当前位置:文档之家› 热敏电阻温度计的设计安装和使用

热敏电阻温度计的设计安装和使用

热敏电阻温度计的设计安装和使用

摘要: 我们利用热敏电阻作为感温元件,并且配有温度显示安装的温度测量仪表称为热敏电阻温度计而热敏电阻的特点就是能把温度信号转变为电信号,从而让我们实现非电量测量,我们在实验中把热敏电阻作为感温元件与非平衡电桥法结合起来共同的来完成一台热敏温度计,并对这台温度计进行测试从而完成简单的测量技术,是未

来技术发展的必然趋势

关键字:热敏电阻 替代法 实验校准

一、实验原理

● 负温度系数热敏电阻(NTC ) 特性:电阻随温度升高而急剧下降。 应用:广泛运用于温度测量和温度调节, 还可用作补偿电阻作起动电阻 使用,克服冲击电流 t

● 正温度系数热敏电阻(PTC )

过热保护和延时开关。

t

t

R t R

2、非平衡电桥 非平衡电桥解出:

在R1(R2),R3,Rg 及Ucd 恒定条件下,Ig 的大小唯一地由Rt 值来决定,因而有可能根据G 偏转的大小来直接指示温度的高低。

)

()(2)(31333t g t t g cd

t g R R R R R R R R R U R R I ++++-=

3、热敏电阻温度计的实验电路 1)增加发光(二极管LED , 电源指示; (2)检流计G 换成微安表;

(3)在bd 支路中增加 “校准” 支路;

4、在非平衡电桥的参数设计下,一般设R1=R2,使之构成一个对称电桥。另外,其还与许多因素有关,比如测量范围,微安表的内阻Rg ,微安表的满偏电流Igm ,桥路地工作电压Ucd 等。 若温度计的测量上限为t2,在这一温度下,热敏电阻的阻值为Rt2,微安表应满

偏 及 Rt=Rt2 Ig=Igm

2

1221121211)(2)()(t t g t t t t g gm t t cd t t R R R R R R R R I R R U R R R +++-

+-=

查表有 Rt1=4.213k Ω t1=20℃

Rt2=0.685k Ω t2=70℃

定 Ucd=1.3V 范围在1.1~1,4v

微安表

5、 R4的确定 给温度计通电进行温度测量前,必须将S2扳至“校”,目的是校准工作电压Ucd ,使其刚好等于设计值。“校”的目的也是为了校准刻度值,使Rt=Rt2时,Ig=Igm ,与式(3)相符。一般做法是将R4的值固定为Rt2,这样,当S2扳至“校”时,就相当于把感温元件置于温度t2的温度场中,此时微安表满偏。如果未至满偏,则说明Ucd 未能达到设计值,需要仔细旋转R ,直至满偏,这一步完成后才能进行测量

Ucd 的确定 Ucd 是电桥的工作电压,既不能过高,也不能过低。过高会使Rt 产生自热现象,从而使被测环境的升高;过低则无法使微安表达到满偏。根据本实验中所用Rt 的额定工作电流及微安表的量程,Ucd 可以在1.1~1.4V 之间确定一个值。 (2) 温度计上限下限的设定 本实验温度计的上下限分别设为20℃和70℃,及测温范围是有t1到t2,t1为下限(环境温度为20℃),t2为上限(环境温度为70℃)。 (3) R3的确定 R3的大小与温度计的下限t1有关。确定R3大小的原则是,当热敏电阻处于温度t1时,微安表因指零。这样,在R1=R2的条件下,R3必须等于Rti 及

Ω

=?=-K R A I g gm 301.31005.03Ω

==K R R 947.1021

R3=Rt1 R1(R2)确定 在非平衡电桥的参数设计下,一般设R1=R2,使之构成一个对称电桥。另外,其还与许多因素有关,比如测量范围,微安表的内阻Rg ,微安表的满偏电流Igm ,桥路地工作电压Ucd 等。 若温度计的测量上限为t2,在这一温度下,热敏电阻

Rt2

偏 及 Rt=Rt2 Ig=Igm (3) 将式带入得:

)

()(2)(31333t g t t g cd

t g R R R R R R R R R U R R I ++++-=

6制作定标曲线

开关打到测量档, Rt接电阻箱,根据温度特性曲线将电阻箱调节到

各温度对应的阻值,记录微安表指针的偏转格数,并绘制曲线将

电路中各元件安装完成后,就可以进行测量了。但微安表指示值是电

流值而不是温度值。所以的通过定标实验来描绘出一条定标曲线,如

图1-3所示。有了定标曲线,就可以找到与任一电流Igi相对于的温

度值ti,或者根据定标曲线,在刻度盘上直接按温度来标定。这样,

指针的偏转既能显示电流值,又能显示温度值

70

60

50

40

30

20

510152025二、实验仪器

热敏电阻温度计试验仪及其配件

标准电阻箱一台

直流电桥箱一台

三、实验方法

调定分压电阻R不能再动

按图连线(4步骤做好后,无需再动),Rt接电阻箱

开关打到测量档,调节分压电阻R,使微安表指针

满偏,此时

开关打到校准档,此时微安表应满偏;如不满偏,调节分 压电阻R4,使微安表指针满偏 四、实验结果与分析

t (℃)

20 25 30 35 40 45 50 55 60 65 70 R t (k

4.21 3.38 2.87 2.32 1.92 1.61 1.33 1.11 0.95 0.810.68μA(格

7.5 12.

19.

25.

29.

34.

39.

43.

