

电磁辐射的测量基础知识 1、电磁场的远场和近场划分 电磁辐射源产生的交变电磁场可分为性质不同的两个部分,其中一部分电磁场能量在辐射源周围空间及辐射源之间周期性地来回流动,不向外发射,称为感应场;另一部分电磁场能量脱离辐射体,以电磁波的形式向外发射,称为辐射场。 一般情况下,电磁辐射场根据感应场和辐射场的不同而区分为近区场(感应场)和远区场(辐射场)。由于远场和近场的划分相对复杂,要具体根据不同的工作环境和测量目的进行划分,一般而言,以场源为中心,在三个波长范围内的区域,通常称为近区场,也可称为感应场;在以场源为中心,半径为三个波长之外的空间范围称为远区场,也可称为辐射场。 近区场通常具有如下特点: l 近区场内,电场强度与磁场强度的大小没有确定的比例关系。即:E1377H。一般情况下,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备的模具),磁场要比电场大得多。 l 近区场的电磁场强度比远区场大得多。从这个角度上说,电磁防护的重点应该在近区场。 l 近区场的电磁场强度随距离的变化比较快,在此空间内的不均匀度较大。 远区场的主要特点如下: l 在远区场中,所有的电磁能量基本上均以电磁波形式辐射传播,这种场辐射强度的衰减要比感应场慢得多。 l 在远区场,电场强度与磁场强度有如下关系:在国际单位制中,E=377H,电场与磁场的运行方向互相垂直,并都垂直于电磁波的传播方向。l 远区场为弱场,其电磁场强度均较小 近区场与远区场划分的意义: 通常,对于一个固定的可以产生一定强度的电磁辐射源来说,近区场辐射的电磁场强度较大,所以,应该格外注意对电磁辐射近区场的防护。对电磁辐射近区场的防护,首先是对作业人员及处在近区场环境内的人员的防护,其次是对位于近区场内的各种电子、电气设备的防护。而对于远区场,由于电磁场强较小,通常对人的危害较小。 对我们最经常接触的从短波段30MHz到微波段的3000MHz的频段范围,其波长范围从10米到0.1米。 例:具体辐射源的近场(感应场区)与远场(辐射场区)(l = c / f) 频率 (f) 波长(l) 界限(3l) 50 / 60 Hz 电力 6000 / 5000 km 18000 / 15000 km

电磁波谱(Electromagnetic Spectrum)

电磁波谱(Electromagnetic Spectrum) 电磁波包括的范围很广。实验证明,无线电波、红外线、可见光、紫外线、X射线、γ射线都是电磁波。它们的区别仅在于频率或波长有很大差别。光波的频率比无线电波的频率要高很多,光波的波长比无线电波的波长短很多;而X射线和γ射线的频率则更高,波长则更短。为了对各种电磁波有个全面的了解,人们按照波长或频率的顺序把这些电磁波排列起来,制成电磁波谱。 微波波段

例如,用于搜索雷达的电磁波波长为23cm,定义为L波段(Long); 后来使用10cm的电磁波后,由于波长比以前的短,所以称为S波段(Short); 在使用3cm电磁波的火控雷达出现后,被称为X波段,因为X代表座标上的某点; 为了结合X波段和S波段的优点,出现了波长为5cm的雷达,称为C波段(Compromise); 在英国人之后,德国人也开始独立开发自己的雷达,他们选择1.5cm作为自己雷达的中心波长。这一波长的电磁波就被称为K波段(德语短的意思)。“不幸”的是,德国人以其日尔曼民族特有的“精确性”选择的波长可以被水蒸气强烈吸收,结果这一波段的雷达不能在雨中和有雾的天气使用。后来大家都避开这个波段,使用比K波段波长略长(Ka,即英语K-above的缩写,意为在K波段之上)和略短(Ku,即英语K-under的缩写,意为在K波段之下)的波段;

电磁波的波段选择 电磁波的应用(Application) 电磁波的应用主要是依据它的波长,如我们前面说到的,波长越短,越容易被反射,阻挡,或吸收,如果想想传输的更远,就得增大输出功率。例如,潜艇通信,由于短波很容易被水吸收,所有必须使用长波。例如,现在的3G,由于频率提高,由于其他物体的阻挡,原来50个基站能覆盖的区域得增加几乎一倍,所以,现在的3G只能覆盖不是很多的城市。

