当前位置:文档之家› 线性系统稳定性分析

线性系统稳定性分析

线性系统稳定性分析
线性系统稳定性分析

线性系统稳定性分析

1.系统的稳定性:

(1) 外部稳定:又称输出稳定,就是系统在干扰取消后,在一定时间内其输出会恢复到

原来的稳定输出。输出稳定有时描述为系统的BIBO 稳定,即有限的系统输入只能产生有限的系统输出。

(2) 内部稳定:主要针对系统内部状态,反映的是系统内部状态受干扰信号的影响情况。

当干扰信号取消后,若系统的内部状态会在一定时间内恢复到原来的平衡状态,则称系统状态稳定。

经典控制论中,研究对象都是高阶微分方程或传递函数描述的单输入单输出(SISO )系统,反映的仅仅是输入与输出的关系,不涉及系统的内部状态,因此经典控制论只讨论系统的输出稳定问题。对于系统内部状态稳定问题,经典控制论中的方法就不好发挥作用了,需要用到Lyapunov 稳定性理论。

2.平衡状态:设控制系统齐次状态方程为:0.0(,)()|t t X f X t X t X ===,其中,()X t 为系统的n 维状态向量,f 是有关状态向量X 以及时间t 的n 维矢量函数,f 不一定是线性定常的。如果对所有的t ,状态e X 总满足:(,)0e f X t =,则称e X 为系统的平衡状态。对于一般控制系统,可能没有,也可能有一个或多个平衡状态。系统的状态稳定性是针对系统的平衡状态的,当系统有多个平衡状态时,需要对每个平衡状态分别进行讨论。

3. Lyapunov 稳定性分析

(1)Lyapunov 稳定性定义

设一般控制系统的解为:00()(;,)X t t X t =Φ,它是与初始时间0t 及初始状态0X 有关的,体现系统状态从00(,)t X 出发的一条状态轨迹。设e X 为系统的一个平衡点,如果给定一个以e X 为球心,0(,)t δε为半径的n 维球域()S δ,使得从()S δ球域出发的任意一条系统状态轨迹00(;,)t X t Φ在0t t ≥的所有时间内都不会跑出()S ε球域,则称系统的平衡状态e X 是Lyapunov 稳定的。

一般来说,δ的大小不但与ε有关,而且与系统的初始时间0t 有关,当δ仅与ε有关时,称e X 是一致稳定的平衡状态。

进一步地,如果e X 不仅是Lyapunov 稳定的平衡状态,而且当时间t 无限增加时,从()S δ出发的任一条状态轨迹00(;,)t X t Φ都最终收敛于球心平衡点e X ,那么称e X 是渐进稳定的。

更近一步地,如果从()S ∞即整个系统状态空间的任意一点出发的任意一条状态轨迹00(;,)t X t Φ,当t →∞时都收敛于平衡点e X ,那么称e X 是大范围渐进稳定的。显然此时的e X 是系统唯一的平衡点。

反之,对于给定的()S ε,不论0δ>取得多么小,若从()S δ出发的状态轨迹

00(;,)t X t Φ至少有一条跑出()S ε球域,那么平衡点e X 是不稳定的。

(2)Lyapunov 第一法(间接法)

通过分析系统微分方程的显式解来分析系统的稳定性,对线性定常系统可以直接通过系统的特征根来分析(与经典控制论中的稳定性判别思路基本一致)。

(3)Lyapunov 第二法(直接法)

不必求解系统的状态方程,而是通过一个系统的能量函数来直接判断系统的稳定性,不但适用于线性定常系统,而且适用于非线性和时变系统。

实际系统中,往往不容易找出系统的能量函数,于是Lyapunov 定义了一个正定的标量函数()V x ,作为系统的虚构广义能量函数,根据.()V x 的符号性质,可以判断系统的状态稳定性。

设系统的状态方程为:.(,)X f X t =,其中,为系统的一个平衡状态。如果存在一个正定的标量函数()V x ,并且具有连续的一阶偏导数,那么根据.()()dV x V x dt

=

的符号性质,有:

(1) 若.()0V x >,则0e X =不稳定;

(2) 若.()0V x ≤,则0e X =Lyapunov 稳定;

(3) 若.()0V x <或.()0V x ≤,且当0X ≠时.()V x 不恒为0,则0e X =渐进稳定;

