当前位置:文档之家› 行星齿轮传动装置的装配

行星齿轮传动装置的装配

行星齿轮传动装置的装配
行星齿轮传动装置的装配

六、行星齿轮传动装置的装配

字体[大][中][小]行星齿轮变速器是一种比较先进的齿轮传动装置,与定轴轮系齿轮传动装置相比,它有传动比大、体积小、重量轻、材料消耗少、输入与输出轴同轴等优点。因之,在很多机械上,如透平压缩机、各种起重机等,目前已较多地使用行星齿轮变速器。

在行星齿轮传动装置中,一般都有两个或两个以上的行星轮参与啮合,使参与传递动力的各行星轮之间载荷分布均匀,是各类行星齿轮传动中的基本问题,故在装配时,除了一般性的工艺要求外,还应注意提高和检查各齿轮间的啮合质量,使各行星齿轮的载荷尽量分布均匀,从而保证其运转的平稳性和使用寿命。为此在制造单位往往采取一些措施以提高其啮合质量。

(1)控制各个齿轮的齿圈径向跳动和齿厚公差,有的单位为此而采用选择装配。

(2)采用定向装配,使部分误差能在装配时相互抵消。

(3)注意保证机体、齿圈、端盖和主、从动轴的同轴度。

由于这种情况,在现场安装行星变速器时,如欲进行解体装配,则应对上列情况予以注意,对于采用定向装配的行星变速器,在解体时应在对应的啮合齿上打上标记,以免在解体装置后降低原有的啮合质量。

行星齿轮装配完成后,各部分应转动灵活,并可用涂色法检查各齿面的啮合情况,接触精度应符合技术要求。在进行空载荷试运转时声音应平稳,不应有冲击或特殊声响。

由于各类产品上的使用要求不同,因此行星齿轮变速装置的种类繁多,下面介绍几种典型结构的装配。

(一)一般行星齿轮传动装置的装配

此类行星变速器的传动原理见图6-19。按其啮合特点系属NGW型,其特点是齿轮3与太阳轮1和公用的行星轮2相啮合。当太阳轮作高速旋转时,行星轮在太阳轮和齿轮之间既作自转运动,又绕太阳轮作公转运动。行星转架则将行星轮的低速公转运动输出。图6-20为NGW型减速器的结构形式之一。

按照上述结构原理,当以行星转架作为输入轴时,即为行星增速器。图6-21为行星增速器结构形式之一,用于透平压缩机的增速。

图6-19 NGW型传动原理图1—太阳轮;2—行星轮;3—齿轮

图6-20 NGW型二级减速器

1—太阳轮;2—齿轮;3—行星齿轮;4—浮动联轴器

图6-21 行星增速器1—太阳轮;2—行星齿轮;3—浮动齿圈;4—浮动持环;5—止动环

图6-22 定向装配示意图

1—太阳轮;2—行星轮;3—齿轮;

a1、a2、a3—行星轮径向跳动最大值方向;

b1、b2、b3—行星轮径向跳动最小值方向

1.装配特点

因为NGW型行星变速器在设计时已满足下列装配条件:

式中 z1——太阳轮齿数;

z3——齿轮齿数;

U——行星轮个数。

故行星轮在转架上可以处在任何相对位置(不需对准某一特定齿),转子都能从轴向装入中心轮。

对于无定向装配要求的此类行星变速器,安装时解体后都可按上述要求进行装配。

如果制造厂为了提高啮合质量而采用了定向装配,总装时将各行星轮径向跳动的最大值(或最小值)均放在同一啮合位置上,见图6-22,安装解体时,为了不致降低原有的啮合质量,应在各行星轮上打上啮合标记,并按此标记进行再装配。

2.齿侧间隙的检查

NGW型行星变速器的中心距一般都是不可调整的,齿侧间隙主要由各零件的加工精度及齿厚减薄量予以保证,安装时一般可不作测量。如需检查侧隙,则可用压铅法,方法与测量圆柱齿轮相同。

当太阳轮和齿圈均采用浮动式结构时,如欲测量齿侧间隙,应在专用工具上将各浮动件找正并固定后再进行测量。

当齿圈为非浮动式结构时,为了使齿圈与各行星轮间的齿侧间隙分布均匀,在安装解体后再装配齿圈、壳体和端盖时,应按原定位销进行装配,否则应尽量校正各零件与齿圈的同轴度。

3.接触精度的检查

齿轮的接触精度是评定行星齿轮传动装置质量的一个重要指标,故在安装时应予注意。检查方法采用一般的涂色法,为了便于鉴别,应在行星齿轮上涂色,并逐个进行检查,观察其与太阳轮及齿圈的接触情况。对于双面工作的变速器,应在正反方向各做一次检查。

对于高速行星变速器,一般要求齿面接触精度不低于6级。

4.轴向间隙的检查

当变速箱有一个或数个浮动元件串列时,浮动元件和非浮动元件之间或各浮动元件之间均应留有一定的轴向间隙,一般为0.5~1mm,安装时应注意检查,切勿顶死,以保证其有自由调整径向和轴向位置的可能性。

(二)双联行星齿轮传动装置的装配

在NW型、NGWN型(图6-23)等行星变速器中,都使用双联行星齿轮。

具有双联行星轮的行星变速器,为使各行星轮都能从轴向装入中心轮而不产生干涉,同一变速器各行星轮两齿圈的齿位定向都必须相同,即两齿圈中须有一个齿或齿间(槽)的对称中心线均须处在同一平面。此问题在制造时已予考虑,并在该齿上打上了对位标记,以作装配时的定位依据,见图6-24。

NW型

NGWN型

图6-23 NW型和NGWN型行星变速器传动原理图

1—太阳轮;2—齿轮;3—双联行星轮

图6-24 双联行星轮的对位标记线

当与行星轮相啮合的各中心轮齿数均为行星轮数的整数倍时,组装时只需将各行星轮的对位标记线与转架上的联心线OⅠ、OⅡ、OⅢ……对准即可装入。因为此时各中心轮上必有一齿或齿间(槽)的对称中心线与联心线OⅠ、OⅡ、OⅢ……相重合。

当中心轮的齿数不能满足上述要求时,则各行星轮的对位标记线不在同一相位上(图6-25)。装配时行星轮1的对位标记线应放在OⅠ线上。其余各行星轮的对位标记线必须与连心线OⅡ、OⅢ……,

相应成2、3……的一定角度才能装入中心轮。各行星轮转的角度2、3……取决于中心轮齿

数等设计参数,组装时可根据制造单位在各对应啮合齿上所打的标记进行装配。如无啮合标记,则可逐齿试装以定其所处的位置。

装配中的其他要求同NGW型行星变速器。

(三)少齿差行星齿轮传动装置的装配

渐开线少齿差行星齿轮减速器是最近才发展起来的,其应用围也在逐渐扩大,如起重运输机械、轻工业机械等。这种减速器的特点是结构较紧凑,因此体积小、重量轻、减速比较大。用于这种减速器的齿轮副是一个外齿轮和一个齿轮所组成的齿轮副。这个外齿轮的齿数比齿轮的齿数少一、二个齿或三、四个齿,由于两个齿轮的齿数差很少,所以叫它少齿差。

图6-25 双联行星轮装配位置图

图6-26 少齿差减速器传动原理图

1—行星轮;2—齿轮;

