当前位置:文档之家› 液压元件的计算和选择

液压元件的计算和选择

液压元件的计算和选择
液压元件的计算和选择

第四节液压元件的计算与选择

一、液压泵

首先依据初选的系统压力选择液压泵的结构类型,一般P<21MPa,选用齿轮泵和叶片泵;P>21MPa,则选择柱塞泵。然后确定液压泵的最大工作压力和流量。液压泵的最大工作压力必须等于或超过液压执行元件最大工作压力及进油路上总压力损失这两者之和,液压执行元件的最大工作压力可以从工况图或表中找到;进油路上总压力损失可以通过估算求得,也可以按经验资料估计,见表10-3。

表10-3 进油路压力损失经验值

液压泵的流量必须等于或超过几个同时工作的液压执行元件总流量的最大

值以及回路中泄漏量这两者之和。液压执行元件总流量的最大值可以从工况图或表中找到(当系统中备有蓄能器时,此值应为一个工作循环中液压执行元件的平均流量);而回路中泄漏量则可按总流量最大值的10%-30%估算。

在参照产品样本选取液压泵时,泵的额定压力应选得比上述最大工作压力高20%-60%,以便留有压力储备;额定流量则只需选得能满足上述最大流量需要即可。

液压泵在额定压力和额定流量下工作时,其驱动电机的功率一般可以直接从产品样本上查到。电机功率也可以根据具体工况计算出来,有关的算式和数据见第三章相关部分或液压工程手册。

二、阀类元件

阀类元件的规格按液压系统的最大压力和通过该阀的实际流量从产品样本

上选定。各类液压阀都必须选得使其实际通过流量最多不超过其公称流量的120%,否则会引起发热、噪声和过大的压力损失,使阀的性能下降。选用液压阀时还应考虑下列问题:阀的结构形式、特性、压力等级、连接方式、集成方式及操纵方式等。对流量阀应考虑其最小稳定流量;对压力阀应考虑其调压范围;对换向阀应考虑其滑阀机能等。

1.流量阀的选择

选择节流阀和调速阀时还要考虑其最小稳定流量是否符合设计要求,一般中、低压流量阀的最小稳定流量为50ml/min~100ml/min;高压流量阀的最小稳定流量为2.5ml/min~20ml/min。

流量阀对流量进行控制,需要一定的压差,高精度流量阀进、出口约需1MPa 的压差。普通调速阀存在起始流量超调的问题,对要求高的系统可选用带手调补偿器初始开度的调速阀或带外控关闭功能的调速阀。

对于要求油温变化对外负载的运动速度影响小的系统,可选用温度补偿型调速阀。

2.溢流阀的选择

直动式溢流阀响应快,适合作制动阀及流量较小的安全阀,先导式溢流阀的启闭特性好,宜作调压阀,背压阀及流量较大的安全阀用。

先导式溢流阀有二级同心和三级同心之分,二级同心型的泄漏量小,常用于需保压的回路中。

先导式溢流阀的最低调定压力一般只能在0.5~1Mpa范围内。选择溢流阀时,应按液压泵的最大流量选取,并应注意其许用的最小稳定流量,一般来说,其最小稳定流量应是公称流量的15%以上。

3.单向阀及液控单向阀的选择

选择单向阀时,应注意其开启压力大小,开启压力小作单向阀,开启压力大作背压阀。

液控单向阀有内泄式和外泄式之分,外泄式的控制压力较低,工作可靠,但要多一根泄油油管。液控单向阀还有带卸荷小阀芯和不带卸荷小阀芯之分,前者控制压力较低,常用于高压系统,有时还可作为液压机的卸压阀用。

4 换向阀的选择

按通流量选择结构型式,一般通流量在190L/min以上时,宜选用二通插装阀,70L/min以下可选用电磁换向阀,否则需用电液换向阀。

按换向性能等选择电磁铁类型,由于直流电磁铁尤其是直流湿式电磁铁的寿命长,可靠性高,故应尽量选用直流湿式电磁换向阀。

按系统要求选择滑阀机能,详见第五章第四节有关内容。

对于可靠性要求特别高的系统来说,阀类元件的额定压力应高出其工作压力较多。

5 液压阀的配置形式

液压阀的配置形式有管式配置、板式配置和集成式配置,详见第五章第一节。目前液压系统多采用集成式配置。下面简要说明集成块的设计。

(1)块体设计集成块的材料一般为铸铁或锻钢,低压固定设备可用铸铁,高压强振场合要用锻钢。块体加工成正方体或长方体。

对于较简单的液压系统,其液压阀较少,可安装在同一个集成块上。如果液压系统复杂,阀件较多,就要采取多个集成块叠积的形式。相互叠积的集成块上下面一般为叠积接合面,钻有公共压力油孔P,公共回油孔T,泄油孔L和四个用于叠积的螺栓孔。

P孔:液压泵输出的压力油经调压后进入公共的压力油孔P,作为供给各单元回路压力油的公共油源。

T孔:各单元回路的回油均通到公共回油孔T,流回到油箱。

L孔:,各液压阀的泄漏油,统一通过公共泄漏油孔流回油箱。

集成块的其余四个表面,一般后面接通液压执行元件的油管,另三个面用以安装液压阀。块体内部按系统图的要求,钻有沟通各阀的孔道。

(2)集成块结构尺寸的确定外形尺寸要满足阀件的安装,孔道布置及其它工艺要求。为减少工艺孔,缩短孔道长度,阀的安装位置要仔细考虑,使相通油孔尽量在同一水平面或同一竖直面上。对于复杂的液压系统,需要多个集成块叠积时,一定要保证三个公用油孔的坐标相同,使之叠积起来后形成三个主通道。

各油孔的内径要满足允许流速的要求,一般来说,与液压阀直接相通的孔径应等于所装液压阀的油孔通径。油孔之间的壁厚不能太小,一方面防止使用过程中,由于油的压力而击穿,另一方面避免加工时,因油孔的偏斜而误通。对于中、低压系统壁厚不得小于5mm,高压系统应更大些。