电磁辐射检测方法

常规电磁辐射监测方法 1.电磁辐射污染源监测方法 1)环境条件 应符合行业标准和仪器标准中规定的使用条件。测量记录表应注明环境温度、相对湿度。 2)测量仪器 可使用各向同性响应或有方向性电场探头或磁场探头的宽带辐射测量仪。采用有方向性探头时,应在测量点调整探头方向以测出测量点最大辐射电平。 测量仪器工作频带应满足待测场要求,仪器应经计量标准定期鉴定。 3)测量时间 在幅射体正常工作时间内进行测量,每个测点连续测5次,每次测量时间不应小于15秒,并读取稳定状态的最大值。若测量读数起伏较大时,应适当延长测量时间。 4)测量位置 测量位置取作业人员操作位置,距地面0.5、1、1.7m三个部位。 辐射体各辅助设施(计算机房、供电室等)作业人员经常操作的位置,测量部位距地面0.5—1.7m。 辐射体附近的固定哨位、值班位置等。 数据处理 出每个测量部位平均场强值(若有几次读数)。 根据各操作位置的E值(H、P d)按国家标准《电磁辐射防护规定》(GB 8702—88)或其它部委制定安全限值”作出分析评价。 2.环境电磁辐射测量方法 1)测量条件 气候条件: 气候条件应符合待业标准和仪器标准中规定的使用条件。测量记录表应注明环境温度相对湿度。 测量高度: 离地面1.7~2m高度。也可根据不同目的,选择测量高度。 测量频率: 电场强度测量值>50 dBμV/m的频率作为测量频率。 测量时间: 本测量时间为5:00~9:00,11:00~14:00,18:00~23:00城市环境电磁辐射的高峰期。 24小时昼夜测量,昼夜测量点不应少于10点。 测量间隔时间为1h,每次测量观察时间不应小于15s,若指针摆动过大,应适当延长观察时间。 2)布点方法 典型辐射体环境测量布点

放射卫生基础知识

放射卫生基础知识 自古以来,人类就受到环境中电离辐射不同程度的影响,宇宙射线和各种天然放射性核素的天然辐射源的照射,人均年当量剂量约为2.4mSv。随着核能开发,核反应堆、核电站的兴建,以及放射性核素和各种射线装置等人工辐射源在各个领域日益广泛的应用,人类得益,但也可能受到直接或潜在的辐射危害,如医疗照射、事故照射和环境污染等。因此,在发展和应用核能、放射性核素和各种射线装置为人类造福的同时,应研究如何免受或少受电离辐射的危害,保障放射工作人员、公众及其后代的健康和安全,制定有效的防护措施,切实做好放射卫生防护工作。 一、放射防护的任务 放射防护的任务是:既要积极进行有益于人类的伴有电离辐射的实践活动,促进核能利用及其新技术的迅速发展;又要最大限度地预防和缩小电离辐射对人类的危害。放射防护的研究范围非常广泛,而研究和制定放射防护标准是极其重要的内容。 二、放射防护的目的 放射防护的目的是:防止确定性效应的发生;限制随机性效应的发生率,使之达到被认为可以接受水平。确保放射工作人员、公众及其后代的健康和安全。 (一)防止确定性效应的发生 确定性效应是一种具有剂量阈值的效应,从理论上讲,只要将受照射剂量控制在阈值以下,就不会发生确定性效应。因此,必须确保人员在其一生中或全部工龄期间,任何一个组织,器官所受到的电离辐射的累积当量剂量,均应低于发生确定性效应的剂量阈值。