3—高速轴;4—输出机构;5—低速轴

1.传动原理与结构

图6-26为单偏心少齿差行星减速器的传动原理图,齿轮2和外齿轮1构成一对少齿差啮合。当高速偏心轴3转动时,迫使外齿轮1(即行星轮)在齿轮中作公转运动。同时由于、外齿轮间只有少量

齿数差,故当外齿轮公转一圈后又产生了小量自转运动。此低速自转运动通过一所谓“平行轴间联轴器”4即输出机构而传至低速轴5输出。当传递功率较大时,则常采用双偏心高速轴,两行星轮在相隔180°的位置上同时与齿轮相啮合(图6-27)。在该减速器中,两行星轮的低速自转运动通过销轴而传至低速轴输出。

图6-27 两级销轴式减速器

1—偏心轴;2—行星齿轮;3—齿轮;4—销轴

目前常用输出机构的形式有:浮动十字盘式、销轴式(图6-27),十字滑块式和零齿差式(图6-28)等几种。从传动原理看,它们都是相同的,只是结构形式不同而已;从装配方面看,销轴式减速器较为麻烦,其他几种都较方便。

图6-28 零齿差式减速器

1—偏心轴;2—齿轮;3—行星齿轮;4—零齿差输出机构

2.销轴式输出机构销孔(等分孔)与齿的装配位置

当行星齿轮仅用单只时,装配时可不必考虑孔与齿的位置关系。当用两只行星齿轮时,则必须使行星齿轮的齿和孔在某一特定位置,才能使行星轮连同销轴机构从轴向装入齿轮,并使两行星轮取得同步运转。一般在加工行星齿轮时,以精加工的销孔作为基准,并使某一齿的中心线与某一销孔的中心线对准。加工完毕后在两只齿轮上打上对应的标记(图6-29)。

图6-29 销孔与齿对位标记

图6-30 齿轮为奇数、行星轮为偶数时的装配位置

因为两行星齿轮是在互相错开180°的位置上同齿轮相啮合的,故在装配时对于不同齿数差和奇、偶数和齿轮,两行星齿轮的装配位置不同:

(1)齿轮为偶数齿数,齿数差z2-z1=1、3、5……(z2、z1分别为齿轮和行星齿轮齿数),即行星轮的齿数为奇数时,此时齿轮在0°和180°处的齿形相同(同为齿或齿槽),而行星轮在对应位置上的齿形相反。故必须将两行星轮的定位标记错开180°后装入齿轮。

(2)齿轮的齿数为任意数(奇数或偶数),齿数差z2-z1=2、4、6……时,此时行星轮与齿轮的齿数同为奇数或偶数,装配时将两行星轮上的定位标记放在同一方向上即能和齿轮啮合。

二级圆柱齿轮减速器装配图

{机械设计基础课程设计} 设计说明书 课程设计题目 带式输送机传动装置 设计者李林 班级机制13-1班 学号9 指导老师周玉 时间20133年11-12月

目录 一、课程设计前提条件 (3) 二、课程设计任务要求 (3) 三、传动方案的拟定 (3) 四、方案分析选择 (3) 五、确立设计课题 (4) 六、电动机的选择 (5) 七、传动装置的运动和动力参数计算 (6) 八、高速级齿轮传动计算 (8) 九、低速级齿轮传动计算 (13) 十、齿轮传动参数表 (18) 十一、轴的结构设计 (19) 十二、轴的校核计算 (20) 十三、滚动轴承的选择与计算 (24) 十四、键联接选择及校核 (25) 十五、联轴器的选择与校核 (26) 十六、减速器附件的选择 (27) 十七、润滑与密封 (30) 十八、设计小结 (31) 十九、参考资料 (31)

一.课程设计前提条件: 1. 输送带牵引力F(KN): 2.8 输送带速度V(m/S):1.4 输送带滚筒直径(mm):350 2. 滚筒效率:η=0.94(包括滚筒与轴承的效率损失) 3. 工作情况:使用期限12年,两班制(每年按300天计算),单向运转,转速误差不得超过±5%,载荷平稳; 4. 工作环境:运送谷物,连续单向运转,载荷平稳,空载起动,室内常温,灰尘较大。 5. 检修间隔期:四年一次大修,两年一次中修,半年一次小修; 6. 制造条件及生产批量:一般机械厂制造,小批量生产。 二.课程设计任务要求 1. 用CAD设计一张减速器装配图(A0或A1)并打印出来。 2. 轴、齿轮零件图各一张,共两张零件图。 3.一份课程设计说明书(电子版)。 三.传动方案的拟定 四.方案分析选择 由于方案(4)中锥齿轮加工困难,方案(3)中蜗杆传动效率较低,都不予考虑;方案(1)、方案(2)都为二级圆柱齿轮减速器,结构简单,应用广泛,初选这两种方案。 方案(1)为二级同轴式圆柱齿轮减速器,此方案结构紧凑,节省材料,但由于此 方案中输入轴和输出轴悬臂,容易使悬臂轴受齿轮间径向力作用而发生弯曲变形使齿轮啮合不平稳,若使用斜齿轮则指向中间轴的一级输入齿轮和二级输出齿轮的径向力同向,

齿轮和传动装置

外文资料译文 齿轮和齿轮传动装置 外部直齿圆柱齿轮是直齿圆柱齿轮沿轴线切割。齿轮传动在平行轴之间传输。牙齿加载无轴向推力。在中等速度时表现优良,但在高速运动下往往会有很大的噪声。轴旋转方向相反。内啮合圆柱齿轮为传输运动之间的平行轴提供紧凑的驱动安排使其旋转方向相同。 螺旋齿轮是圆柱齿轮的齿和轴线成一定角度切割。在轴旋转方向相反之间提供河,与直齿圆柱相比具有优越的负荷承载能力和安静性。牙齿负载产生轴向推力。 交错轴斜齿轮是非平行的轴线啮合在一起的螺旋齿轮。 直齿锥齿轮的牙是径向朝着顶点,并且是锥形的形式。由于设计为在交叉的轴上操作,锥齿轮常用于连接两轴上相交的轴。所述轴之间的角度等于啮合齿的两个轴之间的角度。轴向推力负荷下开发趋于分离齿轮。 螺旋伞齿轮具有弯曲斜齿彼此接触平滑并逐渐从一个齿的一端到另一端。齿间啮合类似于直齿锥齿轮,但是使用过程中更顺畅,更安静。左手螺旋牙倾斜远离轴反时针方向找小齿轮的小端或齿轮的面,右边的牙齿倾斜远离轴顺时针方向。小齿轮的螺旋的手总是相反的齿轮并常用于用于识别所述齿轮对的手。用于连接两轴相交上轴与直齿锥齿轮。螺旋角不仅不影响平滑性和操作的静音性或效率,而且不影响产生的推力负荷的方向。从所述小齿轮的大端观察时左手螺旋齿轮驱动顺时针创建一个轴向推力趋向于移动小齿轮脱离啮合。 零度锥齿轮具有弯曲的齿位于在大致相同的方向为直伞齿,但应被认为是螺旋伞齿轮与零螺旋角。 准双曲面锥齿轮是螺旋锥齿轮和蜗轮之间的交叉。双曲线锥齿轮的轴是不相交也不平行的。轴线之间的距离被称为偏移。偏移允许减持比例较高的比与其它锥齿轮相比是可行的。准双曲面锥齿轮具有弯曲斜齿在其上的接触开始逐渐并连续从齿的一端到另一端。 蜗轮用于在轴之间成直角传输,即不位于一个共同的平面,有时以连接轴在其它角度之间的运动。蜗轮具有线的齿面接触,并且用于电力传输,但比值越高效率越低。 齿轮术语的定义————以下术语通常适用于各类齿轮: 有源面宽度为使与配合齿轮接触的齿面宽度的尺寸。 补遗是节圆和齿的顶部之间的径向或垂直距离。 动作的弧是通过从与配合齿到接触终止点的第一个接触点的齿行进的节圆的圆弧。动作弧做法是弧通过从与配合齿的间距点的第一个接触点的齿行进的节圆的圆弧。 衰退弧是通过从它与配合齿在节点,直到接触停止接触的齿行进的节圆的圆弧。 轴向间距是平行于相邻的齿的对应边之间的轴线的距离。。

