当前位置:文档之家› 曲轴热处理工艺

曲轴热处理工艺

曲轴热处理工艺
曲轴热处理工艺

曲轴热处理工艺

文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

汽车发动机曲轴的热处理工艺设计

●摘要

通过对12缸、四冲程、水冷高速大功率柴油机曲轴材质及调质后各项性能指标的分析,可知通过选用优质合金结构钢40Cr,加合适的热处理工艺,可以最大限度地提高高速大功率柴油机曲轴性能。

·关键字:发动机;曲轴;选材;热处理工艺

目录

1.绪论

发动机是汽车的“心脏”,而曲轴是发动机的关键部位。现代化的发动机对曲轴毛坯提出了有6拐、呈120°分布、带12个整体平衡块的要求。在机型改造的过程中,首先遇到的问题就是曲轴强度不足,一般是通过加粗轴颈、优选材质和表面强化等方法来增大曲轴强度,从而满足功率提高的要求。加粗轴颈在生产实践中受到各方面条件的限制,应用范围较窄,所以选择合适的材料和适宜的表面强化方法是解决曲轴强度的主要途径。曲轴在工作中承受交变载荷,圆角过渡处属于薄弱环节,主轴颈和连杆颈的过渡处更为严重。如果机械加工不当,润滑保养不好或柴油机运行受力不当,圆角部位的附加应力超过了界限值,就会在此部位产生疲劳源,逐渐扩展形成裂纹,最终发生疲劳断裂。所以曲轴表面强化处理主要是通过对曲轴圆角的强化来提高曲轴的疲劳强度[1]。。曲轴在发动机中承担最大负荷和全部功率,承受着强大的、方向不断变化的弯矩及扭矩,同时经受着长时间高速运转的磨损,因此要求曲轴材质具有较高的刚性、疲劳强度和良好的耐磨性能。

2.曲轴服役条件和性能指标

2.1 服役条件

曲轴工作过程中,往复的惯性力和离心力使之承受很大的弯曲和扭转应力,轴颈表面容易磨损。疲劳断裂是曲轴的主要破坏形式,裂纹源

多发生在轴颈与曲臂的过渡圆角处。除曲轴的材质、加工因素外,如果由于工作条件( 温度、环境介质、负荷特性) 的变化,特别是曲轴在工作运转中所受的弯曲应力或扭转应力超出了损坏界(真实应力> σ-1, τ-1),在圆角过渡处的薄弱部位就会出现裂纹而发展为弯曲疲劳断裂或扭转疲劳断裂。

2.2 技术要求

2.2.1 调质技术要求

调质曲轴试样硬度及机械性能。

硬度: 290~330HB

机械性能:?

b ≥1000Mpa ?

s

≥800Mpa

?≥12% ?≥45%

AK u≥45J(u型缺口)

2.2.2 渗氮技术要求

表面硬度:≥550HV

渗氮层深度:0.25~0.40mm3.原材料状态和加工工序3.1材料原始状态

3.1.1材料

选用的材料是40Cr,其化学成份如表1所示

表 1 40Cr钢化学成分(%)

3.1.2 锻造工艺

分段加热,弯曲镦锻成型。锻后正火:880℃,高温回火:650℃。

3.2 加工工序

弯曲镦锻——正火——高温回火——粗车主轴颈、连杆轴颈及外圆端面——调质——精车主轴颈、连杆轴颈及开档——去应力回火——精车、半精磨主轴颈、连杆轴颈及开档——时效——半精磨、精磨主轴颈、连杆轴颈及钻铰直油孔、斜油孔渗氮抛光。

4.热处理工艺

4.1 调质工艺

淬火温度:830℃,保温时间:10分钟;

淬火介质:油

回火温度:560℃,保温时间:1~2h,冷却介质:水。

4.2 去应力回火工艺

稳定回火:温度540℃,保温时间1~1.5h;

低温时效:温度250℃,保温时间1~1.5h。

5. 选材用材分析

曲轴选用φ 10 棒材,选取端面较为平整的一面观察其金相组织,显微组织为粒状珠光体加少量铁素体,组织均匀,晶粒细小,晶粒度7~8 级,如图所示。40Cr 材料锻造成型为曲轴毛坯后,为克服因锻造加热引起晶粒长大和不均匀性问题,利用正火处理消除锻造时产生的应力。因为40Cr 材料属于珠光体- 马氏体类钢,正火后再高温回火软化处理,可以给随后的机械加工和调质处理打下了良好的基础。实验表明,电渣重熔钢能使非金属夹杂物和有害元素含量大大降低,尤其是P、S 有害元素由电炉钢的0.03% 和0.03%,分别降低至0.005% 和0.002%。同时可使其化学成分均匀、纯洁度高、晶粒细小、组织致密,横向力学性能显着改善,基本上消除了横向性能大大低于纵向性能的弊端,使各方向性能基本一致,避免早期横向断裂。由上可知电渣重熔钢力学性能明显高于电炉钢。

图1

如上图所示为40Cr钢的原始组织金相,可看出显微组织不是很均匀,并且晶粒较为粗大,此时的40Cr钢的综合性能完全不适合制作曲轴,需要通过一定的热处理来改善其内部组织,即需要进行预备热处理,来细化晶粒,改善组织性能,根据已学知识,并且翻阅相关书籍,我选择使用正火这一热处理工艺来作为40Cr钢的预备热处理工艺,同时根据试样大小(φ10)通过公式计算来确定正火时间为7分钟,根据40Cr 的基本性质(Ac3的温度)确定了正火的温度为880℃,来改善其晶粒大

小,使得晶粒细化以便得到更好的切削性能并未淬火做组织准备正火后的组织金相如下图所示

图2

正火后组织变成了片状P和片状渗碳体,此时的钢的切削性能较好,硬度较低,便于切削加工。硬度在28HRC左右,由于作为曲轴要有一定的硬度与耐磨性,而此时的40Cr不满足要求,因此要进行更进一步的操作,即进行最终热处理,通过查阅有关资料,并结合所学知识,我选用调质处理+表面高温淬火来作为40Cr钢的最终热处理工艺。使用淬火来提高钢的硬度,根据试样尺寸,确定淬火时间为10分钟,温度为830℃,由于40Cr钢的淬透性比较好,为了避免40Cr钢在淬火时出现淬裂现象,因此选择淬火介质——油。淬火后的组织金相如下图所示

图3

通过淬火处理后,淬火组织为马氏体,具有很高的硬度,不过很脆,所以需要通过高温回火来提高其韧性,适当的降低其硬度。此时的40Cr 钢的硬度高达62HRC。不便于加工。由查表可知为了使淬火M尽可能的转变为回火S,加热时间必须在1个小时以上,所以选择加热时间为2个小时,根据所选钢材40Cr钢的基本性质,并结合所学知识选择回火所需温度为560℃。高温回火后的组织金相图如下所示:

图4

此时40Cr钢件的金相组织为回火索氏体,保留了淬火效应,索氏体均匀细密,晶粒细小,具有良好的硬度与韧性。此时的40Cr的硬度在

32HRC左右,已经基本符合制作曲轴的要求。可以投入生产中。

试验表明:马氏体组织经低温回火,具有较高的强度、硬度,但塑性韧性较低;随回火温度提高,其强度下降,塑性韧性提高;经高温回火得到均匀回火索氏体组织,可获得较高的综合机械性能,强度及塑韧性得到最好的配合。

6. 结论

通过选用40Cr钢,加上合适的热处理工艺,即正火——调质处理,可以很大限度的提高曲轴强度,并且通过高频表面淬火工艺,可以很好的提高曲轴的表面硬度以及表面耐磨性。在对40Cr钢进行热处理时由于淬透性比较好,很容易出现淬裂,所以对选择淬火介质是要选择冷速较慢的介质比如空冷、油冷等等。但是若选择了水冷,则很容易淬裂。做实验室不小心放入水中冷却,40Cr钢直接是内部出现裂纹,金相组织显示晶格紊乱。所以选择了油冷来减小曲轴开裂风险。同时采用阶梯加热、淬火前空气预冷和严格控制淬火冷却时间的方式,能减小大型曲轴因产品结构各部位尺寸差异产生的应力,降低开裂风险。实验中,磨取金相时,端面一定要尽量保证平整,不然磨取的金相图片不清晰,对研究金相组织有一定的阻碍,像上面的回火态的金相就是由于磨制时没有保证在同一水平面上,导致端面不平,使得图像模糊,所以要注意这一问题。

汽车发动机曲轴的热

处理工艺设计

指导老师:刘建康

姓名:朱学海

日期:2010-9-29

曲轴的热处理工艺.

