当前位置:文档之家› 万有引力与航天专题复习

万有引力与航天专题复习

万有引力与航天专题复习
万有引力与航天专题复习

专题: 万有引力与航天

1.内容:2.公式:F =,其中G =N·m 2/kg 2,叫引力常量. 3.适用条件:

宇宙 速度 数值(km/s)

意义

第一宇宙速度 7.9

卫星绕地球做圆周运动的最小发射速度(最大环绕速度).若7.9 km/s≤v

<11.2 km/s,物体绕运行(环绕速度)gR R

GM

v ==

1

第二宇宙速度 11.2

物体挣脱地球引力束缚的最小发射速度.若11.2 km/s ≤v <16.7 km/s,

物体绕运行(脱离速度)gR R

GM

v v 22212==

=

第三宇 宙速度

16.7

物体挣脱太阳引力束缚的最小发射速度.若v ≥16.7 km /s ,物体将脱离 在宇宙空间运行(逃逸速度)

1.轨道平面一定:轨道平面与共面.2.周期一定:与周期相同,即T =24 h. 3.角速度一定:与的角速度相同.

4.高度一定:由G 错误!=m 错误!(R+h)得同步卫星离地面的高度h =错误!-R.≈3.56×107m

5.速率一定:v =错误! 6. 向心加速度大小一定()h R T v a n +??

?

??==2

2πω

万有引力定律应用的基本方法:

(1)把天体的运动看成匀速圆周运动,所需向心力由万有引力提供.

“万能”连等式:G \f(Mm,r2)=ma n=mv

2r

=mω2r =m (错误!)2r =m (2πf)2r

(2)不考虑中心天体的自转。 黄金代换式:

mg R GMm =2

(表面), ()

/

2mg h R GMm =+(h高处) 考向一:天体的质量M 、密度ρ的估算

(1)测出卫星绕中心天体做匀速圆周运动的半径r 和周期T ,由G M m

r

2=m(\f(2π,T ))2r ,可得

天体质量为:M =错误!.

该中心天体密度为:ρ=错误!=错误!=错误!(R 为中心天体的半径). 当卫星沿中心天体表面运行时,r =R ,则ρ=\f(3π,G T2). (2)利用天体表面的重力加速度g 和天体半径R . 由于G 错误!=mg ,故天体质量M =错误!, 天体密度ρ=错误!=错误!=错误!.

【例4】天文学家新发现了太阳系外的一颗行星.这颗行星的体积是地球的4.7倍,质量是地球的25倍.已知某一近地卫星绕地球运动的周期约为1.4小时,引力常量G =6.67×10-11 N·m2/k g2,由此估算该行星的平均密度约为( )

A.1.8×103 k g/m 3

B.5.6×103 kg/m 3C.1.1×104 kg /m 3 D.2.9×104

kg/m 3 考向二:卫星的运行和变轨问题 1.人造卫星的动力学特征

万有引力提供向心力.即G \f(Mm,r2)ma ==m \f(v 2,r )=mrω2

=m (2πT

)2rma =

2.人造卫星的运动学特征 (1)向心加速度a :由ma r Mm G

=2得2

r GM

a =

,随着轨道半径的增加,卫星的向心加速度减小。 (2)由线速度v :由G\f(M m,r 2)=m v

r 得v = \r (\f (GM,r )),随着轨道半径的增加,卫星的线速度减小。

(3)角速度ω:由G \f(Mm,r 2)=mω2

r 得ω=错误!,随着轨道半径的增加,卫星的角速度减小。 (4)周期T :由G错误!=m错误!r 得T =2π错误!,随着轨道半径的增加,卫星的周期增大。

【例5】如图所示,a 、b是两颗绕地球做匀速圆周运动的人造卫星,它们距地面的高度分别是R 和2R (R 为地球半径).下列说法中正确的是( )

A.a 、b的线速度大小之比是 错误!∶1

B.a 、b 的周期之比是1∶2 2

C.a、b 的角速度大小之比是3 错误!∶4 D.a 、b 的向心加速度大小之比是9∶4 3.卫星的环绕速度和发射速度

不同高度处的人造地球卫星在圆轨道上运行速度r

GM

v =

,其大小随半径的增大而减

小.但是,由于在人造地球卫星发射过程中火箭要克服地球引力做功,因此将卫星发射到离地球越远的轨道,在地面上所需的发射速度就越大,即v 发射>v 环绕,所以近地人造地球卫星的速度是最大环绕速度,也是人造卫星的最小发射速度. 4.人造地球卫星的超重和失重

(1)人造地球卫星在发射升空时,有一段加速运动;在返回地面时,有一段减速运动.这两个过程加速度方向均向上,因而都是超重状态.

(2)人造地球卫星在沿圆轨道运行时,由于万有引力提供向心力,因此处于完全失重状态.在这种情况下凡是与重力有关的力学现象都不会发生.因此,在卫星上的仪器,凡是制造原理与重力有关的均不能使用.同理,与重力有关的实验也将无法进行(如:天平、水银气压计等)

5.卫星的变轨

卫星做匀速圆周运动时满足:G 错误!=ma = m 错误!=mrω2=mr (错误!)2

当卫星由于某种原因速度突然改变时(开启或关闭发动机或空气阻力作用),万有引力就不再等于向心力,卫星将做变轨运行.

(1)当v增大时,所需向心力m 错误!增大,即万有引力不足以提供向心力,卫星将做离心运动,脱离原来的

圆轨道,轨道半径变大,但卫星一旦进入新的轨道运行,由v = \r(GM

)知其运行速度要减小,但重力势能、

机械能均增加.

(2)当卫星的速度突然减小时,向心力\f (mv 2

,r )减小,即万有引力大于卫星所需的向心力,因此卫星将做向心运动,同样会脱离原来的圆轨道,轨道半径变小,进入新轨道运行时由v = \f (GM

r )知运行速度将增大,但重力势能、机械能均减少.(卫星的发射和回收就是利用了这一原理)

【例6】如图4-4-2所示,a、b、c 是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是()

A.b 、c 的线速度大小相等,且大于a 的线速度

B .b 、c 的向心加速度大小相等,且大于a 的向心加速度

轨道Ⅰ 地球 轨道Ⅱ

Q P C.c加速可追上同一轨道上的b ,b 减速可等到同一轨道上的c D .a 卫星由于某种原因,轨道半径缓慢减小,其线速度将变大

【例7】某人造地球卫星因受高空稀薄空气的阻力作用,绕地球运转的轨道会慢慢改变,某次测量卫星的轨道半径为r 1,后来变为r 2(r 2

A .Ek 2T 1 C.E k2>Ek 1,T 2<T 1D.E k 2>Ek1,T 2>T1

【例8】人造卫星首次进入的是距地面高度近地点为200km,远地点为340km 的椭圆轨道,在飞行第五圈的时候,飞船从椭圆轨道运行到以远地点为半径的圆形轨道上,如图所示,试处理以下几个问题(地球半