单级圆柱齿轮减速器的高速级齿轮传动设计

优秀设计 单级圆柱齿轮减速器的高速级齿轮传动设计

目录 一、传动方案的拟定及电动机的选择 (2) 二、V带选择 (4) 三.高速级齿轮传动设计 (6) 四、轴的设计计算 (9) 五、滚动轴承的选择及计算 (13) 六、键联接的选择及校核计算 (14) 七、联轴器的选择 (14) 八、减速器附件的选择 (14) 九、润滑与密封 (15) 十、设计小结 (16) 十一、参考资料目录 (16)

数据如下: 已知带式输送滚筒直径320mm ,转矩T=130 N ·m ,带速 V=1.6m/s ,传动装置总效率为?=82%。 一、拟定传动方案 由已知条件计算驱动滚筒的转速n ω,即 5.953206 .1100060100060≈??=?= π πυωD n r/min 一般选用同步转速为1000r/min 或1500r/min 的电动机作为原动机,因此传动装置传动比约为10或15。根据总传动比数值,初步拟定出以二级传动为主的多种传动方案。 2.选择电动机 1)电动机类型和结构型式 按工作要求和工作条件,选用一般用途的Y (IP44)系列三相异步电动机。它为卧式封闭结构。 2)电动机容量 (1)滚筒输出功率P w kw n T 3.19550 5.951309550P =?=?= ωω (2)电动机输出功率P kw d 59.1% 823 .1P P == = η ω 根据传动装置总效率及查表2-4得:V 带传动?1=0.945;滚动轴承?2 =0.98;圆柱齿轮传动 ?3 =0.97;弹性联轴器?4 =0.99;滚筒轴滑动轴承?5 =0.94。 (3)电动机额定功率P ed 由表20-1选取电动机额定功率P ed =2.2kw 。

齿轮传动机构的装配要求

齿轮传动机构的装配要求 对各种齿轮传动装置的基本技术要求是传动均匀,工作平稳,无冲击振动和噪声,承载能力强以及使用寿命长等。 1. 齿轮孔与轴配合要符合技术要求,不得有偏心或歪斜现象。齿轮的端面轴向和径向跳动除由制造产生外,轴和轮孔的配合间隙过大或轴线弯曲变形也会引起。 在测量齿轮径向摆动量时,在齿间放入圆柱规,由百分表得出一个读数,然后转动齿轮,每隔3至4个轮齿又重复进行一次检查,百分表得最大读数与最小读数之差,就是齿轮分度圆上得径向跳动误差。检查端面跳动时,将百分表得触针抵在齿轮的端面上,转动轴就可以测出齿轮跳动量。 2. 保证齿轮又准确的安装中心距和适当的齿侧间隙。间隙过小,齿轮转动不灵活,甚至卡齿,并加剧齿面的磨损。间隙过大,换向空程大并产生冲击。齿侧间隙允许值见表:测量齿轮侧隙的方法通常有3种: a用塞尺法来测量齿侧隙,国标推荐此法 b压铅丝法(铅保险丝)检验。即在齿面延齿宽两端平行放置3至4条。铅丝直径不超过最小侧隙的4倍,转动齿轮测量铅丝的最薄处的尺寸极为侧隙(见图) c百分表检验。将百分表测头与齿轮的齿面接触,另一齿轮固定。将接触百分表测头的齿轮从一侧啮合转到另一侧啮合,百分表上的读数差值即为侧隙。如对小模齿轮测量,可以将一个齿轮固定,在另一个齿轮上装夹紧杆,由于侧隙的存在,装有夹紧杆的齿轮便可摆动一定角度,从而推动百分表的测头,得到表针摆动的读数C,根据分度圆半径R,指针长度L,即可按下式就得侧隙Cn的值(见图):Cn=CR/L mm 3.保证齿面有一定的接触面积和正确的接触部位。接触部位与接触面积是互相联系 的,接触部位的正确与否反映了两啮合齿轮的相互位置的误差。分别用涂色法检查斑点的情况 4.对于滑动齿轮的轴向位移,不应有阻滞和啃住现象。轮齿的错位量不得超过规定值 5.对于转速高的大齿轮,装配在轴后还应做动平衡试验,以避免转速升高时产生过大 振动 6.圆柱齿轮装配要点:

proe二级斜齿轮减速器完整装配图

黄山学院 基于Pro/E的课程设计 二级斜齿轮减速器 课题名称:二级斜圆柱齿轮减速器的三维造型 学生学号:21206072043 专业班级:12机械卓越班 学生姓名:谢坤林 学生成绩: 指导教师:刘胜荣 课题工作时间:2012.12.23 至2013.01.14

目录 1.引言------------------------------------------1 2.上箱体的绘制------------------------------4 3.下箱体的绘制------------------------------12 4.齿轮、齿轮轴的绘制--------------------17 5.轴的绘制------------------------------------29 6.其他零部件的绘制------------------------31 7.总体装配------------------------------------39 8.设计小结------------------------------------48

1引言: 减速器是应用于原动机和工作机之间的独立传动装置,具有结构紧凑、传动效率较高、传递运动准确可靠、使用维护方便和可成批生产等特点。传统的减速器手工设计通常采用二维工程图表示三维实体的做法,这种做法不仅不能以三维实体模型直观逼真地显现出减速器的结构特征,而且对于一个视图上某一尺寸的修改,不能自动反应在其他对应视图上。 1985年美国PTC公司开始建模软件的研究,1988年V1.0的Pro/ENGINEER 诞生,随后美国通用汽车公司将该技术应用于各种类型的减速器设计与制造中。目前在基于Pro/E的减速器的模型设计、数据分析与生产制造方面美国、德国和日本处于领先地位,美国Alan-Newton公司研制的X-Y式精密减速器和日本住友重工研制的FA型减速器都是目前先进的高精密型齿轮减速器。 Pro/ENGINEER技术可以方便快捷的实现建立基于零件或子装配体的三维模型设计和装配,并且提供了丰富的约束条件完成可以满足的工程实践要求。建立三维模型在装配体环境下可以很好的对零件进行编辑和修改,在生产实际中便捷的把立体图转换为工程图,在生产应用中充分利用Pro/E软件进行几何造型设计,进一步利用数控加工设备进行技术加工,可以显著提高减速器的设计制造精密、设计制造质量、设计制造效率,从而缩短产品更新换代生产的整个周期。而我国在Pro/E的减速器三维模型设计方面还相对比较薄弱,因此,随着经济全球化的发展,在此技术上我国需要不断的突破创新,逐步提高“中国创造”在国际市场的竞争力。 基于Pro/Engineer的二级减速器设计 机械电子工程专业学生XXX 指导教师XX 摘要:Pro/Engineer一个参数化、基于特征的实体造型系统,具有单一数据库功能。本文在减速器零部件几何尺寸数值计算的基础上,利用Pro/E软件实现了齿轮系和轴系等零件特征的三维模型设计;利用Pro/E软件实现了齿轮系和轴系的虚拟装配,具有较好的通用性和灵活性。此系统的实现可以使设计人员在人机交互环境下编辑修改,快速高效地设计出圆柱齿轮减速器产品,同时通过PRO/E 对二级减速器进行建模设计,规划零件的装配过程,对实现预期的运动仿真,建立机构运动分析,提高效率和精度奠定了基础。 关键字:二级减速器轴承齿轮机械传动 Pro/E The design of two-grade cylindrical gear reducer based on Pro/Engineer Student majoring in Mechanical and Electronic Engineering XXX Tutor XXX