46.1

50

误差分析:由于此次试验用的热敏电阻温度计实验安装版上的R1、R2、R3、R4不能精确的调节,只能大致范围的调节下其值,所以造成得出的电阻值不精确,从而产生出误

五、实验结论由其相对误差可知此次组装的热敏电阻温度计基本上是准确的,和实际误差不大

六、参考文献

李学慧,高峰,孙炳全,杨桂娟. 热敏电阻温度计的设计与制作[J]. 大学物理实验

基于热敏电阻的数字温度计

电子信息工程学院电子设计应用软件训练任务 【训练任务】: 1、熟练掌握PROTEUS软件的使用; 2、按照设计要求绘制电路原理图; 3、能够按要求对所设计的电路进行仿真; 【基本要求及说明】: 1、按照设计要求自行定义电路图纸尺寸; 2、设计任务如下: 基于热敏电阻的数字温度计 设计要求 使用热敏电阻类的温度传感器件利用其感温效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来: ●测量温度范围?50℃~110℃。 ●精度误差小于0.5℃。 ●LED数码直读显示。 本题目使用铂热电阻PT100,其阻值会随着温度的变化而改变。PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。厂家提供有PT100在各温度下电阻值值的分度表,在此可以近似取电阻变化率为 0.385Ω/℃。向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。 采用2.55mA的电流源对PT100进行供电,然后用运算放大器LM324搭建的同相放大电路将其电压信号放大10倍后输入到AD0804中。利用电阻变化率0.385Ω/℃的特性,计算出当前温度值。 3、按照设计任务在Proteus 6 Professional中绘制电路原理图; 4、根据设计任务的要求编写程序,在Proteus下进行仿真,实现相应功能。【按照要求撰写总结报告】 成绩:_____

一、任务说明 使用热敏电阻类的温度传感器件利用其感温效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来: ●测量温度范围?50℃~110℃。 ●精度误差小于0.5℃。 ●LED数码直读显示。 本题目使用铂热电阻PT100,其阻值会随着温度的变化而改变。PT后的100即表示它在0℃时阻值为100欧姆,在100℃时它的阻值约为138.5欧姆。厂家提供有PT100在各温度下电阻值值的分度表,在此可以近似取电阻变化率为 0.385Ω/℃。向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。 采用2.55mA的电流源对PT100进行供电,然后用运算放大器LM324搭建的同相放大电路将其电压信号放大10倍后输入到AD0804中。利用电阻变化率0.385Ω/℃的特性,计算出当前温度值。 二、元器件简介 1、AT89C51简介 AT89C51是一种带4K字节FLASH存储器的低电压、高性能CMOS,8位微处理器,俗称单片机。AT89C51 提供以下标准功能:4k 字节Flash 闪速存储器,128字节内部RAM,32 个I/O 口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内振荡器及时钟电路。其引脚图如图一所示。 图一 AT89C51引脚图

用热敏电阻测量温度

PB05210298 张晶晶 实验报告三 实验题目:用热敏电阻测量温度 实验原理: 1. 半导体热敏电阻的电阻——温度特性 某些金属氧化物半导体(如:Fe 3O 4、MgCr 2O 4等)的电阻与温度关系满足式(1): T B T e R R ∞= (1) 式中R T 是温度T 时的热敏电阻阻值,R ∞是T 趋于无穷时热敏电阻的阻值,B 是热敏电阻的材料常数,T 为热力学温度。 金属的电阻与温度的关系满足(2): )](1[1212t t a R R t t -+= (2) 式中a 是与金属材料温度特性有关的系数,R t1、R t2分别对应于温度t 1、t 2时的电阻值。 根据定义,电阻的温度系数可由式(3)来决定: dt dR R a t t 1= (3) R t 是在温度为t 时的电阻值,由图3.5.2-1(a )可知,在R-t 曲线某一特定点作切线,便可求出该温度时的半导体电阻温度系数a 。 2. 惠斯通电桥的工作原理 半导体热敏电阻和金属电阻的阻值范围,一般在1~106 Ω,需要较精确测量时常用电桥法,惠斯通电桥是应用很广泛的一种仪器。 惠斯通电桥的原理,如图3.5.2-2(a )所示。四个电阻R 0、R 1、R 2、R x 组成一个四边形,即电桥的四个臂,其中R x 就是待测电阻。在四边形的一对对角A 和C 之间连接电源E ,而在另一对对角B 和D 之间接入检流计G 。当B 和D 两点电位相等时,G 中无电流通过,电桥便达到了平衡。平衡时必有02 1 R R R R x = ,

R 1/R 2和R 0都已知,R x 即可求出。R 1/R 2称电桥的比例臂,由一个旋钮调节,它采用十进制固定值,共分0.001、0.01、0.1、1、10、100、1000 七挡。R 0为标准可变电阻,由有四个旋钮的电阻箱组成,最小改变量为1Ω,保证结构有四位有效数字。 02 1 R R R R x 是在电桥平衡的条件下推导出来的。电桥是否平衡是由检流计有无偏转来判断的,而检流计的灵敏度总是有限的。如实验中所用的张丝式检流计,其指针偏转一格所对应的电流约为10-6A ,当通过它的电流比10-7A 还小时,指针的偏转小于0.1格,就很难觉察出来。假设电桥在R 1/R 2=1时调到平衡,则有

(完整版)基于热敏电阻的数字温度计

基于热敏电阻的数字温度计专业班级:机械1108 组内成员:罗良李登宇李海先 指导老师:张华 日期: 2014年6月12日

1概述 随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。 目前温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法: 1)利用物体热胀冷缩原理制成的温度计 2)利用热电效应技术制成的温度检测元件 3)利用热阻效应技术制成的温度计 4)利用热辐射原理制成的高温计 5)利用声学原理进行温度测量 本系统的温度测量采用的就是热阻效应。温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。将输出的微弱电压信号放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。 2设计方案 2.1设计目的 利用51单片机及热敏电阻设计一个温度采集系统,通过学过的单片机和数字电路及面向对象编程等课程的知识设计。要求的功能是能通过串口将采集的数据在显示窗口显示,采集的温度达一定的精度 2.2设计要求 使用热敏电阻类的温度传感器件利用其温感效应,将随被测温度变化的电压或电流用单片机采集下来,将被测温度在显示器上显示出来。