各类确定性效应的剂量阈值,可以根据所积累的放射生物学资料来确定。对于肺、肝、肾、小肠、骨、皮肤等大多数器官的慢性长期照射,其阈值剂量均在20~30Gy以上。而对电离辐射敏感性腺、骨髓和眼晶状体的阈值剂量很低,1984年ICRP给出了它们的剂量阈值(表1)。 表1 某些确定性效应的剂量阈值(Sv) 注:NA表示不适用,因阈剂量取决于剂量率而非总剂量 (二)将辐射随机效应的发生几率降低到可以接受的水平 1.什么是随机性效应(stochastic effect):指效应的发生率(不是严重程度)与照射剂量的大小有关,这种效应在个别细胞损伤(主要是突变)时即可出现。不存在阈剂量。遗传效应和辐射诱发癌变等属于随机性效应。 2.什么是可以接受的水平:众所周知,人类在生活、工作和改造环境的一切活动中,都伴有一定几率的危险性,例如工伤事故,交通事故、自然灾害、各种疾病等。辐射随机性效应带来的危险,只要不超过其他被公认为安全职业可能

电磁辐射基础知识

电磁的基本概念 电磁场(electromagnetic field)是物质的一种形式。为了说明电磁的基本概念,现对一些常用名词、术语等做一简略介绍[1]。 一、交流电 1.交流电(alternating current) 交流电是交替地即周期性地改变流动方向和数值的电流。如果我们将电源的两个极,即正极与负极迅速而有规律地变换位置,那么电子就会随着这种变换的节奏而改变自己的流动方向。开始时电子向一个方向流动,以后又改向与开始流动方向相反的方向流动,如此交替地依次重复进行,这种电流就是交流电。 在交流电中,电子在导线内不断地振动,从电子开始向一个方向运动起,然后又回到原点的平行位置时,这一运动过程,称为电流的一次完全振动,发生一次完全振动所需要的时间称为一个周期。半个振动所需要的时间,称为二分之一周期或半周期。 2.频率(frequency) 频率是电流在导体内每秒钟所振动的次数。交流电频率的单位为赫(Hz)。例如我国的民用电频率为50Hz,意思是说民用电这种交流电,在一秒钟内振动50次。美国等一些国家为60Hz。 二、电场与磁场 所有的物体都是由大量的和分立的微小粒子所组成,这些粒子有的带正电,有的带负电,也有的不带电。所有的粒子都在不断地运动,并被它们以一定的速度传播的电磁场所包围着,所以

带电粒子及其电磁场,不是别的,而是物质的一种特殊形态。1.电场(electric field) 我们知道,物体相互作用的力一般分为两大类,一类是物体的.直接接触发生的力,叫接触力,例如碰撞力、摩擦力等均属于这一类。另一类是不需要接触就可以发生的力,称为场力,例如电场力、磁场力、重力等。 电荷的周围存在着一种特殊的物质叫做电场。两个电荷之间的相互作用并不是电荷之间的直接作用,而是一个电荷的电场对另一个电荷所发生的作用,也就是说在电荷周围的空间里,总是有电场力在作用着。因此,我们将有电场力作用存在的空间称为电场。电场是物质的一种特殊形态。 电荷和电场是同时存在的两个方面,只要有电荷,那么它的周围就必然有电场,它们永远是不可分割的整体。当电荷静止不动时,电场也静止不变,这种现象叫做静电场(static field)。当电荷运动时,电场也在变化运动,这种电场称做动电场(dynamlcfield),起电的过程,也是电场建立的过程。起电后,当我们分离正负电荷时,须用外力做功。 那么,电场是怎样显示出来的呢?举个简单的例子,如用一块绒或绸子去摩擦梳子,梳子就会带电,也就是说梳子上面产生了电荷,这种带电的梳子在一定的距离内,就可以吸起小纸屑。这个现象告诉我们,在带电的梳子附近形成了电场,也就是说有电场在起作用。如果将其所带电荷做交变运动,那么它的电场也是

电磁波谱

5电磁波谱 班级姓名 一、电磁波谱 按照或的顺序把这些电磁波排列起来,就是电磁波谱。如果把每个波段的频率由低至高依次排列的话,它们 是。无线电的波长最 三、电磁波的能量 1.电磁波是一种物质,它是客观存在的真实物质,是一种物质存在的另一种形式. 2.电磁波具有能量,以电磁场的形式存在的能量,也就是说电磁场的能量通过电磁波来传播.3.电磁波不需要其他介质就能传播