(4) 若0e X =渐进稳定,且当||||X →∞时()V x →∞,则0e X =大范围稳定。 应当指出,上述稳定性判据只是一个充分条件,并不是必要条件。如果给定的()V x 满足上述4个条件之一,那么其结果成立。反之,如果给定的()V x 不满足上述任何一个条件,那么只能说明所选的()V x 对该系统失效,必须重新构造()V x 。

(4)线性定常系统的Lyapunov 稳定性分析及系统参数优化

在Lyapunov 第二法中,有一类标量函数起着重要的作用,它就是二次型函数。

设12(,,,)T n X x x x = ,P 为n n ?阶的实对称矩阵,则 称为二次型。

对于线性定常系统:.X AX =,若A 为非奇异矩阵,那么是系统的位移平衡状态,其稳定性可通过Lyapunov 第二法来分析。

11121121

2222121

2()[,,,]T n n n n n nn n V x X PX

p p p x p p p x x x x p p p x =????????????=????????????

取 ()T V x X PX =,其中P 为正定实对称矩阵,所以()V x 对X 有连续偏导数,并且()0V x >。

...

()()()()T T T T T T T T T V x X PX X P X AX PX X P AX X A PX X PAX X A P PA X

=+=+=+=+

令 T A P PA Q +=-(称为Lyapunov 方程)

可得: .()T V x X QX =- ,其中()T Q A P PA =-+为对称矩阵。若0Q >,则.

()0V x <,因此0e X =为渐进稳定,而且是大范围渐进稳定的。

在实际应用中,先给丁一正定矩阵Q ,然后通过Lyapunov 方程求出对称矩阵P ,最后通过赛尔维斯特准则判别P 的正定性。若0P >,则系统稳定。

在应用Lyapunov 方程时,应注意以下几点:

(1) 有Lyapunov 方程求得的P 为正定是0e X =渐进稳定的充分必要条件。

(2) Q 的选取是任意的,只要满足对称且正定(一定条件下可以是半正定的),Q 的选取不会影响系统稳定性判别的结果。

(3) 如果()i a t 沿任意一条轨迹不恒等于零,那么Q 可以取半正定真,即0Q ≥。

(4) 当取为单位阵I 时,Lyapunov 方程变为:T

A P PA I +=-,这是个比较简单的

Lyapunov 方程。

4. MATLAB/Simulink 在Lyapunov 稳定性分析中的应用 1.(,)P lyap A Q =

2.2(,)P lyap A Q = 采用特征值分析法求解Lyapunov 方程,运算速度比()lyap 快很多。

3.(,)P dlyap A Q = 针对离散系统。

实验一--控制系统的稳定性分析

实验一--控制系统的稳定性分析

实验一控制系统的稳定性分 班级:光伏2班 姓名:王永强 学号:1200309067

实验一控制系统的稳定性分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响;

3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB中的tf2zp函数求出系统的零极点,或者利用root函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递 函数为 0.2( 2.5) () (0.5)(0.7)(3) s G s s s s s + = +++,用MATLAB编写 程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 在MATLAB命令窗口写入程序代码如下:z=-2.5 p=[0,-0.5,-0.7,-3] k=1 Go=zpk(z,p,k)

Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den dens=ploy2str(dc{1},'s') 运行结果如下: Gctf = s + 2.5 --------------------------------------- s^4 + 4.2 s^3 + 3.95 s^2 + 2.05 s + 2.5 Continuous-time transfer function. dens是系统的特征多项式,接着输入如下MATLAB程序代码: den=[1,4.2,3.95,1.25,0.5] p=roots(den)

实验五 线性系统的稳定性和稳态误差分析

实验五 自动控制系统的稳定性和稳态误差分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递函数为 0.2( 2.5) ()(0.5)(0.7)(3) s G s s s s s += +++,用MATLAB 编写程序来判断闭环系统的稳定性, 并绘制闭环系统的零极点图。 在MATLAB 命令窗口写入程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den dens=poly2str(dc{1},'s') 运行结果如下: dens= s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5 dens 是系统的特征多项式,接着输入如下MATLAB 程序代码: den=[1,4.2,3.95,1.25,0.5]

p=roots(den) 运行结果如下: p = -3.0058 -1.0000 -0.0971 + 0.3961i -0.0971 - 0.3961i p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。 下面绘制系统的零极点图,MATLAB程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) [z,p,k]=zpkdata(Gctf,'v') pzmap(Gctf) grid 运行结果如下: z = -2.5000 p = -3.0058 -1.0000 -0.0971 + 0.3961i -0.0971 - 0.3961i k = 0.2000

