当前位置:文档之家› 泥水加压平衡盾构-简介

泥水加压平衡盾构-简介

泥水加压平衡盾构-简介
泥水加压平衡盾构-简介

1发展概况

泥水式盾构机是通过有一定压力的泥浆来支撑稳固开挖面;由旋转刀盘、悬臂刀头或水力射流等进行土体开挖;开挖下来的土料与泥水混合以泥水状态由泥浆泵进行输运。泥水式盾构机适用于各种松散地层,有无地下水均可

2工作原理

泥水式盾构机施工时稳定开挖面的机理为:以泥水压力来抵抗开挖面的土压力和水压力以保持开挖面的稳定,同时,控制开挖面变形和地基沉降;在开挖面形成弱透水性泥膜,保持泥水压力有效作用于开挖面。

在开挖面,随着加压后的泥水不断渗入土体,泥水中的砂土颗粒填入土体孔隙中,可形成渗透系数非常小的泥膜(膨润土悬浮液支撑时形成一滤饼层)。而且,由于泥膜形成后减小了开挖面的压力损失,泥水压力可有效地作用于开挖面,从而可防止开挖面的变形和崩塌,并确保开挖面的稳定。因此,在泥水式盾构机施工中,控制泥水压力和控制泥水质量是两个重要的课题。

为了保持开挖面稳定,必须可靠而迅速地形成泥膜,以使压力有效地作用于开挖面。为此,泥水应具有以下特性:

(1)泥水的密度

为保持开挖面的稳定,即把开挖面的变形控制到最小限度,泥水密度应比较高。从理论上讲,泥水密度最好能达到开挖土体的密度。但是,大密度的泥水会引起泥浆泵超负荷运转以及泥水处理困难;而小密度的泥水虽可减轻泥浆泵的负荷,但因泥粒渗走量增加,泥膜形成慢,对开挖面稳定不利。因此,在选定泥水密度时,必须充分考虑土体的地层结构,在保证开挖面的稳定的同时也要考虑设备能力。

(2)含砂量

在强透水性土体中,泥膜形成的快慢与掺入泥水中砂粒的最大粒径以及含砂量(砂粒重/粘土颗粒重)有密切的关系,这是因为砂粒具有填堵土体孔隙的作用。为了充分发挥这一作用,砂粒的粒径应比土体孔隙大而且含量适中。

(3)泥水的粘性

泥水必须具有适当的粘性,以收到以下效果:

①防止泥水中的粘土、砂粒在泥水室内的沉积,保持开挖面稳定;

②提高粘性,增大阻力防止逸泥;

③使开挖下来的弃土以流体输送,经后处理设备滤除废渣,将泥水分离。

土体一经盾构机开挖,其原有的应力即被释放,并将产生向应力释放面的变形。此时,为控制地基沉降,保持开挖面稳定,必须向开挖面施加一个相当于释放应力大小的力。泥水式盾构机中由泥水压力来抵消开挖面的释放应力。在决定泥水压力时主要要考虑开挖面的水压力、土压力以及预留压力。

在泥水式盾构机中支护开挖面的液体同时又作为运输介质。开挖工具开挖的土料在开挖室中与支护液混合。然后,开挖土料与悬浮液的混合物被泵送到地面。在地面的筛分场中支护液与土料分离。随后,如需要,添加新的膨润土,再将此液体泵回隧洞开挖面。

泥水式盾构机的主要弊病是筛分场(场地及能源需要、环境污染)和排出膨润土液中包含的不可分离细料所引起的困难。与其他系统相比,经济地运用泥水式盾构机主要取决于泥水悬浮液分离的要求及地层的渗透性和悬浮液的成分。

3几种不同形式的泥水式盾构机

3.1泥水盾构(日本体系)