齿轮的装配技术

齿轮的装配技术 摘要:齿轮传动是各种机械中最常用的传动方式之一,可用来传递运动和动力,改变速度的大小或方向,还可把传动变为移动。齿轮传动在机床、汽车、拖拉机和其他机械中应用很广泛,其原因是具有以下特点:能保证一定的瞬时传动比,传动准确可靠,传递的功率和速度变化范围大,传动效率高,使用寿命长以及结构紧凑,体积小等,但也有一定缺点,如噪音大,传动不如带传动平稳,齿轮装配和制造要求高等。齿轮传动质量的好坏,与齿轮的制造和装配精度有着密切关系。研究齿轮的装配技术具有重要意义。 目录 一、引言 (2) 二、齿轮的种类 (2) (一)平行轴之齿轮 (2) (二)直交轴之齿轮 (2) (三)错交轴之齿轮 (2) 三、齿轮传动的基本要求 (2) (一)传递运动的准确性 (2) (二)传动的平稳性 (2) (三)载荷分布的均匀性 (2) (四)传动侧隙的合理性 (2) 四、齿轮传动机构的精度要求 (3) (一)齿轮的加工精度 (3) (二)齿轮的精度等级 (4) (三)齿轮副的接触精度 (4) (四)齿轮副的侧隙 (4) 五、齿轮的装配与检查 (5) (一)圆柱齿轮传动机构的装配 (5) (二)锥齿轮传动机构的装配 (5) (三)蜗杆传动机构的装配和差速器的装配 (5) 六、齿轮传动的失效形式及措施 (6) (一)齿轮折断 (6) (二)齿面点蚀 (7) (三)齿面磨粒磨损 (7) (四)齿面胶合 (7) (五)齿面塑性变形 (7) 七、影响齿轮传动效率因素 (7) 八、结论 (7)

一、引言 齿轮是现代机械传动中的重要组成部分。从国防机械到民用机械,从重工业机械到轻工业机械,无不广泛的采用齿轮传动。随着我国工农业生产和科学技术的飞跃发展,对于齿轮的需要显著增加。因此,齿轮的配合技术,便成为发展机械工业的一个重要环节。二、齿轮的种类 (一)平行轴之齿轮 1、正齿轮(直齿轮):齿筋平行于轴心之直线圆筒齿轮。 2、齿条:与正齿轮咬合之直线条状齿轮,可以说是齿轮之节距在大小变成无限大时之特殊情形。 3、内齿轮:与正齿轮咬合之直线圆筒内侧齿轮。 4、螺旋齿轮:齿筋成螺旋线之圆筒齿轮。 5、斜齿齿条:与螺旋齿轮咬合之直线状齿轮。 6、双螺旋齿轮:左右旋齿筋所形成之螺旋齿轮。 (二)直交轴之齿轮 1、直齿伞形齿轮:齿筋与节圆锥之母线(直线)一致之伞形齿轮。 2、弯齿伞形齿轮:齿筋为具有螺旋角之弯曲线的伞形齿轮。 3、零螺旋弯齿伞形齿轮:螺旋角为零之弯齿伞形齿轮。 (三)错交轴之齿轮 1、圆筒蜗轮齿轮:圆筒蜗轮齿轮为蜗杆及齿轮之总称。 2、错交螺旋齿轮:此为圆筒形螺旋齿轮,利用要错交轴(又称歪斜轴)间传动时称之。3、其它之特殊齿轮: 面齿轮:为能与正齿轮或与螺旋齿轮咬合之圆盘形的面齿轮。鼓形蜗轮齿轮:凹鼓形蜗杆及与此咬合之齿轮的总称。 戟齿轮:传达错交轴之圆锥状齿轮。形状类似弯齿伞形齿轮。 三、齿轮传动的基本要求 (一)传递运动的准确性 由齿轮啮合原理可知,在一对理论的渐开线齿轮传动过程中,两齿轮之间的传动比 是确定的,这时传递运动是准确的。但由于不可避免地存在着齿轮的加工误差和齿轮副的装配误差,使两轮的传动比发生变化。从而影响了传递运动的准确性,具体情况是,在从动轮转动360°的过程中,两轮之间的传动比成一个周期性的变化,其转角往往不同于理论转角,即发生了转角误差,而导致传动运动的不准确,这种转角误差会影响产品的使用性能,必须加以限制。 (二)传动的平稳性 齿轮传动过程中发生冲击、噪音和振动等现象,影响齿轮传动的平稳性,关系到机器的工作性能、能量消耗和使用寿命以及工作环境等。因此,根据机器不同的使用情况,提出相应的齿轮传动平稳性要求,产生齿轮传动不平稳的原因,主要是由于传动过程中传动比发生高频地瞬时突变的结果。在从动齿轮转一转的过程中,引起传递不准确的传动比变化只有一个周期,而引起传动不平稳的传动比变化有许多周期,两者是不同的,实际上在齿轮传动过程中,

443 高速级齿轮传动设计

目 录 一、传动方案的拟定及电动机的选择 (2) 二、V 带选择 (4) 三.高速级齿轮传动设计 (6) 四、轴的设计计算 (9) 五、滚动轴承的选择及计算 (13) 六、键联接的选择及校核计算 (14) 七、联轴器的选择 (14) 八、减速器附件的选择 (14) 九、润滑与密封 (15) 十、设计小结 (16) 十一、参考资料目录 (16)

数据如下: 已知带式输送滚筒直径 320mm,转矩 T=130 N·m,带速 V=1.6m/s,传动装 置总效率为 ?=82%。 一、拟定传动方案 由已知条件计算驱动滚筒的转速 n ω,即 5 . 95 320 6 . 1 1000 60 1000 60 ? ′ ′ = ′ = p p u w D n r/min 一般选用同步转速为 1000r/min 或 1500r/min 的电动机作为原动机,因此 传动装置传动比约为 10 或 15。根据总传动比数值,初步拟定出以二级传动为 主的多种传动方案。 2.选择电动机 1)电动机类型和结构型式 按工作要求和工作条件,选用一般用途的 Y(IP44)系列三相异步电动机。 它为卧式封闭结构。 2)电动机容量 (1)滚筒输出功率 P w kw n T 3 . 1 9550 5 . 95 130 9550 P = ′ = × = w w (2)电动机输出功率 P kw d 59 . 1 % 82 3 . 1 P P = = = h w 根据传动装置总效率及查表 2-4 得: V 带传动 ?1=0.945; 滚动轴承 ?2 =0.98; 圆柱齿轮传动 ?3 =0.97;弹性联轴器 ?4 =0.99;滚筒轴滑动轴承 ?5 =0.94。 (3)电动机额定功率 P ed 由表 20-1 选取电动机额定功率 P ed =2.2kw。

