当前位置:文档之家› 细菌细胞壁变化对细菌耐药性的影响综述

细菌细胞壁变化对细菌耐药性的影响综述

细菌细胞壁变化对细菌耐药性的影响综述
细菌细胞壁变化对细菌耐药性的影响综述

细菌细胞壁变化对细菌耐药性的影响

2009级兽医学院动物科学类丁颖班李桢 [摘要] 介绍了几种细菌因细胞壁变化而产生耐药性的耐药机制。说明近年研究表明的细胞壁的不同变化产生了不同的耐药机制,以及如何通过不同的机理作用于细菌,使细菌对不同的药物产生耐药性。

[关键词]细胞壁耐药性金黄色葡萄球菌肠球菌脓肿分枝杆菌肺炎链球菌铜绿假单胞菌结核分枝杆菌 L型

引言

细菌感染是多种疾病的病因。为治疗由细菌感染引起的疾病,抗生素和某些其他医疗技术在临床上大规模应用。正是由于这样,不少细菌都有了具有耐药性的菌种。细菌耐药性由革兰氏阴性杆菌发展到革兰氏阳性球菌,由院内感染发展到院外感染,耐药程度愈演愈烈,有的已经产生了多重耐药性。细菌耐药性的产生机制极为复杂,除了灭活酶等主要机制外,细菌细胞壁的变化也是耐药性的产生机制之一。下面介绍几种因细菌细胞壁变化而产生耐药性的例子。

金黄色葡萄球菌

金黄色葡萄球菌是人类的一种重要病原菌,可引起如肺炎、肠炎、心包炎甚至败血症等多种严重感染。有“嗜肉菌”之称。临床上常使用红霉素、万古霉素等药物治疗。

近年来,临床上已发现耐万古霉素金黄色葡萄球菌(VRSA。细胞壁增厚正是VRSA的耐药机制之一。葡萄球菌的细胞壁结构的主要成分为肽聚糖,万古霉素为糖肽类抗生素,能和一个或多个肽聚糖合成中间产物前体小肽D2丙氨酰,从而抑制转肽反应,进而结合成复合物,可以阻止细胞壁的合成,使细菌死亡。因为万古霉素的作用位点在细胞壁上,细菌细胞壁的增厚导致万古霉素与肽聚糖的亲和力降低,阻碍了万古霉素与作用位点的接近,从而导致对万古霉素的耐药。Hanaki等采用透射电镜技术和高效液相色谱技术发现耐万古霉素金黄色葡萄球菌的细胞壁明显比无耐药性的菌种增厚。

肠球菌

肠球菌是细菌一个属的名称,包括十二种及一个变异株。以粪肠球菌为代表的肠球菌能引起尿路感染、化脓性腹部感染、败血症、脑膜炎、心内膜炎等多种疾病。

治疗肠球菌临床上也使用万古霉素治疗,不过和金黄色葡萄球菌一样,肠球菌也对万古霉素产生了耐药性,耐药性肠球菌(VRE)的数量也在不断增加。VRE的耐药是因为细菌细胞壁上的肽聚糖前体小肽D-丙氨酰-D-丙氨酰(D-Ala-D-Ala 被D-丙氨酰-D-乳酸(D-Ala-D-Lac或D-丙氨酰-D-丝氨酸(D-Ala-D-Ser取代,使D-丙氨酰-D-丙氨酰对万古霉素等糖肽类抗生素的亲和力下降至原来的百分之一,因而表现出对万古霉素的高度耐药性。根据VRE对万古霉素的耐药性、耐药表现型(诱导型或固有型及耐药因子是否能转移等特点,可将VRE基因型分为VanA,VanB,VanC,VanD,VanE等数种类型,近来,又发现有VanF和VanG等类型。其耐药性产生的机制为:Van A, B,D组细胞壁结构中D-Ala-D-Ala末端被D-Lac取代,Van C和E组的D-Ala-D-Ala末端被D-Ser取代。

脓肿分枝杆菌

脓肿分枝杆菌属于速生非结核分枝杆菌(NTM),常导致人局部皮肤软组织和肺部感染,已成为AIDS患者最重要的机会性治病原因之一。该菌对一线抗结核药物利福平(RFP高

度耐药。

对脓肿分枝杆菌耐RFP的机制的研究发现,其靶蛋白—RNA聚合酶也对RFP敏感,因此,其耐药机制与结核分枝杆菌并不相同。目前对造成NTM高度耐药性的原因最普遍的观点是,由于其特有的细胞壁结构,使得NTM对许多抗生素的通透性低下。根据沙巍等人的实验(在含RFP的液体培养基中加

入Tween 80以增加细菌细胞壁的通透性,观察对RFP具不同MIC的脓肿分枝杆菌的生长在450 nm的光吸收值(OD450的变化,同时用电镜对脓肿分枝杆菌标准株、临床耐药株和敏感株的细胞壁进行超微结构的观察。)结果显示,脓肿分枝杆菌标准株、临床耐药株和敏感株的细胞壁在电镜下的超微结构观察的结果也显示出,在高耐药和敏感株之间的细胞壁结构存在着差异,主要表现为高度耐药的菌株细胞壁内有薄层的深染线,而敏感株则较均匀。因而脓肿分枝杆菌耐药株确实存在细胞壁通透性低下导致其耐药的机制。

肺炎链球菌

肺炎链球菌在自然界中分布广泛,常生活在正常人的鼻腔中,多数不致病或致病性弱,少数则较强,是引起肺炎、中耳炎、鼻窦炎等疾病的链球菌属细菌。长期以来,因肺炎链球菌对青霉素高度敏感,青霉素被作为治疗其感染的首选良药。近年来,由于环境污染,抗生素在临床治疗上的大量使用及不当使用,导致肺炎链球菌对青霉素和大环内酯类抗生素表现出很高的耐药性,并呈现逐年增加的趋势,而且出现对其他抗生素(如喹诺酮类抗生素等的多重耐药性。

肺炎链球菌对青霉素等β-内酞胺类抗生素的耐药机制主要是通过细菌青霉素结合蛋白基因改变,从而改变细胞壁上高分子量青霉素结合蛋白结构。而青霉素的作用首先是削弱细胞壁的功能,所以青霉素结合蛋白结构的改变减少了其对抗生素分子亲和性,进而产生耐药性。肺炎链球菌耐药菌株中有50%多重耐药。

铜绿假单胞菌

铜绿假单胞菌(PAE属于非发酵革兰阴性菌,分布广泛,生存简单,是医院感染的主要条件致病菌之一,常常引起医院内免疫力低下患者的感染,据报道,铜绿假单胞菌性肺炎致死率>30%,败血症患者的病死率高达80%~90%。铜绿假单胞菌对多种抗菌药物表现出固有与获得性多药耐药,一旦感染,临床治疗十分棘手。

铜绿假单胞菌的耐药机制复杂,几乎具有目前所知道的细菌主要耐药机制。其中就包括类似上文肺炎链球菌对青霉素耐药的耐药机制。铜绿假单胞菌通过改变青霉素结合蛋白(PBPs和DNA拓扑异构酶Ⅱ的结构,对β-内酰胺类和喹诺酮类抗菌药物产生耐药。但通常认为革兰阴性菌对β-内酰胺类抗菌药物的耐药性与PBPs的关系不如革兰阳性菌明显和重要。

铜绿假单胞菌细胞壁的外膜蛋白D2的丢失也是其耐药机制之一。OprD2是目前所知道的铜绿假单胞菌外膜中惟一对抗菌药物通透有意义的孔道蛋白,具有配体特异性,能形成亚胺培南的特异结合位点。官兰等获得的结果提示,OprD2基因缺失突变是导致OprD2丢失的分子基础,这会导致铜绿假单胞菌对亚胺培南的耐药。因此,OprD2丢失是铜绿假单胞菌对亚胺培南耐药的主要原因之一。

铜绿假单胞菌还有一个耐药机制与细胞壁变化有关:外膜低通透性。绿假单胞菌的细胞壁两侧具有内外两层膜,其中内膜结构类似真核细胞的脂质双分子层,具有流动性;外膜有脂多糖、外膜蛋白和脂蛋白等组成,其中脂多糖上的脂肪酸链为饱和脂肪酸链,且6~7条脂肪酸链相互共价连接,导致外膜的流动性很低,脂溶性药物很难通过细菌外膜。水溶性物质则主要通过外膜蛋白中的一种非特异性的、跨越细胞膜的孔道-水溶性通道蛋白,即细胞膜上镶嵌的孔蛋白(porin进入菌体,但铜绿假单胞菌的外膜没有类似其他细菌的“高通透性”的孔蛋白,仅存在低效率的微孔蛋白C(OprC,D(OprD和E1(OprE1,相对分子质量分别为(70、46、43×103,这些孔道渗透速度仅为其他多数革兰阴性菌“典型”高通透性孔蛋白通道的1%,有研究证明,铜绿假单胞菌的外膜通透性仅为大肠埃希菌的1%~8%[3]。这一特点使抗菌药物很难通过铜绿假单胞菌的外膜,药物不易进入菌体,使得铜绿假单胞菌对不同结构的抗菌药物产生耐药,使