径R=6370km ,g=9.8m /s 2

)

(1)飞船在椭圆轨道1上运行,Q 为近地点,P 为远地点,当飞船运动到P点时点火,使飞船沿圆轨道2运行,以下说法正确的是( )

A.飞船在Q 点的万有引力大于该点所需的向心力 B.飞船在P 点的万有引力大于该点所需的向心力 C.飞船在轨道Ⅰ上P点的速度小于轨道Ⅱ上P 的速度 D 、飞船在轨道Ⅰ上P 点的加速度小于轨道Ⅱ上P 的加速度

(2)假设由于飞船的特殊需要,中国的一艘原本在圆轨道运行的飞船前往与之对接,则飞船一定是( )

A.从较低轨道上加速 B. 从较高轨道上加速 C. 从同一轨道上加速 D. 从任意轨道上加速

考向三:“双星模型”问题

在天体模型中,将两颗彼此距离较近的恒星称为双星,它们在相互之间的万有引力作用下,绕两球连线上某点做周期相同的匀速圆周运动.如图

(1)双星夹圆心,且始终在同一直线上,靠彼此间的万有引力提供向心力 (2)具有相同的周期T 和角速度ω

(3)轨道半径和质量成反比L m m m r L m m m r 21122121,+=+= (4)双星总质量

2

3

24M GT

L π=总

(其中L 为双星间距,T 为周期) 【例9】如图4-4-6,质量分别为m 和M 的两个星球A 和B在引力作用下都绕O点做匀速圆周运动,星球A 和B 两者中心之间的距离为L .已知A 、B 的中心和O三点始终共线,A和B 分别在O 的两侧.引力常量为G . (1)求两星球做圆周运动的周期;

(2)在地月系统中,若忽略其他星球的影响,可以将月球和地球看成上述星球A 和B ,月球绕其轨道中心运行的周期记为T 1.但在近似处理问题时,常常认为月球是绕地心做圆周运动的,这样算得的运行周期记为T 2.已知地球和月球的质量分别为5.98×1024 kg 和7.35×1022

kg .求T 2与T 1两者平方之比.(结果保留3位小数)

考向四:环绕同一中心天体的星际相距最远和最近问题

1、从相距最近(两星在中心天体的同侧且三星共线)到再次相距最近所需最短时间: 据()

πωω2t -=小大则小

大ωωπ

-=2t ,

而T π

ω2=

则小

大小大T T T T t -= 2、从相距最近(两星在中心天体的同侧且三星共线)到相距最远(两星在中心天体的两侧且三星共线)所

需最短时间: 据()

πωω=t -小大则小

大ωωπ-=

t ,

m 1

m 2

r 1 r 2 O ω

而T π

ω2= 则()

小大小大T T T T t -=2

【例10】两颗卫星在同一轨道平面绕地球做匀速圆周运动,地球半径为R ,a卫星离地面的高度等于R ,b

卫星离地面高度为3R ,则:

(1)a 、b 两卫星周期之比T a ∶T b 是多少?

(2)若某时刻两卫星正好通过地面同一点的正上方,则a 至少经过多少个周期两卫星相距最远? 考向五:天体的不瓦解问题

在赤道处的物体最容易脱离天体:R m F R

Mm G

N 2

2自ω=-(当F N =0将瓦解) 而,3

43R M πρ=自自ωπ2=T .故不瓦解的条件是23自

GT πρ≥ 【例10】中子星是恒星演化过程中的一种可能结果,它的密度很大.现有一中子星,观测到它的自转周期

为T=1

30

s .问该中子星的最小密度应是多少才能维持该星体的稳定,不致因自转而瓦解?(计算时星体可视

为均匀球体,万有引力常量G=6.67×10-1

1m3/kg ·s 2) 角速度

周期

线速度

向心加速度

向心力

赤道上 自ωω=1 自T T =1

R v 11ω=

R a 2

11ω=

11ma F = 近地卫星上 32R

GM

=

ω GM

R T 3

224π=

12宇v R

GM ==

ν

g 22==R GM a mg ma F ==22

同步卫星上 自ωω=3 3

3h)(+=

R GM

ω

自T T =3

GM

R T 3

23)h (4+=

π

)(33h R v +=ω

h

R GM

+=

3ν )(2

33h R a +=ω

2

3)(h R GM a +=

33ma F =

同物比较

231ωωω<= 231T T T >= 1231宇v v v v =<<

g

a a a =<<231

mg

F F F =<<231

【例11】如图,地球赤道上的山丘e ,近地资源卫星p和同步通信卫星q 均在赤道平面上绕地心做匀速圆周运动.设e 、p 、q 的圆周运动速率分别为v1、v 2、v3,向心加速度分别为a 1、a 2、a3,则( )

A.v 1>v 2>v3B .v 1<v2<v 3C .a 1>a 2>a 3D.a 1<a 3<a2

考向七:万有引力与抛体运动的综合(万有引力与牛顿运动定律的综合) 关键是:重力加速度g

(1)由黄金代换得g (2)由抛体运动或牛顿运动定律得g

我国在2010年实现探月计划——“嫦娥工程”.同学们也对月球有了更多的关注.

(1)若已知地球半径为R ,地球表面的重力加速度为g ,月球绕地球运动的周期为T,月球绕地球的运动近似看成匀速圆周运动,试求出月球绕地球运动的轨道半径.

(2)若宇航员随登月飞船登陆月球后,在月球表面某处以速度v 0竖直向上抛出一个小球,经过时间t ,小球落回抛出点.已知月球半径为r ,万有引力常量为G,试求出月球的质量M月.