3系统的设计及实现 3.1系统模块 3.1.1 AT89C51 AT89C51是一种带4K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Erasable Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容。由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C51是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。 管脚说明: VCC:供电电压。 GND:接地。 P0口:P0口为一个8位漏级开路双向I/O口,每脚可吸收8TTL门电流。当P1口的管脚第一次写1时,被定义为高阻输入。P0能够用于外部程序数据存储器,它可以被定义为数据/地址的第八位。在FIASH编程时,P0 口作为原码输入口,当FIASH 进行校验时,P0输出原码,此时P0外部必须被拉高。 P1口:P1口是一个内部提供上拉电阻的8位双向I/O口,P1口缓冲器能接收输出4TTL门电流。P1口管脚写入1后,被内部上拉为高,可用作输入,P1口被外部下

10K热敏电阻分度表

热敏电阻是开发早、种类多、发展较成熟的敏感元器件.热敏电阻由半导体陶瓷材料组成,热敏电阻是用半导体材料,大多为负温度系数,即阻值随温度增加而降低。温度变化会造成大的阻值改变,因此它是最灵敏的温度传感器。但热敏电阻的线性度极差,并且与生产工艺有很大关系。制造商给不出标准化的热敏电阻曲线。热敏电阻体积非常小,对温度变化的响应也快。但热敏电阻需要使用电流源,小尺寸也使它对自热误差极为敏感。 热敏电阻的电阻-温度特性可近似地用下式表示:R=R0exp{B(1/T-1/T0)}:R:

温度T(K)时的电阻值、Ro:温度T0、(K)时的电阻值、B:B值、*T(K)=t(º;C)+273.15。实际上,热敏电阻的B值并非是恒定的,其变化大小因材料构成而异,最大甚至可达5K/°C。因此在较大的温度范围内应用式1时,将与实测值之间存在一定误差。此处,若将式1中的B 值用式2所示的作为温度的函数计算时,则可降低与实测值之间的误差,可认为近似相等。 BT=CT2+DT+E,上式中,C、D、E为常数。另外,因生产条件不同造成的B值的波动会引起常数E发生变化,但常数C、D不变。因此,在探讨B值的波动量时,只需考虑常数E即可。常数C、D、E的计算,常数C、D、E可由4点的(温度、电阻值)数据(T0,R0).(T1,R1).(T2,R2)and(T3,R3),通过式3~6计算。首先由式样3根据T0和T1,T2,T3的电阻值求出B1,B2,B3,然后代入以下各式样。 电阻值计算例:试根据电阻-温度特性表,求25°C时的电阻值为5(kΩ),B值偏差为50(K)的热敏电阻在10°C~30°C的电阻值。步骤(1)根据电阻-温度特性表,求常数C、D、E。T o=25+273.15T1=10+273.15T2=20+273.15T3=30+273.15(2)代入BT=CT2+DT+E+50,求BT。(3)将数值代入R=5exp {(BT1/T-1/298.15)},求R。*T:10+273.15~30+273.15。

用热敏电阻测量温度1

1 实验题目: 用热敏电阻测量温度 实验目的:本实验旨在了解热敏电阻-温度特性和测温原理,掌握惠斯通电桥的原理和使用方法。学习坐标变换、曲线改直的技巧和用异号法消除零点误差等方法。 实验原理: 1.半导体电阻与金属电阻的电阻-温度特性 半导体的电阻与温度关系满足:T B T e R R ∞= 式中R T 是温度T 时的热敏电阻阻值,R ∞是T 趋于无穷时热敏电阻的阻值,B 是热敏电阻的材料常数,T 为热力学温度。 而金属的电阻与温度的关系满足: )](1[1212t t a R R t t -+= 式中a 是与金属材料温度特性有关的系数,R t1、R t2分别对应于温度t 1、t 2时的电阻值。 根据定义,电阻的温度系数可由下式来决定:dt dR R a t t 1= R t 是在温度为t 时的电阻值,由下图可知,在R-t 曲线某一特定点作切线,便可求出该温度时的半导体电阻温度系数a 。 因此,热敏电阻的电阻-温度特性是非线性的(呈指数下降),而金属的电阻-温度特性是线性的。热敏电阻的温度系数约为-(30~60)×10-4K -1,金属的温度系数为1 4104--?K (铜),两者相比,热敏电阻的温度系数几乎大几十倍。所以,半导体电阻对温度变化的反应比金属电阻灵敏得多。 2.惠斯通电桥的工作原理 半导体热敏电阻和金属电阻的阻值范围,一般在1~106 Ω,需要较精确测量时常用电桥法,惠斯通电桥是应用很广泛的一种仪器。 惠斯通电桥的原理,如下图所示。四个电阻R 0、R 1、R 2、R x 组成一个四边形,R x 是待测电阻。当B 和D 两点电位相等时,检流计G 中无电流通过,电桥便达到了平衡。平衡时必有02 1 R R R R x = 。 电桥是否平衡是由检流计有无偏转来判断的,而检流计的灵敏度总是有限的。假设电桥在R 1/R 2=1时调到平衡,则有R x =R 0,这时若把R 0改变一个微小量ΔR 0,电桥便失去平衡从而有电流I G 流过检流计,如果I G 小到检流计察觉不出来,那么人们仍然会认为电桥是平衡的,因而00R R R x ?+=,ΔR 0就是由于检流计灵敏度不够高而带来的测量误差,因此引入电桥灵敏度S ,定义为:x x R R n S /??= Δn 越大,说明电桥灵敏度越高,带来的测量误差就越小。

基于热敏电阻的数字温度计设计

目录 1 课程设计的目的 (1) 2 课程设计的任务和要求 (1) 3 设计方案与论证 (1) 4 电路设计 (2) 4.1 温度测量电路 (3) 4.2 单片机最小系统 (6) 4.3 LED数码显示电路 (8) 5 系统软件设计 (9) 6 系统调试 (9) 7 总结 (11) 参考文献 (13) 附录1:总体电路原理图 (14) 附录2:元器件清单 (15) 附录3:实物图 (16) 附录4:源程序 (17)