其具有天然的耐药性。

正是由于铜绿假单胞菌具有复杂的耐药机制,所以对化学药物抵抗力强大,但庆大霉素、多粘菌素等对其有较好作用,有时必须联合使用多种抗生素来年少耐药菌株的产生。

结核分枝杆菌

结核分枝杆菌感染可以引起结核病这种人兽共患的严重传染病,也是人类历史上单一致病菌感染导致死亡率最高的感染性疾病。近年来由于耐多药结核杆菌(MDR-TB的出现与扩散以及AIDS的广泛传播,使结核病出现了第三次世界流行高峰。利福平(RFP是临床最常用的抗结核一线药物之一,在结核病的治疗上具有非常重要的作用和显著的效果。但是结核分枝杆菌对利福平的耐药率已高达90%以上对结核病的治疗产

生了严重的不良影响。

研究表明,结核分枝杆菌耐药性可能与其染色体耐药基因rpoB突变有关,但亦可能与其细胞壁变化产生的影响有关。细胞壁缺陷是结核分枝杆菌最常发生的变异现象之一,被认为是结核分枝杆菌生命周期独特的一个形态时期或相。然而近年的研究发现,结核分枝杆菌不仅可在人工培养基及动物体内自然发生细胞壁缺陷变异,而且也可在利福平、异烟肼和乙胺丁醇等抗结核药物的诱导下发生细胞壁缺陷变异形成结核分枝杆菌稳定L型。结核分枝杆菌稳定L型对利福平、异烟肼、乙胺丁醇形成耐药性,但其染色体上耐药相关基因并没有发生突变。除染色体耐药相关基因突变可造成结核分枝杆菌形成耐药性外,细胞壁缺陷也是造成结核分枝杆菌形成耐药性

的一个重要机制。

L型细菌

上文有提到结核分枝杆菌可自发也可用化学物质诱导发生变异形成L型结核分枝杆菌,是为L型细菌之一。L型细菌的形成与长期大

量使用抗菌药物有关,并使细菌失去细胞壁。因此又称为细胞壁缺陷菌(。ell一walldefieientbaeteria。1935年由英国李斯特(Lister研究所发现。研究表明,目前几乎所有细菌都可以形成L型,此外螺旋体、真菌也可形成L型,通常要应用含3.5%一5%NaCI作为培养基。

由于细菌失去了细胞壁,所以对作用于细胞壁而影响细胞壁合成的抗菌药物可产生耐药性。例如兰州大学结核病研究中心的研究发现L型戈登菌对异烟肼、链霉素、吡嗪酰胺、乙胺丁醇、对氨基水杨酸、丙硫异烟胺、甲硝唑和呋喃唑酮具有耐药性。L型细菌应该采用直接作用于细菌内部的抗生素治疗。

总结

总之,细菌细胞壁的各种变化都会或多或少地对该细菌对各种不同抗生素的耐药性产生一定的影响。所以,为更好地对抗各种病原菌,必须要科学用药并对细菌的包括细胞壁变化在内的各种耐药机制展开深入研究。但细菌细胞壁的变化并不是细菌产生耐药性的最主要原因,要战胜各种病原菌还要同时抓牢对其他耐药机制特别是分子水平上形成的耐药机制的研究。同时,滥用抗生素也会使细菌产生包括细胞壁变化在内的各种耐药机制,所以合理应用抗生素也是临床上对抗各种耐药病原菌的重要手段。

[参考文献]

[1]陈方圆,马笑雪多重耐药性金黄色葡萄球菌(MRSA的临床药物治疗及耐药机制研 [J]微生物学杂志 2010(30)71---74

[2]马筱玲,张涛金黄色葡萄球菌细胞壁变化与对万古霉素耐药的关系浙江检验医学 [J] 2008(6)12---15

[3] CuiLZ, Ma XX, SatoK,et al. Cellwall thickening is a common feature of vancomycin resistance inStaphylococcus aureus[J]. Clin Microbio,l 2003, 41(1: 5---14.

[4]马筱玲,王敬华,李华,等.异质性万古霉素耐药葡萄球菌分离

及生物学特性观察[J].中华微生物学和免疫学杂志, 2004, 24

(7: 583---586.

[5]岳阳,董玉莹,于芝颖抗甲氧西林耐药金黄色葡萄球菌和耐万古霉素肠球菌药物的临床研究进展 [J]中国新药杂志 2010(19)1131---1152 [6]张媛,张鹏,吴尚为耐万古霉素肠球菌耐药机制及实验室

检测的研究进展 [J] 中国医院感染学杂志 2008(17)1178---1180 [7] 顾觉奋,李振国耐万古霉素金黄色葡萄球菌及抗VRSA感染药物的研究进展 [J] 抗感染药学 2009(2)73---76

[8]王和罗振华徐艳梁菁苹细胞壁缺陷结核分枝杆菌耐药性的基因研究 [J]中国抗生素杂志 2007(32)636---640

[9]梁菁苹王和结核分枝杆菌稳定L型利福平耐药性基因的研究[J]贵州医药 2006(30)486---489

[10]李芙琴,李华,王军等肺炎链球菌204株耐药性分析 [J]中国误诊学杂志2010(10)5189

[11]贲亚琍,刘德立肺炎链球菌耐药性研究进展和现代抗生素研发趋势[J]山东医药 2010(50)114---115

[12]沙巍,翁心华,肖和平,何国钧脓肿分枝杆菌细胞壁通透性的研究 [J]中国防痨杂志 2005(27)353---357

[13]宋玉兰,赵丽,申子路,祁秀峰铜绿假单胞菌耐药机制研究现状 [J] 中华医院感染学杂志 2010(20)898---900

[14]赵志刚 L型细菌临床药物治疗杂志 [J] 2003(1 62

[15]林新平,邢志广,高霞等 L型菌血症病原菌的分离培养与药物敏感试验 [J] 郑州大学学报(医学版)2009(44)205---206

[16] 陈玉芊,同重湘,姜元等 1例L型支气管戈登菌肺部感染的报道 [J]微生物与感染 2010,5(2),95---99

[17] 张丽娟,于泉青霉素结合蛋白与细菌对户内酞胺抗生素的抗药性机理 [J]国外药学杭生素分册 1987(5)374---377

[18]谭立祥医院常见病原菌分布及耐药性分析 [J] 检验医学与临床2010(7)1103---1105

[19]石玉芝合理应用抗生素 [J] 中国社区医师 2005(7)9

[20]董琏珍,沈莉莉,王庆明细菌对抗生素耐药机理的研究进展与防治措施 [J] 安庆医学 2000(21)137---138

[21]戚焕贞,郝建华常见革兰氏阳性菌的耐药机制探讨 [J] 山东医药2003(43 42

细菌的耐药机制与抗菌药物的合理使用

细菌的耐药机制与抗菌药物的合理使用 (1) 一、细菌耐药性的产生 (1) (一)细菌耐药性产生的分子遗传学基础 (1) (二)突变耐药性 (2) (三)质粒介导的耐药性 (2) (四)细菌耐药性产生的机制 (3) 二、细菌耐药性的防治 (6) 三、抗菌药物临床应用的基本原则 (7) (一)应及早确立病原学诊断 (7) (二)熟悉选用药物的适应证、抗菌活性、药动学和不良反应 (7) (三)应根据患者的生理、病理、免疫等状态而合理用药 (8) 细菌的耐药机制与抗菌药物的合理使用 近年来,抗菌药物发展迅速,出现了许多疗效显著的新品种,在临床感染性疾病的防治中发挥着重要作用。然而,随着抗菌药物的广泛使用,临床上细菌对抗菌药物的耐药问题也日趋严重,成为临床抗感染治疗失败的一个重要原因。 一、细菌耐药性的产生 (一)细菌耐药性产生的分子遗传学基础 1.细菌在某一核苷酸碱基对中发生了点突变,引起抗菌药物作