曲轴的热处理工艺 曲轴是引擎的主要旋转机件,装上连杆后,可承接连杆的上下(往复运动变成循 环(旋转运动。是发动机上的一个重要的机件,其材料是由碳素结构钢或球墨铸铁制成的。曲轴的性能在很大程度上影响着汽车发动机的可靠性与寿命。曲轴在发动机中承担着最大的负荷和全部的功率, 承担着强大的方向不断变化的弯矩和扭矩, 同时承受着长时间的高速运转的磨损, 圆角过渡处处于薄弱环节,主轴颈与圆角的过渡处更为严重。因而,需要合适的热处理工艺,以保证其达到所要求的各项性能指标。 在曲轴工作的过程中,往复的惯性力和离心力使之承受很大的弯曲 ---扭转应力, 轴颈表面容易磨损, 且轴颈与曲臂的过渡圆角处最为薄弱。除曲轴的材质, 加工因素外,曲轴的工作条件(温度、环境介质、负荷特性等都是影响曲轴服役的。 曲轴的主要失效形式有(1疲劳断裂:多数断裂时曲柄与轴颈的圆角处产生疲劳裂纹, 随后向曲柄深处发展, 造成曲柄的断裂, 其次是曲柄中部的油道内壁产生裂纹,发展为曲柄处的断裂。 (2轴颈表面的严重磨损。 因此, 曲轴的选材十分重要, 既需要满足曲轴的力学性能, 也需要考虑强度和耐磨性。由于曲轴需要承受交变的弯曲 ---扭转载荷以及发动机的大的功率, 因此,要求其具有高的强度,良好的耐磨、耐疲劳性以及循环韧性等。因而,根据曲轴材料的要求,各项技术要求,及材料的成分,机械性能,淬透性,同时需考虑成本的经济性,最终可以选择 40Cr 作为汽车发动机的材料。 所以曲轴的大致加工路线是, 锻造→正火→机械加工→去应力退火→调质处理→表面热处理 (高频淬火 +低温回火 , 其中预备热处理为正火, 然后可能有必要进行去应力退火,最终热处理为调质处理和表面热处理的高频淬火和低温回火。 40Cr 的显微组织不均匀,且晶粒粗大,需要进行预备热处理来细化晶粒和改善其内部组织。翻阅书籍后我决定采用正火的方法来作为预备热处理。正火温度为Ac3或 Acm 以上 40到 60℃,故取正火温度为 880℃,来改善晶粒大小,使晶粒细化,

曲轴热处理工艺

汽车发动机曲轴的热处理工艺设计 ●摘要 通过对12缸、四冲程、水冷高速大功率柴油机曲轴材质及调质后各项性能指标的分析,可知通过选用优质合金结构钢40Cr,加合适的热处理工艺,可以最大限度地提高高速大功率柴油机曲轴性能。 ·关键字:发动机;曲轴;选材;热处理工艺

目录 1.绪论 (3) 2.曲轴服役条件和性能指标 (3) 2.1 服役条件 (3) 2.2 技术要求 (4) 2.2.1 调质技术要求 (4) 2.2.2 渗氮技术要求 (4) 3.原材料状态和加工工序 (4) 3.1材料原始状态 (4) 3.1.1材料 (4) 3.1.2 锻造工艺 (5) 3.2 加工工序 (5) 4.热处理工艺 (5) 4.1 调质工艺 (5) 4.2 去应力回火工艺 (5) 5. 选材用材分析 (6) 6. 结论 (10)

1.绪论 发动机是汽车的“心脏”,而曲轴是发动机的关键部位。现代化的发动机对曲轴毛坯提出了有6拐、呈120°分布、带12个整体平衡块的要求。在机型改造的过程中,首先遇到的问题就是曲轴强度不足,一般是通过加粗轴颈、优选材质和表面强化等方法来增大曲轴强度,从而满足功率提高的要求。加粗轴颈在生产实践中受到各方面条件的限制,应用范围较窄,所以选择合适的材料和适宜的表面强化方法是解决曲轴强度的主要途径。曲轴在工作中承受交变载荷,圆角过渡处属于薄弱环节,主轴颈和连杆颈的过渡处更为严重。如果机械加工不当,润滑保养不好或柴油机运行受力不当,圆角部位的附加应力超过了界限值,就会在此部位产生疲劳源,逐渐扩展形成裂纹,最终发生疲劳断裂。所以曲轴表面强化处理主要是通过对曲轴圆角的强化来提高曲轴的疲劳强度[1]。。曲轴在发动机中承担最大负荷和全部功率,承受着强大的、方向不断变化的弯矩及扭矩,同时经受着长时间高速运转的磨损,因此要求曲轴材质具有较高的刚性、疲劳强度和良好的耐磨性能。 2.曲轴服役条件和性能指标 2.1 服役条件 曲轴工作过程中,往复的惯性力和离心力使之承受很大的弯曲和扭转应力,轴颈表面容易磨损。疲劳断裂是曲轴的主要破坏形式,

汽车发动机曲轴材料的选择及工艺的设计说明

专业课程设计任务书 学生:班级: 设计题目:汽车发动机曲轴材料的选择及工艺设计 设计容: 1、根据零件工作原理,服役条件,提出机械性能要求和技术要求。 2、选材,并分析选材依据。 3、制订零件加工工艺路线,分析各热加工工序的作用。 4、制订热处理工艺卡,画出热处理工艺曲线,对各种热处理工艺进行分 析,并分析所得到的组织,说明组织及性能的检测方法与使用的仪器设备。 5、分析热处理过程中可能产生的缺陷及补救措施。 6、分析零件在使用过程中可能出现的失效方式及修复措施。

目录 0 前言 (1) 1 汽车发动机曲轴的工作条件及性能要求 (2) 1.1 汽车发动机曲轴的工作条件 (3) 1.2 汽车发动机曲轴的性能要求及技术要求 (3) 2 汽车发动机曲轴的材料选择及分析 (4) 2.1 零件材料选择的基本原则 (4) 2.2 曲轴常用材料简介 (5) 2.3 汽车发动机曲轴材料的确定 (5) 3 曲轴的加工工艺路线及热处理工艺的制定 (6) 3.1 35CrMo曲轴热处理要求 (6) 3.2 汽车曲轴的热处理工艺的制定 (6) 3.2.1 调质处理 (7) 3.2.2 去应力退火 (8) 3.2.3 圆角高频淬火和低温回