4.电磁波能量与频率有关,频率越大,光能量越强. 【典型例题】 【例1】下列说法正确的是() A.摄像机实际上是一种将光信号转变为电信号的装置 B.电视机实际上是一种将电信号转变为光信号的装置 C.电视机接收的画面是连续的 D.无线电波用于通信等 【例2】下面列出一些医疗器械的名称和这些器械运用的物理现象。请将相应的字母填写在运用这种现象的医疗器械后面的空格上。 ⑴X光机;⑵紫外线灯; ⑶理疗医用特定红外线灯系列“电磁波治疗器”使用方便,费用低廉,兼具保健、康复作用,使用者誉称它为“神灯”,用“神灯”照射伤口,可使伤口愈合得较好。这里的“神灯”是利用 了。 A.光的全反B.紫外线具有很强的荧光作用;C.紫外线具有杀菌消毒作用;D.X射线的很强的贯穿力; E.红外线具有显著的热作用;F.红外线波长较长易发生衍射 【例3】有关太阳辐射的叙述错误的是() A.太阳辐射就是指太阳以电磁波的形式向四周放射能量 B.太阳辐射能量来源于氢气的燃烧 C.太阳辐射是有核聚变反应过程中亏损的质量转化而来的 D.太阳辐射是维持地表温度,促进地区上水、大气、生物活动的主要动力 【学后自测】 1.下列各组电磁波中,接波长由长到短排列正确的是( ) A.红外线、紫外线、可见光、γ射线B.γ射线、紫外线、红外线、可见光 C.γ射线、紫外线、可见光、红外线D.红外线、可见光、紫外线、γ射线 2.在电磁波中,波长按从长到短排列的是( ) A.无线电波、可见光、红外线B.无线电波、可见光、γ射线 C.红光、黄光、绿光D.紫外线、X射线、γ射线 3.红外线、紫外线、无线电波、可见光、γ射线、伦琴射线按波长由大到小的排列顺序是( ) A.无线电波、红外线、可见光、紫外线、伦琴射线、γ射线 B.红外线、可见光、紫外线、无线电波、γ射线、伦琴射线 C.γ射线、伦琴射线、紫外线、可见光、红外线、无线电波 D.紫外线、红外线,γ射线、伦琴射线、无线电波、可见光 4.间谍卫星上装有某种遥感照相机,可用来探测军用和民用目标.这种照相机能拍到晚上关灯行驶的汽车,即使车队离开,也瞒不过它.这种遥感照相机敏感的电磁波属于( ) A.可见光波段B.红外波段C.紫外波段D.X射线波段 5.关于红外线与紫外线的说法中,正确的是() A.红外线的热效应显著,而紫外线的化学效应显著 B.红外线绕过障碍物的能力比紫外线强 C.红外线与紫外线既有相同的地方,又有不同的特性 D.红外线和紫外线都是可见光的一部分

电磁波谱与红外辐射以及红外辐射的基本理论

经过长期探索,人们掌握了红外辐射的基本规律,不断研制出新型、优质红外探测器件,发展了红外光谱和红外成像等重要技术,并使之在当代许多领域,尤其在遥感、军事及其它高科技领域占据突出地位。本文第一部分介绍了电磁波谱以及红外辐射的历史,红外光谱,红外辐射等;第二部部分介绍了红外辐射理论相关的三个理论即普朗克定律,斯蒂芬玻尔兹曼定律和维恩位移定律。 关键词:电磁波谱红外线红外辐射黑体辐射

摘要................................................................ I 第一章序言 (1) 第二章电磁波谱与红外辐射 (2) 2.1红外线的发现 (2) 2.2电磁波谱 (2) 2.3红外光谱 (4) 2.4红外线的主要效应 (5) 2.5红外辐射的特点 (5) 第三章红外辐射理论 (7) 3.1普朗克(Planck)定律: (7) 3.2斯蒂芬-波尔茨曼(Stefan-Boltzmann定律(第二个定律): (9) 3.3维恩位移定律(Wiendisplacementformula) (9) 第四章结论 (11) 参考文献 (13)