控制系统的稳定性分析

精品 实验题目控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、系统模拟电路图 系统模拟电路图如图3-1 图3-1 系统模拟电路图R3=0~500K; C=1μf或C=0.1μf两种情况。 四、实验报告 1.根据所示模拟电路图,求出系统的传递函数表达式。 G(S)= K=R3/100K,T=CuF/10 2.绘制EWB图和Simulink仿真图。

精品 3.根据表中数据绘制响应曲线。 4.计算系统的临界放大系数,确定此时R3的值,并记录响应曲线。 系统响应曲线 实验曲线Matlab (或EWB)仿真 R3=100K = C=1UF 临界 稳定 (理论值 R3= 200K) C=1UF

精品 临界 稳定 (实测值 R3= 220K) C=1UF R3 =100K C= 0.1UF

精品 临界 稳定 (理论 值R3= 1100 K) C=0.1UF 临界稳定 (实测值 R3= 1110K ) C= 0.1UF

精品 实验和仿真结果 1.根据表格中所给数据分别进行实验箱、EWB或Simulink实验,并进行实验曲线对比,分析实验箱的实验曲线与仿真曲线差异的原因。 对比: 实验曲线中R3取实验值时更接近等幅振荡,而MATLAB仿真时R3取理论值更接近等幅振荡。 原因: MATLAB仿真没有误差,而实验时存在误差。 2.通过实验箱测定系统临界稳定增益,并与理论值及其仿真结果进行比较(1)当C=1uf,R3=200K(理论值)时,临界稳态增益K=2, 当C=1uf,R3=220K(实验值)时,临界稳态增益K=2.2,与理论值相近(2)当C=0.1uf,R3=1100K(理论值)时,临界稳态增益K=11 当C=0.1uf,R3=1110K(实验值)时,临界稳态增益K=11.1,与理论值相近 四、实验总结与思考 1.实验中出现的问题及解决办法 问题:系统传递函数曲线出现截止失真。 解决方法:调节R3。 2.本次实验的不足与改进 遇到问题时,没有冷静分析。考虑问题不够全面,只想到是实验箱线路的问题,而只是分模块连接电路。 改进:在实验老师的指导下,我们发现是R3的取值出现了问题,并及时解决,后续问题能够做到举一反三。 3.本次实验的体会 遇到问题时应该冷静下来,全面地分析问题。遇到无法独立解决的问题,要及时请教老师,

(完整word版)线性系统的稳定性分析

第三章 线性系统的稳定性分析 3.1 概述 如果在扰动作用下系统偏离了原来的平衡状态,当扰动消失后,系统能够以足够 的准确度恢复到原来的平衡状态,则系统是稳定的。否则,系统不稳定。一个实际的系统必须是稳定的,不稳定的系统是不可能付诸于工程实施的。因此,稳定性问题是系统控制理论研究的一个重要课题。对于线性系统而言,其响应总可以分解为零状态响应和零输入响应,因而人们习惯分别讨论这两种响应的稳定性,从而外部稳定性和内部稳定性的概念。 应用于线性定常系统的稳定性分析方法很多。然而,对于非线性系统和线性时变系 统,这些稳定性分析方法实现起来可能非常困难,甚至是不可能的。李雅普诺夫(A.M. Lyapunov)稳定性分析是解决非线性系统稳定性问题的一般方法。 本章首先介绍外部稳定性和内部稳定性的概念及其相互关系,然后介绍李雅普诺夫 稳定性的概念及其判别方法,最后介绍线性定常系统的李雅普诺夫稳定性分析。 虽然在非线性系统的稳定性问题中,Lyapunov 稳定性分析方法具有基础性的地 位,但在具体确定许多非线性系统的稳定性时,却并不是直截了当的。技巧和经验在解决非线性问题时显得非常重要。在本章中,对于实际非线性系统的稳定性分析仅限于几种简单的情况。 3.2 外部稳定性与内部稳定性 3.2.1 外部稳定: 考虑一个线性因果系统,如果对一个有界输入u (t ),即满足条件: 1()u t k ≤<∞ 的输入u (t ),所产生的输出y (t )也是有界的,即使得下式成立: 2()y t k ≤<∞ 则称此因果系统是外部稳定的,即BIBO (Bounded Input Bounded Output )稳定。 注意:在讨论外部稳定性的时候,我们必须要假定系统的初始条件为零,只有在这种假定下面,系统的输入—输出描述才是唯一的和有意义的。 系统外部稳定的判定准则 系统的BIBO 稳定性可根据脉冲响应矩阵或者传递函数矩阵来进行判别。