用靶位的结构变化,导致细菌耐药性的产生。 2.通过转座子或插入顺序,细菌DNA的一大片全部重排,包括插入、倒位、复制、中间缺失或细菌染色体DNA的大段序列从原有部位转座至另一部位,引起细菌耐药性的产生。 3.通过质粒或噬菌体所携带的外来DNA片段,导致细菌产生耐药性。 (二)突变耐药性 突变耐药性即染色体介导的耐药性。耐药性的产生系细菌经理化因素而诱发,也可为遗传基因DNA自发突变的结果。细菌产生这种耐药性的发生率很低,由突变产生的耐药性,一般只对一种或两种类似的药物耐药,且较稳定,其产生和消失(即回复突变)与药物无关。由突变产生的耐药菌的生长和细胞分裂变慢,竞争力也变弱。因此,突变造成的耐药菌在自然界的耐药菌中仅居次要地位。 (三)质粒介导的耐药性 质粒是一种染色体外的DNA,耐药质粒广泛存在于所有致病菌中。因此,通过耐药质粒传递的耐药性在自然界发生的细菌耐药现象中最多见,也最重要。耐药质粒在微生物间的转移方式有:①转化,即耐药菌溶解后释出的DNA进入敏感菌体内,其耐药基因与敏感菌中的同种基因重新组合,使敏感菌耐药。这种传递方式基本限于革兰阳性细菌,在临床上并无重要性。②转导,耐药菌通过噬菌体将耐药基因转移给敏感菌,是金黄色葡萄球菌中耐药性转移的主要方式。由于

多种细菌耐药的分析

2014年第三季度多重耐药菌监测情况分析与对策 院感科检验科药学部 2014年7-9月份共监测多重耐药感染或定植患者80例次,涉及22个科室。检出多重耐药菌96 株(含重复送检),占全院送检有临床意义的细菌总数阳性比例的16.45%,同比上升2.22个百分点;其中院内感染多重耐药菌17株,占多耐菌株的17.71%。 一、多重耐药菌分离通报 2014年7月至9月共计分离多重耐药菌71株。主要分布在ICU、泌尿外科、呼吸内科及神经外科等。 二、前五位的多重耐药菌株标本分布 表一:2014年第三季度前五位多耐菌株标本统计 细菌名称 标本名称 痰液尿液分泌物血液引流液脓液其他 金黄色葡萄球菌 3 1 15 2 1

三、多重耐药菌中发生院内感染科室分布 表二:2014年第三季度多耐院内感染菌种及感染部位科室统计 图二、2014年第二季度与第三季度常见多耐菌院内感染检出变化 四、多重耐药菌病例用药合理性情况 本季度共审核使用抗菌药物的多耐病例70份,其中用药合理病例66份,用药合理率为94.29%。病程中对多重耐药菌及抗菌药物使用情况有分析记录的病例57份,记录合格率81.43%。用药方面存在的问题有:(1)前期用药与药敏结果不一致,未做具体分析,也未更改用药,(2)将主要供全身应用的品

种(万古霉素)作局部用药。记录方面存在的问题有:未记录培养结果和用药情况、更改用药未记录分析、对多重耐药菌的性质未做具体分析(考虑为致病菌、定植菌或污染菌)。 表三:第三季度抗菌药物使用不合理原因和或记录存在问题 五、多重耐药菌患者临床科室管理存在问题: 1、第三季度多耐患者临床管理经督查仍存在许多问题,涉及科室有脑外、心胸、肝胆、骨二、泌外、肾内、东呼吸、西呼吸、东心血管、消化、内分泌、血液肿瘤、东神内、重症医学科、耳鼻喉、皮肤、微生物等18个科室。主要存在问题: (1)不能及时开立隔离医嘱;不能及时上报多耐报告卡; (2)抗菌药物使用、多耐培养结果无分析记录; (3)多重耐药患者解除隔离未进行讨论; (4)多耐患者隔离措施落实不到位(无隔离标识等); (5)MDRO定植或感染患者,转科、转院、出院时,未在转科交接单或出院小

细菌耐药性的产生机制

福建金谷科技专栏 由福建金谷科技开发有限公司供搞细菌耐药性的产生机制 梅景良福建农林大学动物科学学院%"$$$# 随着磺胺药和抗生素等抗菌药物在临床上的广泛应用和长期使用,细菌等病原微生物的耐药株已逐年增多,导致抗菌药物的疗效越来越差。如对青霉素的耐药菌株,开始使用时仅有+,,近年来已达--,,有的报道认为在.$,以上。因此,细菌的耐药性问题已经成为细菌性疾病化学治疗中非常严重的一个问题,对细菌耐药性产生机制的研究在临床兽医学上具有极其重要的意义。本文简要地介绍了细菌耐药性的产生机制。 大家知道,自然界中存在的致病菌种类繁多,人们所使用的抗菌药物种类也很多,即使是同一种致病菌,对不同抗菌药其产生耐药性的机制也有可能存在很大的差别,因此,细菌耐药性的产生机制级为复杂。但是,通过大量的研究结果,人们发现细菌耐药性的生成只不过是细菌在生存中发挥其对药物的适应性或细菌偶然发生遗传基因突变所产生的后果。具体地说,细菌有可能是自发的,也有可能是在外界药物等因素的作用下发生了遗传基因的改变,产生了耐药基因,然后在耐药基因的介导下,进行/0*1的转录和蛋白质及酶的转译,从而导致细菌的形态结构和生理生化机能等发生了变化,使细菌获得了耐受抗菌药的能力。由此可见,遗传基因发生改变并产生耐药基因是细菌产生耐药性的第一步骤,在耐药基因介导下转录/0*1是细菌产生耐药性的第二步骤,以/0*1为模板转译合成蛋白质或酶,并最终导致细菌的形态结构和生理生化机能发生改变是细菌产生耐药性的第三步骤。当然,这三个步骤的划分是为了阐述的方便而人为界定的,其实这三个步骤是不可分的,因为细菌耐药性的产生是一个统一而完整的过程。 2细菌遗传基因发生变化细菌的遗传物质包括3*1和0*1两种,其中3*1主要存在于染色体上,也有少量3*1存在于质粒当中。不管是染色体中的3*1,还是质粒3*1,都能单独地进行准确地复制,将其遗传信息稳定地传给下一代。但是,细菌在生长繁殖过程中,也有可能受到一些外界因素影响或自发突变,使遗传物质发生改变,并有可能出现耐药基因,导致细菌的某些性状发生了改变,使细菌产生了耐药性。 根据引起细菌3*1遗传基因发生变化的原因不同,可将之分为三种情况:!天然存在耐药基因;"突变产生耐药基因;#质粒传递产生耐药基因。 2)2天然存在耐药基因这是在细菌与任何抗菌药接触之前就已经存在于染色体3*1或质粒3*1之种的遗传基因,它是细菌的遗传特征,由细菌的遗传信息所决定,一般是不会改变的。天然耐药基因的出现和存在与外界因素的影响无关,因此,天然存在的耐药基因所介导产生的细菌耐药性我们称之为先天耐药性。如对许多抗生素具有屏障作用的细菌细胞壁,就是先天耐药性的表现形式之一。 2)#突变产生耐药基因各种理化因素,如各种超短波辐射、高温诱变效应、低浓度诱变物质及细菌自身的代谢产物,尤其是过氧化氢的长时期综合作用,都可诱发细菌发生基因突变。除此之外,突变也可为细菌3*1在没有任何人为因素干扰条件下自发变化所产生。突变以后,新形成的突变基因中就有可能出现耐药基因。有人认为,自发突变是产生突变耐药基因的主要方式。2)%质粒传递耐药基因质粒是存在于染色体外的3*1。质粒常带有多种耐药基因而成为耐药质粒,它广泛存在于革兰氏阳性和革兰氏阴性细菌中,并可通过转化、转导、接合、转座等方式将耐药基因从耐药菌转移到敏感菌体内,由此而使敏感菌产生了耐药基因。 一般来说,先天存在的耐药基因所介导产生的先天耐药性是造成抗菌药具有不同抗菌谱最主要的原因,对细菌而言也是一种最重要的耐药性。由耐药质粒传递的耐药基因介导产生的耐药性由于具有横向传播性,可在短期内造成耐药菌的大量出现,因此,这种耐药性是人们在进行临床化学治疗中最为重要的一种耐药性。由突变耐药基因介导的耐药菌的生长和细胞分裂变慢,对其它细菌包括未发生突变的细菌的竞争力也变弱,因而突变产生的耐药性仅居次要地位。 #细菌/0*1发生变化细菌3*1遗传基因因变化而产生了耐药基因后,就可以耐药基因为模板进行转录,并形成相应的/0*1,这是细菌体内原先所没有的新的/0*1。新的/0*1是细菌产生耐药性所必需的,它是连接耐药基因和最终耐药性之间的桥梁。 这里需要说明的一点是,不同的耐药基因其转录/0*1的状态是不相同。有些细菌虽然具有耐药基因,但因其尚未进入转录状态,不能合成相应的/0*1,因此,细菌就不具备抵抗抗菌药的能力,即不具有耐药性。有些细菌从一开始,其耐药基因就处于不断转录之中,从而导致细菌产生了天然耐药性。另外,有些细菌则必需要有抗菌药的存在,其耐药基因才进入转录状态而产生耐药性,一旦抗菌药不再存在,其耐药基因的转录就停止,从而导致耐药性消失而恢复敏感性。因此,根据研究结果,现在一般认为,当细菌处于生长状态下,在任何特定时刻仅有大约",的基因组是处在高活性和转录之中,其它基因组或者沉默,或者以十分低