第一章序言 “红外物理”与“红外技术”作为学科名称是本世纪05年代末公开出现的,二次世界大战期间,法西斯德国研制成硫化铅红外探测器、测辐射热计以及一些红外材料,利用这些元部件做成了多种军用红外系统。有些巳达到实验室试验阶段,有些已小批量生产,但都没有来得及到战场上实际使用,德国就无条件投降了.这些红外技术成果就成为盟国的战利品。美国在二次大战期间也在研究红外技术,战争结束又增加了不少红外技术战利品,鉴于红外技术在军事应用中的重要性,他们就更大规模地继续发展红外技术.而且仍在严格保密条件下.直到1959年才以“ProeeedinofIRE”9月号的专刊形式,公布他们在十多年中所积累的“有关红外物理与技术的基本信息”,并称这个专刊“实质上是一个有关红外的教科书”.这个专刊就叫做“红外物理与红外技术”。6 0年代初,美国又出现了几本有关的教科书。1961年又出现了一份国际性《红外物理》的学术刊物。可以说,这时红外技术已经是一门成熟的技术学科.从近半个世纪的发展情况来看:“红外技术”是一门研究红外辐射的产生、传播、转化及检测的方法和工艺,发展它在工业、农业、军事及科学研究中应用的技术学科.它的内容涉及:(1)红外辐射的性质,如受热物体的辐射在强度、方向上的分布,辐射在媒质中的传播特性—反射、折射、吸收和散射,热效应及光电效应。(2)红外元部件,如辐射源、探测器、微型致冷器、窗口材料及逮光片等的研制.(3)把红外元部件组成具有特定功能的红外系统所用的光学、电子学及精密机械.(4)在军事上及国民经济建设中的应用.实质上这些内容都是为了红外辐射的探测:如何有效地探测红外辐射,如何提高探测效能.因此可以说:红外技术主要是红外探测技术。 “红外物理”则是描述、分析和探讨与红外辐射的产生、传播、转化及检测有关的基本现象的科学.它的内容包括:(1)辐射发射的热力学,(2)辐射通过大气的吸收与散射,(3)辐射穿越各种凝聚物体的交互作用,(4)与红外辐射探测过程相联系的各种物理现象.简单地讲,红外物理就是红外技术所必需的物理学基础红外辐射是人眼感觉不到的一种电磁波.如何察觉它的存在,如何测量它的大小,是一个首先要解决的问题。执行这一任务的关键器件就是“红外探测器”。历史证明:红外探测器的发展是红外技术发展的中心问题.红外技术的应用所提出的要求在很大程度上制约着红外探测器的发展方向.红外技术的应用非常广泛,很难用简短的文字来描述它的发展历程。

电磁频谱

交变电流在周围空间会产生交变磁场,变化的电场和磁场相互联系,形成了交变的电磁场,并能脱离其产生的波源向远处传播,这种在空间以一定速度传播的交变电磁场就是电磁波。电磁频谱,则是由电磁波按波长或频率排列起来,所形成的一个从零至无穷的结构谱系,频率从低到高分别列为无线电波、微波、红外线、可见光、紫外线、X射线和伽马射线。 一、电磁频谱是特殊的自然资源 电磁频谱是一种特殊的自然资源。其特殊性主要体现在: (1)三维性,它具有频率、空间和时间的三维性,在不同频率或不同空间,或不同时间可以同时使用电磁频谱; (2)有限性,对某一个频段或频率而言,它在一定区域及一定时间内是非常有限而紧张的,必须进行有序管理; (3)共享性,它是一种共享性资源,电磁波的传播不受行政区域的限制,若随意使用无线电频谱,可能干扰其他国家或部门对频率的使用; (4)排他性,在一定的时间、地区和频域内,一旦某个频率被使用,其他设备则不能以相同的技术模式再使用该频率。 二、不同频段频谱的特色应用 对于不同频段的电磁波,其应用不同,例如紫外线对常见细菌病毒的杀菌效率,红外线用于遥控、热成像仪,利用微波加热食物等,其中,无线电波的应用最广,在民用领域的移动通信、广播电视、卫星导航等各种无线电业务得到了广泛应用,在军事领域的导航定位、情报侦察、指挥通信也起着重要作用。 三、现阶段存在的问题 随着时代的发展,高速增长的无线用户与有限的频率资源这对矛盾变 得更加突出,在提高频率资源利用率的诸多方法中,最被广泛研究和 利用的是频率复用。利用频率复用,有效的提高了频谱的利用率。 四、未来的发展趋势 无线电的广播、导航、遥控相继出现,给人类社会的发展进步带来了 巨大变化。电磁波作为信息传递的重要载体,纵横驰骋在陆、海、空、天四维空间,加速了信息时代的到来。未来电磁频谱将朝着频谱资源共享共用、精细化频谱效能分析和频谱动态嵌入式管理等方向不断进步。