油管规格的确定和油箱容量的估算见本书的第六章。

液压元件选择标准

液压系统元件的选择液压元件的选择 液压泵的确定与所需功率的计算 1.液压泵的确定 (1)确定液压泵的最大工作压力。液压泵所需工作压力的确定,主要根据液压缸在工作循环各阶段所需最大压力p1,再加上油泵的出油口到缸进油口处总的压力损失ΣΔp,即pB=p1+ΣΔp? ΣΔp 包括油液流经流量阀和其他元件的局部压力损失、管路沿程损失等,在系统管路未设计之前,可根据同类系统经验估计,一般管路简单的节流阀调速系统?ΣΔp为(2~5)×105Pa,用调速阀及管路复杂的系统ΣΔp为(5~15)×105Pa,ΣΔp也可只考虑流经各控制阀的压力损失,而将管路系统的沿程损失忽略不计,各阀的额定压力损失可从液压元件手册或产品样本中查找,也可参照下表选取。 常用中、低压各类阀的压力损失(Δpn) 阀名Δpn(×105Pa) 阀名Δpn(×105Pa) 阀名Δpn(×105Pa) 阀名Δpn(×(2)确定液压泵的流量qB。泵的流量qB根据执行元件动作循环所需最大流量qmax和系统的泄漏确定。 ①多液压缸同时动作时,液压泵的流量要大于同时动作的几个液压缸(或马达)所需的最大流量,并应考虑系统的泄漏和液压泵磨损后容积效率的下降,即qB≥K(Σq)max(m3/s)?Σq)max为同时动作的液压缸(或马达)的最大总流量(m3/s)。 ②采用差动液压缸回路时,液压泵所需流量为: qB≥K(A1-A2)vmax(m3/s) 式中:A 1,A 2为分别为液压缸无杆腔与有杆腔的有效面积(m2);vmax为活塞的最大移动速度(m/s)。 ③当系统使用蓄能器时,液压泵流量按系统在一个循环周期中的平均流量选取,即 qB= ViK/Ti? 式中:Vi为液压缸在工作周期中的总耗油量(m3);Ti为机器的工作周期(s);Z为液压缸的个数。 (3)选择液压泵的规格:根据上面所计算的最大压力pB和流量qB,查液压元件产品样本,选择与PB和qB相当的液压泵的规格型号。 上面所计算的最大压力pB是系统静态压力,系统工作过程中存在着过渡过程的动态压力,而动态压力往往比静态压力高得多,所以泵的额定压力pB应比系统最高压力大25%~60%,使液压泵有一定的压力储备。若系统属于高压范围,压力储备取小值;若系统属于中低压范围,压力储备取大值。 (4)确定驱动液压泵的功率。 ①当液压泵的压力和流量比较衡定时,所需功率为: p=pBqB/103ηB (kW)? 式中:pB为液压泵的最大工作压力(N/m2);qB为液压泵的流量(m3/s);η②在工作循环中,泵的压力和流量有显着变化时,可分别计算出工作循环中各个阶段所需的驱动功率,然后求其平均值,即 p=

常用液压元件图形符号

常用液压图形符号 (1)液压泵、液压马达和液压缸 名称符号说明名称符号说明 液压泵 液压泵一般符号 双作用缸不可调单 向缓冲缸 详细符号 单向定量液压泵单向旋转、 单向流动、 定排量 简化符号 双向定量液压泵双向旋转, 双向流动, 定排量 可调单向 缓冲缸 详细符号 单向变量液压泵单向旋转, 单向流动, 变排量 简化符号 双向变量液压泵双向旋转, 双向流动, 变排量 不可调双 向缓冲缸 详细符号 液压马达液压马达一般符号简化符号 单向定量 液压马达 单向流动, 单向旋转 可调双向 缓冲缸 详细符号 双向定量 液压马达 双向流动, 双向旋转, 定排量 简化符号 单向变量 液压马达 单向流动, 单向旋转, 变排量 伸缩缸

双向变量液压马达双向流动, 双向旋转, 变排量 压力转换 器 气-液转换 器 单程作用 摆动马达双向摆动, 定角度 连续作用 泵-马达定量液压 泵-马达 单向流动, 单向旋转, 定排量 增压器 单程作用 变量液压 泵-马达 双向流动, 双向旋转, 变排量,外 部泄油 连续作用 液压整体 式传动装 置 单向旋转, 变排量泵, 定排量马达 蓄能器 蓄能器一般符号 单作用缸 单活塞杆 缸 详细符号 气体隔离 式 简化符号重锤式 单活塞杆 缸(带弹簧 复位) 详细符号弹簧式 简化符号辅助气瓶 柱塞缸气罐 伸缩缸 能量源 液压源一般符号 双作用缸单活塞杆 缸 详细符号气压源一般符号

简化符号电动机 双活塞杆 缸 详细符号原动机电动机除外 简化符号 (2)机械控制装置和控制方法 名称符号说明名称符号说明 机械控制 件直线运动 的杆 箭头可省略 先导压力 控制方法 液压先导 加压控制 内部压力控制旋转运动 的轴 箭头可省略 液压先导 加压控制 外部压力控制定位装置 液压二级 先导加压 控制 内部压力控制,内 部泄油 锁定装置 *为开锁的 控制方法 气-液先导 加压控制 气压外部控制,液 压内部控制,外部 泄油 弹跳机构 电-液先导 加压控制 液压外部控制,内 部泄油 机械控制方法 顶杆式 液压先导 卸压控制 内部压力控制,内 部泄油 可变行程 控制式 外部压力控制(带 遥控泄放口) 弹簧控制 式 电-液先导 控制 电磁铁控制、外部 压力控制,外部泄 油 滚轮式 两个方向操 作 先导型压 力控制阀 带压力调节弹簧, 外部泄油,带遥控 泄放口 单向滚轮 式 仅在一个方 向上操作, 箭头可省略 先导型比 例电磁式 压力控制 先导级由比例电磁 铁控制,内部泄油

液压计算(原件选择)

液压元件的选择 一、液压泵的确定与所需功率的计算 1.液压泵的确定 (1)确定液压泵的最大工作压力。液压泵所需工作压力的确定,主要根据液压缸在工作循环各阶段所需最大压力p1,再加上油泵的出油口到缸进油口处总的压力损失ΣΔp,即 p B =p 1 +ΣΔp (9-15) ΣΔp包括油液流经流量阀和其他元件的局部压力损失、管路沿程损失等,在系统管路未设计之前,可根据同类系统经验估计,一般管路简单的节流阀调速系统ΣΔp为(2~5)×105Pa,用调速阀及管路复杂的系统ΣΔp为(5~15)×105Pa,ΣΔp也可只考虑流经各控制阀的压力损失,而将管路系统的沿程损失忽略不计,各阀的额定压力损失可从液压元件手册或产品样本中查找,也可参照表9-4选取。 阀名Δp n(×105Pa) 阀名Δp n(×105Pa)阀名Δp n(×105Pa)阀名Δp n(×105Pa)单向阀0.3~0.5 背压阀3~8 行程阀 1.5~2 转阀 1.5~2 换向阀 1.5~3 节流阀2~3 顺序阀 1.5~3 调速阀3~5 B B max 的泄漏确定。 ①多液压缸同时动作时,液压泵的流量要大于同时动作的几个液压缸(或马达)所需的最大流量,并应考虑系统的泄漏和液压泵磨损后容积效率的下降,即 q B≥K(Σq)max(m3/s) (9-16) 式中:K为系统泄漏系数,一般取1.1~1.3,大流量取小值,小流量取大值;(Σq)max为同时动作的液压缸(或马达)的最大总流量(m3/s)。 ②采用差动液压缸回路时,液压泵所需流量为: q B≥K(A1-A2)v max(m3/s) (9-17) 式中:A 1,A 2为分别为液压缸无杆腔与有杆腔的有效面积(m2);v max为活塞的最大移动速度(m/s)。 ③当系统使用蓄能器时,液压泵流量按系统在一个循环周期中的平均流量选取,即 q B=∑ = Z 1 i V i K/T i (9-18) 式中:V i为液压缸在工作周期中的总耗油量(m3);T i为机器的工作周期(s);Z为液压缸的个数。 (3)选择液压泵的规格:根据上面所计算的最大压力p B和流量q B,查液压元件产品样本,选择与P B和q B相当的液压泵的规格型号。 上面所计算的最大压力p B是系统静态压力,系统工作过程中存在着过渡过程的动态压力,而动态压力往往比静态压力高得多,所以泵的额定压力p B应比系统最高压力大25%~60%,使液压泵有一定的压力储备。若系统属于高压范围,压力储备取小值;若系统属于中低压范围,压力储备取大值。 (4)确定驱动液压泵的功率。 ①当液压泵的压力和流量比较衡定时,所需功率为: p=p B q B/103ηB (kW) (9-19) 式中:p B为液压泵的最大工作压力(N/m2);q B为液压泵的流量(m3/s);ηB为液压泵的总效率,各种形式液压泵的总效率可参考表9-5估取,液压泵规格大,取大值,反之取小值,定量泵取大值,变量泵取小值。 液压泵类型齿轮泵螺杆泵叶片泵柱塞泵 总效率0.6~0.7 0.65~0.80 0.60~0.75 0.80~0.85 ②在工作循环中,泵的压力和流量有显著变化时,可分别计算出工作循环中各个阶段所