高考物理万有引力与航天专题训练答案

高考物理万有引力与航天专题训练答案 一、高中物理精讲专题测试万有引力与航天 1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求: (1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F R m -(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】 (1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l 在最高点:2 22mv F mg l += ① 在最低点:2 11mv F mg l -= ② 由机械能守恒定律,得 221211222 mv mg l mv =?+ ③ 由①②③,解得1 2 6F F g m -= (2) 2 GMm mg R = 2GMm R =2 mv R 两式联立得:12()6F F R m -

(3)在星球表面:2 GMm mg R = ④ 星球密度:M V ρ= ⑤ 由④⑤,解得12 8F F GmR ρπ-= 点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度. 2.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少? (3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1 )2 ,16(2)速度之比为2 【解析】 【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解; 解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2 Mm G mg R = a 卫星 2 224a GMm m R R T π= 解得2a T =b 卫星2 2 24·4(4)b GMm m R R T π= 解得16b T = (2)卫星做匀速圆周运动,F F =引向, a 卫星2 2a mv GMm R R =

高考物理万有引力与航天解题技巧及经典题型及练习题(含答案)

高考物理万有引力与航天解题技巧及经典题型及练习题(含答案) 一、高中物理精讲专题测试万有引力与航天 1.据每日邮报2014年4月18日报道,美国国家航空航天局目前宣布首次在太阳系外发现“类地”行星.假如宇航员乘坐宇宙飞船到达该行星,进行科学观测:该行星自转周期为T ;宇航员在该行星“北极”距该行星地面附近h 处自由释放-个小球(引力视为恒力),落地时间为.t 已知该行星半径为R ,万有引力常量为G ,求: ()1该行星的第一宇宙速度; ()2该行星的平均密度. 【答案】(()2 31 2?2h Gt R π . 【解析】 【分析】 根据自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力,求出质量与运动的周期,再利用M V ρ=,从而即可求解. 【详解】 ()1根据自由落体运动求得星球表面的重力加速度212 h gt = 解得:22h g t = 则由2 v mg m R = 求得:星球的第一宇宙速度v = = ()2由222Mm h G mg m R t == 有:2 2 2hR M Gt = 所以星球的密度232M h V Gt R ρπ == 【点睛】 本题关键是通过自由落体运动求出星球表面的重力加速度,再根据万有引力提供圆周运动向心力和万有引力等于重力求解. 2.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:

(1)该星球表面的重力加速度; (2)该星球的质量。 【答案】(1)02tan v g t θ= ( 2)202tan v R Gt θ 【解析】 【分析】 平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度;根据万有引力等于重力求出星球的质量; 【详解】 (1)根据平抛运动知识可得 2 00 122gt y gt tan x v t v α=== 解得02v tan g t α = (2)根据万有引力等于重力,则有 2 GMm mg R = 解得2202v R tan gR M G Gt α == 3.如图所示是一种测量重力加速度g 的装置。在某星球上,将真空长直管沿竖直方向放置,管内小球以某一初速度自O 点竖直上抛,经t 时间上升到最高点,OP 间的距离为h ,已知引力常量为G ,星球的半径为R ;求: (1)该星球表面的重力加速度g ; (2)该星球的质量M ; (3)该星球的第一宇宙速度v 1。 【答案】(1)22h g t = (2)222hR Gt (32hR

(完整版)万有引力与航天重点知识归纳及经典例题练习

第五讲 万有引力定律重点归纳讲练 知识梳理 考点一、万有引力定律 1. 开普勒行星运动定律 (1) 第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 (2) 第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。 (3) 第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式: k T a =23 。其中k 值与太阳有关,与行星无关。 (4) 推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。当卫星绕行星旋转时,k T a =2 3 ,但k 值不同,k 与行星有关,与卫星无关。 (5) 中学阶段对天体运动的处理办法: ①把椭圆近似为园,太阳在圆心;②认为v 与ω不变,行星或卫星做匀速圆周运动; ③k T R =2 3 ,R ——轨道半径。 2. 万有引力定律 (1) 内容:万有引力F 与m 1m 2成正比,与r 2成反比。 (2) 公式:2 21r m m G F =,G 叫万有引力常量,2211 /10 67.6kg m N G ??=-。 (3) 适用条件:①严格条件为两个质点;②两个质量分布均匀的球体,r 指两球心间的距离;③一个均匀球体和球外一个质点,r 指质点到球心间的距离。 (4) 两个物体间的万有引力也遵循牛顿第三定律。 3. 万有引力与重力的关系 (1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力mg ,另一个是物体随地球自转所需的向心力f ,如图所示。 ①在赤道上,F=F 向+mg ,即R m R Mm G mg 22 ω-=; ②在两极F=mg ,即mg R Mm G =2 ;故纬度越大,重力加速度越大。 由以上分析可知,重力和重力加速度都随纬度的增加而增大。 (2) 物体受到的重力随地面高度的变化而变化。在地面上,2 2 R GM g mg R Mm G =?=;在地球表面高度为h 处: 22)()(h R GM g mg h R Mm G h h +=?=+,所以g h R R g h 2 2 ) (+=,随高度的增加,重力加速度减小。 考点二、万有引力定律的应用——求天体质量及密度 1.T 、r 法:2 3 2224)2(GT r M T mr r Mm G ππ=?=,再根据3 23 33,34R GT r V M R V πρρπ=?== ,当r=R 时,2 3GT πρ= 2.g 、R 法:G g R M mg R Mm G 22 = ?=,再根据GR g V M R V πρρπ43,3 43=?== 3.v 、r 法:G rv M r v m r Mm G 2 22 =?=

高中物理万有引力与航天专题训练答案及解析

高中物理万有引力与航天专题训练答案及解析 一、高中物理精讲专题测试万有引力与航天 1.如图所示,质量分别为m 和M 的两个星球A 和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A 和B 分别在O 的两侧,引力常量为G .求: (1)A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ; (2)两星球做圆周运动的周期. 【答案】(1) R=m M M +L, r=m M m +L,(2)()3L G M m + 【解析】 (1)令A 星的轨道半径为R ,B 星的轨道半径为r ,则由题意有L r R =+ 两星做圆周运动时的向心力由万有引力提供,则有:22 22244mM G mR Mr L T T ππ== 可得 R M r m = ,又因为L R r =+ 所以可以解得:M R L M m = +,m r L M m =+; (2)根据(1)可以得到:2222244mM M G m R m L L T T M m ππ==?+ 则:()()233 42L L T M m G G m M π= =++ 点睛:该题属于双星问题,要注意的是它们两颗星的轨道半径的和等于它们之间的距离,不能把它们的距离当成轨道半径. 2.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ; (3)飞船贴近月球表面绕月球做匀速圆周运动的周期T .

(完整版)高考专题-万有引力与航天

高考专题-万有引力与航天 1.题型特点 关于万有引力定律及应用知识的考查,主要表现在两个方面:(1)天体质量和密度的计算:主要考查对万有引力定律、星球表面重力加速度的理解和计算.(2)人造卫星的运行及变轨:主要是结合圆周运动的规律、万有引力定 律,考查卫星在轨道运行时线速度、角速度、周期的计算,考查卫星变轨运行时线速度、角速度、周期以及有关能量的变化.以天体问题为背景的信息题,更是受专家的青睐.高考中一般以选择题的形式呈现. 2.命题趋势 从命题趋势上看,对本部分内容的考查仍将延续与生产、生活以及航天科技相结合,形成新情景的物理题.