火 (9) 4 曲轴热处理过程中可能产生的缺陷及预防措施 (11) 4.1 校直过程引起材料原始裂纹 (11) 4.2 曲轴圆角淬火不当引起裂纹源 (12) 4.3 淬火畸变与淬火裂纹 (12) 4.4 淬火导致氧化、脱碳、过热、过烧 (13) 4.5 淬火硬度不足............................................................. (13) 5 曲轴在使用过程中可能产生的失效形式及分析 (13) 6 课程设计的收获与体会 (14) 7 参考文献……………………………………....................... 15 8 工艺卡................................................................. . (16)

热处理工艺名词解释

正火: 正火,又称常化,是将工件加热至Ac3或Ac m以上40~60℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。其目的是在于使晶粒细化和碳化物分布均匀化,去除材料的内应力,降低材料的硬度。 正火,又称常化,是将工件加热至Ac3(Ac?是指加热时自由铁素体全部转变为奥氏体的终了温度)或Ac m(Ac m是实际加热中过共析钢完全奥氏体化的临界温度线)以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。其目的是在于使晶粒细化和碳化物分布均匀化。正火与退火的不同点是正火冷却速度比退火冷却速度稍快,因而正火组织要比退火组织更细一些,其机械性能也有所提高。另外,正火炉外冷却不占用设备,生产率较高,因此生产中尽可能采用正火来代替退火。 正火的主要应用X围有:①用于低碳钢,正火后硬度略高于退火,韧性也较好,可作为切削加工的预处理。②用于中碳钢,可代替调质处理作为最后热处理,也可作为用感应加热方法进行表面淬火前的预备处理。③用于工具钢、轴承钢、渗碳钢等,可以消降或抑制网状碳化物的形成,从而得到球化退火所需的良好组织。④用于铸钢件,可以细化铸态组织,改善切削加工性能。 ⑤用于大型锻件,可作为最后热处理,从而避免淬火时较大的开

裂倾向。⑥用于球墨铸铁,使硬度、强度、耐磨性得到提高,如用于制造汽车、拖拉机、柴油机的曲轴、连杆等重要零件。⑦过共析钢球化退火前进行一次正火,可消除网状二次渗碳体,以保证球化退火时渗碳体全部球粒化。 正火后的组织:亚共析钢为F+S,共析钢为S,过共析钢为S+二次渗碳体,且为不连续。 正火主要用于钢铁工件。一般钢铁正火与退火相似,但冷却速度稍大,组织较细。有些临界冷却速度(见淬火)很小的钢,在空气中冷却就可以使奥氏体转变为马氏体,这种处理不属于正火性质,而称为空冷淬火。与此相反,一些用临界冷却速度较大的钢制作的大截面工件,即使在水中淬火也不能得到马氏体,淬火的效果接近正火。钢正火后的硬度比退火高。正火时不必像退火那样使工件随炉冷却,占用炉子时间短,生产效率高,所以在生产中一般尽可能用正火代替退火。对于含碳量低于0.25%的低碳钢,正火后达到的硬度适中,比退火更便于切削加工,一般均采用正火为切削加工作准备。对含碳量为0.25~0.5%的中碳钢,正火后也可以满足切削加工的要求。对于用这类钢制作的轻载荷零件,正火还可以作为最终热处理。高碳工具钢和轴承钢正火是为了消除组织中的网状碳化物,为球化退火作组织准备。 普通结构零件的最终热处理,由于正火后工件比退火状态具有更好的综合力学性能,对于一些受力不大、性能要求不高的普

汽车发动机曲轴材料的选择及工艺设计

专业课程设计任务书 学生姓名:班级: 设计题目:汽车发动机曲轴材料的选择及工艺设计 设计内容: 1、根据零件工作原理,服役条件,提出机械性能要求和技术要求。 2、选材,并分析选材依据。 3、制订零件加工工艺路线,分析各热加工工序的作用。 4、制订热处理工艺卡,画出热处理工艺曲线,对各种热处理工艺进行分 析,并分析所得到的组织,说明组织及性能的检测方法与使用的仪器设备。 5、分析热处理过程中可能产生的缺陷及补救措施。 6、分析零件在使用过程中可能出现的失效方式及修复措施。

目录 0 前言 (1) 1 汽车发动机曲轴的工作条件及性能要求 (2) 1.1 汽车发动机曲轴的工作条件 (3) 1.2 汽车发动机曲轴的性能要求及技术要求 (3) 2 汽车发动机曲轴的材料选择及分析 (4) 2.1 零件材料选择的基本原则 (4) 2.2 曲轴常用材料简介 (5) 2.3 汽车发动机曲轴材料的确定 (5) 3 曲轴的加工工艺路线及热处理工艺的制定 (6) 3.1 35CrMo曲轴热处理要求 (6) 3.2 汽车曲轴的热处理工艺的制定 (6) 3.2.1 调质处理 (7) 3.2.2 去应力退火 (8) 3.2.3 圆角高频淬火和低温回火 (9) 4 曲轴热处理过程中可能产生的缺陷及预防措施 (11) 4.1 校直过程引起材料原始裂纹 (11) 4.2 曲轴圆角淬火不当引起裂纹源 (12) 4.3 淬火畸变与淬火裂纹 (12) 4.4 淬火导致氧化、脱碳、过热、过烧 (13) 4.5 淬火硬度不足 (13) 5 曲轴在使用过程中可能产生的失效形式及分析 (13) 6 课程设计的收获与体会 (14) 7 参考文献 (15) 8 工艺卡 (16)

曲轴的加工工艺、设计步骤、流程

引擎的主要旋转机件,装上连杆后,可承接连杆的上下(往复)运动变成循环(旋转)运动。 是发动机上的一个重要的机件,其材料是由碳素结构钢或球墨铸铁制成的,有两个重要部位:主轴颈,连杆颈,(还有其他)。主轴颈被安装在缸体上,连杆颈与连杆大头孔连接,连杆小头孔与汽缸活塞连接,是一个典型的曲柄滑块机构。曲轴的润滑主要是指与摇臂间轴瓦的润滑和两头固定点的润滑.这个一般都是压力润滑的,曲轴中间会有油道和各个轴瓦相通,发动机运转以后靠机油泵提供压力供油进行润滑、降温。发动机工作过程就是,活塞经过混合压缩气的燃爆,推动活塞做直线运动,并通过连杆将力传给曲轴,由曲轴将直线运动转变为旋转运动。曲轴的旋转是发动机的动力源。也是整个船的源动力。 曲轴制造技术/工艺的进展 1、球墨铸铁曲轴毛坯铸造技术 (1)熔炼 高温低硫纯净铁水的获得是生产高质量球墨铸铁的关键。国内主要是以冲天炉为主的生产设备,铁水未进行预脱硫处理;其次是高纯生铁少、焦炭质量差。目前已采用双联外加预脱硫的熔炼方法,采用冲天炉熔化铁水,经炉外脱硫,然后在感应电炉中升温并调整成分。目前,在国内铁水成分的检测已普遍采用真空直读光谱仪来进行。 (2)造型 气流冲击造型工艺明显优于粘土砂型工艺,可获得高精度的曲轴铸件,该工艺制作的砂型具有无反弹变形量等特点,这对于多拐曲轴尤为重要。目前,国内已有一些曲轴生产厂家从德国、意大利、西班牙等国引进气流冲击造型工艺,不过,引进整条生产线的只有极少数厂家,如文登天润曲轴有限公司引进了德国KW铸造生产线。 2、钢曲轴毛坯的锻造技术 近几年来,国内已引进了一批先进的锻造设备,但由于数量少,加之模具制造技术和其他一些设施跟不上,使一部分先进设备未发挥应有的作用。从总体上来讲,需改造和更新的陈旧的普通锻造设备多,同时,落后的工艺和设备仍占据主导地位,先进技术有所应用但还不普遍。 3、机械加工技术 目前国内曲轴生产线多数由普通机床和专用机床组成,生产效率和自动化程度相对较低。粗加工设备多采用多刀车床车削曲轴主轴颈及拐颈,工序的质量稳定性差,容易产生较大的内应力,难以达到合理的加工余量。一般精加工采用 MQ8260等曲轴磨床粗磨-半精磨-精磨-抛光,通常靠手工操作,加工质量不稳定。随着贸易全球化的到来,各厂家已意识到了形势的严峻性,纷纷进行技术改造,全力提升企业的竞争力,近年来引进了许多先进设备和技术,进展速度很快。就目前状况来讲,这些设备和技术基本依赖进口。下面就哈尔滨东安动力、一汽大柴、文登天润曲轴、滨州海得曲轴等公司的情况作以介绍。 哈尔滨东安集团曲轴生产线为全自动柔性流水生产线,粗加工生产线由德国的专机自动线(LINDENMAIER)、数控车-车拉、数控高速随动外铣(BOEHRINGER)、圆角滚压机(HEGENSCHEIDT-MFD)和止推面车滚专机、淬火机(EMA)等组成;精加工生产线由日本的数控高速CBN磨床