常用液压元件简介解读

常用液压元件简介 一、方向控制阀 靠阀口的接通或断开来控制液流方向的元件称为方向阀,它主要有单向阀和换向阀两大类。 (一)、单向控制阀和液控单向阀 l、单向阀 是只准液流正向自由导通,而反向截止的阀。图2是力士乐公司的单向阀结构,阀体内装弹簧在常态时支持阀芯处于关闭位置,当有液流流过时,阀芯开启,其行程受挡铁限制。图3是其符号。对这种符号要很好地记住和理解,它不表示结构,只表示职能,这对于表示和了解液压系统是非常方便的。单向阀在液压系统中的应用是相当多的,一般在油泵出口处要加设一个单向阀,其作用是防止停泵时,压力油倒流,在维修泵时,防止管路中的油跑出。此外利用其反向截止作用,当两条油路需要隔离时,以防止干扰,就需要在两个油路之间设一单向阀。 阀的开启压力由弹簧力和阀芯有效面积决定。开启压力一般为0.5-4-4巴。 开启压力较小的阀可作为单向节流阀的闭锁元件。与回油滤油器相并连的单向阀,开启压力较大,一般为4巴。目的在于当滤油器阻塞时,单向阀作为旁通阀使用。 2、液控单向阀 液控单向阀具有单向阀的功能,即液流可以正向导通,反向截止,同时在必要时又可将其逆止作用解除,使液流可以反向通过,这样就给液压系统带来很多方便。 图4是力士乐公司的SV型液控单向阀的结构和符号。 这种阀无泄漏油口。由A口至B口油液始终可以流动。反方向上则导阀(2)和主阀(3)被弹簧(4)和系统压力压在阀座上。若X口供给压力油则控制活塞(5)被推向右。这时首先打开导阀(2),然后打开主阀(3)。于是油液先通过导阀,然后通过主阀。为了保证用控制活塞(5)能可靠地操纵阀芯动作,需要一定的最低控制压力。

图5是SL型液压控单向阀的结构和符号。这种阀在原理上,与SV型有相同的功能。不同之处在于增加了泄漏油口Y,这就可使控制活塞(5)的环形面积与A口隔离。A口来的油压只作用在控制活塞(5)的面积M上,从而有效地降低此条件下所需的控制压力。 液控单向阀具有良好的单向密封性能,常用于执行元件需要长时间保压,锁紧的情况下,也可用于防止油缸停止时下滑以及速度换接等回路中。图6是SV型液控单向阀应用示例。此图说明,SV型液控单向阀在反向开启时,A口必须是无压力的,如在A口有压力,此压力作用在控制活塞的环形面积上,将对X口的控制压力起反作用,使阀芯打不开。

液压元件的计算与选择

第二节第四节液压元件的计算与选择 一、液压泵 首先依据初选的系统压力选择液压泵的结构类型,一般P<21MPa,选用齿轮泵和叶片泵;P>21MPa,则选择柱塞泵。然后确定液压泵的最大工作压力和流量。液压泵的最大工作压力必须等于或超过液压执行元件最大工作压力及进油路上总压力损失这两者之和,液压执行元件的最大工作压力可以从工况图或表中找到;进油路上总压力损失可以通过估算求得,也可以按经验资料估计,见表10-3。 液压泵的流量必须等于或超过几个同时工作的液压执行元件总流量的最大值以及回路中泄漏量这两者之和。液压执行元件总流量的最大值可以从工况图或表中找到(当系统中备有蓄能器时,此值应为一个工作循环中液压执行元件的平均流量);而回路中泄漏量则可按总流量最大值的10%-30%估算。 在参照产品样本选取液压泵时,泵的额定压力应选得比上述最大工作压力高20%-60%,以便留有压力储备;额定流量则只需选得能满足上述最大流量需要即可。 液压泵在额定压力和额定流量下工作时,其驱动电机的功率一般可以直接从产品样本上查到。电机功率也可以根据具体工况计算出来,有关的算式和数据见第三章相关部分或液压工程手册。 二、阀类元件 阀类元件的规格按液压系统的最大压力和通过该阀的实际流量从产品样本上选定。各类液压阀都必须选得使其实际通过流量最多不超过其公称流量的120%,否则会引起发热、噪声和过大的压力损失,使阀的性能下降。选用液压阀时还应考虑下列问题:阀的结构形式、特性、压力等级、连接方式、集成方式及操纵方式等。对流量阀应考虑其最小稳定流量;对压力阀应考虑其调压范围;对换向阀应考虑其滑阀机能等。 1.流量阀的选择 选择节流阀和调速阀时还要考虑其最小稳定流量是否符合设计要求,一般中、低压流量阀的最小稳定流量为50ml/min~100ml/min;高压流量阀的最小稳定流量为min~20ml/min。 流量阀对流量进行控制,需要一定的压差,高精度流量阀进、出口约需1MPa的压差。普通调速阀存在起始流量超调的问题,对要求高的系统可选用带手调补偿器初始开度的调速阀或带外控关闭功能的调速阀。 对于要求油温变化对外负载的运动速度影响小的系统,可选用温度补偿型调速阀。 2.溢流阀的选择

常用液压元件解读

常用液压元件简介(一) 液压元件 2008-09-13 14:47 阅读73 评论0 字号:大中小小 ( 一、方向控制阀 靠阀口的接通或断开来控制液流方向的元件称为方向 阀,它主要有单向阀和换向阀两大类。 (一、单向控制阀和液控单向阀 l、单向阀 是只准液流正向自由导通,而反向截止的阀。图2是力士乐公司的单向阀结构,阀体内装弹簧在常态时支持阀芯处于关闭位置,当有液流流过时,阀芯开启,其行程受挡铁限制。图3是其符号。对这种符号要很好地记住和理解,它不表示结构,只表示职能,这对于表示和了解液压系统是非常方便的。单向阀在液压系统中的应用是相当多的,一般在油泵出口处要加设一个单向阀,其作用是防止停泵时,压力油倒流,在维修泵时,防止管