齿轮齿条传动机构设计说明

齿轮齿条传动机构的设计和计算 1. 齿轮1,齿轮2与齿轮3基本参数的确定 由齿条的传动速度为500mm/s,可以得到齿轮3的速度为500m/s,即 ,/5003s mm V =又()160 d 3 33n V π= ,取,25,25.3202131mm B B mm m Z Z =====,由此可 得()265d 31mm mZ d ===,由(1)与(2)联立解得m in /r 147n 32==n ,取4i 12=则由4i 2 1 1212=== n n z z 得80m in,/58821==z r n 2. 齿轮1齿轮2与齿轮3几何尺寸确定 齿顶高 ()()mm x h m h h h n an a a a 525.57.0125.3321=+?=+===* 齿根高 ()()mm x c h m h h n n an f f f 79.17.025.0125.3h 321=-+?=-+===** 齿高 mm h h h h f a 315.7h 321=+=== 分度圆直径 mm mz d mm mz d 84.26512cos /8025.3cos /,46.6612cos /2025.3cos /d 0220131=?===?===ββ 齿顶圆直径 mm h d d mm h d d a a a a a 34.2772,51.772d 2221131=+==+== 齿根圆直径 mm h d d mm h d d f f f f f 26.2622,88.622d 2221131=-==-== 基圆直径 mm d d mm d d b b b 8.249cos ,45.6220cos 46.66cos d 220131===?===αα 法向齿厚为 mm m x s s n n n n n n 759.625.3364.07.022tan 22s 1321=??? ? ????+=??? ??+===παπ

齿轮传动机构的装配(二)教案

正页 教学内容第三节齿轮传动机构的装配(二) 教学目的 1、复习园柱齿轮机构的装配的步骤、方法及精度检验 2、掌握圆锥齿轮传动机构的装配技术要求 3、掌握圆锥齿轮机构的装配方法及精度检验 重、难点1、圆锥齿轮传动机构的装配技术要求 2、园锥齿轮传动机构的装配方法及精度检验 教法选择用挂图分析讲解 教具挂图 教学进程由旧课引入新课: 上一次课我们学习了第三节齿轮传动机构的装配知识,使我们掌握了齿轮传动机构的装配技术要求、园柱齿 轮传动机构的装配方法及精度检验等内容,这一次课我们 将继续学习第三节齿轮传动机构的装配知识。

第三节 齿轮传动机构的装配(二) 「、园锥齿轮机构的装配 (一)、园锥齿轮装配 装配圆锥齿轮机构的顺序和装配圆柱齿轮传动机构的顺 序相似。 (二)、箱体检验 1、 圆锥齿轮一般是传递互相垂直的两条轴之间的运动,装配之 前需检验两安装孔轴线的垂直度和相交程度。 2、 轴线在同一平面内的两孔垂直度检验方法 (1) 、将百分表装在心棒1上,同时在心棒1上装有定位套筒, 以防止心棒1的轴向窜动; (2) 、旋转心棒1,百分表在心棒2上L 长度的两点读数差,即 为两孔在L 长度内的垂直度误差。 3、 轴线在同一平面内的两孔相交程度检验方法 (1) 、心棒1的测量端做成叉形槽,心棒2的测量端为阶台形, 即为过端和止端; (2) 、检验时,若过端能通过叉形槽,而止端不能通过,则相交 程度合格,否则即为超差。 4、 不在同一平面内垂直两孔轴线的垂直度的检验 (1) 、箱体用千斤顶3支承在平板上,用直角尺4将心棒2调成 垂直位置; (2) 、此时,测量心棒1对平板的平行度误差,即为两孔轴线垂 直度误差。 (三)、两圆锥齿轮轴向位置的确定 1、 当一对标准的圆锥齿轮传动时,必须使两齿轮分度圆锥相切, 两锥顶重合,装配时据此来确定小齿轮的轴向位置,即小齿 轮轴向位置按安装距离来确定。 2、 如此时大齿轮尚未装好,可用工艺轴代替,然后按侧隙要求 决定大齿轮的轴向位置。 3、 有些用背锥面作基准的圆锥齿轮,装配时背锥面对齐对平, 就可保证两齿轮的正确装配位置。 (四)、圆锥齿轮啮合质量的检验 1、 啮合质量的检验包括齿侧隙的检验和接触斑点的检验。 2、 齿侧间隙的检验 ① 、铅丝检验法 在齿宽两端的齿面上,平行放置两条铅丝(宽齿应放置3~4 条),铅丝直径不宜超过最小间隙的4倍,使齿轮啮合挤压铅 丝,铅丝被挤压后最薄处的尺寸,即为侧隙。 ② 、百分表检验法 参照P 163页 图 14.26a 讲 解 参照P l63页 图 14.26b 讲 解 参照P l63 页图14.27 讲 解 参照P 161 页图14.24 讲 解 参照P 161

行星齿轮传动装置的装配

六、行星齿轮传动装置的装配 字体[大][中][小]行星齿轮变速器是一种比较先进的齿轮传动装置,与定轴轮系齿轮传动装置相比,它有传动比大、体积小、重量轻、材料消耗少、输入与输出轴同轴等优点。因之,在很多机械上,如透平压缩机、各种起重机等,目前已较多地使用行星齿轮变速器。 在行星齿轮传动装置中,一般都有两个或两个以上的行星轮参与啮合,使参与传递动力的各行星轮之间载荷分布均匀,是各类行星齿轮传动中的基本问题,故在装配时,除了一般性的工艺要求外,还应注意提高和检查各齿轮间的啮合质量,使各行星齿轮的载荷尽量分布均匀,从而保证其运转的平稳性和使用寿命。为此在制造单位往往采取一些措施以提高其啮合质量。 (1)控制各个齿轮的齿圈径向跳动和齿厚公差,有的单位为此而采用选择装配。 (2)采用定向装配,使部分误差能在装配时相互抵消。 (3)注意保证机体、内齿圈、端盖和主、从动轴的同轴度。 由于这种情况,在现场安装行星变速器时,如欲进行解体装配,则应对上列情况予以注意,对于采用定向装配的行星变速器,在解体时应在对应的啮合齿上打上标记,以免在解体装置后降低原有的啮合质量。 行星齿轮装配完成后,各部分应转动灵活,并可用涂色法检查各齿面的啮合情况,接触精度应符合技术要求。在进行空载荷试运转时声音应平稳,不应有冲击或特殊声响。 由于各类产品上的使用要求不同,因此行星齿轮变速装置的种类繁多,下面介绍几种典型结构的装配。 (一)一般行星齿轮传动装置的装配 此类行星变速器的传动原理见图6-19。按其啮合特点系属NGW型,其特点是内齿轮3与太阳轮1和公用的行星轮2相啮合。当太阳轮作高速旋转时,行星轮在太阳轮和内齿轮之间既作自转运动,又绕太阳轮作公转运动。行星转架则将行星轮的低速公转运动输出。图6-20为NGW型减速器的结构形式之一。 按照上述结构原理,当以行星转架作为输入轴时,即为行星增速器。图6-21为行星增速器结构形式之一,用于透平压缩机的增速。