常见致病菌耐药机制与应对措施 (2)

2014年第二季度细菌耐药监测结果预警与应对策略由于抗菌药物的广泛不合理应用。细菌耐药现象日益严峻,临床出现大量多耐药和泛耐药菌株,给医院感染预防控制带来挑战。细菌耐药有一定的区域性和时间性,及时了解和掌握本院常见多耐药菌的流行现状及耐药特征,有利于临床医师合理选择抗菌药物,提高治疗效果,以达到减少为耐药菌的产生。现对2014年第二季度病原菌分布情况和耐药率进行公布,并向临床科室提供细菌耐药应对措施。

菌药物,提示“慎用抗菌药物”;耐药率超过50%的抗菌药物,提示“参照药敏试验结果用药”;耐药率超过75%的抗菌药物,提示“暂停该类抗菌药物的临床应用”。2细菌产生耐药性机制 2.1铜绿假单胞菌耐药机制

铜绿假单胞菌对生存环境和营养条件要求很低,在自然界分布广泛,甚至在医院内环境经常可见,其具有多药耐药性及耐药机制:(1)该菌能够产生破坏抗菌药物活性的多种灭活酶、钝化酶和修饰酶。(2)基因突变,作用靶位变异。(3)细胞膜通透性降低。(4)主动泵出机制将进入的药物排到体外。(5)产生生物膜,阻隔白细胞、多种抗体及抗菌药物进入细菌细胞内吞噬细菌。由于铜绿假单胞菌复杂的耐药机制导致其感染具有难治性和迁延性。 2.2大肠埃希氏菌耐药机制 大肠埃希菌是G-杆菌中分离率较高的机会致病菌,可引起人体所有部位的感染并且呈多重耐药性。 (1)β-内酰胺酶的产生 ①大肠埃希菌对β-内酰胺类抗菌药物耐药主要是由超广谱β-内酰胺酶(ESBLs)引起的,对头霉素类及碳青霉烯类药物敏感。ESBLs可分为五大类:TEM型、SHV型、CTX-M型、OXA型和其他型,大肠埃希菌ESBLs酶以TEM型最常见。TEM型ESBLs 呈酸性,可水解头孢他啶、头孢噻肟。SHV型ESBLs呈碱性,有水解头孢噻吩的巯基。CTX-M型ESBLs呈碱性,对头孢噻肟水解能力强于头孢他啶。OXA型ESBLs 呈弱酸性或弱碱性,主要水解底物是苯唑西林,OXA型酶主要见于铜绿假单胞菌中,在大肠埃希菌中的分离率较低。 ②AmpCβ-内酰胺酶AmpC酶主要作用于头孢菌素类抗菌药物,且不能被克拉维酸抑制。它是水解酶,与β-内酰胺环羧基部分共价结合,在水分子作用下导致β-内酰胺环开环,破坏β-内酰胺类抗菌药物抗菌活性。 ③对酶抑制剂药的耐药的β-内酰胺酶对酶抑制剂药的耐药的β-内酰胺酶(IRT)主要有TEM系列衍变而来,又称为耐酶抑制剂TEM系列酶。 (2)药物作用靶位的改变 (3)主动外排 (4)外膜通透性的下降 2.3肺炎克雷伯杆菌耐药机制 肺炎克雷伯杆菌属于阴性杆菌,通常存在于人类肠道、呼吸道,是除大肠埃希氏菌外导致医源性感染的最重要的条件致病菌。由于抗菌药物的大量使用,在选择性压力下多药耐药肺炎克雷伯杆菌(KPN)菌株不断出现,耐药率日益上升,KPN 耐药机制包括:(1)产抗菌药物灭活酶 ①β-内酰胺酶包括产超广谱β-内酰胺酶(ESBLs)、AmpC酶、耐酶抑制剂β-内酰胺酶、碳青霉烯酶(KPC酶)及金属β-内酰胺酶(MBLs)等。 ESBLs是耐药KPN产生的最主要的一类酶,由质粒介导,产ESBLsKPN对青霉素类、头孢菌素类及单环类药物耐药,但对头霉素类和碳青霉烯类及酶抑制剂敏感。

产黄青霉生产青霉素的流程及原理

产黄青霉生产青霉素的流程及原理 青霉素的基本结构是6-氨基青霉酸,青霉素类抗生素是β-内酰胺类中一大类抗生素的总称。由于β-内酰胺类作用于细菌的细胞壁,而人类只有细胞膜无细胞壁,故对人类的毒性较小,除能引起严重的过敏反应外,在一般用量下,其毒性不甚明显,但它不能耐受耐药菌株(如耐药金葡)所产生的酶,易被其破坏,且其抗菌谱较窄,主要对革兰氏阳性菌有效。 菌种 青霉素生产菌株一般为产黄青霉,根据深层培养中菌丝体的形态,分为球状菌和丝状菌。在发酵过程中,产黄青霉的生长发育可分为六个阶段。 1. 分生孢子的I期; 2. 菌丝繁殖,原生质嗜碱性很强,有类脂肪小颗粒产生为II期; 3. 原生质嗜碱性仍很强,形成脂肪粒,积累贮藏物为III期; 4. 原生质嗜碱性很弱,脂肪粒减少,形成中、小空泡为IV期; 5. 脂肪粒消失,形成大空泡为V期; 6. 细胞内看不到颗粒,并有个别自溶细胞出现为VI期; 工艺流程 1.丝状菌三级发酵工艺流程 冷冻管(25°C,孢子培养,7天)——斜面母瓶(25°C,孢子培养,7天)——大米孢子(26°C,种子培养56h,1:1.5vvm)——一级种子培养液(27°C,种子培养,24h,1:1.5vvm)——二级种子培养液(27~26°C,发酵,7天,1:0.95vvm)——发酵液。 2.球状菌二级发酵工艺流程 冷冻管(25°C,孢子培养,6~8天)——亲米(25°C,孢子培养,8~10天)——生产米(28°C,孢子培养,56~60h,1:1.5vvm)——种子培养液(26~25-24°C,发酵,7天,1:0.8vvm)——发酵液。 培养基 1. 碳源产黄青霉菌可利用的碳源有乳糖、蕉糖、葡萄糖等。目前生产上普遍采用的是淀粉水解糖、糖化液(DE 值50% 以上) 进行流加。 2. 氮源氮源常选用玉米浆、精制棉籽饼粉、麸皮,并补加无机氮源(硫酸氨、氨水或尿素)。 3. 前体生物合成含有苄基基团的青霉素G, 需在发酵液中加人前体。前体可用苯乙酸、苯乙酰胺, 一次加入量不大于0.1%, 并采用多次加入, 以防止前体对青霉素的毒害。 4. 无机盐加人的无机盐包括硫、磷、钙、镁、钾等, 且用量要适度。另外, 由于铁离子对青霉菌有毒害作用, 必须严格控制铁离子的浓度, 一般控制在30 μg/ml 。 发酵条件的控制 1.基质浓度在分批发酵中,常常因为前期基质量浓度过高,对生物合成酶系产生阻遏(或抑制)或对菌丝生长产生抑制(如葡萄糖和钱的阻遏或抑制, 苯乙酸的生长抑制), 而后期基质浓度低限制了菌丝生长和产物合成, 为了避免这一现象, 在青霉素发酵中通常采 用补料分批操作法, 即对容易产生阻遏、抑制和限制作用的基质进行缓慢流加以维持一定的最适浓度。这里必须特别注意的是葡萄糖的流加, 因为即使是超出最适浓度范围较小的波动, 都将引起严重的阻遏或限制, 使生物合成速度减慢或停止。目前, 糖浓度的检测尚难在线进行, 故葡萄糖的流加不是依据糖浓度控制, 而是间接根据pH 值、溶氧或C02 释放率予以调节。 2.温度青霉素发酵的最适温度随所用菌株的不同可能稍有差别, 但一般认为应在25 °C 左右。温度过高将明显降低发酵产率, 同时增加葡萄糖的维持消耗, 降低葡萄糖至青霉素