1.(多选)(2015·新课标全国Ⅰ·21)我国发射的“嫦娥三号”登月探测器靠近月球后,先在月球表面附近的近似圆轨道上绕月运行;然后经过一系列过程,在离月面4 m高处做一次悬停(可认为是相对于月球静止);最后关闭发动机,探测器自由下落.已知探测器的质量约为1.3×103 kg,地球质量约为月球的81倍,地球半径约为月球的3.7倍,地球表面的重力加速度大小约为9.8 m/s2.则此探测器() A.在着陆前的瞬间,速度大小约为8.9 m/s B.悬停时受到的反冲作用力约为2×103 N C.从离开近月圆轨道到着陆这段时间内,机械能守恒 D.在近月圆轨道上运行的线速度小于人造卫星在近地圆轨道上运行的线速度2.(2015·江苏单科·3)过去几千年来,人类对行星的认识与研究仅限于太阳系内,行星“51 peg b”的发现拉开了研究太阳系外行星的序幕.“51 peg b”绕其中心恒星做匀速圆周运动,周

期约为4天,轨道半径约为地球绕太阳运动半径的1 20,该中心恒星与太阳的质量比约为( ) A.1 10 B .1 C .5 D .10 3.(2015·四川理综·5)登上火星是人类的梦想,“嫦娥之父”欧阳自远透露:中国计划于2020年登陆火星.地球和火星公转视为匀速圆周运动,忽略行星自转影响.根据下表,火星和地球相比( ) A.火星的公转周期较小 B .火星做圆周运动的加速度较小 C .火星表面的重力加速度较大 D .火星的第一宇宙速度较大 4.(2015·安徽理综·24)由三颗星体构成的系统,忽略其他星体对它们的作用,存在着一种运动形式,三颗星体在相互之间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某一共同的圆心O 在三角形所在的平面内做相同角速度的圆周运动(图为A 、B 、C 三颗星体质量不相同时的一般情况).若A 星体质量为2m 、B 、C 两星体的质量均为m ,三角形的边长为a ,求: (1)A 星体所受合力大小F A ; (2)B 星体所受合力大小F B ; (3)C 星体的轨道半径R C ; (4)三星体做圆周运动的周期T . 考题一 万有引力定律的理解 1.(2015·安康二模)由中国科学院、中国工程院两院院士评出的2012年中国十大科技进展新闻,于2013年1月19日揭晓,“神九”载人飞船与“天宫一号”成功对接和“蛟龙”号下潜突破7 000米分别排在第一、第二.若地球半径为R ,把地球看做质量分布均匀的球体.“蛟龙”下潜深度为d ,天宫一号轨道距离地面高度为h ,“蛟龙”号所在处与“天宫一号”所在处的加速度之比为( ) A.R -d R +h B.(R -d )2(R +h )2 C.(R -d )(R +h )2R 3 D.(R -d )(R +h )R 2 行星 半径/m 质量/kg 轨道半径/m 地球 6.4×106 6.0×1024 1.5×1011 火星 3.4×106 6.4×1023 2.3×1011

2018高中物理第六章万有引力与航天4万有引力定律的拓展应用学案新人教版必修2

万有引力定律的拓展应用 知识点考纲要求题型分值万有引力 万有引力定律的拓展,并会证明 会利用割补法的思想计算空腔中的万有引力问题 选择题6分 二、重难点提示 重点:会用割补法转换研究对象解决疑难问题。 难点:匀质球层对球内任意位置的物体的引力为0。 应用万有引力定律 2 Mm F G R =求物体间的引力时,因注意其适用条件,只有当两物体可视为质点时,才能认为R为两物体间的距离。对于球壳类则不能视为质点,则必须采取其他的解决办法。 这里我们给出结论:一质点在均匀球壳空腔内任意一点受到球壳的万有引力为零。 如图所示,一个匀质球层可以等效为由许多厚度足够小的匀质球壳组成,任取一个球壳,设球壳内有一个质量为m的质点,某时刻质点在P位置(任意位置)处,以质点(m)所在位置P为顶点,作两个底面面积足够小的对顶圆锥,这时,两个圆锥底面不仅可以视为平面,还可以视为质点。 设空腔内质点m到两圆锥底面中心的距离分别为 12 r r 、,两圆锥底面的半径为 12 R R 、,底面面密度为ρ。根据万有引力定律,两圆锥点面对质点的引力可以表示为: 2 11 122 11 m m R m F G G r r πρ ? ?==, 2 22 222 22 m m R m F G G r r πρ ? ?==,根据相似三角形对应边成比例,有12 12 R R r r =, 则两个万有引力之比 2 1 2 11 2 2 2 2 2 1 R F r R F r ? == ? ,因为两万有引力方向相反,所以引力的合力 1 F ? 2 F ? 1 r 2 r P m 2 11 m R πρ ?= 22

120F F ?+ ?=。依此类推,球壳上其他任意两对应部分对质点的合引力为零,整个球壳对 质点的合力为零,故由多个球壳组成的球层对质点的合引力为零,即 0F =∑ 例题1 证明:在匀质实心球体内部距离球心r 处,质点受到该球体的万有引力就等于半径为r 的球体对其的引力,即2M m F G r ''=,其中M '表示同样材质、半径为r 的匀质球体的质量。 O R r M' M 思路分析:如图所示,设匀质球体的质量为M ,半径为R ;其内部半径为r 的匀质球体的质量为M ',与球心相距r 处的质点m 受到的万有引力,可以视为厚度为(R -r )的匀质球层和半径为r 的匀质球体的引力的合力,根据匀质球层对质点的引力为零,所以质点受到 的万有引力就等于半径为r 的匀质球体的引力,即2M m F G r ''=。 若已知匀质球体的总质量为M ,则33M r M R '=,3 3r M M R '=, 故23M m Mm F G G r r R ''== 当r =0时,有0M '=,0F '=;当r =R 时,有2Mm F G R '=。 答案:见思路分析。 点拨:本题得到的结论为万有引力定律拓展的推论,可作为结论使用。 例题2 假设地球是一半径为R 、质量分布均匀的球体,一矿井深度为d 。已知质量分布均匀的球壳对壳内物体的引力为零,矿井底部和地面处的重力加速度大小之比为( ) A. 1d R - B. 1d R + C. 2()R d R - D. 2 ()R R d - 思路分析:令地球的密度为ρ,则在地球表面,重力和地球的万有引力大小相等, 有2 M g G R = 由于地球的质量为:M=ρ?3 3 4R π,所以重力加速度的表达式可写成: g=2 3 234R R G R GM πρ?==34πGρR。