《电磁波谱》教案1

电磁波谱 【课标要求】 初步了解麦克斯韦电磁场理论的基本思想以及在物理学发展史上的意义。了解电磁波的产生,通过电磁波体会电磁场的物质性。了解电磁波的发射、传播与接收。 通过实例认识电磁波谱,知道光是电磁波。了解电磁波的应用和在科技、经济、社会发展中的作用。 【教学目标】 1、通过实例认识电磁波谱。 2、说出电磁波谱中各波段的主要特性 和在科技、经济、社会发展中的主要作用。 3、说出电磁波具有能量,是一种物质。 4、说出太阳辐射能量的分布情况。 【教学过程】 一、电磁波谱 按照波长由长到短的顺序,电磁波的分类依次是____________、____________、____________、____________、____________、____________、____________、____________、____________。电磁波的波长越短,越_________观察到衍射现象,穿透性越强,所以____________的穿透性最强。 二、无线电波 无线电波在电磁波谱中的波长最______,用于_________、________及___________________。 三、红外线 ______________可以发射红外线。_________不同的物体发出的红外线强度不一样。 1800年英国物理学家赫谢耳,用灵敏的温度计在可见;光谱红光区外侧,发现有显著的热作用存在,这说明这里有一种看不见的光线,它的波长比红光更长,后来就把这种射线叫做红外线.红外线最显著的作用是热作用,所以,可以利用红外线来加热物体、烘干油漆和谷物以及进行医疗等.它的优点是能够使物体从内部发热,效率高,效果好.红外线的波长比红光还长,因此衍射现象比较显著,容易透过云雾烟尘,可以在军事上用于通信、定位、跟踪和夜间摄影等. 四、可见光 可见光的波长在_______________________之间。 天空明亮,是因为___________________________。

电磁测量测量基本知识

电磁辐射的测量基础知识 电磁辐射的测量基础知识 电磁辐射的测量方法通常与测量点位和辐射源的距离有关,即,所进行的测量是远场测量还是近场测量。由于远场和近场的情况下,电磁场的性质有所不同,因此,要对远场和近场测量有明确的了解。 1、电磁场的远场和近场划分 电磁辐射源产生的交变电磁场可分为性质不同的两个部分,其中一部分电磁场能量在辐射源周围空间及辐射源之间周期性地来回流动,不向外发射,称为感应场;另一部分电磁场能量脱离辐射体,以电磁波的形式向外发射,称为辐射场。 一般情况下,电磁辐射场根据感应场和辐射场的不同而区分为近区场(感应场)和远区场(辐射场)。由于远场和近场的划分相对复杂,要具体根据不同的工作环境和测量目的进行划分,一般而言,以场源为中心,在三个波长范围内的区域,通常称为近区场,也可称为感应场;在以场源为中心,半径为三个波长之外的空间范围称为远区场,也可称为辐射场。 近区场通常具有如下特点: l 近区场内,电场强度与磁场强度的大小没有确定的比例关系。即:E1377H。一般情况下,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备的模具),磁场要比电场大得多。 l近区场的电磁场强度比远区场大得多。从这个角度上说,电磁防护的重点应该在近区场。 l近区场的电磁场强度随距离的变化比较快,在此空间内的不均匀度较大。 远区场的主要特点如下: l在远区场中,所有的电磁能量基本上均以电磁波形式辐射传播,这种场辐射强度的衰减要比感应场慢得多。 l在远区场,电场强度与磁场强度有如下关系:在国际单位制中,E=377H,电场与磁场的运行方向互相垂直,并都垂直于电磁波的传播方向。 l远区场为弱场,其电磁场强度均较小 近区场与远区场划分的意义: 通常,对于一个固定的可以产生一定强度的电磁辐射源来说,近区场辐射的电磁场强度较大,所以,应该格外注意对电磁辐射近区场的防护。对电磁辐射近区场的防护,首先是对作业人员及处在近区场环境内的人员的防护,其次是对位于近区场内的各种电子、电气设备的防护。而对于远区场,由于电磁场强较小,通常对人的危害较小。 对我们最经常接触的从短波段30MHz到微波段的3000MHz的频段范围,其波长范围从10米到0.1米。 例:具体辐射源的近场(感应场区)与远场(辐射场区)(l = c / f) 频率(f)波长(l)界限(3l) 50 / 60 Hz电力6000 / 5000 km18000 / 15000 km 50 kHz电焊 6 km18km 27 MHz CB 广播, 透热疗法11.1 m33.3 m 100 MHz FM 广播 3 m9 m 433 MHz 工业应用0.7 m 2.1 m