线性系统的稳定性分析

关于线性系统稳定性的进一步探究 任何一个实际系统总是在各种偶然和持续的干扰下运动或工作的。显然,我们首先要考虑的问题是,当系统承受这种干扰之后,能否稳妥地保持预定的运动轨迹或者工作状态,这就是稳定性。 此外,我们知道,描述系统的数学模型,绝大部分都是近似的,这或者是由于量测误差,或者是为使问题简化,而不得不忽略某些次要因素。近似的数学模型能否如实反映实际的运动,在某种意义上说,也是稳定性问题。 系统的稳定性在控制中是一个很重要的问题。在学习完稳定性理论之后,对此有了更为深刻的理解,不单单停留在输出跟踪输入的浅显印象之上,获益匪浅。因此,本文根据黄琳院士较为精炼的数学讲解,描述了一些自己对该问题的直观思考,并且结合线性系统和具体实例对稳定性作进一步分析,使内容不再过于抽象,更为深入地理解其应用价值。 1 预备理论 1.1 微分方程解的表示 考虑微分方程 00 (,)()x f x t x t x =?? =? 其解()x t 是自变量t 的函数,而0t ,0x 变动时对应的解也随着变动,故它应该是自变量t 与初值0t 、0x 的函数, 可记为00(;,)x t t x 。 例如: 000000(;,)()t t t t x x x x t t x e x t e x --=?=== 问题:当初值变动时,对应的解如何变动?在应用上的意义是:初值通常是用实验方法求得的,实验测得的数据不可能绝对准确,若微小的误差会引起对应解的巨大变动,那么所求的初值问题解的实用价值就很小。 1.2 Lipschitz 条件

00 1212(,)()(,)(,)(,):x f x t x t x t t t t t I x W R ==∈?-∞+∞=∈? (,)f x t 的定义域记为?W I 。若存在常数L ,使得对任何I,,W t x y ∈∈都有 (,)(,)f x t f y t L x y -≤- 则称f 在W I ?上满足Lipschitz 条件。这个定义可以推广到W 为任意有限n 维空间的情形。 注:满足Lipschitz 条件可保证微分方程解的存在性和唯一性 1.3 解的存在性、唯一性及对初值的连续依赖性 定理1-1 (存在性及唯一性定理)对于微分方程 (,)x f x t = 若(,)f x t 在W I ?域内连续且满足Lipschitz 条件,则对任意的初始条件 00(,)x x t W I ∈?总存在常数0a >,使得有唯一解00(;,)x x t t x =,在00[,]t a t a -+上 存在、对t 连续 ,且满足初始条件00()x t x =。 稳定性所要研究的是解的渐近性质,即当解()x t 在t →∞时的性状。故总假定在[)0,t ∞上解是存在的。 定理1-2 (解对初值的连续依赖性)在定理1的条件下,若(,)f x t 在域内连续且满足Lipschitz 条件,则微分方程的解00(;,)x t t x 作为t ,0t ,0x 的函数在它的存在范围内是连续的,即 ε?>,0δ?>,00()()x t t δ-ψ< ? 0000(;,())(;,())x t t x t t t t ε-ψψ<,0,a t b a t b ≤≤≤< 以上定理说明:若在初始时刻0()x t 和0()t ψ十分接近,则在定义域[],a b 内的解()x t 和()t ψ也会十分接近。因此,1.1中所提的问题也就迎刃而解了。 2 平衡状态的稳定性 李雅普诺夫稳定性的概念是微分方程解对初值的连续依赖性这一概念在无穷时间区间上的推广和发展。因此下面讨论时均假定所研究方程的解在无穷区间 []0,t ∞满足存在和唯一性条件。