备战2021新高考物理-重点专题-万有引力与航天(三)(含解析)

备战2021新高考物理-重点专题-万有引力与航天(三) 一、单选题 1.三颗人造地球卫星绕地球做匀速圆周运动,运行方向如图所示.已知 ,则关于三颗卫星,下列说法错误的是() A.卫星运行线速度关系为 B.卫星轨道半径与运行周期关系为 C.已知万有引力常量G,现测得卫星A的运行周期T A和轨道半径R A,可求地球的平均密度 D.为使A 与B同向对接,可对A适当加速 2.如图所示,A、B、C是在地球大气层外的圆形轨道上运行的三颗人造地球卫星,下列说法中正确的是() A.B,C的角速度相等,且小于A的角速度 B.B,C的线速度大小相等,且大于A的线速度 C.B,C的向心加速度相等,且大于A的向心加速度 D.B,C的周期相等,且小于A的周期 3.2020年4月24日,国家航天局宣布,我国行星探测任务命名为“天问”,首次火星探测任务命名为“天问一号”。已知万有引力常量,为计算火星的质量,需要测量的数据是() A.火星表面的重力加速度和火星绕太阳做匀速圆周运动的轨道半径 B.火星绕太阳做匀速圆周运动的轨道半径和火星的公转周期 C.某卫星绕火星做匀速圆周运动的周期和火星的半径 D.某卫星绕火星做匀速圆周运动的轨道半径和公转周期 4.一宇宙飞船绕地心做半径为r的匀速圆周运动,飞船舱内有一质量为m的人站在可称体重的台秤上.用R表示地球的半径,g表示地球表面处的重力加速度,g′表示宇宙飞船所在处的地球引力加速度,F N表示人对秤的压力,下面说法中正确的是()

A.g′=0 B.g′= C.F N=0 D.F N= 5.2019年11月23日8时55分,我国在西昌卫星发射中心用“长征三号“乙运载火箭,以“一箭双星”方式成功发射第50、51颗北斗导航卫星。两颗卫星均属于中圆轨道(MEO)卫星,是我国的“北斗三号”系统的组网卫星。这两颗卫星的中圆轨道(MEO)是一种周期为12小时,轨道面与赤道平面夹角为60°的圆轨道。是经过GPS和GLONASS运行证明性能优良的全球导航卫星轨道。关于这两颗卫星,下列说法正确的是() A.这两颗卫星的动能一定相同 B.这两颗卫星绕地心运动的角速度是长城随地球自转角速度的4倍 C.这两颗卫星的轨道半径是同步卫星轨道半径的 D.其中一颗卫星每天会经过赤道正上方2次 6.如图所示,a、b、c是地球大气层外圆形轨道上运行的三颗人造地球卫星,a、b质量相等且小于c的质量,则下列判断错误的是() A.b所需向心力最小 B.b、c周期相等,且大于a的周期 C.b、c向心加速度大小相等,且大于a的向心加速度 D.b、c线速度大小相等,且小于a的线速度 7.将地球看成质量均匀的球体,假如地球自转速度增大,下列说法中正确的是() A.放在赤道地面上的物体所受的万有引力增大 B.放在两极地面上的物体所受的重力增大 C.放在赤道地面上的物体随地球自转所需的向心力增大 D.放在赤道地面上的物体所受的重力增大 8.太阳系中有一颗绕太阳公转的行星,距太阳的平均距离是地球到太阳平均距离的4倍,则该行星绕太阳公转的周期是() A.2年 B.4年 C.8年 D.10年 9.若将八大行星绕太阳运行的轨迹可粗略地认为是圆,各星球半径和轨道半径如下表所示:从表中所列数据可以估算出海王星的公转周期最接近( )

高中物理万有引力与航天专项训练100(附答案)

高中物理万有引力与航天专项训练100(附答案) 一、高中物理精讲专题测试万有引力与航天 1.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月; (2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v . 【答案】(1)22h g t =月 (2)2 2 2hR M Gt =;2hR v t = 【解析】 【分析】 (1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度; (2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】 (1)月球表面附近的物体做自由落体运动 h =1 2 g 月t 2 月球表面的自由落体加速度大小 g 月=2 2h t (2)若不考虑月球自转的影响 G 2 Mm R =mg 月 月球的质量 2 2 2hR M Gt = 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2 v R 月球的“第一宇宙速度”大小 2hR v g R t 月== 【点睛】 结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v . 2.一艘宇宙飞船绕着某行星作匀速圆周运动,已知运动的轨道半径为r ,周期为T ,引力常量为G ,行星半径为求: (1)行星的质量M ; (2)行星表面的重力加速度g ; (3)行星的第一宇宙速度v .

万有引力与航天专题

A O 万有引力与航天专题 1.【2012?湖北联考】经长期观测发现,A 行星运行的轨道半径为R 0,周期为T 0但其实际运行的轨道与圆轨道总存在一些偏离,且周期性地每隔t 0时间发生一次最大的偏离.如图所示,天文学家认为形成这种现象的原因可能是A 行星外侧 还存在着一颗未知行星B ,则行星B 运动轨道半径为( ) A . 030002()2t R R t T =- B .T t t R R -=000 C . 3 20000)(T t t R R -= D .300200T t t R R -= 2.【2012?北京朝阳期末】2011年12月美国宇航局发布声明宣布,通过开普勒太空望远镜项目证实了太阳系外第一颗类似地球的、可适合居住的行星。该行星被命名为开普勒一22b (Kepler 一22b ),距离地球约600光年之遥,体积是地球的2.4倍。这是目前被证实的从大小和运行轨道来说最接近地球形态的行星,它每290天环绕着一颗类似于太阳的恒星运转一圈。若行星开普勒一22b 绕恒星做圆运动的轨道半径可测量,万有引力常量G 已知。根据以上数据可以估算的物理量有( ) A.行星的质量 B .行星的密度 C .恒星的质量 D .恒星的密度 3.【2012?江西联考】如右图,三个质点a 、b 、c 质量分别为m 1、m 2、 M (M>> m 1,M>> m 2)。在c 的万有引力作用下,a 、b 在同一平面内 绕c 沿逆时针方向做匀速圆周运动,它们的周期之比T a ∶T b =1∶k ; 从图示位置开始,在b 运动一周的过程中,则 ( ) A .a 、b 距离最近的次数为k 次 B .a 、b 距离最近的次数为k+1次 C .a 、b 、c 共线的次数为2k D .a 、b 、c 共线的次数为2k-2 4.【2012?安徽期末】2011年8月26日消息,英国曼彻斯特大学的天文学家认为,他们已经在银河系里发现一颗由曾经的庞大恒星转变而成的体积较小的行星,这颗行星完全