路中的油跑出。此外利用其反向截止作用,当两条油路需要隔离时,以防止干扰,就需要在两个油路之间设一 单向阀。 阀的开启压力由弹簧力和阀芯有效面积决定。开启压力 一般为0.5-4-4巴。 开启压力较小的阀可作为单向节流阀的闭锁元件。与回油滤油器相并连的单向阀,开启压力较大,一般为4巴。目的在于当滤油器阻塞时,单向阀作为旁通阀使 用。 2、液控单向阀 液控单向阀具有单向阀的功能,即液流可以正向导通,反向截止,同时在必要时又可将其逆止作用解除,使液流可以反向通过,这样就给液压系统带来很多方便。

图4是力士乐公司的SV型液控单向阀的结构和符号。 这种阀无泄漏油口。由A口至B口油液始终可以流动。反方向上则导阀(2和主阀(3被弹簧(4和系统压力压在阀座上。若X口供给压力油则控制活塞(5被推向右。这时首先打开导阀(2,然后打开主阀(3。于是油液先通过导阀,然后通过主阀。为了保证用控制活塞(5能可靠地操 纵阀芯动作,需要一定的最低控制压力。 图5是SL型液压控单向阀的结构和符号。这种阀在原理上,与SV型有相同的功能。不同之处在于增加了泄漏油口Y,这就可使控制活塞(5的环形面积与A口隔离。A 口来的油压只作用在控制活塞(5的面积M上,从而有效 地降低此条件下所需的控制压力。 液控单向阀具有良好的单向密封性能,常用于执行元件需要长时间保压,锁紧的情况下,也可用于防止油缸停止时下滑以及速度换接等回路中。图6是SV型液控单向阀应用示例。此图说明,SV型液控单向阀在反向开启时,A口必须是无压力的,如在A口有压力,此压力作用在控制活塞的环形面积上,将对X口的控制压力起 反作用,使阀芯打不开。

液压缸技术标准

攀钢液压中心 二O一0年一月 目录 1、总则 2、引用标准 3、各部分常用材料及技术要求 3.1、缸筒的材料和技术要求 3.2、活塞的材料和技术要求 3.3、活塞杆的材料和技术要求 3.4、端盖的材料和技术要求 4、液压缸维修工艺流程 5、液压缸的检查 5.1、缸筒内表面 5.2、活塞杆的滑动面 5.3、密封

5.4、活塞杆导向套的内表面 5.5、活塞的表面 5.6、其它 6、液压缸的装配 7、液压缸试验 附表1:检查项目和质量分等(摘录JB/T10205-2000) 附表2:液压缸、气缸铭牌编号 附表3:螺栓和螺母最大紧固力矩(仅供参考) 附表4:螺纹的传动力和拧紧力矩 液压缸维修技术标准 1、总则 1.1 适用范围本维修技术标准规定了液压缸各组成部分的常用材料和技术要求、液压缸的检查、装配以及试验,适用于攀钢液压中心范围内液压缸的维修,维修用户单位按本标准执行。

1.2 密封选择密封件应选择攀钢液压中心指定生产厂家的标准产品,特殊情况需得到攀钢相关技术部门审核同意。 1.3 螺纹防松液压缸的螺纹连接在安装时应采用攀钢液压中心联接螺纹的防松结构型式,不能从结构上采取防松措施的,应涂上攀钢液压中心指定的螺纹紧固胶。 1.4 液压缸防腐修理好的液压缸,若在仓库或现场存放时间超过3个月时间,需采用适当的防腐措施。 1.5 螺栓选择一般采用8.8级、10.9级、1 2.9级的高强度螺栓(钉),应采用国内著名生产厂的产品。 1.6 气缸维修标准参照本标准执行。 1.7 本标准的解释权属攀钢液压中心。 2、引用标准 液压缸的维修应执行下列国家标准,允许采用要求更高的标准。

常用液压元件职能符号的对比分析记忆法

INTELLIGENCE 科 技 天 地 78 常用液压元件职能符号的 对比分析记忆法 河南省鹤壁市技工学校 马顺喜 摘 要:本文从液压元件职能符号的组成规则(即起源)的角度谈起,通过对溢流阀、减压阀和顺序阀等三种常见液压元件的职能符号进行对比分析,归纳总结出 一种液压元件职能符号的记忆方法——对比分析记忆法。并由此推广到其它液压元 件职能符号的记忆。 关键词:常用液压元件 职能符号 对比分析 记忆法 在《机械基础》“液压传动”中,要表示液压系统的工 作原理,就要用到各种各样的液压元件职能符号。但是由于元件众多,教材因篇幅所限又未介绍职能符号的组成规则,故很难记忆。尤其是溢流阀、减压阀、顺序阀等三种常用压力控制阀的职能符号,因其图形符号非常相似,所以极易混淆。本人在长期的教学实践中总结出一种对比分析的记忆方法,对液压元件职能符号的记忆很有帮助,现作如下介绍: 一、追根求源记符号 液压元件的职能符号看起来很难记忆,但若仔细分析就会发现,所有液压元件的职能符号都是由若干基本符号按照一定的规则组合而成的。我们只要了解了这些符号的组成规则和来源,符号的记忆问题就会迎刃而解。在液压传动中,国标规定的基本符号含义及其含义如下表 1。 只要理解了这些基本符号的含义,元件职能符号的记忆就不难了。 二、三种常用压力阀的对比分析 1、压力阀的功能对比分析 溢流阀:功能有二,一是溢流稳压,二是限压保护。 减压阀:起减压作用,用于降低系统某一分支油路的压力,使同一系统有两个或多个不同的压力,以满足不同执行机构的需要。 顺序阀:利用系统中的压力变化来控制油路的通、断(即当压力达到调定值时,进出油口相通,否则关闭),从而使执行元件按一定的顺序动作。 2、压力阀的阀体与弹簧 以上三种压力阀,从结构上看均存在阀体与调节弹簧,故其符号组成中均应有下列基本符号(如图1 阀体与弹簧): 3、压力阀的进出油口连接及压力情况对比分析 (1)溢流阀:安装在液压泵出口处。进口接系统,进口压力为系统压力;出口接油箱,压力为零(不计损失)。 (2)减压阀:安装在低压分支油路之前。进口油压为一次压力,出口压力为二次压力,出口压力低于进口压力。 (3)顺序阀:安装在执行顺序动作的执行机构之前。阀口打开后,进口油液压力等于出口油液压力(不计损失)。 根据它们进出油口连接及压力情况,故其职能符号组成情况如表 2。 4、压力阀控制信号来源(控制油路特点)对比分析 (1)溢流阀:控制阀口开启的压力信号来自于进口油液的压力(由进口压力控制),故其表示控制油路的虚线应由进口引出。 (2)减压阀:控制阀口开启的压力信号来自于出口油液的压力(由出口压力控制),故其表示控制油路的虚线应由出口引出。 (3)顺序阀:控制阀口开启的压力信号来自于进口油液的压力(由进口压力控制),故其表示控制油路的虚线应由