汽车发动机连杆螺栓热处理工艺设计分析解析

金属材料热处理原理与工艺课程设计40Mn发动机连杆螺栓热处理工艺设计 院、部: 学生姓名: 学号: 指导教师:职称 专业: 班级: 完成时间:

摘要 综述了发动机连杆螺栓的工作环境,使用性能,失效形式,连杆螺栓材料的选择,热处理工艺等。主要就连杆螺栓的热处理工艺做了详细的分析,通过大量的实验得出了连杆螺栓材料热处理后的金相组织图等资料。分别对球化退火、淬火、回火过程中组织、硬度的的变化做了分析。并就实验中出现的问题作了分析,以供参考。 关键词:连杆螺栓热处理;等温退火;淬火;回火;问题分析

目录 摘要............................................................................................................................................. I 前言. (1) 1 连杆螺栓的使用性能 (1) 2 材料选择及技术要求 (1) 2.1.螺栓的热处理工艺规范 (2) 2.2材料的选择 (2) 3 热处理工艺及目的 (3) 3.1退火 (3) 3.2正火 (3) 3.3淬火 (4) 3.4回火 (4) 4 设计说明 (4) 4.1失效形式 (4) 4.2工作要求 (4) 4.3结构钢40M N的化学成分 (5) 4.3.1 主要特性 (5) 4.3.2 材料分析 (5) 4.3.3 力学性能要求 (6) 4.3.4 基于材料的零件设计 (6) 4.5热处理工艺说明 (7) 5 设计方案 (8) 5.1正火 (8) 5.2调质处理 (8) 5.3回火的制定 (9) 6 螺栓的热处理质量检测 (9) 6.1硬度计 (9) 6.2外观检测与金相组织检验 (9) 7 螺栓热处理回火缺陷的原因及解决方案 (10) 参考文献 (11)

发动机曲轴材料及热处理

发动机曲轴材料及热处理 前言受小能量多冲抗力愈佳,疲劳拉力愈高,因曲轴是发动机脊柱,承受全部功率输此,曲轴表面应有高的疲劳强度、耐磨性、出任务,受周围燃气和活塞连杆惯性作用抗咬合、抗擦伤和一定的抗蚀性及足够的力,承受弯曲应力、扭转应力、拉伸应力、压硬化层深度,以满足多次修磨需要,基体应缩压力和小能量多次冲击力及摩擦力剪切有高的综合力学性能和强韧性。试验表力等复杂交变负荷作用力,工作条件恶劣,明,选用50 GrMoA新型表面淬火钢,采用轴颈磨损严重。磨损和疲劳断裂是曲轴主复合强化处理,使用寿命显著提高,充分发要失效形式。 曲轴是内燃机的重要部件,工作时曲轴承受气体压力、惯性力及惯性力矩的作用,受力大而且复杂,并且承受交变负荷的冲击作用[1];同时,曲轴又是高速旋转件,因此,要求曲轴具有足够的刚度和强度,具有良好的承受冲击载荷的能力,耐磨损且润滑良好.针对内燃机传动曲轴提出的更高、更全面的要求,必然要求内燃机车传动曲轴用钢具有很高的疲劳强度和耐磨性以及高的淬透性,且淬火变形小,在高温下有高的蠕变强度与持久强度.由于工作温度高,而且还要承受剪切、拉压、弯曲、扭转等复杂的交变应力.因此,对曲轴坯用钢的技术要求非常严格. 2. 内燃机曲轴选材 ●工作条件:受弯曲、扭转、剪切、拉压、冲击等交变应力,曲轴受扭转和弯曲振动而产生附加应力;应力分布不均匀;曲轴颈与轴承有滑动摩擦。 ●失效形式:疲劳断裂和轴颈严重磨损。 ●性能要求:材料有高强度,一定冲击韧性,足够弯曲、扭转疲劳强度和刚度,轴颈表面有高硬度和耐磨性。 ●选材原则:根据内燃机类型、功率大小、转速高低和相应轴承材料等定,也需考虑加工条件, 生产批量和热处理工艺及制造成本等。 ●曲轴材料: 锻钢曲轴--优质中碳钢和中碳合金钢,如35、40、45、35Mn2、40Cr, 35CrMo钢等; 铸造曲轴--铸钢、球墨铸铁、珠光体可锻铸铁及合金铸铁等, 如ZG230-450、QT600-3、QT700-2 、KTZ450-5、KTZ500-4等。 ● 175A型农用柴油机曲轴选材:

曲轴制造工艺过程

曲轴制造工艺过程 曲轴是引擎的主要旋转机件,装上连杆后,可承接连杆的上下(往复)运动变成循环(旋转)运动。是发动机上的一个重要的机件,其材料是由碳素结构钢或球墨铸铁制成的,有两个重要部位:主轴颈,连杆颈,(还有其他)。主轴颈被安装在缸体上,连杆颈与连杆大头孔连接,连杆小头孔与汽缸活塞连接,是一个典型的曲柄滑块机构。曲轴润滑主要是指与摇臂间轴瓦的润滑和两头固定点的润滑.这个一般都是压力润滑的,曲轴中间会有油道和各个轴瓦相通,发动机运转以后靠机油泵提供压力供油进行润滑、降温。发动机工作过程就是,活塞经过混合压缩气的燃爆,推动活塞做直线运动,并通过连杆将力传给曲轴,由曲轴将直线运动转变为旋转运动。曲轴的旋转是发动机的动力源。也是整个船的源动力。 1.曲轴制造技术/工艺的进展 1、球墨铸铁曲轴毛坯铸造技术 (1)熔炼 高温低硫纯净铁水的获得是生产高质量球墨铸铁的关键。国内主要是以冲天炉为主的生产设备,铁水未进行预脱硫处理;其次是高纯生铁少、焦炭质量差。目前已采用双联外加预脱硫的熔炼方法,采用冲天炉熔化铁水,经炉外脱硫,然后在感应电炉中升温并调整成分。目前,在国内铁水成分的检测已普遍采用真空直读光谱仪来进行。 (2)造型 气流冲击造型工艺明显优于粘土砂型工艺,可获得高精度的曲轴铸件,该工艺制作的砂型具有无反弹变形量等特点,这对于多拐曲轴尤为重要。目前,国内已有一些曲轴生产厂家从德国、意大利、西班牙等国引进气流冲击造型工艺,不过,引进整条生产线的只有极少数厂家,如文登天润曲轴有限公司引进了德国KW铸造生产线。 2、钢曲轴毛坯的锻造技术 近几年来,国内已引进了一批先进的锻造设备,但由于数量少,加之模具制造技术和其他一些设施跟不上,使一部分先进设备未发挥应有的作用。从总体上来讲,需改造和更新的陈旧的普通锻造设备多,同时,落后的工艺和设备仍占据主导地位,先进技术有所应用但还不普遍。 3、机械加工技术 目前国内曲轴生产线多数由普通机床和专用机床组成,生产效率和自动化程度相对较低。粗加工设备多采用多刀车床车削曲轴主轴颈及拐颈,工序的质量稳定