系统的相对稳定性分析

系统的相对稳定性分析 已知某系统的开环传递函数为200 153.0005.060023)()(+++= S S S H G S S ,试用Nyquistw 稳定判据判断闭环系统的稳定性,并用阶跃响应曲线验证。 (1)计算系统开环特征方程的根。 p=[0.0005 0.3 15 200]; roots(p) 程序运行结果 ans= 1.0e+002 * -5.4644 -0.2678 + 0.0385i -0.2678 - 0.0385i 即三个根均有负实部,都为稳定根。故开环特征方程的不稳定根的个数p=0。 (2)绘制系统的开环Nyquist 图,并用来判断闭环系统的稳定性。 n=600;d=[0.0005 0.3 15 200]; GH=tf(n,d); nyquist(GH) 程序运行后,绘制出系统的开环Nyquist 曲线如图1所示,由图1可以看出系统的Nyquist 曲线不包围(-1,j0)点。而p=0,根据Nyquist 稳定判据,其闭环系统是稳定的。这还可以用系统的阶跃响应曲线来验证。 图1系统的开环Nyquist 图

(3)用阶跃响应曲线来验证。 syms s GH sys; GH=600/(0.0005*s^3+0.3*s^2+15*s+200); sys=factor(GH/(1+GH)) 程序运行结果 sys = 1200000/(s^3 + 600*s^2 + 30000*s + 1600000) 即1600000 300006001200000s 23+++=Φs s s )( 下面为使用matlab 绘制系统单位阶跃响应曲线的程序代码: n=1200000;d=[1 600 30000 1600000]; sys=tf(n,d); step(sys) 程序运行后,绘制系统单位阶跃响应曲线如图2所示。由图2可知,曲线略微超调后迅速衰减到响应终了值,对应的系统闭环不仅稳定,而且具有优良的性能指标,这就证明了Nyquist 稳定判据的正确性。 图2 系统的单位阶跃响应曲线

控制系统的稳定性分析

自动控制理论实验报告 实验题目控制系统的稳定性分析 一、实验目的 1.观察系统的不稳定现象。 2.研究系统开环增益和时间常数对稳定性的影响。 二、实验仪器 1.EL-AT-II型自动控制系统实验箱一台 2.计算机一台 三、系统模拟电路图 系统模拟电路图如图3-1 图3-1 系统模拟电路图R3=0~500K; C=1μf或C=0.1μf两种情况。 四、实验报告 1.根据所示模拟电路图,求出系统的传递函数表达式。 G(S)= K=R3/100K,T=CuF/10

自动控制理论实验报告 2.绘制EWB 图和Simulink 仿真图。 3.根据表中数据绘制响应曲线。 4.计算系统的临界放大系数,确定此时R3的值,并记录响应曲线。

自动控制理论实验报告

自动控制理论实验报告

自动控制理论实验报告 实验和仿真结果 1.根据表格中所给数据分别进行实验箱、EWB或Simulink实验,并进行实验曲线对比,分析实验箱的实验曲线与仿真曲线差异的原因。 对比: 实验曲线中R3取实验值时更接近等幅振荡,而MATLAB仿真时R3取理论值更接近等幅振荡。 原因: MATLAB仿真没有误差,而实验时存在误差。 2.通过实验箱测定系统临界稳定增益,并与理论值及其仿真结果进行比较 (1)当C=1uf,R3=200K(理论值)时,临界稳态增益K=2, 当C=1uf,R3=220K(实验值)时,临界稳态增益K=2.2,与理论值相近(2)当C=0.1uf,R3=1100K(理论值)时,临界稳态增益K=11 当C=0.1uf,R3=1110K(实验值)时,临界稳态增益K=11.1,与理论值相近 四、实验总结与思考 1.实验中出现的问题及解决办法 问题:系统传递函数曲线出现截止失真。 解决方法:调节R3。 2.本次实验的不足与改进 遇到问题时,没有冷静分析。考虑问题不够全面,只想到是实验箱线路的问题,而只是分模块连接电路。 改进:在实验老师的指导下,我们发现是R3的取值出现了问题,并及时解决,后续问题能够做到举一反三。 3.本次实验的体会 遇到问题时应该冷静下来,全面地分析问题。遇到无法独立解决的问题,要及时请教老师,