如何认识常见的液压元件符号解读

如何认识常见的液压元件符号 液压系统的图形符号,各国都有不同的绘制规定。有的采用结构示意图的方法表示,称为结构式原理图。这种图形的优点是直观性强,容易理解液压元件的内部结构和便于分析系统中所产生的故障。但图形比较复杂,尤其是当系统的元件较多时,绘制很不方便,所以在一般情况下都不采用。有的采用原理性的只能式符号示意图,这种图形的优点是简单清晰,容易绘制。我国制定的液压系统图图形符号标准就是采用原理性的职能式符号绘制的。现将一些常见的液压元件职能式图形符号分类摘编于书后附表一中,并对阅读要点作如下简介: (1)油泵及油马达以圆圈表示。圆圈中的三角形表示液流方向,如果三角形尖端向外,说明液流向外输出,表示这是油泵。若三角形尖端向内,则说明液流向内输入,表示这是油马达。如果圆圈内有两个三角形,表示能够换向。若元件加一斜向直线箭头、则是可变量的符号,表示其排量和压力是可调节的。 (2)方向阀的工作位置均以方框表示。方框的数目表示滑阀中的位置数目,方框外的直线数表示液流的通路数,方框内的向上表示液流连同方向,“T”表示液流被堵死不通。方框的两端表示控制方式,由于控制方式不同,其图形符号也是不一样。 (3)压力阀类一般都是用液流压力与弹簧力相平衡,来控制液压系统中油液的工作压力。方框中的箭头数表示滑阀中的通道数,通道的连通分常开与常闭两种,在液压系统中科根据工作需要进行选择。 (4)节流阀通常以一个方框中两小段圆弧夹一条带箭头的中心直线表示。如果节流阀作用可调,则再在方框内画一条带箭头的斜线。 (5)将液压元件的图形符号有机地连接起来,即可组成一个完整的液压系统图(又称液压回路图)。

液压元件符号库大全

泵和马达 FHYC20FHYC21FHYC22 FHYC23FHYC24 摆动气马达 摆动液压马达单向变量气马达单向变量液压泵单向变量液压马达单向定量气马达 单向定量液压泵单向定量液压马达定量液压泵-马达(双向) 定量液压泵-马达气马达 双向变量气马达双向变量液压泵双向变量液压马达双向定量气马达双向定量液压泵 双向定量液压马达液压泵液压整体式传动装置 插装阀 标准阀芯%7 标准阀芯%50 带缓冲节流口阀芯带阻尼孔%7 动力源符号

操作杆电动机气压源液压源原动机 方向控制阀 单向阀 单向阀(简易) 单向阀(简易)带弹簧单向阀(详细符号) 单向阀(详细符号)带弹簧电液换向阀 FHYJ34 FHYJ36 FHYJ37 FHYJ38 FHYJ39 FHYJ40 电液四通伺服阀(带电反馈三级)

电液四通伺服阀(二级) 三位四通电液阀外控内泄(带手动应急控制装置) 二位转向阀 二位二位二通阀(常闭) 二位二通阀(常开) 二位三通阀(A型) 二位三通阀(B型) 二位三通二位四通二位五通 三位转向阀 E型FHYJ23 FHYJ26 FHYJ27 FHYJ28 FHYJ41 FHYJ42 F型G型H型

J型M型N型P型 电磁换向阀1 电磁换向阀2 三位2 三位三位三通阀三位四通阀1 三位四通阀2 三位五通阀1 三位五通阀2 三位五通阀3 手动换向阀1 手动换向阀2 手动换向阀3 手动换向阀4 梭阀

或门型(简易符号)或门型(详细符号) 液控单向阀 双液控单向阀液控单向阀(控制压力打开阀)简易符号液控单向阀(控制压力打开阀)详细符号 液控单向阀(控制压力关闭阀)简易符号液控单向阀(控制压力关闭阀)详细符号 方向控制阀 FHYI12 FHYI13 FHYI14 FHYI15 四位五位一位 辅助元件 除油器(人工排出)除油器(自动排出)分水排水器(人工)分水排水器(自动)空气干燥器 空气过滤器(人工排出)空气过滤器(自动排出)气源调节装置三联件

液压元件选择标准

液压系统元件的选择 液压元件的选择 液压泵的确定与所需功率的计算 1.液压泵的确定 (1)确定液压泵的最大工作压力。液压泵所需工作压力的确定,主要根据液压缸在工作循环各阶段所需最大压力p1,再加上油泵的出油口到缸进油口处总的压力损失ΣΔp,即 pB=p1+ΣΔp ΣΔp 包括油液流经流量阀和其他元件的局部压力损失、管路沿程损失等,在系统管路未设计之前,可根据同类系统经验估计,一般管路简单的节流阀调速系统?ΣΔp为(2~ 5)×105Pa,用调速阀及管路复杂的系统ΣΔp为(5~15)×105Pa,ΣΔp也可只考虑流经各控制阀的压力损失,而将管路系统的沿程损失忽略不计,各阀的额定压力损失可从液压元件手册或产品样本中查找,也可参照下表选取。 常用中、低压各类阀的压力损失(Δpn) 阀名Δpn(×105Pa) 阀名Δpn(×105Pa) 阀名Δpn(×105Pa) 阀名Δpn(×105Pa) 单向阀0.3~0.5 背压阀3~8 行程阀1.5~2 转阀1.5~2 换向阀1.5~3 节流阀2~3 顺序阀1.5~3 调速阀3~5 (2)确定液压泵的流量qB。泵的流量qB根据执行元件动作循环所需最大流量qmax和系统的泄漏确定。 ①多液压缸同时动作时,液压泵的流量要大于同时动作的几个液压缸(或马达)所需的最大流量,并应考虑系统的泄漏和液压泵磨损后容积效率的下降,即qB≥K(Σq)max(m3/s) 式中:K为系统泄漏系数,一般取1.1~1.3,大流量取小值,小流量取大值;(Σq)max为同时动作的液压缸(或马达)的最大总流量(m3/s)。 ②采用差动液压缸回路时,液压泵所需流量为: qB≥K(A1-A2)vmax(m3/s) 式中:A 1,A 2为分别为液压缸无杆腔与有杆腔的有效面积(m2);vmax为活塞的最大移动速度(m/s)。 ③当系统使用蓄能器时,液压泵流量按系统在一个循环周期中的平均流量选取,即 qB= ViK/Ti 式中:Vi为液压缸在工作周期中的总耗油量(m3);Ti为机器的工作周期(s);Z为液压缸的个数。 (3)选择液压泵的规格:根据上面所计算的最大压力pB和流量qB,查液压元件产品样本,选择与PB和qB相当的液压泵的规格型号。 上面所计算的最大压力pB是系统静态压力,系统工作过程中存在着过渡过程的动态压力,而动态压力往往比静态压力高得多,所以泵的额定压力pB应比系统最高压力大25%~60%,使液压泵有一定的压力储备。若系统属于高压范围,压力储备取小值;若系统属于中低压范围,压力储备取大值。 (4)确定驱动液压泵的功率。 ①当液压泵的压力和流量比较衡定时,所需功率为: p=pBqB/103ηB (kW) 式中:pB为液压泵的最大工作压力(N/m2);qB为液压泵的流量(m3/s);ηB为液压泵的总效率,各种形式液压泵的总效率可参考下表估取,液压泵规格大,取大值,反之取小值,定