曲轴热处理工艺

曲轴热处理工艺

汽车发动机曲轴的热处理工艺设计 ●摘要 通过对12缸、四冲程、水冷高速大功率柴油机曲轴材质及调质后各项性能指标的分析,可知通过选用优质合金结构钢40Cr,加合适的热处理工艺,可以最大限度地提高高速大功率柴油机曲轴性能。·关键字:发动机;曲轴;选材;热处理工艺

目录 1.绪论 (3) 2.曲轴服役条件和性能指标 (4) 2.1 服役条件 (4) 2.2 技术要求 (5) 2.2.1 调质技术要求 (5) 调质曲轴试样硬度及机械性能。 (5) 2.2.2 渗氮技术要求 (5) 3.1材料原始状态 (5) 3.1.1材料 (5) 3.1.2 锻造工艺 (6) 3.2 加工工序 (6) 4.热处理工艺 (6) 4.1 调质工艺 (6) 4.2 去应力回火工艺 (6) 5. 选材用材分析 (7) 6. 结论 (11) 1.绪论 发动机是汽车的“心脏”,而曲轴是发动机的关键部位。现代化的发动机对曲轴毛坯提出了有6拐、呈120°分布、带12个整体平衡块的要求。在机型改造的过程中,首先遇到的问题就是曲轴强度不足,一般是通过加粗轴颈、优选材质和表面强化等方法来增大曲轴强度,从而满足功率提高的要求。加粗轴颈在生产实践中受到各方面条件的限制,应用范围较窄,所以选择合适的材料和适宜的表面强化方

法是解决曲轴强度的主要途径。曲轴在工作中承受交变载荷,圆角过渡处属于薄弱环节,主轴颈和连杆颈的过渡处更为严重。如果机械加工不当,润滑保养不好或柴油机运行受力不当,圆角部位的附加应力超过了界限值,就会在此部位产生疲劳源,逐渐扩展形成裂纹,最终发生疲劳断裂。所以曲轴表面强化处理主要是通过对曲轴圆角的强化来提高曲轴的疲劳强度[1]。。曲轴在发动机中承担最大负荷和全部功率,承受着强大的、方向不断变化的弯矩及扭矩,同时经受着长时间高速运转的磨损,因此要求曲轴材质具有较高的刚性、疲劳强度和良好的耐磨性能。 2.曲轴服役条件和性能指标 2.1 服役条件 曲轴工作过程中,往复的惯性力和离心力使之承受很大的弯曲和扭转应力,轴颈表面容易磨损。疲劳断裂是曲轴的主要破坏形式,裂纹源多发生在轴颈与曲臂的过渡圆角处。除曲轴的材质、加工因素外,如果由于工作条件( 温度、环境介质、负荷特性) 的变化,特别是曲轴在工作运转中所受的弯曲应力或扭转应力超出了损坏界(真实应力> σ-1, τ-1),在圆角过渡处的薄弱部位就会出现裂纹而发展为弯曲疲劳断裂或扭转疲劳断裂。

曲轴制造工艺过程

曲轴制造工艺过程 曲轴就是引擎的主要旋转机件,装上连杆后,可承接连杆的上下(往复)运动变成循环(旋转)运动。就是发动机上的一个重要的机件,其材料就是由碳素结构钢或球墨铸铁制成的,有两个重要部位:主轴颈,连杆颈,(还有其她)。主轴颈被安装在缸体上,连杆颈与连杆大头孔连接,连杆小头孔与汽缸活塞连接,就是一个典型的曲柄滑块机构。曲轴润滑主要就是指与摇臂间轴瓦的润滑与两头固定点的润滑. 这个一般都就是压力润滑的,曲轴中间会有油道与各个轴瓦相通,发动机运转以后靠机油泵提供压力供油进行润滑、降温。发动机工作过程就就是,活塞经过混合压缩气的燃爆,推动活塞做直线运动,并通过连杆将力传给曲轴,由曲轴将直线运动转变为 旋转运动。曲轴的旋转就是发动机的动力源。也就是整个船的源动力。 1、曲轴制造技术/工艺的进展 1、球墨铸铁曲轴毛坯铸造技术 (1) 熔炼 高温低硫纯净铁水的获得就是生产高质量球墨铸铁的关键。国内主要就是以冲天炉为主的生产设备,铁水未进行预脱硫处理;其次就是高纯生铁少、焦炭质量差。目前已采用双联外加预脱硫的熔炼方法,采用冲天炉熔化铁水,经炉外脱硫,然后 在感应电炉中升温并调整成分。目前,在国内铁水成分的检测已普遍采用真空直读光谱仪来进行。 (2) 造型 气流冲击造型工艺明显优于粘土砂型工艺,可获得高精度的曲轴铸件,该工艺制作的砂型具有无反弹变形量等特点,这对于多拐曲轴尤为重要。目前,国内已有一些曲轴生产厂家从德国、意大利、西班牙等国引进气流冲击造型工艺,不过,引进整条生产线的只有极少数厂家,如文登天润曲轴有限公司引进了德国KW铸造生产线。 2、钢曲轴毛坯的锻造技术 近几年来,国内已引进了一批先进的锻造设备,但由于数量少,加之模具制造技 术与其她一些设施跟不上,使一部分先进设备未发挥应有的作用。从总体上来讲,需改造与更新的陈旧的普通锻造设备多,同时,落后的工艺与设备仍占据主导地位,先进技术有所应用但还不普遍。 3、机械加工技术 目前国内曲轴生产线多数由普通机床与专用机床组成,生产效率与自动化程度相对较低。粗加工设备多采用多刀车床车削曲轴主轴颈及拐颈,工序的质量稳定

曲轴制造工艺过程

曲轴制造工艺过程集团档案编码:[YTTR-YTPT28-YTNTL98-UYTYNN08]