日本泥水盾构流体动力学的发展以及它们大量应用是由于日本沿海365J T城市的地质特征。经常是水平层理并由江河及大海沉积物形成。泥水盾构是为在砂土及淤泥中应用而365JT设计的,在很粘的粘土中应用受到限制,会导致孔口的堵塞。密实的卵石层则需要增加力矩克服作用于刀盘上的摩擦力。在小直径机器中由于增加力矩而考虑设置相应的驱动装置就非常困难。

泥水盾构的主要特征是支护液的类型(正常时是粘土悬浮液)、刀盘设计及控制支护液压力的方法。

泥水盾构的刀盘是扁平设计的,而且几乎是封闭的,这样一来也能提供机械的开挖面支撑。为搬掉障碍物等,通往隧洞开挖面的通道只能经过几个开口,它们在运行时是被封闭的。通常刀具及齿具均为双排幅射布置,刀盘可在任一方向转动。土料经过窄长而平行的刀盘面开口进入开挖室,这些开口被调整到既能通过尽可能大的土石块,又能限制水力输运管道所不能通过的块体。

根据所需的扭矩,切削刀盘采用中心轴形式、鼓型或中心锥型设计。

支护液从开挖室的上部添加,土料与悬浮液的混合液由底部靠近搅拌器的地方排出。安装搅拌器是为了防止沉淀以产生均匀的输送介质。

在泥水盾构中,隧洞开挖面支护压力直接受开挖室中添加或排出泥水的影响。支护压力,在开挖室及输入泥水管中用压力传感器测量,并与计算出的支护压力的理论值相比较。悬浮液回路中的泵与阀也用同样的方法予以控制。

因为不可能看到隧洞开挖面的变化,稳定性只能在理论的及当前的开挖

量之间用质量进行比较。当前的开挖量由测量支护液的密度得出,理论开挖量则参考比重、结实性及孔隙的份额等得出。这些值是在最初岩心钻的基础上取得的。

盾构机掘进时的所有调控功能都取自地面的中央处理装置。虽然在中央处理装置中,大量的数据都可收集、测定并看到,但盾构机中的操作人员仍是需要的,在难对付的情况下也要人工干预。

3.2水力盾构

与日本的地质条件相比,在欧洲则不同地点差异很大,因而水力盾构的基本原理对地质的适用范围就更灵活。水力盾构适于所有松散地层,如加装另外的装置还能用于岩层。

几乎所有的水力盾构都以Wayss&Freytag开发的为基础。除了设计并建造第一台样机(Hamburg-Wilhelmsburg1974)外,该公司还在德国及德国以外实施了很多成功的工程。

水力盾构很突出的部分是用沉浸墙隔离开挖室(在液体支护的隧洞开挖面附近,支护压力由后腔的气囊调整)以及有单独固定幅条的开式星型刀盘。

另外不同于日本泥水盾构的是采用水-膨润土悬浮液,这更适合欧洲的地质情况。采用膨润土与在隧洞开挖面形成滤饼是相联系的,所以此型盾构也称之为膨润土盾构。

水力盾构系统最重要的优点是通过气囊调节支护压力,泥水回路中悬浮液的量的变化不会改变支护压力的大小。比如,当掘进通过断层带,支护悬浮液可能会突然损失,但隧洞开挖面上的支护压力不会损失。通过布置在盾构顶部的压缩空气闸室以及穿过气囊及沉浸墙进入开挖室,这比日本的泥水盾构容易搬掉障碍物。为了搬掉障碍物或在刀盘上进行修理及维护工作,开挖室中的悬浮液可以被排出并由压缩空气取代。悬浮液在开挖面处形成的滤饼或泥膜层及其密封效应,使得可以单独用压缩空气支护隧洞开挖面。当与空气接触时,膨润土饼层会减薄,为了限制漏气,应每隔一段时间对膨润土饼层进行更新,如向隧洞开挖面喷射膨润土或将膨润土液满溢开挖室。

开式刀盘在泥浆输出管前装有一拦石栅,截住超过管道运输尺寸的土石块。拦石栅前有一液力操作的破碎机将大石块破碎到要求的尺寸。拦石栅前的沉积料用悬浮液喷射除去。对不同的地层可以在刀盘上装设不同的开挖刀具。