线性系统稳定性分析

线性系统稳定性分析 1.系统的稳定性: (1) 外部稳定:又称输出稳定,就是系统在干扰取消后,在一定时间内其输出会恢复到 原来的稳定输出。输出稳定有时描述为系统的BIBO 稳定,即有限的系统输入只能产生有限的系统输出。 (2) 内部稳定:主要针对系统内部状态,反映的是系统内部状态受干扰信号的影响情况。 当干扰信号取消后,若系统的内部状态会在一定时间内恢复到原来的平衡状态,则称系统状态稳定。 经典控制论中,研究对象都是高阶微分方程或传递函数描述的单输入单输出(SISO )系统,反映的仅仅是输入与输出的关系,不涉及系统的内部状态,因此经典控制论只讨论系统的输出稳定问题。对于系统内部状态稳定问题,经典控制论中的方法就不好发挥作用了,需要用到Lyapunov 稳定性理论。 2.平衡状态:设控制系统齐次状态方程为:0.0(,)()|t t X f X t X t X ===,其中,()X t 为系统的n 维状态向量,f 是有关状态向量X 以及时间t 的n 维矢量函数,f 不一定是线性定常的。如果对所有的t ,状态e X 总满足:(,)0e f X t =,则称e X 为系统的平衡状态。对于一般控制系统,可能没有,也可能有一个或多个平衡状态。系统的状态稳定性是针对系统的平衡状态的,当系统有多个平衡状态时,需要对每个平衡状态分别进行讨论。 3. Lyapunov 稳定性分析 (1)Lyapunov 稳定性定义 设一般控制系统的解为:00()(;,)X t t X t =Φ,它是与初始时间0t 及初始状态0X 有关的,体现系统状态从00(,)t X 出发的一条状态轨迹。设e X 为系统的一个平衡点,如果给定一个以e X 为球心,0(,)t δε为半径的n 维球域()S δ,使得从()S δ球域出发的任意一条系统状态轨迹00(;,)t X t Φ在0t t ≥的所有时间内都不会跑出()S ε球域,则称系统的平衡状态e X 是Lyapunov 稳定的。 一般来说,δ的大小不但与ε有关,而且与系统的初始时间0t 有关,当δ仅与ε有关时,称e X 是一致稳定的平衡状态。 进一步地,如果e X 不仅是Lyapunov 稳定的平衡状态,而且当时间t 无限增加时,从()S δ出发的任一条状态轨迹00(;,)t X t Φ都最终收敛于球心平衡点e X ,那么称e X 是渐进稳定的。 更近一步地,如果从()S ∞即整个系统状态空间的任意一点出发的任意一条状态轨迹00(;,)t X t Φ,当t →∞时都收敛于平衡点e X ,那么称e X 是大范围渐进稳定的。显然此时的e X 是系统唯一的平衡点。 反之,对于给定的()S ε,不论0δ>取得多么小,若从()S δ出发的状态轨迹 00(;,)t X t Φ至少有一条跑出()S ε球域,那么平衡点e X 是不稳定的。

最新实验五线性系统的稳定性和稳态误差分析

实验五线性系统的稳定性和稳态误差分析

实验五 自动控制系统的稳定性和稳态误差分析 一、实验目的 1、研究高阶系统的稳定性,验证稳定判据的正确性; 2、了解系统增益变化对系统稳定性的影响; 3、观察系统结构和稳态误差之间的关系。 二、实验任务 1、稳定性分析 欲判断系统的稳定性,只要求出系统的闭环极点即可,而系统的闭环极点就是闭环传递函数的分母多项式的根,可以利用MATLAB 中的tf2zp 函数求出系统的零极点,或者利用root 函数求分母多项式的根来确定系统的闭环极点,从而判断系统的稳定性。 (1)已知单位负反馈控制系统的开环传递函数为 0.2( 2.5)()(0.5)(0.7)(3) s G s s s s s +=+++,用MATLAB 编写程序来判断闭环系统的稳定性,并绘制闭环系统的零极点图。 在MATLAB 命令窗口写入程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) dc=Gctf.den dens=poly2str(dc{1},'s') 运行结果如下:

dens= s^4 + 4.2 s^3 + 3.95 s^2 + 1.25 s + 0.5 dens是系统的特征多项式,接着输入如下MATLAB程序代码:den=[1,4.2,3.95,1.25,0.5] p=roots(den) 运行结果如下: p = -3.0058 -1.0000 -0.0971 + 0.3961i -0.0971 - 0.3961i p为特征多项式dens的根,即为系统的闭环极点,所有闭环极点都是负的实部,因此闭环系统是稳定的。 下面绘制系统的零极点图,MATLAB程序代码如下: z=-2.5 p=[0,-0.5,-0.7,-3] k=0.2 Go=zpk(z,p,k) Gc=feedback(Go,1) Gctf=tf(Gc) [z,p,k]=zpkdata(Gctf,'v') pzmap(Gctf) grid 运行结果如下: z = -2.5000 p = -3.0058

相关主题
文本预览
相关文档 最新文档