当前位置:文档之家› 斜导柱抽芯机构中斜导柱的设计

斜导柱抽芯机构中斜导柱的设计

斜导柱抽芯机构中斜导柱的设计
斜导柱抽芯机构中斜导柱的设计

维普资讯 https://www.doczj.com/doc/d213211764.html,

37-斜导柱

华威模具设计规范
机械抽芯斜导柱结构形式
塑件侧壁上的凸台凹槽及卡钩多数情况下采用机械抽芯完成开模动 作,最常用的方法采用斜导柱驱动滑块完成抽芯动作. 最常用的斜导柱抽芯角度 A 为 13 度,特殊情况下可以采用其他整数 抽芯角度,推荐使用 8 度,15 度,18 度,20 度 ,22 度,但最大不 得超过 23 度. 一般情况下锁紧面的度数比抽芯角度大 2 度,防止运动干涉.

华威模具设计规范
常见结构如下: 1, 斜导柱固定块固定斜导柱.
其中 D,H,L 的尺寸参照斜导柱固定块 l 的尺寸根据滑块抽芯距离(塑件实际需要抽芯的距离+5mm 以上 的余量)与斜导柱的角度进行计算

华威模具设计规范
D 16 20 24 30 36 40
D1 22 26 30 36 42 46
H 25 30 35 40 45 50
H1 7 7 9 11 13 13
H2 6 6 7 8 8.5 9.5
W 37 41 44 53 56 60
W1 18 19 19.5 24 26 28
B 50 55 60 70 80 85
B1 32 37 40 48 56 61
L1 9 9 10 11 12 12
L2 28 32 34 41 44 48
d 7 7 9 11 13 13
d1 11 11 14 16 18 18
R 10 10 10 10 10 10

华威模具设计规范
2,
斜导柱直接固定在形腔固定板上
此结构适用于所有尺寸规格的斜导柱 l 的尺寸根据滑块抽芯距离(塑件实际需要抽芯的距离+5mm 以上的 余量)与斜导柱的角度进行计算

怎样设计侧向分型抽芯机构中的斜导柱

冲模的A型导柱: 工序10 下料。 工序20 车外圆,留磨削加工余量0.4~0.5mm,车端面及头部圆角和锥度,切断。 工序30 热处理。渗碳淬火,渗碳层深度0.8~1.2mm,淬火硬度58~62HRC。 工序40 (无心磨床)磨外圆,留研磨余量0.01mm。 工序50 (专用圆盘式导柱研磨机)研磨外圆至尺寸。 工序60 检验。 冲模的B型导柱: 工序10 下料 工序20 车外圆,留磨削余量0.4~0.5mm,车端面及端头圆角,打中心孔。 调头,车外圆,留磨削余量0.4~0.5mm,车端面及头部锥度倒角,并保证长度L至尺寸,切槽,打中心孔。 工艺30 热处理。渗碳淬火,渗碳层深度0.8~1.2mm,淬火硬度58~62HRC。 工序40 研磨中心孔 工序50 (外圆磨床)磨外圆至尺寸,调头磨外圆,留研磨余量0.01mm。 工序60 (车床)研磨导 柱外圆至尺寸。 工序70 检验。 以上工艺供参考,各厂是有差异性的。 标准答案 怎样设计侧向分型抽芯机构中的斜导柱? 斜导柱是斜导柱侧向分型抽芯机构中的关键零件,其主要作用是使型芯滑块正确地完成开闭动作,它也决定了抽芯力和抽芯距的大小。斜导柱的设计内容主要包括斜导柱的截面形状、斜角、截面尺寸、长度及安装孔的位置等内容。 (1) 斜导柱的截面形状 常用的斜导柱的截面形状有圆形和矩形,圆形截面加工方便,易于装配,是广为应用的形式,其头部常做成球形或維台形;矩形截面能承受较大的弯矩,虽加工较难,装配不便,但在生产中仍有使用。 (2) 斜导柱的截面尺寸 1)圆形截面的斜导柱直径d (mm) 式中N——斜导柱所受的最大弯曲力(N); L——斜导柱的有效长度(mm); [a]——斜导柱的许用弯曲应力(MPa)。 2)矩形截面的斜导柱,截面高为h(mm),宽为b(mm),且b = 2/3h,则有 式中 N、 L、 [δ]同上式。