细菌耐药性机理分析

细菌耐药性机理分析 卢嘉程 1142042005

抗生素的杀菌机理简介 ?抑制细胞壁的合成 ?某些含有β-内酰胺环的抗生素,如青霉素类和头孢菌素类,能与细菌细胞壁上一种叫PBPS的特定蛋白结合,抑制分裂中的细菌细胞壁的形成,使细菌因失去细胞壁的保护作用而在渗透作用下裂解死亡。 ?改变细胞膜通透性 ?某些抗生素(多粘菌素和短杆菌素)能与细菌细胞膜相互作用,改变膜的通透性,让细菌因体内的有用物质大量流失到胞外或者电解质失调而死亡

?干扰蛋白质的合成(氨基糖苷类四环素类氯霉素类等) ?抗生素进入细菌体内后与细菌的核糖体或者是tRNA,mRNA等反应底物相互作用,抑制细菌蛋白质的合成,某些重要的蛋白如结构蛋白或酶等无法合成,则细菌必死 ?阻碍核酸的复制和转录(人工合成喹诺酮类抗生素) ?通过阻碍细菌DNA的复制,可以阻止其分裂繁殖。而阻碍DNA的转录则可以导致后续的翻译无法进行,使细菌因缺乏生存所必需的蛋白质而死亡

道高一尺,魔高一丈

细菌抗药性的五种机制 ?使抗生素分解或失去活性 ?有的细菌能产生相应的水解酶或钝化酶来水解掉或修饰抗生素,使之失去生物活性。如细菌产生的β-内酰胺酶就能使含β-内酰胺环的青霉素类抗生素被水解掉,而钝化酶(磷酸转移酶、核酸转移酶、乙酰转移酶)则可以使氨基糖苷类抗生素失去抗菌活性 ?改变抗生素的作用靶点 ?耐甲氧西林的金黄色葡萄球菌通过对细胞壁上的青霉素结合蛋白PBPS进行修饰,使抗生素无法和结构改变了的蛋白结合发挥作用。

?改变细胞膜特性 ?细菌发生突变后改变了质膜的通透性,某些原来需进入细菌细胞内发挥作用的抗菌药物被隔离在细胞外 ?改变代谢途径 ?通过大量增加某些代谢底物的产量,稀释抗生素的作用,让细菌对该种抗生素不再敏感。如磺胺药与对氨基苯甲苯酸(PABA),竞争二氢喋酸合成酶而产生抑菌作用。金黄色葡萄球菌多次接触磺胺药后,其自身的PABA 产量增加,可达原敏感菌产量的20~100 倍,后者与磺胺药竞争二氢喋酸合成酶,使磺胺药的作用下降甚至消失。

浅谈细菌的耐药性及控制对策

浅谈细菌的耐药性及其控制对策 1 概述 由于各种抗菌药物的广泛使用,各种微生物势必加强其防御能力,抵御抗菌药物的侵入,从而使微生物对抗菌药物的敏感性降低甚至消失,这是微生物的一种天然抗生现象,此称为耐药性或抗药性(Resistance to Drug )。加之耐药基因的传代、转移、传播、扩散,耐药微生物越来越多,耐药程度越来越严重,形成多重耐药性(multidrug resistance,MDR)耐药性一旦产生,药物的化疗作用就明显下降。耐药性根据其发生原因可分为获得耐药性和天然耐药性。自然界中的病原体,如细菌的某一株也可存在天然耐药性。当长期应用抗生素时,占多数的敏感菌株不断被杀灭,耐药菌株就大量繁殖,代替敏感菌株,而使细菌对该种药物的耐药率不断升高。目前认为后一种方式是产生耐药菌的主要原因。 细菌耐药问题已成为全球危机,为遏制细菌耐药,我国不少专家和学者都开展了对细菌耐药的研究,这些研究大多是从微观的角度、从细菌耐药本身开展的探索,从宏观角度研究的很少。本研究旨在从宏观管理和微观的角度,用流行病学的思路和方法,研究我国细菌耐药性在时间、空间、抗菌药间的“三间”分布情况,为细菌耐药研究者提供新的研究思路,促进细菌耐药研究的全面性,并预测细菌耐药性的发展趋势,探索潜在的用药风险;通过利益集团分析方法,分析我国控制细菌耐药性策略的可行性,最终提出优先控制策略,以达到提高我国控制细菌耐药性、提高抗菌药的效果、节约有限卫生资源的目的。 2 细菌的耐药性现状 随着抗菌药物、抗肿瘤药物、免疫抑制剂、各种侵袭性操作,特别是静脉导管及各种介入性治疗手段的应用,细菌性血流感染在医院中的发生率及细菌的耐药性均有上升的趋势,主要G+球菌对常用抗生素的耐药率为22%~100%[1]。喹诺酮抗菌药物进入我国仅仅20多年,但耐药率达60%~70%。

细菌耐药性及其临床意义

个人收集整理-ZQ 细菌耐药性及其临床意义 当前医院内外地新地耐药菌在不断出现,常导致治疗失败、并发症增多、感染复发、住院时间延长、昂贵抗生素及其它药物地使用增加等.耐药株还随着国际贸易及旅游业地高速发展而在全球蔓延.由于新抗生素地广泛使用,各个细菌对抗生素地耐药谱不断在发生变化,特别是耐药性经常以多重耐药为特点,有时甚至找不到可治之药.在细菌耐药性日趋严重地情况下,作为临床医生非常有必要知道一些有关耐药菌地当前状况和治疗时地注意点. 当前主要地耐药问题集中在以下个方面. 一、耐苯唑西林地葡萄球菌() 耐甲氧西林葡萄球菌()地特点是它们都具有一外来基因,它负责编码青霉素结合蛋白(),占优势时,由于β内酰胺类对它地亲和力低,使得对青霉素类、头孢菌素类、碳青霉烯、单环内酰胺类都耐药.而且对其它类抗生素也降低了敏感性,如氨基糖甙类、喹诺酮类、大环内酯类. 对于耐甲氧西林地金黄色葡萄球菌和凝固酶阴性葡萄球菌,如果它们确切是该患者感染中地病原菌,医生应该相信理论和前人地经验:即对所有头孢类和其它β内酰胺类——如阿莫西林克拉维酸、替卡西林克拉维酸、哌拉西林三唑巴坦、氨曲南和亚胺培南等临床治疗效果均不好,而不考虑这些药物地体外药敏试验结果报告是否敏感.这是因为已知地耐甲氧西林葡萄球菌感染地绝大多数病例对β内酰胺类药治疗反应很差,而且尚缺乏令人信服地临床数据来证实这些药物地临床效力. 治疗地有效抗生素不多,有万古霉素、链阳霉素、四环素类、、克林霉素,也可试用氟喹诺酮类和阿米卡星,但后两种美国食品与药物管理局()未推荐.严重感染应联合用药,利福平是可以联合应用地药物之一. 但必须记住医院内地葡萄球菌,不论是否为株,%以上都产青霉素酶(型). 二、耐青霉素地肺炎链球菌() 出现耐青霉素及耐多种药地肺炎链球菌已成为全球性问题,它地耐药机制是由于青霉素结合蛋白地变化, 主要是1a, , 基因地镶嵌式结构.如果是高耐青霉素株(最小抑菌浓度即≥ ),它常常也降低了对头孢菌素和其它类抗生素地敏感性(万古霉素除外).所以根据经验治疗重症感染时,常需要启用头孢曲松或头孢噻肟,或还要联合万古霉素.到目前为止肺炎链球菌还属于不产生β内酰胺酶地菌株,这一现象在微生物界实属少见. 在医院内可以发生住院患者地肺炎链球菌、流感嗜血杆菌感染,患者特别是长期卧床或使用呼吸机地患者、老人、婴幼儿.病原菌可来自自身携带或由医务人员、患者传播.正确取样、运输、保存分离是成功地先决条件;血平板应是高营养,应于摄氏度含%地空气中孵育,~小时后读结果. 对于所有自脑脊液和血液分离地肺炎链球菌菌株,都应常规检测其青霉素和超广谱头孢菌素(头孢噻肟和头孢曲松)地.一旦有足量地生长物就应立即进行试验,而不能等到苯唑西林筛选试验之后.非β内酰胺类抗生素(如万古霉素和氯霉素),可以用纸片扩散法准确地测试.有些药物(如,红霉素、四环素、)未批准用来治疗脑膜炎,对于分离自脑脊液地菌株,不应使用这些药物. 我院地肺炎球菌对青霉素地耐药水平尚在低水平,而且它们对万古霉素高度敏感.对头孢曲松、头孢噻肟略有降低.%地低敏株对治疗威胁不大,中轻度感染可以用大剂量青霉素,或用广谱头孢菌素类、广谱青霉素类治疗.我国地肺炎链球菌普遍对、红霉素类、四环素类耐药率很高.不应作为经验治疗用药. 三、耐万古霉素地肠球菌() 多重耐药地肠球菌发生地重要危险因素是近年来大量使用超广谱抗生素、万古霉素和口服万古霉素地结果. .青霉素氨苄西林耐药性:肠球菌β内酰胺酶地产生很少,只有约%.纸片药敏试验可以准确地检测出有低亲和力青霉素结合蛋白()改变地菌株,但不能可靠地检出产β内酰胺酶地菌株.对这些少见地产β内酰胺酶地菌株最好用以头孢硝噻吩为底物地直接β内酰胺酶试验检测.但作药敏试验地菌株仅选自血液、脑脊液等无菌部位分离地菌株.肠球菌对青霉素氨苄西林产生耐药性,主要是由于低亲和力青霉素结合蛋白()地产生和细胞膜渗透力地降低所至. .高水平氨基糖甙类耐药性:对氨基糖甙类高水平耐药表明当青霉素(或糖肽类)联合氨基糖甙类抗生素治疗时,不会对该肠球菌菌株产生协同效果.特殊地高含量庆大霉素(每纸片μ)或链霉素(每纸片μ)地纸片可以用于筛选此类耐药性.抑菌圈为时表明耐药,抑菌圈直径≥ 表明没有高水平耐药性.对抑菌圈直径在~中介地菌株应使用稀释筛选试验进行检测.对庆大霉素以外地其他氨基糖甙类抗生素不必进行测试,因为它们对肠球菌地活性有交*,且都不如庆大霉素或链霉素. 对分离自血液及脑脊液地肠球菌菌株,一定要常规筛选其高水平庆大霉素耐药性或链霉素耐药性.肠球菌对庆大霉素高水平耐药时,也对阿米卡星、卡那霉素、奈替米星和妥布霉素耐药. .万古霉素耐药性:要用纸片扩散法准确检测出耐万古霉素肠球菌,需要将平板孵育整整小时(而不是~小时),在透射光下仔细观察抑菌圈内有无小菌落或薄菌膜生长.对于纸片扩散试验中介范围内地结果应通过测定万古霉素进行确证.