1 课程设计的目的 (1)掌握单片机原理及应用课程所学的理论知识; (2)了解使用单片机设计的基本思想和方法,学会科学分析和解决问题; (3)学习单片机仿真、调试、测试、故障查找和排除的方法、技巧; (4)培养认真严谨的工作作风和实事求是的工作态度; (5)锻炼自己的动手动脑能力,以提高理论联系实际的能力。 2 课程设计的任务和要求 (1)采用LED 数码管显示温度; (2)测量温度范围为-10℃~110℃; (3)测量精度误差小于0.5℃。 3 设计方案与论证 方案一:本方案主要是在温度检测部分利用了一款新型的温度检测芯片DS18B20,这个芯片大大简化了温度检测模块的设计,它无需A/D 转换,可直接将测得的温度值以二进制形式输出。该方案的原理框图如图3-1所示。 DS18B20是美国达拉斯半导体公司生产的新型温度检测器件,它是单片结构,无需外加A/D 即可输出数字量,通讯采用单线制,同时该通讯线还可兼作电源线,即具有寄生电源模式。它具有体积小、精度易保证、无需标定等特点,特别适合与单片机合用构成智能温度检测及控 制系统。 图3-1 方案一系统框图 单片机 最小系统 数码 显示 温度传感器 DS18B20

热敏电阻演示实验

实验三十五 热敏电阻演示实验 一、实验目的: 了解NTC 热敏电阻现象。 二、实验内容: 通过对NTC 热敏电阻加热,了解其特性。 三、实验仪器: 加热器、热敏电阻、可调直流稳压电源、+15V 稳压电源、电压表、主、副电源。 四、实验原理: 热敏电阻的温度系数有正有负,因此分成两类:PTC 热敏电阻(正温度系数)与NTC 热敏电阻(负温度系数)。一般NTC 热敏电阻测量范围较宽,主要用于温度测量;而PTC 突变型热敏电阻的温度范围较窄,一般用于恒温加热控制或温度开关,也用于彩电中作自动消磁元件。有些功率PTC 也作为发热元件用。PTC 缓变型热敏电阻可用作温度补偿或作温度测量。 一般的NTC 热敏电阻测温范围为:-50℃~+300℃。热敏电阻具有体积小、重量轻、热惯性小、工作寿命长、价格便宜,并且本身阻值大,不需考虑引线长度带来的误差,适用于远距离传输等优点。但热敏电阻也有:非线性大、稳定性差、有老化现象、误差较大、一致性差等缺点。一般只适用于低精度的温度测量。 五、实验注意事项: 加热时间不要超过2分钟,此实验完成后应立即将+15V 电源拆去,以免影响梁上的应变片性能。 六、实验步骤: 1、了解热敏电阻在实验仪的所在位置及符号,它是一个蓝色元件,封装在双平行振动平行梁上片梁的表面。 2、将电压表切换开关置2V 档,直流稳压电源切换开关置±2V 档,按图35接线,开启主、副电源,调整W1(RD)电位器,使电压表指示为100mV 左右。这时电压表的指示值为室温时的Vi 。 3、将+15V 电源接入加热器,加热器的另一端接地。观察电压表的读数变化(注意加热时间不要超过2分钟)。 电压表的输入电压: S IL IH T IL i V ) W W (R W V ?++= 4、由此可见,当温度 时,RT 阻值 ,Vi 。

用热敏电阻测量温度试验

物理实验报告 实验一 一、实验题目:用热敏电阻测量温度 二、实验目的:了解热敏电阻-温度特性和测温原理,掌握惠斯通电桥的原理和使用方法。学习坐标变换、曲线改直的技巧和用异号法消除零点误差等方法。 三、实验原理:(1)半导体热敏电阻的电阻——温度特性 某些金属氧化物半导体(如:Fe 3O 4、MgCr 2O 4等)的电阻与温度关 系满足式(1): T B T e R R ∞= (1) 式中R T 是温度T 时的热敏电阻阻值,R ∞是T 趋于无穷时热敏电阻的阻值,B 是热敏电阻的材料常数,T 为热力学温度。 两边取对数得; ∞+= R T B ln lnR T (2) 可以通过做T lnR - T 1 曲线,将曲线改直。 根据定义,电阻的温度系数可由式(3)来决定: dt dR R a t t 1= (3) 故在R-t 曲线某一特定点作切线,便可求出该温度时的半导体电阻温度系数a 。 (2)惠斯通电桥的工作原理 在电桥平衡下可推导出来:02 1 R R R R x = 当电桥平衡时检流计无偏转。实验时电桥调到R 1/R 2=1则有R x =R 0。电桥灵敏度S 为:

x x R R n S /??= (4) 式中ΔR x 指的是在电桥平衡后R x 的微小改变量(实际上待测电阻R x 若不能改变,可通过改变标准电阻R 0来测电桥灵敏度),Δn 越大,说明电桥灵敏度越高,带来的测量误差就越小。 (3)实验装置图:

四、实验器材:半导体热敏电阻、检流计、惠斯通电桥、电炉、温度计 五、实验步骤:(1)按图3.5.2-3接线,先将调压器输出调为零,测室温下的热敏 电阻阻值,注意选择惠斯通电桥合适的量程。先调电桥至平衡 得R0,改变R0为R0+ΔR0,使检流计偏转一格,求出电桥灵敏 度;再将R0改变为R0-ΔR0,使检流计反方向偏转一格,求电 桥灵敏度(因为人工所调平衡可能存在误差,而正反测量以后 可以减小这种误差) (2)调节变压器输出进行加温,从15℃开始每隔5℃测量一次 R t,直到85℃。撤去电炉,使水温慢冷却,测量降温过程中,各 对应温度点的R t。求升温和降温时的各R的平均值,然后绘制出 热敏电阻的R t-t特性曲线 六、实验数据记录: 表3.5.2--1 表3.5.2—2

基于PT100热敏电阻的数字温度计

嵌入式设计 基于热敏电阻的数字温度计设计 院(系) 专业 班级 指导老师 学生姓名 成绩 2015年 7月 10日

目录 第一章绪论 (1) 第二章设计要求及构思 (2) 2.1设计要求 (2) 2.2设计构思 (2) 第三章总体程序流程图 (4) 第四章原理框图 (5) 4.1PT100铂热电阻: (5) 4.2信号放大电路 (5) 4.4主芯片电路图 (7) 4.5 四位数码管 (8) 第五章仿真电路图 (9) 第六章心得体会 (11) 参考文献 (12) 附录程序代码 (13)