滑块设计要求及注意事项

倒勾处理(滑块) 一?斜撑销块的动作原理及设计要点 是利用成型的开模动作用,使斜撑梢与滑块产生相对运动趋势,使滑块沿开模方向及水平方向的两种运动形式,使之脱离倒勾。如下图所示: 上图中: β=α+2°~3°(防止合模产生干涉以及开模减少磨擦) α≦25°(α为斜撑销倾斜角度) L=1.5D (L为配合长度)

S=T+2~3mm(S为滑块需要水平运动距离;T为成品倒勾) S=(L1xsina-δ)/cosα(δ为斜撑梢与滑块间的间隙,一般为0.5MM; L1为斜撑梢在滑块的垂直距离) 二?斜撑梢锁紧方式及使用场合 简图说明 适宜用在模板较薄且上固定 板与母模板不分开的情况下配 合面较长,稳定较好

适宜用在模板厚、模具空间大 的情况下且两板模、三板板均 可使用 配合面L≧1.5D(D为斜撑销直径) 稳定性较好 适宜用在模板较厚的情况下 且两板模、三板板均可使用, 配合面L≧1.5D(D为斜撑销直径) 稳定性不好,加工困难. 适宜用在模板较薄且上固定板 与母模板可分开的情况下 配合面较长,稳定较好 三?拔块动作原理及设计要点 是利用成型机的开模动作,使拔块与滑块产生相对运动趋势,拨动面B拨动滑块使滑块沿开模方向及水平方向的两种运动形式,使之脱离倒勾。 如下图所示:

上图中: β=α≦25°(α为拔块倾斜角度) H1≧1.5W (H1为配合长度) S=T+2~3mm (S为滑块需要水平运动距离;T为成品倒勾) S=H*sinα-δ/cosα (δ为斜撑梢与滑块间的间隙,一般为0.5MM; H为拔块在滑块的垂直距离) C为止动面,所以拨块形式一般不须装止动块。(不能有间隙)

模具抽芯机构的设计。

第八节:抽芯机构设计 一`概述 当塑料制品侧壁带有通孔凹槽,凸台时,塑料制品不能直接从模具内脱出,必须将成型孔,凹槽及凸台的成型零件做成活动的,称为活动型芯。完成活动型抽出和复位的机构叫做抽苡机构。 (一)抽芯机构的分类 1.机动抽芯开模时,依靠注射检的开模动作,通过抽芯机来带活动型芯,把型芯抽出。机动抽芯具有脱模力大,劳动强度小,生产率高和操作方便等优点,在生产中广泛采用。按其传动机构可分为以下几种:斜导柱抽芯,斜滑块抽芯,齿轮齿条抽芯等。 2.手动抽芯开模时,依靠人力直接或通过传递零件的作用抽出活动型芯。其缺点是生产,劳动强度大,而且由于受到限制,故难以得到大的抽芯力、其优点是模具结构简单,制造方便,制造模具周期短,适用于塑料制品试制和小批量生产。因塑料制品特点的限制,在无法采用机动抽芯时,就必须采用手动抽芯。手动抽芯按其传动机构又可分为以下几种:螺纹机构抽芯,齿轮齿条抽芯,活动镶块芯,其他抽芯等。 3.液压抽芯活动型芯的,依靠液压筒进行,其优点是根据脱模力的大小和抽芯距的长短可更换芯液压装置,因此能得到较大的脱模力和较长的抽芯距,由于使用高压液体为动力,传递平稳。其缺点是增加了操作工序,同时还要有整套的抽芯液压装置,因此,它的使用范围受到限制,一般很小采用。 (二)抽芯距和脱模力的计算 把型芯从塑料制品成型僧抽到不妨碍塑料制品脱出的僧,即型芯在抽拔方向的距离,称为抽芯距。抽芯距应等于成型孔深度加上2-3MM. 一.抽芯距的计算如图3-102所示。 计算公式如下: S=H tgθ (3-26) 式中 S------ 抽芯距(MM) H------ 斜导柱完成抽芯所需的行程(MM) θ----- 斜导柱的倾斜角,一般取15·~20· 2.脱模力的计算塑料制品在冷却时包紧型芯,产生包紧力,若要将型芯 抽出,必须克服由包紧力引起的磨擦阻力,这种力叫做脱模力,在开始抽芯的瞬间所需的脱模力为最大。 影响脱模力因素很多,大致归纳如下; (1)型芯成型部分表面积和断面几何形状:型芯成型部分面积大,包紧力大,其模力也大;型芯的断面积积形状时,包紧力小,其脱 模也小;型芯的断面形状为矩形或曲线形时,包运费力大,其脱 模力也大。