行星齿轮传动原理

行星齿轮传动原理 每一部汽车上都有行星齿轮,少了它们,汽车就不能自由行走。汽车上的行星齿轮主要用在两个地方,一是驱动桥减速器、二是自动变速器。很多网友都想知道,行星齿轮有什么功能,为什么汽车少不了它。 我们熟知的齿轮绝大部分都是转动轴线固定的齿轮。例如机械式钟表,上面所有的齿轮尽管都在做转动,但是它们的转动中心(与圆心位置重合)往往通过轴承安装在机壳上,因此,它们的转动轴都是相对机壳固定的,因而也被称为"定轴齿轮"。有定必有动,对应地,有一类不那么为人熟知的称为"行星齿轮"的齿轮,它们的转动轴线是不固定的,而是安装在一个可以转动的支架(蓝色)上(图1中黑色部分是壳体,黄色表示轴承)。行星齿轮(绿色)除了能象定轴齿轮那样围绕着自己的转动轴(B-B)转动之外,它们的转动轴还随着蓝色的支架(称为行星架)绕其它齿轮的轴线(A-A)转动。绕自己轴线的转动称为"自转",绕其它齿轮轴线的转动称为"公转",就象太阳系中的行星那样,因此得名。 也如太阳系一样,成为行星齿轮公转中心的那些轴线固定的齿轮被称为"太阳轮",如图2中红色的齿轮。在一个行星齿轮上、或者在两个互相固连的行星齿轮上通常有两个啮合点,分别与两个太阳轮发生关系。如右图中,灰色的内齿轮轴线与红色的外齿轮轴线重合,也是太阳轮。 轴线固定的齿轮传动原理很简单,在一对互相啮合的齿轮中,有一个齿轮作为主动轮,动力从它那里传入,另一个齿轮作为从动轮,动力从它往外输出。也有的齿轮仅作为中转站,一边与主动轮啮合,另一边与从动轮啮合,动力从它那里通过。 在包含行星齿轮的齿轮系统中,情形就不同了。由于存在行星架,也就是说,可以有三条转动轴允许动力输入/输出,还可以用离合器或制动器之类的手段,在需要的时候限制其中一条轴的转动,剩下两条轴进行传动,这样一来,互相啮合的齿轮之间的关系就可以有多种组合: 动力从其中一个太阳轮输入,从另外一个太阳轮输出,行星架通过刹车机构刹死;动力从其中一个太阳轮输入,从行星架输出,另外一个太阳轮刹死; 动力从行星架输入,从其中一个太阳轮输出,另外一个太阳轮刹死; 两股动力分别从两个太阳轮输入,合成后从行星架输出; 两股动力分别从行星架和其中一个太阳轮输入,合成后从另外一个太阳轮输出;动力从其中一个太阳轮输入,从另外一个太阳轮和行星架分两路输出; 动力从行星架输入,分两路从两个太阳轮输出; 我们知道,汽车发动机只有一个,而车轮有四个。发动机的转速扭矩等特性与路面行驶需求大相径庭。要把发动机的功率适当地分配到驱动轮,可以利用行星齿轮的上述特性。如自动变速器,也是利用行星齿轮的这些特性,通过离合器和制动器改变各个构件的相对运动关系而获得不同的传动比

一级圆柱齿轮减速器装配图的画法(含装配图)

一、仔细分析,对所画对象做到心中有数 在画装配图之前,要对现有资料进行整理和分析,进一步搞清装配体的用途、性能、结构特点以及各组成部分的相互位置和装配关系,对其它完整形状做到心中有数。 二、确定表达方案 根据装配图的视图选择原则,确定表达方案。 对该减速器其表达方案可考虑为: 主视图应符合其工作位置,重点表达外形,同时对右边螺栓连接及放油螺塞连接采用局部剖视,这样不但表达了这两处的装配连接关系,同时对箱体右边和下边壁厚进行了表达,而且油面高度及大齿轮的浸油情况也一目了然;左边可对销钉连接及油标结构进行局部剖视,表达出这两处的装配连接关系;上边可对透气装置采用局部剖视,表达出各零件的装配连接关系及该结构的工作情况。 俯视图采用沿结合剖切的画法,将内部的装配关系以及零件之间的相互位置清晰地表达出来,同时也表达出齿轮的啮合情况、回油槽的形状以及轴承的润滑情况。 左视图可采用外形图或局部视图,主要表达外形。可以考虑在其上作局部剖视,表达出安装孔的内部结构,以便于标注安装尺寸。 另外,还可用局部视图表达出螺栓台的形状。 建议用A1图幅,1:1比例绘制。 画装配图时应搞清装配体上各个结构及零件的装配关系,下面介绍该减速器的有关结构: 1、两轴系结构由于采用直齿圆柱齿轮,不受轴向力,因此两轴均由滚动轴承支承。轴向位置由端盖确定,而端盖嵌入箱体上对应槽中,两槽对应轴上装有八个零件,如图2-3所示,其尺寸96等于各零件尺寸之和。为了避免积累误差过大,保证装配要求,轴上各装有一个调整环,装配时修磨该环的厚度g使其总间隙达到要求0.1±0.02。因此,几台减速器之间零件不要互换,测绘过程中各组零件切勿放乱。

传动装置作业

1.新型干法水泥生产设备有哪些特征? 答:(1)设备发展大型化(2)系统自动化程度高(3)高速化(4)精密化 2.传动装置有哪些作用? 答:(1)机械传动的主要功能是将原动机轴的旋转运动和动力传递给另一根轴,并能改变转速的大小和方向。 3.水泥生产常用的机械传动装置有哪些? 答:在水泥生产企业常用的机械传动装置有带传动、链传动、齿轮传动和涡轮蜗杆传动等。 4.简述带传动、链传动、齿轮转动的工作原理? 答:(1)带转动:带传动是用挠性传动带做中间体而靠与带轮产生的摩擦力工作的一种传动。(2)链传动:链传动是由装在平行轴上的主、从动链轮和绕在两链轮上的环形链条所组成,以环形链作中间挠性件,靠链与链轮轮齿的相互啮合来传递运动和动力。 (3)齿轮传动:齿轮传动是利用两齿轮的轮齿相互啮合传递动力和运动的机械传动。5.比较带传动、链传动、齿轮传动的差异? 答:从结构、工作原理、特征方向解答。(详细简略) 6. 比较带传动、螺旋传动、链传动、齿轮传动、蜗杆传动的优缺点? 答:1带传动;优点:传动平稳、结构简单、成本低、使用维护方便、有良好的挠性和弹性、过载打滑。 缺点:传动比不准确、带寿命低、轴上载荷较大、传动装置外部尺寸大、效率低 2螺旋传动:比较常见的就是螺杆,螺母。优点;小转矩产生较大的轴向推力,最重要的是能自锁, 缺点:加工精度要高,工作速度差,磨损大、寿命短,还可能出现爬行等现象 3 链传动:优点:无弹性滑动和打滑现象,平均传动比准确,工作可靠,效率高;传递功率大,过载能力强,相同工况下的传动尺寸小;所需张紧力小,作用于轴上的压力小;能在高温、潮湿、多尘、有污染等恶劣环境中工作。 缺点:仅能用于两平行轴间的传动;成本高,易磨损,易伸长,传动平稳性差,运转时会产生附加动载荷、振动、冲击和噪声,不宜用在急速反向的传动中。 4齿轮传动:优点:齿轮传动平稳,传动比精确,工作可靠、效率高、寿命长,使用的功率、速度和尺寸范围广。 缺点:制造齿轮需要有专门的设备,啮合传动会产生噪声。 5蜗杆传动:优点:传动比大,结构紧凑,传动平稳,无噪音,具有自锁性。缺点:蜗杆传动效率低,发热量大,齿面容易磨损,成本高。