常用液压元件简介

常用液压元件简介(一) 一、方向控制阀 靠阀口的接通或断开来控制液流方向的元件称为方向阀,它主要有单向阀和换向阀两大类。 (一)、单向控制阀和液控单向阀 l、单向阀 是只准液流正向自由导通,而反向截止的阀。图2是力士乐公司的单向阀结构,阀体内装弹簧在常态时支持阀芯处于关闭位置,当有液流流过时,阀芯开启,其行程受挡铁限制。图3是其符号。对这种符号要很好地记住和理解,它不表示结构,只表示职能,这对于表示和了解液压系统是非常方便的。单向阀在液压系统中的应用是相当多的,一般在油泵出口处要加设一个单向阀,其作用是防止停泵时,压力油倒流,在维修泵时,防止管路中的油跑出。此外利用其反向截止作用,当两条油路需要隔离时,以防止干扰,就需要在两个油路之间设一单向阀。 阀的开启压力由弹簧力和阀芯有效面积决定。开启压力一般为0.5-4-4巴。 开启压力较小的阀可作为单向节流阀的闭锁元件。与回油滤油器相并连的单向阀,开启压力较大,一般为4巴。目的在于当滤油器阻塞时,单向阀作为旁通阀使用。 2、液控单向阀 液控单向阀具有单向阀的功能,即液流可以正向导通,反向截止,同时在必要时又可将其逆止作用解除,使液流可以反向通过,这样就给液压系统带来很多方便。

图4是力士乐公司的SV型液控单向阀的结构和符号。 这种阀无泄漏油口。由A口至B口油液始终可以流动。反方向上则导阀(2)和主阀(3)被弹簧(4)和系统压力压在阀座上。若X口供给压力油则控制活塞(5)被推向右。这时首先打开导阀(2),然后打开主阀(3)。于是油液先通过导阀,然后通过主阀。为了保证用控制活塞(5)能可靠地操纵阀芯动作,需要一定的最低控制压力。 图5是SL型液压控单向阀的结构和符号。这种阀在原理上,与SV型有相同的功能。不同之处在于增加了泄漏油口Y,这就可使控制活塞(5)的环形面积与A口隔离。A口来的油压只作用在控制活塞(5)的面积M上,从而有效地降低此条件下所需的控制压力。 液控单向阀具有良好的单向密封性能,常用于执行元件需要长时间保压,锁紧的情况下,也可用于防止油缸停止时下滑以及速度换接等回路中。图6是SV型液控单向阀应用示例。此图说明,SV型液控单向阀在反向开启时,A口必须是无压力的,如在A口有压力,此压力作用在控制活塞的环形面积上,将对X口的控制压力起反作用,使阀芯打不开。

液压油的选用规范

不同种类液压油的特性 不同粘度液压油的应用

液压油的粘度曲线 液压油清洁度等级 注:上表颗粒计数为1ML油样中的计数。 ISO440623/19/16:第一个代码表示大于4um颗粒等级;第二个代码表示大于6um颗粒等级;第三个代码表示大于14um颗粒等级。 液压油的选用 一、概述 液压油是液压系统的重要组成部分。它具有下列基本功能: 1.能量传递 液压油的能量传递特性的量重要的参数是以bar的形式表示的压缩系数E 。它说明当受 油 压时,充满油液的体积减小多少。 高品质液压油传递压力快,并且使得液压系统刚性很大。在较小容积、硬的管子内壁和高粘度的油液上通过小的作用力可以产生高能量系统。此外随着压力的增加,压缩系统会显着增加。 低品质的液压油系统更容易引起振动,但是一般来说比较轻微,因为高频的压力波动比较容易被吸收。 液压油中的空气含量也是重要的影响因素。在正常大气压下,矿物油中含有9%的空气。在液压回路中,当出现真空时,这些空气的一部分以气泡的形式溢出,系统的刚度会明显下降并且能引起很多问题。 液压油的粘度对动态的能量传递有较大的影响。 高粘度的油液将会导致: ?在管路和元件中的压力损失较高。 ?液压-机械效率低。 ?吸油特性差、充液损失、空气容易从油液中溢出。 ?密封和滑动间隙供油不足,因此磨损增大。 粘度过小会导致: ?泵和阀间隙密封的泄漏量增大。 ?润滑油膜变薄导致滑动轴承和滚动轴承的磨损加剧。 选择液压油粘度应该根据: ?液压泵和马达的结构形式。 ?工作压力、工作温度、环境温度,液压油的工作温度应在30~70度。 ?管路长度。 2.防止或减小磨损 在液压零件中在很多位置上由于滑动接触的原因,会部分地引起较高的横向力。除了相应的粘度之外,防磨损特性起着重要的作用。一方面要有足够的润滑物质进入滑动间隙之中;另一方面要保证永远有润滑油膜。

液压元件选择标准

液压元件选择标准 Modified by JACK on the afternoon of December 26, 2020

液压系统元件的选择 液压元件的选择 液压泵的确定与所需功率的计算 1.液压泵的确定 (1)确定液压泵的最大工作压力。液压泵所需工作压力的确定,主要根据液压缸在工作循环各阶段所需最大压力p1,再加上油泵的出油口到缸进油口处总的压力损失ΣΔp,即 pB=p1+ΣΔp ΣΔp 包括油液流经流量阀和其他元件的局部压力损失、管路沿程损失等,在系统管路未设计之前,可根据同类系统经验估计,一般管路简单的节流阀调速系统?ΣΔp为 (2~ 5)×105Pa,用调速阀及管路复杂的系统ΣΔp为(5~15)×105Pa,ΣΔp也可只考虑流经各控制阀的压力损失,而将管路系统的沿程损失忽略不计,各阀的额定压力损失可从液压元件手册或产品样本中查找,也可参照下表选取。 常用中、低压各类阀的压力损失(Δpn) 阀名Δpn(×105Pa) 阀名Δpn(×105Pa) 阀名Δpn(×105Pa) 阀名Δp n(×105Pa) 单向阀~背压阀 3~8 行程阀~2 转阀~2 换向阀~3 节流阀 2~3 顺序阀~3 调速阀 3~5 (2)确定液压泵的流量qB。泵的流量qB根据执行元件动作循环所需最大流量qmax和系统的泄漏确定。 ①多液压缸同时动作时,液压泵的流量要大于同时动作的几个液压缸(或马达)所需的最大流量,并应考虑系统的泄漏和液压泵磨损后容积效率的下降,即qB≥K(Σq)max(m3/s) 式中:K为系统泄漏系数,一般取~,大流量取小值,小流量取大值;(Σq)max为同时动作的液压缸(或马达)的最大总流量(m3/s)。 ②采用差动液压缸回路时,液压泵所需流量为: qB≥K(A1-A2)vmax(m3/s) 式中:A 1,A 2为分别为液压缸无杆腔与有杆腔的有效面积(m2);vmax为活塞的最大移动速度(m/s)。 ③当系统使用蓄能器时,液压泵流量按系统在一个循环周期中的平均流量选取,即 qB= ViK/Ti 式中:Vi为液压缸在工作周期中的总耗油量(m3);Ti为机器的工作周期(s);Z为液压缸的个数。 (3)选择液压泵的规格:根据上面所计算的最大压力pB和流量qB,查液压元件产品样本,选择与PB和qB相当的液压泵的规格型号。