斜顶滑块及其避空位的规范设计

在客户没有特殊要求下,现对斜顶滑块结构规定如下几种形式: 一、当斜顶上位置很小,不够锁螺丝时采用销钉连接方式:(见图一) 斜顶滑块要求: <1>、斜顶滑块挂台高度H及宽度T尺寸,见表1。 <2>、销钉用顶针改制,尺寸尽可能选大但不能小于φ1.5mm。 <3>、斜顶滑块侧面避空位要求: L1≥斜顶滑动行程+3mm(安全量)。 L2≥2mm(安全量)。 L3:普通模具L3=0.5mm;精密模具L3=0.25mm; <4>、斜顶滑块比顶针板低1mm(顶针板无限位块时可保护斜顶滑块)。 <5>、斜顶滑块底部及挂台顶部滑动面开“V”型油槽,间距10mm深0.5mm与滑动 方向成45°。 H及T尺寸选择:表1 二、当斜顶上位置足够大(能够收到M5以上的杯头螺Array丝)时采用锁螺丝的方式:(见图二) 斜顶滑块要求: <1>、斜顶滑块挂台高度H及宽度T尺 寸,见表2。 M5的杯头螺丝。 L1≥斜顶滑动行程+3mm(安全量)。 L2≥2mm(安全量)。 L3:普通模具L3=0.5mm;精密模具L3=0.25mm; <4>、斜顶滑块比顶针板低1mm(顶针板无限位块时可保护斜顶滑块)。 <5>、斜顶滑块底部及挂台顶部滑动面开“V”型油槽,间距10mm深0.5mm与滑动 方向成45°。

及T 尺寸选择: 表3 斜顶滑块要求: <2>、螺丝尽量选大,不要小于M5的杯头螺丝。 <3>、斜顶滑块侧面避空位要求: L1≥斜顶滑动行程+3mm(安全量)。 L2≥2mm(安全量)。 L3:普通模具L3=0.5mm ;精密模具L3=0.25mm ; <4>、斜顶滑块比斜顶座低1mm (顶针板无限位块时可保护斜顶滑块)。 <5>、斜顶滑块底部及挂台顶部滑动面开“V ”型油槽,间距10mm 深0.5mm 与滑动方向成45°。 <6>、顶针托板,下码模板做螺丝的避空孔,以方便拆装。 ※当斜顶比较大须用斜顶杆时,斜顶座及斜顶滑块可以考虑以下结构形式:(见图四) 具体要求除上述要求外,可参考设计结构标准:顶出下落斜顶的计算及规范应用(文件编 H T 10 6 6 3 图三: 斜顶滑块在斜顶座斜面上滑动的形式1 斜顶座斜向导向槽角度应与斜顶胶位沿水平方向倒扣位的出模角度

侧抽芯机构设计

斜导柱安装在定模、滑块安装在动模的结构,是斜导柱侧向分型抽芯机构的模具中应用最广泛的形式。它既可用于结构比较简单的注射模,也可用于结构比较复杂的双分型面注射模。模具设计人员在接到设计具有侧抽芯塑件的模具任务时,首先应考虑使用这种形式,图5-1所示属于单分型面模具的这类形式,而图5-15所示是属于双分型面模具的这类形式。 图5-15 斜导柱在定模、滑块在动模的双分型面注射模 1-型芯 2-推管 3-动模镶件 4-动模板 5-斜导柱 6-侧型芯滑块 7-楔紧块 8-中间板 9-定模座板 10-垫板 11-拉杆导柱 12-导套 (注意件3件4滑块定位销推管侧型芯) 在图5-15中,斜导柱5固定于中间板8上,为了防止在A—A分型面分型后,侧向抽芯时斜导柱往后移动,在其固定端后部设置一块垫板10加以固定。开模时,动模部分向左移动,且A—A分型面

首先分型;当A—A分型面之间距离可从中取出点浇口浇注系统的凝料时,拉杆导柱11的左端螺钉与导套12接触;继续开模,B—B分型面分型,斜导柱5驱动侧型芯滑块6在动模板4的导滑槽内作侧向抽芯;斜导柱脱离滑块后继续开模,最后推出机构开始工作,推管2将塑件从型芯1和动模镶件3中推出。 这种形式在设计时必须注意,侧型芯滑块与推杆在合模复位过程中不能发生“干涉”现象。所谓干涉现象是指滑块的复位先于推杆的复位致使活动侧型芯与推杆相碰撞,造成活动侧型芯或推杆损坏的事故。侧向型芯与推杆发生干涉的可能性出现在两者在垂直于开模方向平面上的投影发生重合的条件下,如图5-16所示。 在模具结构允许的情况下,应尽量避免在侧型芯的投影范围内设置推杆。如果受到模具结构的限制而在侧型芯的投影下方一定要设置推杆,应首先考虑能否使推杆在推出一定距离后仍低于侧型芯的底面,当这一条件不能满足时,就必须分析产生干涉的临界条件和采取措施使推出机构先复位,然后才允许型芯滑块复位,这样才能避免干涉。下面分别介绍避免侧型芯与推杆干涉的条件和推杆先复位机构。 a) b) 图5-16 干涉现象