第一章绪论 随着以知识经济为特征的信息化时代的到来人们对仪器仪表的认识更加深入,温度作为一个重要的物理量,是工业生产过程中最普遍,最重要的工艺参数之一。随着工业的不断发展,对温度的测量的要求也越来越高,而且测量的范围也越来越广,对温度的检测技术的要求也越来越高,因此,温度测量及其测量技术的研究也是一个很重要的课题。目前温度计按测使用的温度计种类繁多,应用范围也比较广泛,大致可以包括以下几种方法:1,利用物体热胀冷缩原理制成的温度计2,利用热电效应技术制成的温度检测元件3,利用热阻效应技术制成的温度计4,利用热辐射原理制成的高温计5,利用声学原理进行温度测量本系统的温度测量采用的就是热阻效应。温度测量模块主要为温度测量电桥,当温度发生变化时,电桥失去平衡,从而在电桥输出端有电压输出,但该电压很小。将输出的微弱电压信号通过OP07放大,将放大后的信号输入AD转换芯片,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来。

第二章设计要求及构思 2.1设计要求 1.系统硬件设计 (1)使用热敏电阻PT100; (2)单片机采用MCS51系列; (3)LED数码管显示温度。 2.系统软件设计 (1)温度可以通过PT100热敏电阻实调程序; (2)AD转换芯片检测温度的模拟量程序; (3)LED显示程序; 3.系统功能 (1)测量温度范围?50℃~110℃; (2)精度误差小于0.5℃; (3)LED数码管显示。 2.2设计构思 (1)本题目使用铂热敏电阻PT100,其阻值会随着温度的变化而改变,PT100后的100即表示它在0℃时阻值为100欧姆,在110℃时它的阻值约为142.29欧姆,在-50℃它的电阻值为80.31欧姆。厂家提供有PT100在各温度下电阻值值的分度表,在0℃到110℃电阻的变化率为(142.29-100)/110≈ 0.3845Ω/℃,在-50到0℃电阻的变化率为(100-80.31)/50=0.3938Ω/℃。向PT100输入稳恒电流,使PT100输出的电压与其内部电阻成线性关系变化。 (2)其输出的的电压是模拟信号,需要进行模数转换后才能被有效显示。查找相关模数转换元器件后暂选ADC0808进行模数转换,其有效电压为0~5V。向PT100输入稳恒电流,再通过A/D转换后测PT100两端电压,即得到PT100的电阻值,进而算出当前的温度值。 (3)由于0.385Ω相对于100多欧姆的电阻来说很小,即温度变化1℃时输出的电压变化量很小,这么小的电压不能改变ADC0808输出的一个数字信号。所以要对PT100输出的电压进行放大。放大倍数是根据最大测量温度确定的,即110℃时输出的电压不能超过+5V,否则测量不到110的温度,最终经调试后取放大倍数为36。再将放大后的电压输入ADC0808模数转换器。 (4)综上所述。采用2.49V的电压与运算放大器搭建成的恒流源对PT100进行供电,然后用运算放大器OP07搭建的同相放大电路将其电压信号放大36倍后输入到ADC0808中。ADC0808根据输入0到5V的电压,转换成对应的十进制0到255数字。再利用电阻变化率的特性,计算出当前温度值,数码管直接显示温度。

热电阻温度计的结构和原理

热电阻温度计的结构和原理 其优点如下: 1、循环周期9~13秒,生产效率高,—条线年产标砖6000万块。 2、蒸养车可码放砖坯16层,有效利用蒸压釜,节约蒸压能耗23%。 3、整机布局结构紧凑,占地面积小,能节省土建投资成本达28%。 4、抓坯和码垛定位精度高,减少中间周转过程,提高制品的成品率。 5、自动化程度高,操作简单方便,实现单机单人操作。 热电阻温度计的结构和原理? 热电阻是近年来发展起来的一种新型半导体感温元件。由于它具有灵敏度高、 体积小、重量轻、热惯性小、寿命长以及价格便宜等优点,因此应用非常广泛。负系数热敏电阻热敏电阻与普通热电阻不同,它具有

负的电阻温度特性,当温度升高时,电阻值减小热敏电阻的阻值---温度特性曲线是一条指数曲线,非线性度较大,因此在使用时要进行线性化处理,线性化处理虽然能改善热敏电阻的特性曲线,但比较复杂。热敏电阻的应用是为了感知温度为此给热敏电阻以恒定的电流,测量电阻两端就得到一个电压,然后就可以求得温度。如能测得热敏电阻两端的电压,再知道参数和系数k,则可计算出热敏电阻的环境温度,也就是被测的温度。这样就把电阻随温度的变化关系转化为电压温度变化的关系了。电阻温度计就 是把热敏电阻两端电压值经a/d转换变成数字量,然后通过软件方法计算得到温度值,再通过进行显示。 热电阻温度计的工作原理 热电阻 热电阻是中低温区最常用的一种温度检测器。它的主要特点是测量精度高,性能稳定。其中铂热是阻的测量精确度是最高的,它不仅广泛应用于工业测温,而且被制成标准的基准仪。1、热电阻测温原