齿轮传动装置装配基础知识

齿轮传动装置装配基础知识-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

齿轮传动装置装配基础知识 常用的齿轮传动装置有圆柱齿轮、圆锥齿轮和蜗杆蜗轮等三种。 齿轮传动装置正确装配的基本要求是:正确装配和固定→精确保持相对位置→具有啮合间隙→保证工作表面良好接触。装配正确的齿轮运转时:速度均匀、无振动和噪音。 装配步骤是: ①对零件进行清洗、去除毛刺,并按图纸要求检查零件的尺寸、几何形状、位置精度及表面粗糙度等。 ②对装配式齿轮(蜗轮),先进行齿轮(蜗轮)的自身装配,并固定之。 ③将齿轮(蜗轮)装于轴上,并装配好滚动轴承。 ④齿轮—轴(蜗杆、蜗轮—轴)安装就位。 ⑤安装后的齿轮接触质量(啮合间隙、接触面积)检查。 (一)圆柱齿轮传动装置的装配 1.齿轮与轴的配合 齿轮与轴的配合面在压入前应涂润滑油。配合面为锥形面时,应用涂色法检查接触状况,对接触不良的应进行刮削,使之达到要求。装配好后的齿轮—轴应检查齿轮齿圈的径向跳动和端面跳动。 2.两啮合齿轮的中心距和轴线平行度的检查 (1)中心距的检查 在齿轮轴未装入齿轮箱中以前,可以用特制的游标卡尺来测量两轴承座孔的中心距。或利用检验心轴和内径千分尺或游标卡尺来进行测量。 (2)轴线平行度的检查 1m 长度上轴线平行度的偏差量为δfx 和δfy (即为轴线平行度),可分别用下面的两式来表示: )/(1000),/(1000m mm b f f m mm b f f y y x x ?=?=δδ 检查前,先将齿轮轴或检验心轴放置在齿轮箱的轴承座孔内,然后用内径千分尺来测量x 方向上轴线的平行度(即两根轴线在1m 长度上的中心距的差

行星齿轮传动装置装配技术

行星齿轮传动装置装配技术 行星齿轮变速器是一种比较先进的齿轮传动装置,与定轴轮系齿轮传动装置相比,它有传动比大、体积小、重量轻、材料消耗少、输入与输出轴同轴等优点。因之,在很多机械上,如透平压缩机、各种起重机等,目前已较多地使用行星齿轮变速器。 在行星齿轮传动装置中,一般都有两个或两个以上的行星轮参与啮合,使参与传递动力的各行星轮之间载荷分布均匀,是各类行星齿轮传动中的基本问题,故在装配时,除了一般性的工艺要求外,还应注意提高和检查各齿轮间的啮合质量,使各行星齿轮的载荷尽量分布均匀,从而保证其运转的平稳性和使用寿命。为此在制造单位往往采取一些措施以提高其啮合质量。 (1)控制各个齿轮的齿圈径向跳动和齿厚公差,有的单位为此而采用选择装配。 (2)采用定向装配,使部分误差能在装配时相互抵消。 (3)注意保证机体、内齿圈、端盖和主、从动轴的同轴度。 由于这种情况,在现场安装行星变速器时,如欲进行解体装配,则应对上列情况予以注意,对于采用定向装配的行星变速器,在解体时应在对应的啮合齿上打上标记,以免在解体装置后降低原有的啮合质量。 行星齿轮装配完成后,各部分应转动灵活,并可用涂色法检查各齿面的啮合情况,接触精度应符合技术要求。在进行空载荷试运转时声音应平稳,不应有冲击或特殊声响。 由于各类产品上的使用要求不同,因此行星齿轮变速装置的种类繁多,下面介绍几种典型结构的装配。 (一)一般行星齿轮传动装置的装配 此类行星变速器的传动原理见图6-19。按其啮合特点系属NGW型,其特点是内齿轮3与太阳轮1和公用的行星轮2相啮合。当太阳轮作高速旋转时,行星轮在太阳轮和内齿轮之间既作自转运动,又绕太阳轮作公转运动。行星转架则将行星轮的低速公转运动输出。图6-20为NGW型减速器的结构形式之一。 按照上述结构原理,当以行星转架作为输入轴时,即为行星增速器。图6-21为行星增速器结构形式之一,用于透平压缩机的增速。 图6-19 NGW型传动原理图 1—太阳轮;2—行星轮;3—内齿轮

工程图学课程设计--单级直齿圆柱齿轮减速器

工程图学课程设计--单级直齿圆柱齿轮减速器

工程图学课程设计 单级直齿圆柱齿轮减速器 设计说明书 专业机械设计制造及其自动化 班级 学号 姓名 指导教师 答辩日期 2014.7.3

1.概述 1.1减速器的作用: ①降速同时提高输出扭矩,扭矩输出比例按电机输出乘减速比,但要注意不能超出减速机额定扭矩。②减速同时降低了负载的惯量,惯量的减少为减速比的平方。 1.2减速器的种类: 减速器的种类很多。常用的齿轮及蜗杆减速器按其传动及结构特点,大致可分为三类:齿轮减速器(主要有圆柱齿轮减速器,圆锥齿轮减速器和圆锥-圆柱齿轮减速器三种),蜗杆减速器(主要有圆弧蜗杆减速器,锥蜗杆减速器和蜗杆-齿轮减速器),行星减速器(主要有渐开线行星齿轮减速器和谐波齿轮减速器)。 下图为常见减速箱:

1.3减速器的应用场合: 减速器应用范围相当广泛。其应用从大动力的传输工作,到小负荷,精确的角度传输都可以见到减速机的应用,且在工业应用上,减速机具有减速及增加转矩功能。因此广泛应用在速度与扭矩的转换设备。几乎在各式机械的传动系统中都可以见到它的踪迹,从交通工具的船舶、汽车、机车,建筑用的重型机具,机械工业所用的加工机具及自动化生产设备,到日常生活中常见的家电,钟表等等. 2.单极圆柱齿轮减速器各组成部分分析 2.1 整体描述 本次课程设计的减速器为单极圆柱齿轮减速器,它由36种零件组成,其中标准件12种。它主要由箱体,箱盖,齿轮,轴,端盖等组成。下图所示的爆炸图清晰地表达了各零件之间的装配关系:

图 1减速器爆炸示意图 性能规格尺寸:¢47H7,¢62H7,¢30H7, ¢30,¢20K6 等. 装配尺寸:¢47H7/h9,¢62H7/h9,¢30k6, ¢30H7/h9,¢20 k6 等. 外型尺寸:230,172,80,212 等 . 安装尺寸:158,16,23 ,74,34 , 70±0.08等. 注意:在减速器装配图的拼装过程中,一定要注