万有引力与航天重点知识归纳

r G Mm = mg ? g = GM ;在地球表面高度为 h 处: (R + h) 2 (R + h) 2 Mm = mg ? g = = 4 , r 万有引力与航天重点知识归纳 考点一、万有引力定律 1. 开普勒行星运动定律 (1)第一定律(轨道定律):所有的行星围绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 (2)第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等时间内扫过相等的面积。 (3)第三定律(周期定律):所有行星的轨道的半长轴的三次方跟公转周期二次方的比值都相等,表达式: a 3 T 2 = k 。其中 k 值与太阳有关,与行星无关。 (4)推广:开普勒行星运动定律不仅适用于行星绕太阳运转,也适用于卫星绕地球运转。当卫星绕行星 旋转时, a 3 = k ,但 k 值不同,k 与行星有关,与卫星无关。 T 2 (5) 中学阶段对天体运动的处理办法: ①把椭圆近似为园,太阳在圆心;②认为 v 与ω不变,行星或卫星做匀速圆周运动; ③ R 3 = k ,R ——轨道半径。 T 2 2. 万有引力定律 (1)内容:万有引力 F 与 m 1m 2 成正比,与 r 2 成反比。 (2)公式: F = G m 1m 2 ,G 叫万有引力常量, G = 6.67 ? 10 -11 N ? m 2 / k g 2 。 r 2 (3)适用条件:①严格条件为两个质点;②两个质量分布均匀的球体, 指两球心间的距离;③一个均匀 球体和球外一个质点,r 指质点到球心间的距离。 (4)两个物体间的万有引力也遵循牛顿第三定律。 3. 万有引力与重力的关系 (1) 万有引力对物体的作用效果可以等效为两个力的作用,一个是重力 mg ,另一个是 物体随地球自转所需的向心力 f ,如图所示。 ①在赤道上,F=F 向+mg ,即 mg = G Mm - m ω 2 R ; R 2 ②在两极 F=mg ,即 G Mm = mg ;故纬度越大,重力加速度越大。 R 2 由以上分析可知,重力和重力加速度都随纬度的增加而增大。 (2) 物体受到的重力随地面高度的变化而变化。在地面上, R 2 R 2 G GM ,所以 g = h h h R 2 (R + h ) 2 g ,随高度的增加,重力加速度减小。 考点二、万有引力定律的应用——求天体质量及密度 1.T 、r 法: G Mm = mr ( 2π ) 2 ? M = 4π 2 r 3 ,再根据 r 2 T GT 2 V M 3πr 3 π R 3 , ρ = ? ρ = 3 V GT 2 R 3 ,当 r=R 时, ρ = 3π GT 2 2.g 、R 法: G Mm = mg ? M = R 2 g R 2 G ,再根据V = 4 πR 3 ρ = M ? ρ = 3g 3 V 4πGR 3.v 、r 法: G Mm = m v 2 ? M = rv 2 r 2 r G 4.v 、T 法: G Mm = m v 2 , G Mm = mr ( 2π ) 2 ? M = v 3 T r 2 r 2 T 2πG

2020届高中物理二轮复习热点题型专题:4.3万有引力与航天(含解析)

专题4.3万有引力与航天 1.对于万有引力定律的数学表达式F =G m 1m 2 r 2 ,下列说法正确的是 ( ) A .公式中G 为引力常量,是人为规定的 B .r 趋近零时,万有引力趋于无穷大 C .m 1、m 2受到的万有引力总是大小相等 D .m 1、m 2受到的万有引力总是大小相等、方向相反,是一对平衡力 答案:C 2.今有一个相对地面静止,悬浮在赤道上空的气球。对于一个站在宇宙背景惯性系的观察者,仅考虑地球相对其的自转运动,则以下对气球受力的描述正确的是 ( ) A .该气球受地球引力、空气浮力和空气阻力 B .该气球受力平衡 C .地球引力大于空气浮力 D .地球引力小于空气浮力 答案:C 解析:气球环绕地球做圆周运动,速度与大气相同,没有空气阻力,重力比浮力大的部分提供向心加速度,选C 。 3.已知地球赤道上的物体随地球自转的线速度大小为v 1、向心加速度大小为a 1,近地卫星线速度大小为v 2、向心加速度大小为a 2,地球同步卫星线速度大小为v 3、向心加速度大小为a 3。设近地卫星距地面高度不计,同步卫星距地面高度约为地球半径的6倍。则以下结论正确的是 ( ) A .v 2v 3= 61 B .v 2v 3=17 C .a 1a 3=1 7 D .a 1a 3= 49 1 答案:C 解析:地球赤道上的物体与地球同步卫星是相对静止的,有相同的角速度和周期,比较速度用v =ωr ,比较加速度用a =ω2 r ,同步卫星距地心距离约为地球半径的7倍,则C 正确;近地卫星与地球同步卫星都是卫星,都绕地球做圆周运动,向心力由万有引力提供,即G Mm r 2=ma ,

专题四-万有引力与航天

-- 专题四 万有引力与航天 一、万有引力定律 1、万有引力定律的建立 ①太阳与行星间引力公式 ②月—地检验 ③卡文迪许的扭秤实验——测定引力常量G 2、万有引力定律 ①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们之间的距离r的二次方成反比。即: ②适用条件 (Ⅰ)可看成质点的两物体间,r为两个物体质心间的距离。 (Ⅱ)质量分布均匀的两球体间,r为两个球体球心间的距离。 二、万有引力定律的运用 1、万有引力与重力的关系: 重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。 忽略地球自转可得: 【例1】.设地球的质量为M ,赤道半径R ,自转周期T,则地球赤道上质量为m 的物体所受重力的大小为?(式中G为万有引力恒量) 2、计算重力加速度 地球表面附近(h《R) 方法:万有引力≈重力 地球上空距离地心r=R+h 处 方法: 在质量为M’,半径为R ’的任意天体表面的重力加速度''g 方法: 3、计算天体的质量和密度 利用自身表面的重力加速度: 利用环绕天体的公转: 等等 (注:结合 得到中心天体的密度) 【例2】宇航员站在一星球表面上的某高处,以初速度V 0沿水平方向抛出一个小球,经过时间t,球落到星球表面,小球落地时的速度大小为V . 已知该星球的半径为R,引力常量为G ,求该星球的质量M 。 三、宇宙航行 1、人造卫星的运行规律 2Mm F G r =1122 6.6710/G N m kg -=??1 22m m F G r =2R Mm G mg =2')(h R Mm G mg +=2' '''''R m M G mg =mg R Mm G =2r T m r m r v m r Mm G 222224πω===334R M πρ?=2R Mm G mg =r T m r m r v m r Mm G 222224πω===