理及材料热电阻测温是基于金属导体的电阻值随温度的增加而增加 这一特性来进行温度测量的。热电阻大都由纯金属材料制成,目前应用最多的是铂和铜,此外,现在已开始采用镍、锰和铑等材料制造热电阻。2、热电阻的类型1)普通型热电阻从热电阻的测温 2)铠装热电阻铠装热电阻是由感温元件(电阻体)、引线、绝缘材料、不锈钢套管组合而成的坚实体,它的外径一般为φ2--φ8mm,最小可达φmm。与普通型热电阻相比,它有下列优点:①体积小,内部无空气隙,热惯性上,测量滞后小;②机械性能好、耐振,抗冲击; ③能弯曲,便于安装④使用寿命长。3)端面热电阻端面热电阻感温元件由特殊处理的电阻丝材绕制,紧贴在温度计端面。它与一般轴向热电阻相比,能更正确和快速地反映被测端面的实际温度,适用于测量轴瓦和其他机件的端面温度。4)隔爆型热电阻隔爆型热电阻通过特殊结构的接线盒,把其外壳内部爆炸性混合气体因受到火花或电弧等影响而发生的爆炸局限在接线盒内,生产现场不会引超爆炸。隔爆型热电阻可用于bla--b3c级区内具有爆炸危险场所的温度测量。铠

热敏电阻温度-阻值表

柜机、分体、窗机、TMC、变频空调(除压缩机排气处)热敏电阻 温度/阻值表(R25=5KΩB25/50=3470K) 温度(℃)阻值(KΩ)温度(℃)阻值(KΩ)温度(℃)阻值(KΩ) -30.0 63.7306 14.0 7.7643 58.0 1.5636 -29.0 60.3223 15.0 7.4506 59.0 1.5142 -28.0 57.1180 16.0 7.1513 60.0 1.4666 -27.0 54.1043 17.0 6.8658 61.0 1.4206 -26.0 51.2686 18.0 6.5934 62.0 1.3763 -25.0 48.5994 19.0 6.3333 63.0 1.3336 -24.0 46.0860 20.0 6.0850 64.0 1.2923 -23.0 43.7182 21.0 5.8479 65.0 1.2526 -22.0 41.4868 22.0 5.6213 66.0 1.2142 -21.0 39.3832 23.0 5.4048 67.0 1.1771 -20.0 37.3992 24.0 5.1978 68.0 1.1413 -19.0 35.5274 25.0 5.0000 69.0 1.1068 -18.0 33.7607 26.0 4.8108 70.0 1.0734 -17.0 32.0927 27.0 4.6298 71.0 1.0412 -16.0 30.5172 28.0 4.4566 72.0 1.0100 -15.0 29.0286 29.0 4.2909 73.0 0.9800 -14.0 27.6216 30.0 4.1323 74.0 0.9509 -13.0 26.2913 31.0 3.9804 75.0 0.9228 -12.0 25.0330 32.0 3.8349 76.0 0.8957 -11.0 23.8424 33.0 3.6955 77.0 0.8695 -10.0 22.7155 34.0 3.5620 78.0 0.8441 -9.0 21.6486 35.0 3.4340 79.0 0.8196 -8.0 20.6380 36.0 3.3113 80.0 0.7959 -7.0 19.6806 37.0 3.1937 81.0 0.7730 -6.0 18.7732 38.0 3.0809 82.0 0.7508 -5.0 17.9129 39.0 2.9727 83.0 0.7293 -4.0 17.0970 40.0 2.8688 84.0 0.7086 -3.0 16.3230 41.0 2.7692 85.0 0.6885 -2.0 15.5886 42.0 2.6735 86.0 0.6690 -1.0 14.8913 43.0 2.5816 87.0 0.6502 0.0 14.2293 44.0 2.4934 88.0 0.6320 1.0 13.6017 45.0 2.4087 89.0 0.6144 2.0 1 3.0057 46.0 2.3273 90.0 0.5973 3.0 12.4393 47.0 2.2491 91.0 0.5808 4.0 11.9011 48.0 2.1739 92.0 0.5647 5.0 11.3894 49.0 2.1016 93.0 0.5492 6.0 10.9028 50.0 2.0321 94.0 0.5342 7.0 10.4399 51.0 1.9656 95.0 0.5196 8.0 9.9995 52.0 1.9015 96.0 0.5055 9.0 9.5802 53.0 1.8399 97.0 0.4919 10.0 9.1810 54.0 1.7804 98.0 0.4786 11.0 8.8008 55.0 1.7232 99.0 0.4658 12.0 8.4385 56.0 1.6680 100.0 0.4533 13.0 8.0934 57.0 1.6149 借助上表,用万用表测量热敏电阻的阻值,比较实际温度,可以判断热敏电阻的好坏,也可以通 过测量热敏电阻的阻值来简单测量温度。 变频空调压缩机排气处热敏电阻 温度/阻值表(R25=50.000KΩB25/50=3950K) 温度(℃)阻值(KΩ)温度(℃)阻值(KΩ)温度(℃)阻值(KΩ)温度(℃)阻值(KΩ) -40.0 2009.2 0.0 168.10 40.0 26.507 80.0 6.3515 -39.0 1869.0 1.0 159.46 41.0 25.464 81.0 6.1541

热敏电阻的温度特性

测量热敏电阻的温度特性 热敏电阻是用半导体材料制成的热敏器件,根据其电阻率随温度变化的特性不同,大致可分为三种类型:(1)NTC (负温度系数)型热敏电阻;(2)PTC (正温度系数)型热敏电阻;(3)CTC (临界温度系数)型热敏电阻。其中PTC 型和CTC 型热敏电阻在一定温度范围内,阻值随温度剧烈变化,因此可用做开关元件。热敏电阻器在温度测控、现代电子仪器及家用电器(如电视机消磁电路、电子驱蚊器)等中有广泛用途。在温度测量中使用较多的是NTC 型热敏电阻,本实验将测量其电阻温度特性。 1.实验目的 (1)测量NTC 型热敏电阻的温度特性; (2)学习用作图法处理非线性数据。 2.实验原理 NTC 型热敏电阻特性 NTC 型热敏电阻是具有负的温度系数的热敏电阻,即随着温度升高其阻值下降,在不太宽的温度范围内(小于450℃),其电阻-温度特性符合负指数规律。 NTC 热敏电阻值R 随温度T 变化的规律由式(1-1)表示 T B T Ae R = (1-1) 其中A 、B 为与材料有关的特性常数,T 为绝对温度,单位K 。对于一定的热敏电阻, A 、 B 为常数。对式(1-1)两边取自然对数有 T B A R T + =ln ln (1-2) 从T R T 1ln -的线性拟合中,可得到A 、B 的值,写出热敏电阻温度特性 的经验公式。 3.实验内容 (1)连接电路。 (2)观察NTC 型热敏电阻的温度特性。 (3)测量NTC 型热敏电阻的温度特性。