行星齿轮机构运动规律 原理及应用分析

行星齿轮机构运动规律原理及应用分析 类型:转载来源:济民工贸的博客作者:齐兵责任编辑:李笛发布时间:2009年06月11日 我们熟知的齿轮绝大部分都是转动轴线固定的齿轮。例如机械式钟表、普通机械式变速箱、减速器,上面所有的齿轮尽管都在做转动,但是它们的转动中心(与圆心位置重合)往往通过轴承安装在机壳上,因此,它们的转动轴都是相对机壳固定的,因而也被称为"定轴齿轮"。 有定必有动,对应地,有一类不那么为人熟知的称为"行星齿轮"的齿轮,它们的转动轴线是不固定的,而是安装在一个可以转动的支架(蓝色)上(图中黑色部分是壳体,黄色表示轴承)。行星齿轮(绿色)除了能象定轴齿轮那样围绕着自己的转动轴(B-B)转动之外,它们的转动轴还随着蓝色的支架(称为行星架)绕其它齿轮的轴线(A-A)转动。绕自己轴线的转动称为"自转",绕其它齿轮轴线的转动称为"公转",就象太阳系中的行星那样,因此得名。 也如太阳系一样,成为行星齿轮公转中心的那些轴线固定的齿轮被称为"太阳轮",如图中红色的齿轮。在一个行星齿轮上、或者在两个互相固连的行星齿轮上通常有两个啮合点,分别与两个太阳轮发生关系。如右图中,灰色的内齿轮轴线与红色的外齿轮轴线重合,也是太阳轮。 轴线固定的齿轮传动原理很简单,在一对互相啮合的齿轮中,有一个齿轮作为主动轮,动力从它那里传入,另一个齿轮作为从动轮,动力从它往外输出。也有的齿轮仅作为中转站,一边与主动轮啮合,另一边与从动轮啮合,动力从它那里通过。

在包含行星齿轮的齿轮系统中,情形就不同了。由于存在行星架,也就是说,可以有三条转动轴允许动力输入/输出,还可以用离合器或制动器之类的手段,在需要的时候限制其中一条轴的转动,剩下两条轴进行传动,这样一来,互相啮合的齿轮之间的关系就可以有多种组合: 单排行星齿轮机构的结构组成为例 ● (1)行星齿轮机构运动规律 设太阳轮、齿圈和行星架的转速分别为n1、n2和n3,齿数分别为Z1、Z2、Z3;齿圈与太阳轮的齿数比为α。则根据能量守恒定律,由作用在该机构各元件上的力矩和结构参数可导出表示单排行星齿轮机构一般运动规律的特性方程式: n1+αn2-(1+α)n3=0和Z1+Z2=Z3 ●(2)行星齿轮机构各种运动情况分析 由上式可看出,由于单排行星齿轮机构具有两个自由度,在太阳轮、齿圈和行星架这三个基本构件中,任选两个分别作为主动件和从动件,而使另一元件固定不动(即使该元件转速为0),或使其运动受一定的约束(即该元件的转速为某定值),则机构只有一个自由度,整个轮系以一定的传动比传递动力。下面分别讨论各种情况。 行星齿轮机构各种运动情况分析 固定件主动件从动件转速成转向 太阳轮行星架齿圈增速同向 太阳轮齿圈行星架减速同向 齿圈行星架太阳轮增速同向 齿圈太阳轮行星架减速同向 行星架齿圈太阳轮增速反向 行星架太阳轮齿圈减速反向

齿轮传动装置装配基础知识

齿轮传动装置装配基础知识 常用的齿轮传动装置有圆柱齿轮、圆锥齿轮和蜗杆蜗轮等三种。 齿轮传动装置正确装配的基本要求是:正确装配和固定→精确保持相对位置→具有啮合间隙→保证工作表面良好接触。装配正确的齿轮运转时:速度均匀、无振动和噪音。 装配步骤是: ①对零件进行清洗、去除毛刺,并按图纸要求检查零件的尺寸、几何形状、位置精度及表面粗糙度等。 ②对装配式齿轮(蜗轮),先进行齿轮(蜗轮)的自身装配,并固定之。 ③将齿轮(蜗轮)装于轴上,并装配好滚动轴承。 ④齿轮—轴(蜗杆、蜗轮—轴)安装就位。 ⑤安装后的齿轮接触质量(啮合间隙、接触面积)检查。 (一)圆柱齿轮传动装置的装配 1.齿轮与轴的配合 齿轮与轴的配合面在压入前应涂润滑油。配合面为锥形面时,应用涂色法检查接触状况,对接触不良的应进行刮削,使之达到要求。装配好后的齿轮—轴应检查齿轮齿圈的径向跳动和端面跳动。 2.两啮合齿轮的中心距和轴线平行度的检查 (1)中心距的检查 在齿轮轴未装入齿轮箱中以前,可以用特制的游标卡尺来测量两轴承座孔的中心距。或利用检验心轴和内径千分尺或游标卡尺来进行测量。 (2)轴线平行度的检查 1m 长度上轴线平行度的偏差量为δfx 和δfy (即为轴线平行度),可分别用下面的两式来表示: )/(1000),/(1000m mm b f f m mm b f f y y x x ?=?=δδ 检查前,先将齿轮轴或检验心轴放置在齿轮箱的轴承座孔内,然后用内径千分尺来测量x 方向上轴线的平行度(即两根轴线在1m 长度上的中心距的差值),

再用水平仪来测量y方向上的轴线的平行度(即两根轴线水平度的差值)。 3.啮合间隙的检查 齿轮啮合间隙的功用是储存润滑油、补偿齿轮尺寸的加工误差和中心距的装配误差,以及补偿齿轮和齿轮箱在工作时的热变形和弹性变形。一般正常啮合的 ) 圆柱齿轮的顶隙(C=0.25m n , 齿轮啮合间隙的检查方法有以下三种: (1)塞尺法用塞尺可以直接测量出齿轮的顶隙和侧隙。 (2)千分表法用千分表可以间接测量出正齿轮的侧隙。 若被测的是斜齿轮,则法面上的实际侧隙j n=cosαn cosβ。式中αn为斜齿轮的法向压力角(20°),β为斜齿轮的螺旋角(8°~ 20°)。 当被测齿轮副的中心距为可调时,则中心距的变化量Δf a与实际侧隙的变化量Δj n之间的关系为:Δj n=2Δf a·sinα(正齿轮)或Δj n=2Δf a·sinαn(斜齿轮)。 (3)压铅法压铅法是测量顶隙和侧隙最常用的方法。测量时,先将铅丝放置在齿轮上,然后使齿轮啮合滚压,压扁后的铅丝厚度,就相当于顶隙和侧隙的数值,其值可以用游标卡尺或千分尺测量,铅丝最厚部分的厚度为顶隙c,相邻两较薄部分的厚度之和为侧隙j n=j n′+j n″。 对于大型的宽齿轮,必须放置两条以上的铅丝,才能正确的测量出啮合间隙。此时不仅可以根据它来检查间隙,而且还能检查出齿轮轴线的平行度。 4.齿轮啮合接触面的检查与调整 其检查方法一般采用涂色法,即将红铅油均匀的涂在主动齿轮的轮齿面上,用其来驱动从动齿轮数圈后,则色迹印显出来,根据色迹可以判定齿轮啮合接触面是否正确。装配正确的齿轮啮合接触面必须均匀的分布在节线上下,接触面积应符合要求。装配后齿轮啮合接触面常有几种情况。 为了纠正不正确的啮合接触,可采用改变齿轮中心线的位置、研刮轴瓦或加工齿形等方法来修正。当齿轮啮合位置正确,而接触面积太小时,可在齿面上加研磨剂,并使两齿轮转动进行研磨,使其达到足够的接触面积。

相关主题
文本预览
相关文档 最新文档