万有引力与航天专题复习

万有引力与航天专题 复习 Revised on November 25, 2020

万有引力与航天 一、行星的运动 1、 开普勒行星运动三大定律 ①第一定律(轨道定律):所有行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上。 ②第二定律(面积定律):对任意一个行星来说,它与太阳的连线在相等的时间内扫过相等的面积。 推论:近日点速度比较快,远日点速度比较慢。 ③第三定律(周期定律):所有行星的轨道的半长轴的三次方跟它的公转周期的二次方的比 值都相等。 即: 其中k 是只与中心天体的质量有关,与做圆周运动的天体的质量无关。 推广:对围绕同一中心天体运动的行星或卫星,上式均成立。K 取决于中心天体的质量 例1. 据报道,美国计划从2021年开始每年送15 000名游客上太空旅游.如图所示,当航天器围绕地球沿椭圆轨道运行时,在近地点A 的速率 (填“大于”“小于”或“等于”)在远地点B 的速率。 例2、宇宙飞船进入一个围绕太阳运动的近乎圆形的轨道上运动,如果轨道半径是地球轨道半径的9倍,那么宇宙飞船绕太阳运行的周期是( ) 年 年 年 年 二、万有引力定律 1、万有引力定律的建立 ①太阳与行星间引力公式 ②卡文迪许的扭秤实验——测定引力常量G 2、万有引力定律 ①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正 比,与它们之间的距离r 的二次方成反比。即: ②适用条件 (Ⅰ)可看成质点的两物体间,r 为两个物体质心间的距离。 (Ⅱ)质量分布均匀的两球体间,r 为两个球体球心间的距离。 ③运用 (1)万有引力与重力的关系: 重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。 忽略地球自转可得: 例3.设地球的质量为M ,赤道半径R ,自转周期T ,则地球赤道上质量为m 的物体所受重力的大小为(式中G 为万有引力恒量) (2)计算重力加速度 3 2a k T =2Mm F G r =1122 6.6710/G N m kg -=??12 2m m F G r =2R Mm G mg =

万有引力与航天知识点总结

万有引力与航天知识点总结标准化文件发布号:(9312-EUATWW-MWUB-WUNN-INNUL-DQQTY-

332T=2. GM GM GM r M v a G r r r ωπ=== , , ,万有引力定律复习提纲 一. 万有引力定律: ①内容:自然界中任何两个物体都相互吸引,引力的大小与物体的质量1m 和2m 的乘积成正比,与它们 之间的距离r 的二次方成反比。即: 其中G =6. 67×10 -11 N ·m 2/kg 2 ②适用条件 1.可看成质点的两物体间,r 为两个物体质心间的距离。2.质量分布均匀两球体间,r 为两球体球心间距离。 ③运用万有引力与重力的关系:重力是万有引力的一个分力,一般情况下,可认为重力和万有引力相等。 忽略地球自转可得: 二. 重力和地球的万有引力: 1.地球对其表面物体的万有引力产生两个效果: (1)物体随地球自转的向心力: F 向 =m ·R ·(2π/T 0)2,很小。 由于纬度的变化,物体做圆周运动的向心力不断变化,因而表面物体的重力随纬度的变化而变化。 (2)重力约等于万有引力:在赤道处:mg F F +=向,所以R m R GMm F F mg 22 自向ω-=-=,因地球自转角速度很小,R m R GMm 22 自 ω>>,所以2R GM g =。 说明:如果有些星球的自转角速度非常大,那么万有引力的向心力分力就会很大,重力就相应减小,就不能再认为重力等于万有引力了。如果星球自转速度相当大,使得在它赤道上的物体所受的万有引力恰好等于该物体随星球自转所需要的向心力,那么这个星球就处于自行崩溃的临界状态了。 在地球的同一纬度处,g 随物体离地面高度的增大而减小,即2 )('h R GM g += 。 强调:g =G ·M /R 2不仅适用于地球表面,还适用于其它星球表面。 2.绕地球运动的物体所受地球的万有引力充当圆周运动的向心力,万有引力、向心力、重力三力合一。 即:G ·M ·m /R 2=m ·a 向 =mg ∴g =a 向=G ·M /R 2 三. 天体运动: 1. 开普勒行星运动规律: (1)所有的行星围绕太阳运动的轨道都是椭圆,太阳处在所有椭圆的一个焦点上。 (2)对每一个行星而言,太阳行星的连线在相同时间内扫过的面积相等。 (3)所有行星的轨道的半长轴的三次方跟公转周期的二次方的比值都相等。其表达式为:k T R =2 3 ,其 中R 是椭圆轨道的半长轴,T 是行星绕太阳公转的周期,其中k 是只与中心天体的质量有关,与做圆周运动的天体的质量无关。。 2. 基本问题是研究星体(包括人造星体)在万有引力作用下做匀速圆周运动。 基本方法:将天体运动理想化为匀速圆周运动,所需的向心力由万有引力提供。即: G ·M ·m /r 2=m ·v 2/r =m ·ω2·r =m ·(2π/T )2·r 3. 绕行中心星体的运动的快慢与绕行半径的关系: r 越大,v 越小,ω越小,a 越小,T 越大。 4. 中心天体质量M 和密度ρ的估算: 测量卫星绕天体匀速圆周运动的半径r 和周期T ,由G ·M ·m /r 2=m ·r ·(2π/T )2得M =4 π2?r 3/G ?T 2再测量天体的半径,得到ρ=M /V =M /(34π?R 3)=4π2?r 3/(G ?T 2?3 4π?R 3)=3π?r 3/(G ?T 2?R 3) 若卫星绕天体表面圆周运动,则:ρ=3π/(G ?T 2) 5.计算重力加速度 122 m m F G r =2 R Mm G mg =Mm G mg =

2020届高考物理专题复习检测专题一:万有引力与航天(含解析)