(4)数据处理 R 特性曲线; a. 画出热敏电阻的t

b. 画出T R T 1ln 曲线,求出其直线的截距、斜率,即可求得A 、B ,写 出热敏电阻温度特性的经验公式。 (注:文档可能无法思考全面,请浏览后下载,供参考。可复制、编制,期待你的好评与关注)

半导体温度计的设计与制作(已批阅)

实验题目:半导体温度计的设计与制作 实验目的:测试温度在20~70 ℃的范围内,选用合适的热敏电阻和非平衡电桥线路(或选用你认为更好 的测温电路)来设计一半导体温度计。进一步理解热敏电阻的伏安特性和惠斯通电桥测电阻的原理,学习非电学量的电测法,了解实验中的替代原理的应用。 实验原理:(1)半导体温度计就是利用半导体的电阻值随温度急剧变化的特性而制作的,以半导体热敏 电阻为传感器,通过测量其电阻值来确定温度的仪器。这种测量方法为非电量的电测法。 (2)由于金属氧化物半导体的电阻值对温度的反应很灵敏(参见实验3.5.2),因此可以作为温传感器。 为实现非电量的电测法,采用电学仪器来测量热敏电阻的阻值, 还需要了解热敏电阻的伏安特性。由图1可知,在曲线的起始 部分,曲线接近线性,此时,热敏电阻的阻值主要与外界温度 有关,电流的影响可以忽略不计。 (3)半导体温度计测温电路的原理图如图2所示,当电桥平衡时, 表的指示必为零,此时应满足条件T R R R R 321=,若取R 12,则R 3的数值即为的数值。平衡后,若电桥某一臂的电阻又发生改变(如), 则平衡将受到破坏,微安计中将有电流流过,微安计中的电流的 大小直接反映了热敏电阻的阻值的大小。 (4)当热敏电阻的阻值在测温量程的下限1时,要求微安计的 读数为零(即0),此时电桥处于平衡状态,满足平衡条件。若 取R 12,则R 31,即R 3就是热敏电阻处在测温量程的下限温度时的 电阻值,由此也就决定了R 3的电阻值。 (5)当温度增加时,热敏电阻的电阻值就会减小,电桥出现不平衡,在微安计中就有电流流过。当热敏电阻处在测温量程的上限温度电阻值2时,要求微安计的读数为满刻度。由于 G T I I >>,则加在电桥两端上的电压近似有:)(3R R I V T CD += (1) 根据图2的电桥电路,由基尔霍夫方程组可以求出

NTC热敏电阻器在高精度温度测量中的应用

NTC热敏电阻器在高精度温度测量中的应用 于丽丽1,王剑华2,殳伟群2 (1.同济大学电子信息学院,上海200092;2.同济大学中德学院,上海200092) 摘 要:介绍了用NT C热敏电阻器进行高精度温度测量的几点考虑。分析了影响测量精度的各种因素,并提出了一些解决方法,主要的措施有:直流恒流源微安级电流;四线制测量电路;高分辨力(24位)ADC;数字滤波;仪器自校准等。实际测量表明:使用恰当的热敏电阻器在较窄的范围内(0~60℃)测量精度可达±0.001℃。 关键词:热敏电阻器;高精度温度测量;校准 中图分类号:TP223 文献标识码:A 文章编号:1000-9787(2004)12-0075-03 Application of NTC thermistor in high accurate temperature measurement Y U Li2li1,W ANGJian2hua2,SH U Wei2qun2 (1.Dept of E lct I nfo,Tongji U niversity,Sh angh ai200092,China; 2.Dept of China2G erm any,Tongji U niversity,Sh angh ai200092,China) Abstract:A few res olvents of the problems in high accurate tem perature measurement using NT C thermistors are intro2 duced.The various factors affected measurement accuracy are analyzed,and a few res olvents are advanced.S ome mea2 sures are used:constant current s ource offering microam pere current,4wire tem perature measuring circuit,ADC with ex2 cellent res olution,digital filter,instrument recalibration itself,etc.I t is indicated that high accuracy of0.001℃in a nar2 row range of tem perature(0~60℃)can be achieved by using fit thermistors. K ey w ords:thermistor;high2accurate tem perature measurement;calibration 0 引 言 NT C热敏电阻器除具有体积小、响应快、耐振动等优点外,还有阻值高、温度特性曲线的斜率大等特点。由于阻值高,往往可以忽略引线电阻的影响,即允许采用二线制接法。由于阻值随温度变化大,相应输出较大,对二次仪表的要求相对较低。缺点是量程窄、互换性差。 针对本文涉及研制项目温度测量量程窄、测量精度要求高(22℃±0.01℃)等特点,选用了经反复老化、长期稳定性指标优于0.002℃/a的热敏电阻器。尽管其阻值很高,仍然采用四线制的接法,以消除很小一点的引线电阻影响。对单支传感器进行了量程范围内多个温度点的严格标定。将其与采用特殊结构的61 2 电阻测量仪表相配合,最后,得到了期待的精度[1]。 1 高精度温度测量系统的研究 1.1 数学模型 热敏电阻与温度的关系是严重非线性。为了对这种非线性进行尽可能准确的描述,采用了如下的S teinhart2Hart 方程 收稿日期:2004-06-27 R=exp(A+ B T +C T2 +D T3 ),(1)式中 T为绝对温度值,K;R为热敏电阻器在温度为T时的电阻值,Ω。A,B,C,D则为4个特定的参数。一般需要采用多个温度点(至少4点)的标定获得热敏电阻器在已知温度点的阻值,然后,经过拟合获得模型的参数。这是一个从T和R出发推算A,B,C,D的过程,即校准或建模的过程。而测量时,则是在已知A,B,C,D的前提下,根据测出的R和数学模型推算出T的过程,这实际上是个内插的过程。 1.2 影响测量精度的因素 为了用热敏电阻器进行高精度的温度测量,必须研究各种影响因素,并采取相应的对策。在不考虑热敏电阻器的长期稳定性的前提下,尚有如下因素应当考虑: (1)热敏电阻器的标定:从第1.1节的表述可以看出:高精度的测量实际是一个高精度的内插问题。而要进行高精度的内插,需要事先进行高精度的建模。而高精度的建 57  2004年第23卷第12期 传感器技术(Journal of T ransducer T echnology)

用热敏电阻测量温度.