侧向抽芯机构的分类与结构

8.1.1 侧向抽芯机构的类型 注射棋中与泞射机开模方向一致的分型和抽心都比较容易实现,因此模具结构也较简单。仅是对于某些塑料制品,由于使用[:的要求,不uJ避免地存在着与开模方向不一致的分 型。对于具有这种结构的制品除极少数情况可以进行强制脱模外(见闻3—9),一般都需要进行侧向分型与抽芯,才能取山制品。能将活动型芯抽出和复位的机构称为抽芯机构,侧向分型的抽;笆机构按动力来源;AVX T分为手动、气动、液压和机动四种类型。 1.手动抽芯 在推出制品前或脱模后用手工方法或手工工具将活动型芯取出的方法称为手动抽芯方法。 手动抽芯机构的结构简革,但劳动强度大,生产效率低,故仅适用于小型制品的小批量/k 产。 图8—1所示的为两种子动抽;凸机构的例子。图8—1(a)的结构最简单,在推山制品前,用扳手旋出活动型芯,图8—l(b)所示适用于非圆形侧TL的抽芯。 脱模后用手丁取小型怂或镶块的例子见闯8—2,取出的型芯或镶块再重新装回到模具小。应注意活动型芯或镶块须可靠定位,合模与注射成型时木能移位,以免制品报废或模具损坏。 2.液压或气动抽芯 侧向分型的活动型芯可以依靠液压传动或气体传动的机构抽出。由于一肋注射机没有抽芯泊缸或气缸,阅此需要另行设计液比或气压传动机构及抽芯系统。液压传动比气压传动乎稳,且可得到较大的抽拔力和较长的抽芯距离,但内于模具结构和体积的限制,泊缸的尺寸往往不能太大。与机动抽芯不同,液压或气压抽芯是通过一套专用的控制系统来控制活塞的运动实现的,其抽芯动作可个受开模时间和推出时间的影响。 闻8 3(。)所示液压缸(或气压缸)7以支座6固定于动模3的侧面,侧型怂2通过 拉杆4和连接器5与活塞杆连接。开模后液压缸(或气压缸)驱动活塞往复运动,从而带动侧型心实现抽芯和复位动作。合模时侧型心[:斜面与定模上相应斜团嵌紧,起锁紧作用。凶8—3(b)所示为液儿缸取长型芯的结构示意图,由于采用了液压抽芯,避免了采用瓣合 模组合形式,使模具结构大为简化。

斜顶设计精编版

一.概述: 斜顶机构是模具的重要组成部分,随着模具的不断发展不断改进,斜顶所起的作用越来越重要。它兼容了镶拼机构和顶出机构的双重作用。在以后的生产中它的数量会在模具中逐渐增加。斜顶根据结构分为两大类:分体式斜顶和整体式斜顶。对于斜顶和其类似的还有直顶,它们只是形状上有稍微的差异。我们常把它们统称为顶块。对于顶块的设计要点及加工工艺在正文中作了详细的介绍。 下面首先通过本公司所制造的几个具有代表性的斜顶的真彩图来认识一下斜顶的基本结构形状: 二.分体式斜顶 分体式斜顶指的是将斜顶头与斜顶杆分开设计加工,根据斜顶杆的截面形状分为两种:圆形斜顶杆与方形斜顶杆。其整体结构分为几个结构部件如图所示:斜顶头、斜顶杆、斜顶导向块、斜顶T型块、斜顶T型块滑道,耐磨板;根据每一个部件来分别制定标准规格以及设计加工规范。 适用范围:对于汽车模,应优先选用圆形斜顶杆,对于头部形状较复杂,或尺寸较大,截面尺寸大于16X16,应采用分体式结构。