第4讲万有引力与航天 (建议用时:40分钟满分:100分) 一、选择题(本大题共8小题,每小题8分,共64分.第1~5题只有一项符合题目要求,第6~8题有多项符合题目要求) 1.许多科学家在经典物理学发展中作出了重要贡献,下列叙述中符合史实的是( D ) A.哥白尼提出了日心说并发现了行星沿椭圆轨道运行的规律 B.开普勒在前人研究的基础上,提出了万有引力定律 C.牛顿提出了万有引力定律,并通过实验测出了万有引力常量 D.卡文迪许通过扭秤实验测出了引力常量 解析:哥白尼提出了日心说,而开普勒发现了行星沿椭圆轨道运行的规律,故A错误;牛顿在前人研究的基础上,提出了万有引力定律,故B 错误;卡文迪许通过扭秤实验测出了引力常量,故C错误,D正确. 2.(2019·山东济南三模)2019年1月3日10时26分,“嫦娥四号”探测器成功在月球背面着陆,标志着我国探月航天工程达到了一个新高度.“嫦娥四号”绕月球做匀速圆周运动时的轨道半径为r,运行周期为T,已知万有引力常量为G,根据以上信息可以求出( C ) A.月球的平均密度 B.月球的第一宇宙速度 C.月球的质量 D.月球表面的重力加速度

解析:根据万有引力提供向心力可得=m r得,月球的质量M月=,月球的体积V=πR3,由于月球半径不知道,无法求解月球的密度,故A 错误,C正确;月球的第一宇宙速度v 1==,由于月球半径不知道,月球的第一字宙速度无法求解,故B错误;根据g=可知,月球半径不知道,无法求解月球表面的重力加速度,故D错误. 3.(2019·江苏泰州模拟)通常情况下中子星的自转速度是非常快的,因此任何的微小凸起都将造成时空的扭曲并产生连续的引力波信号,这种引力辐射过程会带走一部分能量并使中子星的自转速度逐渐下降.现有一中子星(可视为均匀球体),它的自转周期为T0时恰能维持该星体的稳定(不因自转而瓦解),则当中子星的自转周期增为2T0时,某物体在该中子星“两极”所受重力与在“赤道”所受重力的比值为( D ) A. B.2 C. D. 解析:自转周期为T0时恰能维持星体的稳定,有=m R;当中子星的自转周期增为2T0时,在两极有=mg,在赤道有-mg′=m R,联 立解得=,故D正确. 4.(2019·河南郑州三模)地球和某行星在同一轨道平面内同向绕太阳做匀速圆周运动,地球和太阳中心的连线与地球和行星的连线所成

万有引力与航天 (4)

万有引力与航天(4) 班级____________姓名________________ 一、不定项选择题(共14小题,每小题4分,共56分。) 1、下列说法中正确的是 ( ) A .地球是宇宙的中心,太阳、月亮和行星都绕地球运动 B .太阳是静止不动的,地球和其他行星都绕太阳运动 C .无论是地心说还是日心说,现在看来都是错误的 D .月亮跟随地球绕太阳运动,但月亮不是太阳系的行星,它是地球的一颗卫星 2、关于公式k T R 23 ,下列说法中正确的是 ( ) A .公式只适用于围绕地球运行的卫星 B .公式只适用太阳系中的行星 C .k 值是一个与星球(中心天体)有关的常量 D .对于所有星球(中心天体)的行星或卫星,k 值都相等 3、宇宙飞船围绕太阳在近似圆周的轨道运动,若其轨道半径是地球轨道半径的9 倍,则它们飞 船绕太阳运行的周期是 ( ) A .3年 B .9年 C .27年 D .81年 4、下列关于万有引力定律的说法中正确的是 ( ) A .万有引力定律是牛顿在总结前人研究的基础上发现的 B .公式F =G 221r m m 中的G 是一个比例常数,是没有单位的 C .公式F =G 2 2 1r m m 中的r 是指两个质点间的距离或两个均匀球体的球心间的距离 D .由F =G 2 2 1r m m 可知,当距离r 趋向于0时,F 趋向于无穷大 5、苹果落向地球,而不是地球向上运动碰到苹果,发生这个现象的原因是 ( ) A .由于苹果质量小,对地球的引力小,而地球质量大,对苹果引力大造成的 B .由于地球对苹果有引力,而苹果对地球没有引力造成的 C .苹果与地球间的相互作用力是等大的,但由于地球质量极大,不可能产生明显加速度 D .以上说法都不对 6、已知地面附近的重力加速度为g ,则离地高度等于地球半径处的重力加速度为 ( ) A .g B .2 1 g C . 4 1g D .4 g 7、已知引力常量G 和下列各组数据,能计算出地球质量的是 ( ) A .地球绕太阳运行的周期及地球离太阳的距离 B .人造地球卫星在地面附近运行的周期和轨道半径 C .月球绕地球运行的周期及月球的半径 D .若不考虑地球自转,已知地球的半径及地球表面的重力加速度 8、绕地球做匀速圆周运动的宇宙飞船中有一质量为10kg 的物体挂在弹簧秤上,这时弹簧秤的 示数 ( ) A .等于98N B .小于98N C .大于98N D .等于0 9、设人造地球卫星绕地球作匀速圆周运动,卫星离地面越高,则卫星的 ( ) A .速度越大 B .角速度越大 C .向心加速度越大 D .周期越长 10、我国发射的“亚洲一号”地球同步通讯卫星的质量为1.2t ,在某一确定的轨道上运行,下列 说法中正确的是 ( ) A .它可以定位在北京正上方太空,所以我国可以利用它进行电视转播 B .它的轨道平面一定与赤道平面重合 C .若要发射一颗质量为2.4t 的地球同步通讯卫星,则该卫星的轨道半径将比“亚洲一号”卫星的轨道半径大 D .若要发射一颗质量为2.4t 的地球同步通讯卫星,则该卫星的轨道半径将比“亚洲一号”卫星的轨道半径小 11、课外小组的同学对人造地球卫星所需的向心力和卫星的运行速率发生争论,若人造地球卫 星的质量不变,当轨道半径增大为原来的2倍时,下列争论中正确的有 ( ) A .有同学说,根据向心力公式F =m r v 2可知,,向心力变为原来的21 B .有同学说,根据万有引力F = G 2r Mm 提供向心力可知,向心力变为原来的41 C .有同学说,根据公式v = rω可知,卫星运行的速率变为原来的2倍 D .有同学说,根据公式v = r GM 可知,卫星运行的速率变为原来的2 2倍 12、在绕地球运行的空间实验站里,下列仪器中将失去测量功能的是 ( ) A .弹簧测力计 B .秒表 C .水银温度计 D .杆秤 13、下列说法中正确的是 ( ) A .第一宇宙速度是人造地球卫星运行的最大速度,也是发射卫星具有的最小发射速度 B .可以发射一颗运行周期为80min 的人造地球卫星 C .第一宇宙速度等于7.9Km/s ,它是卫星在地球表面附近绕地球做匀速圆周运动的线速度 D .地球同步卫星的运行速度大于第一宇宙速度

相关主题
文本预览
相关文档 最新文档