曲轴制造工艺过程 曲轴是引擎的主要旋转机件,装上连杆后,可承接连杆的上下(往复)运动变成循环(旋转)运动。是发动机上的一个重要的机件,其材料是由碳素结构钢或球墨铸铁制成的,有两个重要部位:主轴颈,连杆颈,(还有其他)。主轴颈被安装在缸体上,连杆颈与连杆大头孔连接,连杆小头孔与汽缸活塞连接,是一个典型的曲柄滑块机构。曲轴润滑主要是指与摇臂间轴瓦的润滑和两头固定点的润滑.这个一般都是压力润滑的,曲轴中间会有油道和各个轴瓦相通,发动机运转以后靠机油泵提供压力供油进行润滑、降温。发动机工作过程就是,活塞经过混合压缩气的燃爆,推动活塞做直线运动,并通过连杆将力传给曲轴,由曲轴将直线运动转变为旋转运动。曲轴的旋转是发动机的动力源。也是整个船的源动力。 1.曲轴制造技术/工艺的进展 1、球墨铸铁曲轴毛坯铸造技术 (1)熔炼 高温低硫纯净铁水的获得是生产高质量球墨铸铁的关键。国内主要是以冲天炉为主的生产设备,铁水未进行预脱硫处理;其次是高纯生铁少、焦炭质量差。目前已采用双联外加预脱硫的熔炼方法,采用冲天炉熔化铁水,经炉外脱硫,然后在感应电炉中升温并调整成分。目前,在国内铁水成分的检测已普遍采用真空直读光谱仪来进行。 (2)造型 气流冲击造型工艺明显优于粘土砂型工艺,可获得高精度的曲轴铸件,该工艺制作的砂型具有无反弹变形量等特点,这对于多拐曲轴尤为重要。目前,国

内已有一些曲轴生产厂家从德国、意大利、西班牙等国引进气流冲击造型工艺,不过,引进整条生产线的只有极少数厂家,如文登天润曲轴有限公司引进了德国KW铸造生产线。 2、钢曲轴毛坯的锻造技术 近几年来,国内已引进了一批先进的锻造设备,但由于数量少,加之模具制造技术和其他一些设施跟不上,使一部分先进设备未发挥应有的作用。从总体上来讲,需改造和更新的陈旧的普通锻造设备多,同时,落后的工艺和设备仍占据主导地位,先进技术有所应用但还不普遍。 3、机械加工技术 目前国内曲轴生产线多数由普通机床和专用机床组成,生产效率和自动化程度相对较低。粗加工设备多采用多刀车床车削曲轴主轴颈及拐颈,工序的质量稳定性差,容易产生较大的内应力,难以达到合理的加工余量。一般精加工采用MQ8260等曲轴磨床粗磨-半精磨-精磨-抛光,通常靠手工操作,加工质量不稳定。 发动机曲轴制造技术进展最为迅速的是机械加工装备,比较典型的加工工艺是铣削和磨削。下面简要介绍GF70M-T曲轴磨床和VDF 315 OM-4高速随动外铣床,其先进程度可见一斑: GF70M-T曲轴磨床是日本TOYADA工机开发生产的专用曲轴磨床,是为了满足多品种、低成本、高精度、大批量生产需要而设计的数控曲轴磨床。该磨床应用工件回转和砂轮进给伺服联动控制技术,可以一次装夹而不改变曲轴回转中心即可完成所有轴颈的磨削,包括随动跟踪磨削连杆轴颈;采用静压主轴、静压导轨、静压进给丝杠(砂轮头架)和线性光栅闭环控制,使用TOYADA工机

热处理工艺 内容摘要

正火时的Ac3(也称Acm)温度是 铁碳合金的AC3线,一般是从727到912摄氏度之间 正火温度一般在AC3线上30-50摄氏度,即对应为757到962摄氏度. 热处理工艺 正火,又称常化, 是将工件加热至Ac3或Accm以上30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。正火与退火的不同点是正火冷却速度比退火冷却速度稍快,因而正火组织要比退火组织更细一些,其机械性能也有所提高。另外,正火炉外冷却不占用设备,生产率较高,因此生产中尽可能采用正火来代替退火。 正火的主要应用范围有:①用于低碳钢,正火后硬度略高于退火,韧性也较好,可作为切削加工的预处理。 ②用于中碳钢,可代替调质处理作为最后热处理,也可作为用感应加热方法进行表面淬火前的预备处理。 ③用于工具钢、轴承钢、渗碳钢等,可以消降或抑制网状碳化物的形成,从而得到球化退火所需的良好组织。④用于铸钢件,可以细化铸态组织,改善切削加工性能。⑤用于大型锻件,可作为最后热处理,从而避免淬火时较大的开裂倾向。⑥用于球墨铸铁,使硬度、强度、耐磨性得到提高,如用于制造汽车、拖拉机、柴油机的曲轴、连杆等重要零件。⑦过共析钢球化退火前进行一次正火,可消除网状二次渗碳体,以保证球化退火时渗碳体全部球粒化。 退火annealing 将金属缓慢加热到一定温度,保持足够时间,然后以适宜速度冷却(通常是缓慢冷却,有时是控制冷却)的一种金属热处理工艺。目的是使经过铸造、锻轧、焊接或切削加工的材料或工件软化,改善塑性和韧性,使化学成分均匀化,去除残余应力,或得到预期的物理性能。退火工艺随目的之不同而有多种,如重结晶退火、等温退火、均匀化退火、球化退火、去除应力退火、再结晶退火,以及稳定化退火、磁场退火等等。 退火的一个最主要工艺参数是最高加热温度(退火温度),大多数合金的退火加热温度的选择是以该合金系的相图为基础的,如碳素钢以铁碳平衡图为基础(图1)。各种钢(包括碳素钢及合金钢)的退火温度,视具体退火目的的不同而在各该钢种的Ac3以上、Ac1以上或以下的某一温度。各种非铁合金的退火温度则在各该合金的固相线温度以下、固溶度线温度以上或以下的某一温度。 重结晶退火应用于平衡加热和冷却时有固态相变(重结晶)发生的合金。其退火温度为各该合金的相变温度区间以上或以内的某一温度。加热和冷却都是缓慢的。合金于加热和冷却过程中各发生一次相变重结晶,故称为重结晶退火,常被简称为退火。 这种退火方法,相当普遍地应用于钢。钢的重结晶退火工艺是:缓慢加热到Ac3(亚共析钢)或Ac1(共析钢或过共析钢)以上30~50℃,保持适当时间,然后缓慢冷却下来。通过加热过程中发生的珠光体(或者

汽车发动机曲轴的热处理工艺

摘要:本文对一般汽车发动机曲轴的各项性能与技术参数进行了分析,制定出相应材料(35CrMo)曲轴的热处理工艺方案,在工艺试验的基础上对方案进行了验证与改进,保证曲轴的各项性能达到要求。 关键词:曲轴热处理工艺35CrMo 调质高频淬火

目录 1.引言 (3) 2.曲轴的服役条件与失效形式 (3) 2.1.服役条件 (3) 2.2.失效形式 (4) 3.技术要求与材料的选择 (5) 3.1 锻钢曲轴热处理的技术要求 (5) 3.2 材料的选择 (5) 3.2.1选材条件 (5) 3.2.2 锻钢曲轴材料的要求 (5) 3.2.3 备选材料的化学成分与力学性能的对比与分析 (5) 3.2.4 材料的确定 (6) 4.加工工序 (6) 5.具体热处理工艺的制定与用材分析 (7) 5.1 35CrMo热处理的技术要求 (7) 5.2 具体工艺与用材分析 (7) 5.2.1 原始材料的组织与性能 (7) 5.2.2调质工艺与用材分析 (8) 5.2.2.1 调制工艺参数的确定 (8) 5.2.2.2 组织性能分析 (8) 5.2.3 去应力退火 (10) 5.2.4表面处理 (10) 5.2.4.1表面热处理工艺 (10) 5.2.4.2 组织性能分析 (11) 6.结论 (12) 7.参考文献 (14) 致 (15)