液压元件的计算和选择

第四节液压元件的计算与选择 一、液压泵 首先依据初选的系统压力选择液压泵的结构类型,一般P<21MPa,选用齿轮泵和叶片泵;P>21MPa,则选择柱塞泵。然后确定液压泵的最大工作压力和流量。液压泵的最大工作压力必须等于或超过液压执行元件最大工作压力及进油路上总压力损失这两者之和,液压执行元件的最大工作压力可以从工况图或表中找到;进油路上总压力损失可以通过估算求得,也可以按经验资料估计,见表10-3。 表10-3 进油路压力损失经验值 液压泵的流量必须等于或超过几个同时工作的液压执行元件总流量的最大 值以及回路中泄漏量这两者之和。液压执行元件总流量的最大值可以从工况图或表中找到(当系统中备有蓄能器时,此值应为一个工作循环中液压执行元件的平均流量);而回路中泄漏量则可按总流量最大值的10%-30%估算。 在参照产品样本选取液压泵时,泵的额定压力应选得比上述最大工作压力高20%-60%,以便留有压力储备;额定流量则只需选得能满足上述最大流量需要即可。 液压泵在额定压力和额定流量下工作时,其驱动电机的功率一般可以直接从产品样本上查到。电机功率也可以根据具体工况计算出来,有关的算式和数据见第三章相关部分或液压工程手册。 二、阀类元件 阀类元件的规格按液压系统的最大压力和通过该阀的实际流量从产品样本 上选定。各类液压阀都必须选得使其实际通过流量最多不超过其公称流量的120%,否则会引起发热、噪声和过大的压力损失,使阀的性能下降。选用液压阀时还应考虑下列问题:阀的结构形式、特性、压力等级、连接方式、集成方式及操纵方式等。对流量阀应考虑其最小稳定流量;对压力阀应考虑其调压范围;对换向阀应考虑其滑阀机能等。 1.流量阀的选择

液压元件的更换规定

DB762.6—2011 液压元件的更换规定代替DB762.6—2000 1 范围 本标准规定了我公司机械设备液压元件修理更换的技术条件。 本标准适用于机械设备液压元件修理更换。 2 引用标准 GB/T 1184 形状和位置公差未注公差值 GB/T 8713 液压机和气动缸筒用精密内径无缝钢管 GB/T 9439 灰铸铁件 GB/T 699 优质碳素结构钢 GB/T 3077 合金结构钢 GB/T 1348 球墨铸铁件 GB/T 1176 铸造铜合金技术条件 3 液压元件更换标准 3.1 密封件更换:液压件上的密封件及防尘圈,若表面或唇口有划痕、破损、断面挤压变形、外形扭曲或老化裂纹等缺陷,已丧失良好的密封性能和防尘性能时,应更换。 3.1.1 经拆卸的动静用O形密封件,原则上应换新。 3.1.2 新换O形密封圈材质、尺寸、尺寸公差、硬度等应符合原件要求。 3.2 油泵及马达的传动轴扭曲、折断或较严重的磨损时,应更换。 3.3 液压元件的主要铸件阀体及泵体有裂纹时,应更换。 3.4 液压元件所用的弹簧,有较明显的变形、磨损、折断或超出原设计技术要求时,应更换。 3.4.1 弹簧是影响液压元件灵敏度、稳定性和使用压力的重要零件。新换弹簧的材质、结构尺寸、有效圈数、刚度和自由高度应保证与原件相同。 3.4.2 新换弹簧应经过必要的热处理、喷丸和强压时效处理,以保证弹簧的弹性极限、稳定性和疲劳强度。 3.4.3 弹簧两端面应经磨削,保证与弹簧轴线垂直,其垂直度应不大于GB/T 1184规定的6级公差值。 总工程师批准2011-07-01实施

3.4.4 新换弹簧不得有裂纹、发裂、斑疤、夹杂、氧化皮、脱碳层超厚等缺陷。 3.5 油泵及油马达中的轴承磨损严重并影响元件工作性能时,应更换。 3.6 柱塞及其孔磨损严重,其配合间隙超过原图样规定值的25%时,应更换。 3.7 滑阀与滑体磨损严重,其配合间隙超过原图样规定值的25%时,应更换。 3.8 齿轮泵及齿轮油马达的更换 3.8.1 泵体内表面有较严重划痕时,应整台更换。 3.8.2 配油盘有较严重磨损时,应更换。 3.8.3 配油盘与齿轮侧面的配合间隙超过原规定值的30%时,应更换。 3.8.4 泵运转中卡死,应整台更换。 3.8.5 泵的泵体、配油盘、齿轮等,同时存在较严重损伤时,应整台更换。 3.9 叶片泵及叶片马达的更换 3.9.1 经修理后泵的流量低于公称值的90%时,应整台更换。 3.9.2 泵的主要零件,如泵体、定子圈、转子和叶片等同时有较严重损坏时,应整台更换。 3.10 柱塞泵及柱塞马达的更换 3.10.1 经过修理后,泵及马达的流量与压力小于公称值的80%时,应整台更换。 3.10.2 泵/马达的传动轴扭曲、折断或有较严重的磨损时,应更换。 3.10.3 油泵及马达中的轴承磨损严重,并影响元件工作性能时,应更换。 3.10.4 泵的主要零件,如泵体、摆盘和柱塞等有较严重的损坏时,应整台更换。 3.10.5 弹簧有折断或疲劳裂纹时,应更换。 3.10.6 柱塞及配合孔磨损严重,其配合间隙超过原图样规定值的25%时,应更换。3.11 液压缸部件的更换 3.11.1 液压缸导向铜套有磨损,圆度、圆柱度超差;有大面积刮伤,表面粗糙度下降或出现深度大于0.2mm、长度大于5mm的纵向刻痕时,应更换。 3.11.2 液压缸易损零件加工换新:液压缸的缸体、柱塞、活塞杆、活塞和导向套等易损零件材料及加工要求应按原设计规定,若找不到原设计资料,则按表1选用。