电磁波谱

电磁波谱 科技名词定义 中文名称:电磁波谱 英文名称:electromagnetic spectrum 定义:电磁辐射波长或频率按序排列的总范围。 所属学科:地理学(一级学科);遥感应用(二级学科) 百科名片 电器波谱 在空间传播着的交变电磁场,即电磁波。它在真空中的传播速度约为每秒30万公里。电磁波包括的范围很广。实验证明,无线电波、红外线、可见光、紫外线、X射线、γ射线都是电磁波。它们的区别仅在于频率或波长有很大差别。光波的频率比无线电波的频率要高很多,光波的波长比无线电波的波长短很多;而X射线和γ射线的频率则更高,波长则更短。为了对各种电磁波有个全面的了解,人们按照波长或频率的顺序把这些电磁波排列起来,这就是电磁波谱。 分类 依照波长的长短以及波源的不同,电磁波谱可大致分为: (1)无线电波 波长从几千千米到0.3米左右,一般的电视和无线电广播、手机等的波段就是用这种波; (2)微波 波长从0.3米到10^-3米,这些波多用在雷达或其它通讯系统; (3)红外线 波长从10^-3米到7.8×10^-7米;红外线的热效应特别显著; (4)可见光

这是人们所能感光的极狭窄的一个波段。可见光的波长范围很窄,大约在7600 ~4000埃(在光谱学中常采用埃作长度单位来表示波长,1=10^-10米)。从可见光向两边扩展,波长比它长的称为红外线,波长大约从7600直到十分之几毫米。光是原子或分子内的电子运动状态改变时所发出的电磁波。由于它是我们能够直接感受而察觉的电磁波极少的那一部分,波长从(7.8~3.8)×10^-7米。 (5)紫外线 波长比可见光短的称为紫外线,它的波长从(380~10)×10^-9米,它有显著的化学效应和荧光效应。这种波产生的原因和光波类似,常常在放电时发出。由于它的能量和一般化学反应所牵涉的能量大小相当,因此紫外光的化学效应最强;红外线和紫外线都是人类看不见的,只能利用特殊的仪器来探测。无论是可见光、红外线或紫外线,它们都是由原子或分子等微观客体激发的。近年来,一方面由于超短波无线电技术的发展,无线电波的范围不断朝波长更短的方向发展;另一方面由于红外技术的发展,红外线的范围不断朝波长更长的方向扩展。日前超短波和红外线的分界已不存在,其范围有一定的重叠。 电磁波谱 (6)伦琴射线 这部分电磁波谱,波长从(10~0.01)×10^-9米。伦琴射线(X射线)是电原子的内层电子由一个能态跳至另一个能态时或电子在原子核电场内减速时所发出的;X 射线,它是由原子中的内层电子发射的。随着X射线技术的发展,它的波长范围也不断朝着两个方向扩展。目前在长波段已与紫外线有所重叠,短波段已进入γ射线领域。放射性辐射γ射线的波长是认1左右直到无穷短的波长。 (7)γ射线 是波长从10^-10~10^-14米的电磁波。这种不可见的电磁波是从原子核内发出来的,放射性物质或原子核反应中常有这种辐射伴随着发出。γ射线的穿透力很强,对生物的破坏力很大。由于辐射强度随频率的减小而急剧下降,因此波长为几百千米的低频电磁波强度很弱,通常不为人们注意。实际中用的无线电波是从波长约几千米(频率为几百千赫)开始。波长3000米~50米(频率100千赫~6兆赫)的属于中波段;波长50米~10米(频率6兆赫~30兆赫)的为短波;波长10米~1厘米(频率30兆赫~3万兆赫)甚至达到1毫米(频率为3×10^5兆赫)以下的为超短波(或微波)。有时按照波长的数量级大小也常出现米波,分米波,厘米波,毫米波等名称。