细菌主要耐药机制

细菌主要耐药机制 1.产生灭活抗生素的各种酶 1.1 β—内酰胺酶(β-lactamase) β—内酰胺类抗生素都共同具有一个核心β—内酰胺环,其基本作用机制是与细菌的青霉素结合蛋白结合,从而抑制细菌细胞壁的合成。产生β—内酰胺酶是细菌对β-内酰胺类抗菌药物产生耐药的主要原因。细菌产生的β-内酰胺酶,可借助其分子中的丝氨酸活性位点,与β—内酰胺环结合并打开β—内酰胺环,导致药物失活。迄今为止报道的β—内酰胺酶已超过300种,1995年Bush等将其分为四型:第1型为不被克拉维酸抑制的头孢菌素酶;第2型为能被克拉维酸抑制的β-内酰胺酶;第3型为不被所有β—内酰胺酶抑制剂抑制的金属β-内酰胺酶(需Zn2+活化)。可被乙二胺四乙酸和P-chloromercuribenzate所抑制;第4型为不被克拉维酸抑制的青霉素酶。临床常见的β—内酰胺酶有超广谱β—内酰胺酶、头孢菌素酶(AmpC酶)和金属酶。 1.1.1超广谱β-内酰胺酶(Extended-Spectrumβ-lactamases,ESBLs) ESBLs是一类能够水解青霉素类、头孢菌素类及单环类抗生素的β—内酰胺酶,属Bush分型中的2型β—内酰胺酶,其活性能被某些β—内酰胺酶抑制剂(棒酸、舒巴坦、他唑巴坦)所抑制。ESBLs主要由普通β-内酰胺酶基因(TEM—1,TEM—2和SHV—1等)突变而来,其耐药性多由质粒介导。自1983年在德国首次发现ESBLs以来,目前已报道的TEM类ESBIs已有90多种,SHV类ESBLs多于25种。TEM型和SHV型ESBLs主要发现于肺炎克雷伯菌和大肠埃希菌,亦发现于变形杆菌属、普罗威登斯菌属和其他肠杆菌科细菌。 国内近年来随着三代头孢菌素的广泛使用,产ESBLs菌的检出率逐年增加。NCCLs规定,凡临床分离的大肠埃希氏菌和克雷伯氏菌均应监测是否为产ESBLs菌株;若产生,无论体外对第三代头抱菌素、氨曲南的药敏结果如何,均应报告对三代头孢菌素及氨曲南耐药。另外,ESBLs菌株不仅对β-内酰胺类抗生素有很高的耐药率,而且对氨基糖苷类、喹喏酮类耐药率也在60%左右,因此,临床遇到由ESBLs引起的感染时,建议首选含β—内酰胺酶抑制剂的复方抗生素制剂或亚胺培南;对于头孢吡肟等四代头孢,尚有争议。 1.1.2头孢菌素酶(AmpC酶)届Bush分类中的1型(Ⅰ型) β—内酰胺酶。 通常将其分为由染色体介导产生的AmpC β—内酰胺酶和由质粒介导产生的AmpC β—内酰胺酶,前者的产生菌有阴沟肠杆菌、铜绿假单胞菌等,后者主要由肺炎克雷伯氏菌和大肠埃希氏菌产生。AmpC酶可作用于大多数青霉素,第一、二、三代头孢菌素和单环类抗生素。而第四代头孢菌素、碳青霉烯类不受该酶作用。该酶不能被β—内酰胺酶抑制剂所抑制。AmpCβ—内酰胺酶的产生有2种可能:①在诱导剂存在时暂时高水平产生,当诱导剂不存在时,酶产量随之下降,三代头孢菌素、棒酸和碳青霉烯类抗生素是诱导型AmpC酶的强诱导剂;②染色体上控制酶表达的基因发生突变,导致AmpC酶持续稳定高水平表达。由高产AmpC酶耐药菌引起的感染死亡率很高。 实际上,所有的革兰氏阴性菌都能产生染色体介导的AmpC头孢菌素酶,在多数情况下为低水平表达;在肠杆菌、柠檬酸杆菌、沙雷氏菌、铜绿假单胞菌中可高频诱导产生,且常为高产突

2016年第三季度细菌耐药监测预警分析

2016年第三季度细菌耐药监测预警分析 为加强细菌耐药监测预警工作和临床合理应用抗菌药物,根据《卫生部办公厅关于抗菌药物临床应用管理有关问题的通知》(卫办医政发[2009]38号)、《抗菌药物临床应用指导原则》的要求,结合检验科《2016年第三季度常见细菌耐药性统计、分析》报告,对我院的抗菌药物使用提出以下预警: 一、细菌培养情况 2016年07-09月临床共送检细菌培养标本1178份,共检出病原菌389株,阳性检出率为%。排在前五位的细菌是:肺炎克雷伯杆菌118株、大肠埃希菌75株、铜绿假单胞菌30株、金黄色葡萄球菌29株、鲍曼不动杆菌13株,其他细菌162株。 二、全院细菌耐药监测结果分析及用药建议 根据卫生部办公厅关于抗菌药物临床应用管理有关问题的[2009]38号文件和《抗菌药物临床应用管理办法》要求:1.主要目标细菌耐药率超过30%的抗菌药物,应当及时将预警信息通报本机构医务人员;2.主要目标细菌耐药率超过40%的抗菌药物,应当慎重经验用药;3.主要目标细菌耐药率超过50%的抗菌药物,应当参照药敏试验结果选用;4.主要目标细菌耐药率超过75%的抗菌药物,应当暂停针对此目标细菌的临床应用,根据追踪细菌耐药监测结果,再决定是否恢复临床应用。现根据我院第三季度细菌耐药监测情况,对检出率居前五位的细菌根据该要求及抗菌药物的特点进行推荐用药。 1、肺炎克雷伯氏菌