液压元件选择标准

液压元件选择标准文件编码(GHTU-UITID-GGBKT-POIU-WUUI-8968)

液压系统元件的选择液压元件的选择 液压泵的确定与所需功率的计算 1.液压泵的确定 (1)确定液压泵的最大工作压力。液压泵所需工作压力的确定,主要根据液压缸在工作循环各阶段所需最大压力p1,再加上油泵的出油口到缸进油口处总的压力损失ΣΔp,即pB=p1+ΣΔp? ΣΔp 包括油液流经流量阀和其他元件的局部压力损失、管路沿程损失等,在系统管路未设计之前,可根据同类系统经验估计,一般管路简单的节流阀调速系统?ΣΔp为 (2~5)×105Pa,用调速阀及管路复杂的系统ΣΔp为(5~15)×105Pa,ΣΔp也可只考虑流经各控制阀的压力损失,而将管路系统的沿程损失忽略不计,各阀的额定压力损失可从液压元件手册或产品样本中查找,也可参照下表选取。 常用中、低压各类阀的压力损失(Δpn) 阀名Δpn(×105Pa) 阀名Δpn(×105Pa) 阀名Δpn(×105Pa) 阀名 Δpn(×105Pa) 单向阀 0.3~0.5 背压阀 3~8 行程阀 1.5~2 转阀 1.5~2 换向阀 1.5~3 节流阀 2~3 顺序阀 1.5~3 调速阀 3~5

(2)确定液压泵的流量qB。泵的流量qB根据执行元件动作循环所需最大流量qmax和系统的泄漏确定。 ①多液压缸同时动作时,液压泵的流量要大于同时动作的几个液压缸(或马达)所需的最大流量,并应考虑系统的泄漏和液压泵磨损后容积效率的下降,即qB≥K(Σq)max(m3/s)? 式中:K为系统泄漏系数,一般取1.1~1.3,大流量取小值,小流量取大值;(Σq)max为同时动作的液压缸(或马达)的最大总流量(m3/s)。 ②采用差动液压缸回路时,液压泵所需流量为: qB≥K(A1-A2)vmax(m3/s) 式中:A 1,A 2为分别为液压缸无杆腔与有杆腔的有效面积(m2);vmax 为活塞的最大移动速度(m/s)。 ③当系统使用蓄能器时,液压泵流量按系统在一个循环周期中的平均流量选取,即 qB= ViK/Ti? 式中:Vi为液压缸在工作周期中的总耗油量(m3);Ti为机器的工作周期(s);Z为液压缸的个数。 (3)选择液压泵的规格:根据上面所计算的最大压力pB和流量qB,查液压元件产品样本,选择与PB和qB相当的液压泵的规格型号。 上面所计算的最大压力pB是系统静态压力,系统工作过程中存在着过渡过程的动态压力,而动态压力往往比静态压力高得多,所以泵的额定压

常用液压元件型号对照表

油研力士乐台湾峰昌日本不二越达众意大利阿托斯 Yuken Rexroth Winmost Nachi Dachung Atos YF-B10B YF-B10H1YF-B10H1CG2V-6B-10(S-)BG-03-32DB10-1-30/10RV-03G-1R-G03-C-20RV-03G-1-D AGAM-10/100YF-B10C YF-B10H2YF-B10H2CG2V-6C-10(S-)BG-03-32DB10-1-30/20RV-03G-2R-G03-1-20RV-03G-1-D AGAM-10/210YF-B10H YF-B10H3YF-B10H3CG2V-6F-10(S-)BG-03-32 DB10-1-30/20RV-03G-3R-G03-2-20 RV-03G-2-D AGAM-10/210YF-B10K YF-B10H4YF-B10H4CG2V-6G-10 DB10-1-30/31.5 RV-03G-4AGAM-10/350 YF-L10B YF-L10H1YF-L10H1BT-03-32RV-03T-1R-T03-C-20RV-03T-1-D YF-L10C YF-L10H2YF-L10H2BT-03-32RV-03T-2R-T03-1-20RV-03T-1-D YF-L10H YF-L10H3YF-L10H3BT-03-32 RV-03T-3R-T03-2-20 RV-03T-2-D YF-L10K YF-L10H4YF-L10H4RV-03T-4YF-B20B YF-B20H1YF-B20H1CG2V-8B-10ECG-06-10(S-)BG-06-32DB20-1-30/10RV-06G-1R-G06-C-20RV-06G-1-D AGAM-20/100YF-B20C YF-B20H2YF-B20H2CG2V-8C-10ECG-06-10(S-)BG-06-32DB20-1-30/20RV-06G-2R-G06-1-20RV-06G-1-D AGAM-20/210YF-B20H YF-B20H3YF-B20H3CG2V-8F-10ECG-06-10 (S-)BG-06-32 DB20-1-30/20RV-06G-3R-G06-2-20 RV-06G-2-D AGAM-20/210YF-B20K YF-B20H4 YF-B20H4 CG2V-8G-10 DB20-1-30/31.5 RV-06G-4 AGAM-20/350 YF-L20B YF-L20H1YF-L20H1ECT-06-10BT-06-32RV-06T-1R-T06-C-20RV-06T-1-D YF-L20C YF-L20H2YF-L20H2ECT-06-10BT-06-32RV-06T-2R-T06-1-20RV-06T-1-D YF-L20H YF-L20H3YF-L20H3ECT-06-10 BT-06-32 RV-06T-3R-T06-2-20 RV-06T-2-D YF-L20K YF-L20H4YF-L20H4RV-06T-4YF-B32B YF-B32H1YF-B32H1ECG-10-10(S-)BG-10-32DB30-1-30/10RV-10G-1R-G10-C-20RV-10G-1-D AGAM-32/100YF-B32C YF-B32H2YF-B32H2ECG-10-10(S-)BG-10-32DB30-1-30/20RV-10G-2R-G10-1-20RV-10G-1-D AGAM-32/210YF-B32H YF-B32H3YF-B32H3ECG-10-10 (S-)BG-10-32 DB30-1-30/20RV-10G-3R-G10-2-20 RV-10G-2-D AGAM-32/210YF-B32K YF-B32H4YF-B32H4DB30-1-30/31.5 RV-10G-4AGAM-32/350 YF-L32B YF-L32H1YF-L32H1ECT-10-10BT-10-32RV-10T-1R-T10-C-20RV-10T-1-D YF-L32C YF-L32H2YF-L32H2ECT-10-10BT-10-32RV-10T-2R-T10-1-20RV-10T-1-D YF-L32H YF-L32H3YF-L32H3ECT-10-10 BT-10-32 RV-10T-3R-T10-2-20 RV-10T-2-D YF-L32K YF-L32H4 YF-L32H4 RV-10T-4 溢流阀 注:1、板式联接可互换,管式联接有公制和英制螺纹区别。 2、每横栏可以互换,空白处无互换型号. 常 用 液 压 阀 型 号 替 换 表 徐州金枫液压技术开发有限公司 编制 榆液Veckers 榆液上海济南

相关主题
文本预览
相关文档 最新文档