电磁辐射监测技术.

电磁辐射监测技术 1 电磁波基础知识 1.1电磁场基本定义 交变电磁场的性质 在某空间内,任何电荷由于它本身的存在,受有一种与电荷成比例的力,则这空间内所存在的物质,物质称为电场。如果电场的存在是由于电荷的存在,则这种电场是符合库仑定律的,称为库仑电场。静止则称为静电场,它是库仑电场的一种特殊情形。 运动电荷受到作用力的空间称为有磁场存在的空间。而且将这种了称为磁力。 此外,一个变动的磁场产生一个电场,此电场不但存在于变动磁场的范围里,并且还存在于邻近的范电场在发生变动的范围和变动附近的范围里产生一磁场。 可见,不仅电荷可以产生电场,变化的磁场也能产生电场,不仅传导电流可以产生磁场,变化的电场场。 电磁波的性质 在空间的一定范围里无论是电或磁的情况有了一个扰动,那么这个扰动就不能被限制在该范围之内。它附近的范围里产生场,这些场又在更外围的空间产生场,于是能量便被传播开来。当这种现象连续进行的波向外传播电磁波。 电磁发射:从源向外发射电磁能的现象。 电磁环境:存在于给定场所(空间)的所有电磁现象(包括全部时间和全部频谱)的总和。 电磁兼容:设备或系统在其中电磁环境中能正常工作且不对该环境中任何事务构成不能承受的电磁骚电磁干扰:电磁骚扰引起的设备、传输通道或系统性能的下降。 近场和远场:

我们知道,静电场、静磁场等静态场中是没有近场和远场之分,有场源就有场。静电荷周围的静电场大而成平方反比的关系衰减的;而恒定电流产生的静磁场,则随着与场源距离的增大而成立方反比的关系过渡到时变场时,电荷、电流周围依然存在电磁场,称为感应场或近场;此外,还出现一种新的电磁场成它是脱离电荷、电流并以电磁波的形式向外传播的电磁场。它一旦从电荷、电流等场源辐射出去,就按自来的状态没有关系。感应场或近场是随着与场源距离的增大而成平方反比关系衰减的,而辐射场或远场仅由于近场离场源较近,其场强要比远场大得多。随着离天线距离的增加,电场强度和磁场强度迅速减均匀度较大,是一个复杂的非均匀场。场中包括储存的能量和辐射的能量,有驻波也有行波,等相位面很确定,场强变化梯度大等。 无论场源是电场源还是磁场源,当离场源距离大于λ/2π以后就变成了远场,这里λ为波长。这时都和传播方向垂直成为平面电磁波。电场和磁场的比值为固定值,即波阻抗为120π,等于377欧姆。 由于远场距离场源远,场强一般较弱。由于电场和磁场随场源的距离成反比衰减,所以比近场的衰减度小,比较均匀。 总之,近场的电场和磁场之间存在π/2的相位差,由它们构成的平均坡印亭矢量为零,大部分能量场和源之间交换而不辐射,很小一部分能量向外辐射,并在λ/2π距离以外构成远场。远场的E和H同相抗。 1.2 电磁兼容常用测量单位 A:功率 功率的基本单位为瓦(W),即焦耳/秒(J/s)。为了表示宽的量程范围,常常引用两个相同量比值的为单位,即 P dB=10lg 式中P2与P1应采用相同的单位。应该明确dB仅为两个量的比值,是无量纲的。

相关主题
文本预览
相关文档 最新文档