3.3混合型盾构中的水力盾构形式

在水力盾构基本概念的基础上,Wayss&Freytag与Herrenknecht一起设计了一种根据地质变化情况而进行开挖面支撑方式转换的混合型盾构。混合型盾构可转变成泥水模式、土压平衡及压缩空气模式等。在盾构机运行过程中根据需要可以完成从一种模式到另一种模式的转换,因而其应用范围较广。

在已有的混合型盾构的工程应用例子当中,大多数都是运行在水力盾构模式下而无需转换到别的模式,所以也习惯地将它们归类为或称之为水力盾构。

3.4悬臂刀头式泥水盾构

Holzmann悬臂刀头式泥水盾构是泥水支撑和部分断面开挖的组合。可伸缩的刀头悬臂装在密封承压隔板中部,当绞刀头接触到岩土层时,通过人工或自动控制操作进行开挖面开挖动作。开挖出的土料通过刀头的开口及悬臂内管道以泥水状态输出。刀头的开口尺寸与泥水输出管道尺寸相匹配,不适于管道输送的较大尺寸土石块被刀头开口阻挡。如必须进入开挖室进行修理工作或搬掉障碍物时,可以部分或全部地降低悬浮液或用压缩空气进行置换,其适用的地质范围与水力盾构一样。在开挖室沿盾壳内侧布置多个可单独进行液压控制的支撑胸板,

当胸板被顶推起来时可在盾构前方将其封闭。盾构底拱设有一石料闸室,直径小于500mm的石头无需进入开挖室区域即可搬除。

此盾构机运行时的特点是对膨润土悬浮液支撑压力的调整及控制。停机时,调整控制压力有如水力盾构,即用气垫(气囊)和气舱。而运行时压力控制则有如泥水盾构,通过泥水输入输出泵的自动控制进行调节。为此,开挖室内悬浮液的压力通过压力传感器监测,然后与计算参考值比较并作相应改变。

3.5用于顶管的泥水式盾构

3.5.1用于顶管的水力盾构

为了把水力盾构原理的优点用于小直径隧洞,Wayss&Freytagh公司开发了此种盾构的简化形式。其目的是设计一种刀盘外径在2m以下适于各种松散并承水地层中顶管的盾构机。

经承压隔板通往开挖室,采用净宽为800mm的圆型闭锁门。承压隔板处无空间用于刀盘驱动装置,所以把它置于沉浸墙,这样驱动装置便在支撑悬浮液中运转。

所有后部闸门都设计成能保证可更换被损坏的驱动装置的最小的尺寸。由刀盘作用于驱动轴的力应特别考虑,翻转力矩及横向力与扭矩有关,此扭矩应能通过驱动装置发生的最大液压力加以控制。沉浸墙也应承受刀盘上增加的轴向力,由推进力产生的纵向力可以用沉浸墙的弹性弯曲来测量并控制。

到目前为止已有的这类盾构的直径从1.96m到3.6m。然而,从采用齿轮马达的经济性考虑,盾构直径只能到2.6m,因为更大直径的盾构需要几个驱动装置单元。

3.5.2水力喷射盾构

水力喷射盾构也是Wayss&Freytag开发的,并于1979年获得专利。

它是基于这样一个现实,即近地面的隧洞工程常常会遇到很多的障碍物。由于很多天然的及人为的障碍物,其形式及材料均不同(如树根、基础、石头及桩柱等),全部机械化的隧洞工程要求多用途及适用的开挖机具,那样可能很贵。对于不大的隧洞工程,不宜使用全机械化的盾构,而适用在水力盾构的基础上开发水力开挖的水力喷射盾构。

用切割轮代替机械开挖,使地层开挖在开挖室中通过有目标的液体喷射进行。省略布置在中心的驱动装置,允许小直径机器通往隧洞工作面。人工开挖并搬动障碍物,可在任意时间进行,使水力喷射盾构成为一种灵活的办法,其地质的适用范围与惯用的水力盾构一样。然而,密实的及坚硬的地层限制了它的适用范围,粘性的地层虽然负载压力一样,但只允许低进尺。