物理实验报告 化学物理系 05级 姓名 张亮 实验时间 3/27晚 学号 PB05206050 实验一(3.5.2) 一、实验题目:用热敏电阻测量温度 二、实验目的:了解热敏电阻-温度特性和测温原理,掌握惠斯通电桥的原理和使用方法。学习坐标变换、曲线改直的技巧和用异号法消除零点误差等方法。 三、实验原理:(1)半导体热敏电阻的电阻——温度特性 某些金属氧化物半导体(如:Fe 3O 4、MgCr 2O 4等)的电阻与温度 关系满足式(1): T B T e R R ∞= (1) 式中R T 是温度T 时的热敏电阻阻值,R ∞是T 趋于无穷时热敏电阻的阻值,B 是热敏电阻的材料常数,T 为热力学温度。 两边取对数得; ∞+= R T B ln lnR T (2) 可以通过做T lnR - T 1 曲线,将曲线改直。 根据定义,电阻的温度系数可由式(3)来决定: dt dR R a t t 1= (3) 故在R-t 曲线某一特定点作切线,便可求出该温度时的半导体电阻温度系数a 。 (2)惠斯通电桥的工作原理 在电桥平衡下可推导出来:02 1 R R R R x = 当电桥平衡时检流计无偏转。实验时电桥调到R 1/R 2=1则有R x =R 0。电桥灵敏度S 为: x x R R n S /??= (4) 式中ΔR x 指的是在电桥平衡后R x 的微小改变量(实际上待测电阻R x

若不能改变,可通过改变标准电阻R0来测电桥灵敏度),Δn越大,说明电桥灵敏度越高,带来的测量误差就越小。 (3)实验装置图:

四、实验器材:半导体热敏电阻、检流计、惠斯通电桥、电炉、温度计 五、实验步骤:(1)按图3.5.2-3接线,先将调压器输出调为零,测室温下的热 敏电阻阻值,注意选择惠斯通电桥合适的量程。先调电桥至平 衡得R0,改变R0为R0+ΔR0,使检流计偏转一格,求出电桥 灵敏度;再将R0改变为R0-ΔR0,使检流计反方向偏转一格, 求电桥灵敏度(因为人工所调平衡可能存在误差,而正反测量 以后可以减小这种误差) (2)调节变压器输出进行加温,从15℃开始每隔5℃测量一次 R t,直到85℃。撤去电炉,使水温慢冷却,测量降温过程中,各 对应温度点的R t。求升温和降温时的各R的平均值,然后绘制 出热敏电阻的R t-t特性曲线 六、实验数据记录:

热敏电阻测量温度

实验题目:热敏电阻测量温度 实验目的:了解热敏电阻的电阻-温度特性和测温原理,掌握惠斯通电桥的原理和使用方法,学习坐标、 曲线改直的技巧和用异号法消除零点误差等方法。 实验原理:1、半导体热敏电阻的电阻-温度特性 对于某些金属氧化物: T B T e R R ∞=,B 为材料常数; 对于金属电阻)](1[1212t t a R R t t -+=,定义其中的dt dR R a t t 1=为温度系数; 两种情况分别图示如下: 两者比较,热敏电阻的电阻和温度是呈非线性的,而金属氧化物的是线性;热敏电阻的温 度系数为负,金属的温度系数为正;热敏电阻对温度变化反应更灵敏。这些差异的产生是因为当温度升高时,原子运动加剧,对金属中自由电子的运动有阻碍作用,故金属的电阻随温度的升高而呈线性缓慢增加;而在半导体中是靠空穴导电,当温度升高时,电子运动更频繁,产生更多的空穴,从而促进导电。 2、惠斯通电桥的工作原理 原理图如右图所示: 若G 中检流为0,则B 和D 等势,故此时02 1 R R R R x = ,在检流计的灵敏度范围内得到R x 的值。 实验内容:

1、按图3.5.2-3接线,先将调压器输出调为零,测室温下的热敏电阻阻值,注意选择惠斯通电桥合适的量程。先调电桥至平衡得R 0,改变R 0为R 0+ΔR 0,使检流计偏转一格,求出电桥灵敏度;再将R 0改变为R 0-ΔR 0,使检流计反方向偏转一格,求电桥灵敏度。求两次的平均值 2、 调节变压器输出进行加温,从25℃开始每隔5℃测量一次R t ,直到85℃。换水,再用9V 电压和3V 电 压外接电表进行测量,然后绘制出热敏电阻的R t -t 特性曲线。在t=50℃的点作切线,由式(3)求出该点切线的斜率 dt dR 及电阻温度系数α。 3、作T R t 1}ln{-曲线,确定式(1)中的常数R ∞和B ,再由式(3)求α(50℃时)。 2 1T B dt dR R t t -==α 1. 比较式(3)和(5)两个结果,试解释那种方法求出的材料常数B 和电阻温度系数α更准确。 实验数据: 实验中,由于时间关系,只测量了内接检流计的情况: E=3V 内接电表 E=9V 内接电表 ΔR=1Ω,1=?n ΔR=1Ω,2=?n T/℃ R T /Ω T/℃ R T /Ω 25 1687 25 1267 30 1390 30 1031 35 1162 35 862 40 973 40 723 45 824 45 620 50 699 50 526 55 601 55 459 60 520 60 397 65 446 65 348 70 386 70 306 75 324 75 268 80 293 80 238 85 255 85 212 对实验数据的分析如下:

相关主题
文本预览
相关文档 最新文档