1.引言 曲轴是汽车发动机的最关键的零部件之一,曲轴的性能在很大程度上影响着汽车发动机的可靠性与寿命。曲轴在发动机中承担着最大的负荷和全部的功率,承担着强大的方向不断变化的弯矩和扭矩,同时承受着长时间的高速运转的磨损,圆角过渡处处于薄弱环节,主轴颈与圆角的过渡处更为严重。因而,需要合适的热处理工艺,以保证其达到所要求的各项性能指标。 图(1).曲轴结构示意图 2.曲轴的服役条件与失效形式 2.1.服役条件 曲轴在发动机中承担着最大的负荷和全部的功率,承担着强大的方向不断变化的弯矩和扭矩,同时承受着长时间的高速运转的磨损,圆角过渡处处于薄弱环节,主轴颈与圆角的过渡处更为严重。因而,需要合适的热处理工艺,以保证其达到所要求的各项性能指标。在曲轴工作的过程中,往复的惯性力和离

曲轴热处理工艺优选稿

曲轴热处理工艺 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

汽车发动机曲轴的热处理工艺设计 ●摘要 通过对12缸、四冲程、水冷高速大功率柴油机曲轴材质及调质后各项性能指标的分析,可知通过选用优质合金结构钢40Cr,加合适的热处理工艺,可以最大限度地提高高速大功率柴油机曲轴性能。 ·关键字:发动机;曲轴;选材;热处理工艺 目录

1.绪论 发动机是汽车的“心脏”,而曲轴是发动机的关键部位。现代化的发动机对曲轴毛坯提出了有6拐、呈120°分布、带12个整体平衡块的要求。在机型改造的过程中,首先遇到的问题就是曲轴强度不足,一般是通过加粗轴颈、优选材质和表面强化等方法来增大曲轴强度,从而满足功率提高的要求。加粗轴颈在生产实践中受到各方面条件的限制,应用范围较窄,所以选择合适的材料和适宜的表面强化方法是解决曲轴强度的主要途径。曲轴在工作中承受交变载荷,圆角过渡处属于薄弱环节,主轴颈和连杆颈的过渡处更为严重。如果机械加工不当,润滑保养不好或柴油机运行受力不当,圆角部位的附加应力超过了界限值,就会在此部位产生疲劳源,逐渐扩展形成裂纹,最终发生疲劳断裂。所以曲轴表面强化处理主要是通过对曲轴圆角的强化来提高曲轴的疲劳强度[1]。。曲轴在发动机中承担最大负荷和全部功率,承受着强大的、方向不断变化的弯矩及扭矩,同时经受着长时间高速运转的磨损,因此要求曲轴材质具有较高的刚性、疲劳强度和良好的耐磨性能。 2.曲轴服役条件和性能指标 2.1服役条件 曲轴工作过程中,往复的惯性力和离心力使之承受很大的弯曲和扭转应力,轴颈表面容易磨损。疲劳断裂是曲轴的主要破坏形式,裂纹源多发生在轴颈与曲臂的过渡圆角处。除曲轴的材质、加工因素外,如果由于工作条件(温度、环境介质、负荷特性)的变化,特别是曲轴在工作运转中所受的弯曲应力或扭转应力超出了损坏界(真实应力>σ-1,τ-1),在圆角过渡处的薄弱部位就会出现裂纹而发展为弯曲疲劳断裂或扭转疲劳断裂。

曲轴毛坯的热处理工艺

曲轴毛坯的热处理工艺探讨 曲轴毛坯常用工艺为:退火、正火、调质 1、退火 将工件加热到适当温度,根据材料和工件尺寸采用不同的保温时间,然后进行缓慢冷却(冷却速度最慢),目的是使金属内部组织达到或接近平衡状态,获得良好的工艺性能和使用性能,或者为进一步淬火作组织准备。 (1)完全退火和等温退火 完全退火又称重结晶退火,一般简称为退火,这种退火主要用于亚共析成分的各种碳钢和合金钢锻件。一般常作为一些不重要工件的最终热处理,或作为某些工件的预先热处理。42CrMo材料曲轴为了避免正火后出现贝氏体,常采用退火工艺,即860-880℃保温一定时间后随炉冷至500℃出炉空冷。 (2) 去应力退火 去应力退火又称低温退火(或高温回火),这种退火主要用来消除锻件的残余应力。如果这些应力不予消除,将会引起锻件在一定时间以后,或在随后的切削加工过程中产生变形或裂纹。 2、正火 正火是将钢加热到Ac3或Accm以上30~50℃,保温后空气中冷却的热处理工艺。一般设为860℃保温出炉空冷。

正火具有以下几方面的应用:1、含碳量≤0.25%经正火后硬度提高,改善了切削加工性能。2、消除过共析钢中的二次渗碳体。3、作为普通结构零件的最终热处理。 3、调质(淬火+高温回火) (1)淬火 为了提高硬度采取的方法,主要形式是通过加热、保温、速冷。冷却介质是水、油、AQUATENSID FN。用油作淬火介质只适用于过冷奥氏体的稳定性比较大的一些合金钢或小尺寸的碳钢工件的淬火。水是经济且冷却能力较强的淬火介质。如表所示:油主要用于合金钢或小尺寸碳钢工件的淬火。德润宝水基淬火液AQUATENSID FN淬火冷速随浓度变化可调,介于水和油之间。德润宝水基淬火液AQUATENSID FN即可保证高温下的快速冷却,又能实现低温下的缓慢冷速。适合于碳素钢、低合金钢和合金钢材料。40MnB 40Mn2 40Cr 35CrMo 42CrMo

曲轴的结构

曲轴的结构如图1.1所示:它由主轴颈,连杆轴颈曲轴臂,平衡块,前轴端和后轴端等部分组成。其中一个连杆颈和它两端的曲臂以及前后两个主轴颈合在一起,称为曲拐。曲轴的形式有整体式和组合式两种。下面分析大多数汽车发动机采用的整体式曲轴的结构。 图1.1 1.主轴颈 图1.2所示,用来支撑曲轴,曲轴几即绕其中心线旋转。主轴颈支撑于滑动主轴承上,主轴颈结构和连杆轴颈类似,不同点于滑动主轴承上,主轴颈结构和连杆轴颈类似,不同点是内表面有油槽。主轴承盖用螺栓与上曲轴箱的主轴承座紧固在一起。为了使各主轴颈磨损相对均匀,对于受力交大的中部和两端的主轴颈制造得较宽。 在连杆轴颈的两侧都有主轴颈者,称为全支撑曲轴。全支撑曲轴钢度好,主轴颈负荷小,但它比较长。如果主轴颈数目比连杆轴颈少,则称为非全支撑曲轴。其特点和全支撑主轴相反。 图1.2 2.连杆轴颈 用来安装连杆大头,如图1.3所示。直列式发动机的连杆轴项数与汽缸数相等;V型发动机因为两个连杆共同装在一个连杆轴颈上,故连杆轴颈数为汽缸数的一半。连杆轴颈通常被制成中空,其目的是为了减轻曲拐旋转部分的质量,以减小离心力。中空的部分还可兼作油道和油腔,如图所示。油腔不钻通,外端用螺塞封闭,并用开口销锁住。连杆中部插入一弯管,管口位于油腔中心。当曲轴旋转时,在曲轴油管机油中的较重的杂质被甩向油腔壁,而洁净的机油则经弯管流向连杆轴向表面,减轻了轴颈的磨损。 图1.3 3.曲轴臂 用来连接主轴颈和连杆轴颈,如图1.4所示。有的发动机曲轴臂上加有平衡块,用来平衡曲轴的不平衡的离心力和离心力矩,有的还可平衡一部分往复惯性力。图示1.5为四缸发动机曲轴受力情况。1.4道连杆轴颈的离心力F1.F4与2.3道连杆轴颈的离心力F2.F3大小相等,方向相反。从整体上看,似乎在