肺炎克雷伯菌是产质粒介导的超广谱β-内酰胺酶(ESBL)的代表菌种。本季度共检出118株,对抗菌药物耐药情况如下: ①对复方新诺明、妥布霉素、哌拉西林/他唑巴坦、头孢他啶、头孢吡肟、庆大霉素、左氧氟沙星、头孢西丁、氨曲南、呋喃妥因、环丙沙星的耐药率均低于30%,可以作为肺炎克雷伯氏菌的首选治疗用药。 ②对头孢曲松、头孢唑林、氨苄西林/舒巴坦的耐药率超过30%,将预警信息通报本机构医务人员。 ③对氨苄青霉素的耐药率达到99%,应暂停其对肺炎克雷伯氏菌感染的临床应用。 2、大肠埃希氏菌 本季度检出大肠埃希氏菌75株,其中,耐碳青霉烯类大肠埃希菌5例,其对抗菌药物耐药情况如下: ①对哌拉西林/他唑巴坦、头孢替坦、亚胺培南、阿米卡星、呋喃妥因、厄他培南的耐药率均低于30%,可作为初始经验治疗和首选用药。 ②对复方新诺明、妥布霉素的耐药率超过30%,将预警信息通报本机构医务人员。 ③对头孢曲松、头孢他啶、头孢吡肟、头孢西丁、氨曲南的耐药率超过40%,建议临床慎重经验用药。 ④对头孢唑林、庆大霉素、氨苄西林/舒巴坦的耐药率均高于50%,需参照药敏试验结果选用,在大肠埃希菌感染的病例中,不宜作为经验和治疗用药。

青霉素的临床应用

青霉素又被称为青霉素G、peillin G、盘尼西林、配尼西林、青霉素钠、苄青霉素钠、青霉素钾、苄青霉素钾。青霉素是抗菌素的一种,是指从青霉菌培养液中提制的分子中含有青霉烷、能破坏细菌的细胞壁并在细菌细胞的繁殖期起杀菌作用的一类抗生素,是第一种能够治疗人类疾病的抗生素。青霉素类抗生素是β-内酰胺类中一大类抗生素的总称。 一、青霉素类抗生素的分类: (1)主要作用于革兰阳性细菌的药物,如青霉素(G)、普鲁卡因青霉素、苄星青霉素、青霉素V(苯氧甲基青霉素)。 (2)耐青霉素酶青霉素,如甲氧西林(现仅用于药敏试验)、苯唑西林、氯唑西林等。 (3)广谱青霉素,抗菌谱除革兰阳性菌外,还包括: ①对部分肠杆菌科细菌有抗菌活性者,如氨苄西林、阿莫西林; ②对多数革兰阴性杆菌包括铜绿假单胞菌具抗菌活性者,如哌拉西林、阿洛西林、美洛西林。 二、青霉素类抗生素的适应证 1. 青霉素:青霉素适用于溶血性链球菌、肺炎链球菌、对青霉素敏感(不产青霉素酶)金葡菌等革兰阳性球菌所致的感染,包括败血症、肺炎、脑膜炎、咽炎、扁桃体炎、中耳炎、猩红热、丹毒等,也可用于治疗草绿色链球菌和肠球菌心内膜炎,以及破伤风、气性坏疽、炭疽、白喉、流行性脑脊髓膜炎、李斯特菌病、鼠咬热、梅毒、淋病、雅司、回归热、钩端螺旋体病、奋森咽峡炎、放线菌病等。青霉素尚可用于风湿性心脏病或先天性心脏病患者进行某些操作或手术时,预防心内膜炎发生。 普鲁卡因青霉素的抗菌谱与青霉素基本相同,供肌注,对敏感细菌的有效浓度可持续24小时。适用于敏感细菌所致的轻症感染。 苄星青霉素的抗菌谱与青霉素相仿,青霉素类抗生素为长效制剂,肌注120万单位后血中低浓度可维持4周。青霉素类抗生素用于治疗溶血性链球菌咽炎及扁桃体炎,预防溶血性链球菌感染引起的风湿热;青霉素类抗生素亦可用于治疗梅毒。 青霉素V对酸稳定,可口服。抗菌作用较青霉素为差,适用于敏感革兰阳性球菌引起的轻症感染。 2. 耐青霉素酶青霉素类:青霉素类抗生素抗菌谱与青霉素相仿,但抗菌作用较差,对青霉素酶稳定;因产酶而对青霉素耐药的葡萄球菌对青霉素类抗生素敏感,但甲氧西林耐药葡萄球菌对青霉素类抗生素耐药。主要适用于产青霉素酶的葡萄球菌(甲氧西林耐药者除外)感染,如败血症、脑膜炎、呼吸道感染、软组织感染等;也可用于溶血性链球菌或肺炎链球菌与耐青霉素葡萄球菌的混合感染。单纯肺炎链球菌、溶血性链球菌或青霉素敏感葡萄球菌感染则不宜采用。 3. 广谱青霉素类:氨苄西林与阿莫西林的抗菌谱较青霉素为广,对部分革兰阴性杆菌(如流感嗜血杆菌、大肠埃希菌、奇异变形杆菌)亦具抗菌活性。对革兰阳性球菌作用与青霉素相仿。青霉素类抗生素适用于敏感细菌所致的呼吸道感染、尿路感染、胃肠道感染、皮肤软组织感染、脑膜炎、败血症、心内膜炎等。氨苄西林为肠球菌感染的首选用药。 哌拉西林、阿洛西林和美洛西林对革兰阴性杆菌的抗菌谱较氨苄西林为广,抗菌作用也增强。除对部分肠杆菌科细菌外,对铜绿假单胞菌亦有良好抗菌作用;适用于肠杆菌科细菌及铜绿假单胞菌所致的呼吸道感染、尿路感染、胆道感染、腹腔感染、皮肤软组织感染等。

细菌耐药及应对措施

本课重点介绍临床抗菌药物在使用过程中,给我们带来最大挑战的细菌耐药问题。由于抗菌药物的大量使用,耐药细菌出现。这是一个矛盾的两方面:如果正常、合理使用,耐药就出现的晚、慢;如果滥用抗菌物,细菌受到的压力更大,它出现的耐药能力就越大,出现耐药的机会就越高,耐药的强度也会强。这将导致临床可用药物越来越少,治疗愈加困难。 举例:耐甲氧西林的葡萄球菌被称为MRSA,其我国调查大约为60%;从国外耐药后导致的结果看,在美国,发生耐药菌感染和非耐药菌感染患者的死亡率分别为21%和8%;每个患者的治疗费分别为3万4千美元和3万1千5百美元。可见,由于抗菌药物的不合理使用,细菌耐药导致更多患者死亡及更多医药资源浪费。因此,必须要合理使用抗菌药物,减少耐药性的产生。 在用药中,治疗性运用抗菌药物及预防用抗菌药物都要合理。在我国医院,抗菌药的患者使用率达70%多,使用最多的在外科,大约95%患者以上都需使用抗菌药物,其中大部分是预防性应用抗菌药。所以,做到预防性抗菌药的合理使用,会大幅度减少不合理使用抗菌药的比例,它包括内科与儿科预防用药和外科手术预防用药。 1.内科与儿科预防用药 2004年卫生部颁布的指导原则中明确指出,对于内科和儿科的预防用药,相对比较严格。对于其应用范围具有以下相关规定: (1)预防特定病原菌入侵体内引起的感染,可能有效;如目的在于防止任何细菌入侵,则往往无效。 (2)预防在一段时间内发生的感染可能有效;长期预防用药,常不能达到目的。 (3)患者原发疾病可以治愈或缓解者,预防用药可能有效。原发疾病不能治愈或缓解者(如免疫缺陷者),预防用药应尽量不用或少用。 (4)通常不宜常规预防性应用抗菌药物的情况:普通感冒、麻疹、水痘等病毒性疾病,昏迷、休克、中毒、心力衰竭、肿瘤、应用肾上腺皮质激素等。 2.外科手术预防用药 外科的预防用药在我国较宽松,需要明确的是,它是预防手术切口的感染以及这个切口深在部位的感染,以及清洁-污染或污染手术后手术部位感染及术后可能发生的全身性感染,并非预防手术以后所有发生的感染。

青霉素菌的分离和筛选

土壤中青霉素菌的分离和筛选 (一)实验目的 1、了解采集土样的要求和方法。 2、掌握由土壤中分离稀有放线菌的基本原理和操作技术。 3、学习并掌握微生物的纯培养技术。 (二)实验原理 采用适宜(选择)培养基和培养条件,或加入某种抑制剂有利于目标微生物的生长,从而分离获得目标微生物的纯培养:常用稀释平板分离法和划线分离法在固体培养基上形成单个菌落。抗生素(antibiotics)是由微生物(包括细菌、真菌、放线菌属)或高等动植物在生活过程中所产生的具有抗病原体或其它活性的一类次级代谢产物,能干扰其他生活细胞发育功能的化学物质青霉素属于青霉素类抗生素,干扰细菌细胞壁的合成而产生抗菌作用。 (三)实验材料 1含菌种的土壤,学校旁边的土层中获取 2.复筛实验菌种:金黄色葡萄球菌,曲霉 3.培养基和试剂:高氏一号培养基,高氏一号初筛培养基(含青霉素),试剂:青霉素,硝酸钾,氯化钠,重铬酸钾, 4.实验器材:无菌试管,烧杯,移液管,三角瓶,天平,接种环,高压锅灭菌锅,显微镜.