斜顶T型滑道 斜顶导向 块 斜顶头 顶针板 底针板 底板 B0板 斜顶杆 镶块 斜顶T型块 斜顶头 斜顶杆 B0板 顶针板 底针板 底板 镶块 斜顶导向 块 斜顶T型块 斜顶耐磨板 图1.分体式斜顶的结构示意图分体式斜顶的重要组成部分----斜顶头的三维示意图如下: 图2.斜顶头三维示意图 (1 1.1) A°+2° 图中的A°为斜顶杆的角度 1.2

块通过工艺螺钉固定后NC加工顶面。 1.3)斜顶头的材料: 斜顶头的材料一般用638,氮化处理,对于透明件,如GPPS等,需采用738或718,腐蚀 1.4) 公差要求: 对于斜顶厚度方向的尺寸T,如果斜顶在该方向上没有斜度要求,该方向的尺寸要求为净1.5

侧向分型抽芯机构的分类

侧向分型抽芯机构的分类 当塑件处在与开模分型不同的方向时,在其内侧和外侧上带有孔、凹槽或凸起时,如图4 一128 所示,为了能对所成型的塑件进行脱模,必须将成型侧孔、侧凹或侧凸的部位做成活动零件,即侧型芯或侧型腔,然后在模具开模前(或开模后)将其抽出。完成侧型芯或侧型腔抽出和复位动作的机构称为侧向分型抽芯机构。以往,成型侧向凸起的部分称为侧向分型,成型侧向孔或凹槽的机构称为侧向抽芯,但现在两者往往不加区分,均称为侧向分型抽芯机构,或简称为侧向抽芯机构。 根据驱动方式的不同,侧向分型抽芯机构可分为手动、机动、液压(或气动)、联合作用4 种类型,其中以机动侧向分型抽芯机构最为常用。 1 .手动分型抽芯机构 手动分型抽芯机构采用手工方法或手工工具将侧型芯或侧型腔从塑件内取出,多用于试制和小批量生产塑件的模具,可分为手动模内抽芯和手动模外抽芯两种类型。 ( 1 )手动模内抽芯。它是指在开模前依靠人工直接抽拔,或通过简单传动装置抽出侧型芯或分离侧型腔。图4 一129 ( a )所示为旋转体侧型芯手动模内抽芯机构,把侧型芯和丝杆做成一体,通过手工转动丝杆,使侧型芯抽出。图4 一129 ( b )所示为非旋转体侧型芯手动模内抽芯机构,侧型芯和丝杆单独制造,手工旋转丝杆,驱动侧型芯完成抽芯动作。

( 2 )手动模外抽芯。手动模外抽芯是指开模后将侧型芯或侧型腔连同塑件一起脱出,在模外手工扳动侧向抽芯机构,将侧型芯或侧型腔从塑件中抽出,如图4 一130 所示。 手动抽芯机构结构简单,制模容易,但是侧抽芯和侧向分型的动作由人工来实现,操作麻烦,生产效率低,不能自动化生产,工人劳动强度大,故在抽拔力较大的场合不能采用。 2 .机动式分型抽芯机构 机动式分型抽芯机构是指利用注射机的开模运动和动力,通过传动零件完成模具的侧向分型、抽芯及其复位动作的机构。这类机构结构比较复杂,但是具有较大的抽芯力和抽芯距,且动作可靠,操作简单,生产效率高,因此广泛应用于生产实践中。根据传动零件的不同,可分为斜导柱抽芯、斜滑块抽芯、弯销抽芯、斜导槽抽芯、楔块抽芯,齿轮齿条抽芯、斜槽抽芯、弹黄抽芯八种形式。 3 .液压抽芯或气压抽芯机构 液压抽芯或气压抽芯机构主要是利用液压传动或气压传动机构,实现侧向分型和抽芯运动。这类机构的特点是:抽芯力大,抽芯距长,侧型芯或侧型腔的移动不受开模时间或推出时间的限制,抽芯动作比较平稳,但成本较高,故多用于大型注射模具,例如四通管接头等。图4 一131 所示为液压抽芯机构。注射成型时,侧型芯2 由定模板l 上的楔紧块3 锁紧,开模过程中楔紧块3 离开侧型芯2 ,然后由液压抽芯机构抽出侧型芯。液压抽芯机构需要在模具上配置专门的抽芯液压缸。现在注射机均带有抽芯的液压管路和控制系统,所以液压侧向分型与抽芯也十分方便。图4 一132 所示为气压抽芯机构,开模之前先抽出侧型芯,开模后由推杆将塑件推出。