汽车发动机曲轴的热处理工艺

1摘要 :本文对一般汽车发动机曲轴的各项性能与技术参数进行了分析, 制定出相应材料(35CrMo)曲轴的热处理工艺方案,在工艺试验的基础上对方 案进行了验证与改进,保证曲轴的各项性能达到要求。 关键词:曲轴热处理工艺 35CrMo 调质高频淬火 2目录 1.引言 (3) 2.曲轴的服役条件与失效形式 (3) 2.1.服役条件 (3) 2.2.失效形式 (4) 3.技术要求与材料的选择 (5) 3.1 锻钢曲轴热处理的技术要求 (5) 3.2 材料的选择 (5) 3.2.1选材条件 (5) 3.2.2 锻钢曲轴材料的要求 (5) 3.2.3 备选材料的化学成分与力学性能的对比与分析 (5) 3.2.4 材料的确定 (6) 4.加工工序 (6) 5.具体热处理工艺的制定与用材分析 (7) 5.1 35CrMo热处理的技术要求 (7) 5.2 具体工艺与用材分析 (7)

5.2.1 原始材料的组织与性能 (7) 5.2.2调质工艺与用材分析 (8) 5.2.2.1 调制工艺参数的确定 (8) 5.2.2.2 组织性能分析 (8) 5.2.3 去应力退火 (10) 5.2.4表面处理 (10) 5.2.4.1表面热处理工艺 (10) 5.2.4.2 组织性能分析 (11) 6.结论 (12) 7.参考文献 (14) 致谢 (15) 31. 引言曲轴是汽车发动机的最关键的零部件之一,曲轴的性能在很大程度上影响着汽车发动机的可靠性与寿命。曲轴在发动机中承担着最大的负荷和全部的功率, 承担着强大的方向不断变化的弯矩和扭矩,同时承受着长时间的高速运转的磨 损,圆角过渡处处于薄弱环节,主轴颈与圆角的过渡处更为严重。因而,需要合 适的热处理工艺,以保证其达到所要求的各项性能指标。 图(1).曲轴结构示意图 2.曲轴的服役条件与失效形式 2.1.服役条件 曲轴工作过程中,往复的惯性力和离心力使之承受很大的弯曲---扭转应力, 轴颈表面容易磨损,且轴颈与曲臂的过渡圆角处最为薄弱。除曲轴的材质,加工 因素外,曲轴的工作条件(温度、环境介质、负荷特性)等都是影响曲轴服役的 4重要因素。 2.2 失效形式①

曲轴热处理工艺

曲轴热处理工艺 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

汽车发动机曲轴的热处理工艺设计 ●摘要 通过对12缸、四冲程、水冷高速大功率柴油机曲轴材质及调质后各项性能指标的分析,可知通过选用优质合金结构钢40Cr,加合适的热处理工艺,可以最大限度地提高高速大功率柴油机曲轴性能。 ·关键字:发动机;曲轴;选材;热处理工艺 目录

1.绪论 发动机是汽车的“心脏”,而曲轴是发动机的关键部位。现代化的发动机对曲轴毛坯提出了有6拐、呈120°分布、带12个整体平衡块的要求。在机型改造的过程中,首先遇到的问题就是曲轴强度不足,一般是通过加粗轴颈、优选材质和表面强化等方法来增大曲轴强度,从而满足功率提高的要求。加粗轴颈在生产实践中受到各方面条件的限制,应用范围较窄,所以选择合适的材料和适宜的表面强化方法是解决曲轴强度的主要途径。曲轴在工作中承受交变载荷,圆角过渡处属于薄弱环节,主轴颈和连杆颈的过渡处更为严重。如果机械加工不当,润滑保养不好或柴油机运行受力不当,圆角部位的附加应力超过了界限值,就会在此部位产生疲劳源,逐渐扩展形成裂纹,最终发生疲劳断裂。所以曲轴表面强化处理主要是通过对曲轴圆角的强化来提高曲轴的疲劳强度[1]。。曲轴在发动机中承担最大负荷和全部功率,承受着强大的、方向不断变化的弯矩及扭矩,同时经受着长时间高速运转的磨损,因此要求曲轴材质具有较高的刚性、疲劳强度和良好的耐磨性能。 2.曲轴服役条件和性能指标 2.1 服役条件 曲轴工作过程中,往复的惯性力和离心力使之承受很大的弯曲和扭转应力,轴颈表面容易磨损。疲劳断裂是曲轴的主要破坏形式,裂纹源

四种焊后热处理方法

钢的热处理种类分为整体热处理和表面热处理两大类。常用的整体热处理有退火,正火、淬火和回火;表面热处理可分为表面淬火与化学热处理两类。 正火 又称常化,是将工件加热至Ac3(Ac?是指加热时自由铁素体全部转变为奥氏体的终了温度)或Accm(Accm是实际加热中过共析钢完全奥氏体化的临界温度线 )以上 30~50℃,保温一段时间后,从炉中取出在空气中或喷水、喷雾或吹风冷却的金属热处理工艺。其目的是在于使晶粒细化和碳化物分布均匀化。正火与退火的不同点是正火冷却速度比退火冷却速度稍快,因而正火组织要比退火组织更细一些,其机械性能也有所提高。另外,正火炉外冷却不占用设备,生产率较高,因此生产中尽可能采用正火来代替退火。 正火的主要应用范围有: ①用于低碳钢,正火后硬度略高于退火,韧性也较好,可作为切削加工的预处理。 ②用于中碳钢,可代替调质处理作为最后热处理,也可作为用感应加热方法进行表面淬火前的预备处理。 ③用于工具钢、轴承钢、渗碳钢等,可以消降或抑制网状碳化物的形成,从而得到球化退火所需的良好组织。 ④用于铸钢件,可以细化铸态组织,改善切削加工性能。 ⑤用于大型锻件,可作为最后热处理,从而避免淬火时较大的开裂倾向。 ⑥用于球墨铸铁,使硬度、强度、耐磨性得到提高,如用于制造汽车、拖拉机、柴油机的曲轴、连杆等重要零件。 ⑦过共析钢球化退火前进行一次正火,可消除网状二次渗碳体,以保证球化退火时渗碳体全部球粒化。 正火后的组织:亚共析钢为F+S,共析钢为S,过共析钢为S+二次渗碳体,且为不连续。 正火主要用于钢铁工件。一般钢铁正火与退火相似,但冷却速度稍大,组织较细。有些临界冷却速度(见淬火)很小的钢,在空气中冷却就可以使奥氏体转变为马氏体,这种处理不属于正火性质,而称为空冷淬火。与此相反,一些用临界冷却速度较大的钢制作的大截面工件,即使在水中淬火也不能得到马氏体,淬火的效果接近正火。钢正火后的硬度比退火高。正火时不必像退火那样使工件随炉冷却,占用炉子时间短,生产效率高,所以在生产中一般尽可能用正火代替退火。对于含碳量低于0.25%的低碳钢,正火后达到的硬度适中,比退火更便于切削加工,一般均采用正火为切削加工作准备。对含碳量为0.25~0.5%的中碳钢,正火后也可以满足切削加工的要求。对于用这类钢制作的轻载荷零件,正火还可以作为最终热处理。高碳工具钢和轴承钢正火是为了消除组织中的网状碳化物,为球化退火作组织准备。

相关主题
文本预览
相关文档 最新文档