(四)实验步骤 1.培养基配制 ①:高氏一号改良培养基:可溶性淀粉20g,硝酸钾1g,氯化钠 0.5g,K2HPO4 ?3H2O 0.5g,MgSO4?7H2O 0.5g,FeSO4?7H2O 0.01g,琼脂20g,水1000ml,终浓度为50×10-5重铬酸钾,pH7.2~7.4。配制时,先用冷水,将淀粉调成糊状,倒入煮沸的水中,在火上加热,边搅拌边加入其他成分,溶化后,补足水分至1000ml。112℃灭菌20分钟。冷却后,倒致平版数个。 ②:初筛培养基:改良高氏一号培养基(在原来配置的高氏一号琼脂培养基灭菌后,再分别加入青霉素终浓度为10-3,10-4,10-5的药剂),倒致平版数个 2.样品采样:取样时应取土壤表层下5~10cm处土样,干后混匀; 3 制备稀释液: (1). 称取土壤1g(或量取1nl水样),放入99mL无菌水的三角瓶中,振荡10min,即为稀释10-2的土壤悬液。 (2)另取装有无菌试管5支,用记号笔编上10-3、10-4、10-5、10-6、10-7。在每只试管中用无菌吸管加入4.5ml无菌水。(3)取已稀释成10-2的土壤液,振荡后静止0.5min,用无菌吸管吸取0.5mL土壤悬液加入10-3的无菌水的试管中,即成10-3土壤稀释液。同法依次连续稀释至10-4→10 -5→10-6土壤稀释液。4:平板涂抹:取无菌培养皿,将上述每种培养基平板底面标记

几种细菌细胞壁变化对细菌耐药性的影响

几种细菌细胞壁变化对细菌耐药性的影响 2009级兽医学院动物科学类丁颖班李桢[摘要] 介绍了几种细菌因细胞壁变化而产生耐药性的耐药机制。说明近年研究表明的细胞壁的不同变化产生了不同的耐药机制,以及如何通过不同的机理作用于细菌,使细菌对不同的药物产生耐药性。 [关键词]细胞壁耐药性金黄色葡萄球菌肠球菌脓肿分枝杆菌肺炎链球菌铜绿假单胞菌结核分枝杆菌L型 引言 细菌感染是多种疾病的病因。为治疗由细菌感染引起的疾病,抗生素和某些其他医疗技术在临床上大规模应用。正是由于这样,不少细菌都有了具有耐药性的菌种。细菌耐药性由革兰氏阴性杆菌发展到革兰氏阳性球菌,由院内感染发展到院外感染,耐药程度愈演愈烈,有的已经产生了多重耐药性。细菌耐药性的产生机制极为复杂,除了灭活酶等主要机制外,细菌细胞壁的变化也是耐药性的产生机制之一。下面介绍几种因细菌细胞壁变化而产生耐药性的例子。 金黄色葡萄球菌 金黄色葡萄球菌是人类的一种重要病原菌,可引起如肺炎、肠炎、心包炎甚至败血症等多种严重感染。有“嗜肉菌”之称。临床上常使用红霉素、万古霉素等药物治疗。 近年来,临床上已发现耐万古霉素金黄色葡萄球菌(VRSA)。细胞壁增厚正是VRSA的耐药机制之一。葡萄球菌的细胞壁结构的主要成分为肽聚糖,万古霉素为糖肽类抗生素,能和一个或多个肽聚糖合成中间产物前体小肽D2丙氨酰,从而抑制转肽反应,进而结合成复合物,

可以阻止细胞壁的合成,使细菌死亡。因为万古霉素的作用位点在细胞壁上,细菌细胞壁的增厚导致万古霉素与肽聚糖的亲和力降低,阻碍了万古霉素与作用位点的接近,从而导致对万古霉素的耐药。Hanaki 等采用透射电镜技术和高效液相色谱技术发现耐万古霉素金黄色葡萄球菌的细胞壁明显比无耐药性的菌种增厚。 肠球菌 肠球菌是细菌一个属的名称,包括十二种及一个变异株。以粪肠球菌为代表的肠球菌能引起尿路感染、化脓性腹部感染、败血症、脑膜炎、心内膜炎等多种疾病。 治疗肠球菌临床上也使用万古霉素治疗,不过和金黄色葡萄球菌一样,肠球菌也对万古霉素产生了耐药性,耐药性肠球菌(VRE)的数量也在不断增加。VRE的耐药是因为细菌细胞壁上的肽聚糖前体小肽D-丙氨酰-D-丙氨酰(D-Ala-D-Ala)被D-丙氨酰-D-乳酸(D-Ala-D-Lac)或D-丙氨酰-D-丝氨酸(D-Ala-D-Ser)取代,使D-丙氨酰-D-丙氨酰对万古霉素等糖肽类抗生素的亲和力下降至原来的百分之一,因而表现出对万古霉素的高度耐药性。根据VRE对万古霉素的耐药性、耐药表现型(诱导型或固有型)及耐药因子是否能转移等特点,可将VRE基因型分为VanA,VanB,VanC,VanD,VanE等数种类型,近来,又发现有VanF和VanG等类型。其耐药性产生的机制为:Van A, B,D组细胞壁结构中D-Ala-D-Ala末端被D-Lac取代,Van C和E组的D-Ala-D-Ala末端被D-Ser取代。 脓肿分枝杆菌 脓肿分枝杆菌属于速生非结核分枝杆菌(NTM),常导致人局部

病原微生物第6章 细菌的耐药性习题与答案

第 6章细菌的耐药性 一、选择题 A型题 1、编码细菌对抗菌药物耐药性的质粒是: A. F 质粒 B . R 质粒 C. Vi 质粒 D. Col 质粒 E. K 质粒 2、固有耐药性的产生是由于: A. 染色体突变 B. 接合性 R 质粒介导 C. 非接合性 R 质粒介导 D. 转座因子介导 E.细菌种属特异性所决定 3、获得耐药性的产生原因不包括: A. 染色体突变 B. 细菌种属特异性决定的耐药性 C. 非接合性 R质粒介导 D. 接合性 R质粒介导 E. 转座因子介导 4、关于 R 质粒的描述,下列哪项是错误的: A. R 质粒是耐药性质粒 B. R 质粒可通过接合方式传递 C. R 质粒在肠道菌中更为常见 D. R 质粒在呼吸道感染细菌中更为常见 E. R 质粒由 RTF 和 r 决定子组成 5、R 质粒决定的耐药性的特点不包括: A. 以多重耐药性较为常见 B. 可从宿主菌检出 R 质粒 C. 容易因质粒丢失成为敏感株 D. R 质粒的多重耐药性较稳定 E. 耐药性可经接合转移 6、细菌耐药性产生的机制不包括: A. 钝化酶的产生 B. 药物作用靶位的改变 C. 抗菌药物的使用导致细菌发生耐药性基因突变 D. 细菌对药物的主动外排 E. 细菌细胞壁通透性的改变 X 型题 1、下列基因转移与重组的方式中,哪些与细菌的耐药性形成有关? A.转化 B.转导 C.接合 D.溶原性转换 E.原生质体融合 2、获得耐药性发生的原因: A. 染色体突变 B. 细菌种属特异性决定的耐药性 C. 抗菌药物的使用 D. R 质粒介导 E. 转座因子介导 3、细菌耐药性的控制策略: A. 合理使用抗菌药物 B. 严格执行消毒隔离制度 C. 研制新抗菌药物 D. 研制质粒消除剂 E.采用抗菌药物的“轮休”措施 4、细菌耐药性产生的机制 A.抗菌药物的使用导致细菌发生耐药性基因突变 B. 药物作用靶位的改变 C. 钝化酶的产生 D. 细菌对药物的主动外排 E. 细菌细胞壁通透性的改变 二、填空题 1、细菌耐药性产生的机制主要有,,和 。 2、引起细菌耐药的钝化酶主要有,, 和。 3、细菌耐药性的控制策略有,,,, 和。 三、名词解释 1、耐药性(drug resistance); 2、固有耐药性(intrinsic resistance); 3、获得耐药性(acquired resistance); 4、R质粒(resistance plasmid)。 四、问答题

相关主题
文本预览
相关文档 最新文档