塑胶模具设计-斜顶中走运水规范修改

一.概述: 1.1斜顶头双杆固定的,都需要通冷却水. 1.2斜顶头单杆固定的,单杆直径大于40的,需要通冷却水. 1.3斜顶头单杆固定的,单杆直径25,30,根据实际情况和客户特殊要求来确定是否设计斜顶头通水,不 推荐通水. 二.通水斜顶设计案例 2.1斜顶杆侧面引水,如图1、图2所示 此结构因为引水不方便,且斜顶杆的引水水嘴连接处强度不好,斜顶杆易断,易漏水,故不推荐采用。 客户特殊要求的除外。 图1(参考B1718)图2 2.2.斜顶杆底面引水 2.2.1图3为双杆引水底面引水 图3(参考B2387) 2.2.2图4为顶块双杆引水。

图4(参考B2149) 2.2.3图5为单杆引水,水孔中间用隔水片分成2路水。 (此种方式不推荐使用,技师装配不方便) 图5(参考B1362)放大图

2.2.4图6为单杆引水。具体设计设计参数如图7所示: 图6 图7 2.2.5图8为单杆引水,双孔型圆杆料

图8(参考B2523) 备注:通水斜顶杆订购 1)订购单/双孔圆杆料,回厂改制标准件。 2)不允许附图订购双孔圆杆料,可以订购圆杆料,回厂改制标准件,深孔钻加工引水孔。 2.3.采用引水杆引水,大型模具采用,引水杆材料:S45C,发黑处理. 如图9、图10示: 图9(参考B2319)图10(参考B1674) 三.通水斜顶头部固定密封方式 斜顶杆头部密封方式一共四种,优先采用起级从侧面收楔形块的方式,次之选用顶面密封圈从侧面收楔形块的方式,其次选用起级用销钉固定的方式,最后选用顶面密封圈用销钉固定的方式。 3.1采用起级从侧面收楔形块的方式,如图11所示:

设计变角度的斜导柱注射模

描述:通过对零件结构的分析,得出了塑件的成型工艺方案,决定采用变角度斜导柱抽芯结构,并简单介绍了变角度斜导柱的结构特点,工作过程以及变角度斜导柱的设计方法。 摘要:通过对零件结构的分析,得出了塑件的成型工艺方案,决定采用变角度斜导柱抽芯结构,并简单介绍了变角度斜导柱的结构特点,工作过程以及变角度斜导柱的设计方法。 随着各种成型塑件的形状不同,模具上成型该处的零件结构也必须随之改动,当注射成型的塑件与开合模方向不同的内侧或外侧具有孔、凹穴或凸台时,模具上成型该处的零件必须具有可侧向移动功能,以便在塑件脱模推出之前,先将侧向分型零件抽出,然后再把塑件从模内推出,否则就无法脱模,我们此次设计的产品就是抽芯距较大,一般的斜导柱注射模抽芯时只能抽芯较短的抽芯距,抽芯距较大的就无法实现,而此次经过分析我采用了变角度进行了两次抽芯,克服了一般斜导柱注射模的缺陷。 1 塑件工艺分析 此次的产品从图1中可以看出,该塑件是个三通管,模具需要3个方向的抽芯,其中有1个方向抽芯距要求在135mm以上。材料为ABS,用XS-ZY-500注射机成型,这样模具厚度要求在300 mm -450mm。 经综合分析认为,该制件模具的难点就是抽芯结构设计。所以我们要先要充分了解抽芯机构的结构,并要懂得它的动作过程,下面来逐步的具体来确定它的工艺过程。 2 抽芯结构的方案确定 方案1 是利用油缸抽芯,此方案由于在模具制造中需要外购油缸,并且模具在使用中需添加油路,提高了模具制造和使用成本,与斜导柱结构相比,该方案不经济。 方案2 是传统的单倾角斜导柱抽芯结构,该方案倾角按资料数据最大只能取20度,模具厚度取XS-ZY-500注射机的最大值450mm。经计算,斜导柱长度已超出最大模厚,而且长斜导柱的强度,刚度及运动平稳性都比较差。 方案3 是变角度斜导柱结构。由图1可以看出,135mm抽芯距虽然长,但型芯一头为?25 mm,另一头为?10 mm,抽芯方向有较大的斜度,也就是说模具型芯只要先抽出一小部分,塑件就可以和型芯分离。 根据以上分析,决定选择变角度斜导柱结构,即在斜导柱上设计两个角度,使抽芯运动分解为两个阶段。该方案既满足了抽芯距大于135 mm的要求,结构

相关主题
文本预览
相关文档 最新文档