喷嘴布置在盾构轴线侧面的切割边缘内,使喷射直接影响的范围在盾壳的里面。喷嘴摇摆的直径约为10~24mm,压力可达1MPa,喷射的范围在1.5m 以内。由于喷嘴有标准设计,与机械开挖机具相比,成本低得多。

隧洞工作面上由滤饼提供的支撑不会受小范围喷射水的影响。从土壤结构中挪去石头要比在机械开挖中更要当心,因为射水激石会转变或挪动四周较软的基底,而不增加开挖的能量。沉浸墙离得远,允许用人工拆卸格栅,无需从隧洞面除去支撑液。因为障碍物不能被自动检测,沉浸墙及所有柔性部分均需超应力保护,安全开关可以避免压力隔板超应力。

用液力喷射时,不一定是圆形断面,通过喷嘴布置可选择任意形式的断面。这种系统的弊端是调整机器的方向比较困难,在切割边缘的前方形成控制的超挖是不可能的(即用于调向的目的)。还有,喷嘴不能消除盾构的翻砖。

4泥水分离设备

在泥水式盾构机的施工过程中,泥水分离是必不可少的工艺过程。分离效率也影响着盾构机的掘进效率。一般分离设备有振动筛、旋转分离器、离心机、压滤机等。

4.1振动筛

对于不同粒径和级配的物质分离,振动筛是最基本的设备,振动筛是由一个或多个筛板组成,每个筛板的筛孔逐级减小。振动筛一般用于粗糙材料的筛分,其孔眼小至60μm。

4.2旋转分离器

旋转分离器是由一固定的锥体组成,它的进料口紧挨其壳体,在圆锥体的顶部设有一上溢流出口,底部设一下溢流出口,开挖料以较大速度抽入旋转的锥体中,使之产生涡流作用,泥水进入锥体中的螺旋体。尺寸大、重量重的粒状物通过离心作用,以一定速度分离出来,集中到锥体的内壁上,最后通过底部出口排出;细小的颗粒,保留在泥水中,经螺旋体从上溢口排出。旋转分离器广泛应用于地表分离站,它可以从废弃泥水中分离出砂和淤泥,甚至可以有效地分离出10μm的颗粒。

4.3离心机

通常使用的离心机是由两个围绕一静止室旋转的同轴部件组成。它用于净化膨润土泥浆很有效,只把6μm的颗粒保留在泥浆中。

4.4压滤机

压滤机分为两种类型:a)连续型,如带状压滤机;b)定量调节型,如盘状压滤机。它们将废弃的泥浆经压滤后适于运输处置

土压平衡盾构与泥水平衡盾构的结构原理

2土压平衡盾构与泥水平衡盾构的结构原理 傅德明 上海市土木工程学会 1 土压平衡盾构的结构原理 土压平衡盾构的基本原理 土压平衡盾构属封闭式盾构。盾构推进时,其前端刀盘旋转掘削地层土体,切削下来的土体进入土舱。当土体充满土舱时,其被动土压与掘削面上的土、水压基本相同,故掘削面实现平衡(即稳定)。示意图如图所示。由图可知,这类盾构靠螺旋输送机将碴土(即掘削弃土)排送至土箱,运至地表。由装在螺旋输送机排土口 处的滑动闸门或旋转漏斗控制出土量,确保掘削面稳定。 1.1.1 稳定掘削面的机理及种类 土压盾构稳定掘削面的机理,因工程地质条件的不同而不同。通常可分为粘性土和砂质土两类,这里分别进行叙述。 1.1.1.1 粘性土层掘削面的稳定机理 因刀盘掘削下来的土体的粘结性受到破坏,故变得松散易于流动。即使粘聚力大的土层,碴土的塑流性也会增大,故可通过调节螺旋输送机转速和出土口处的滑动闸门对排土量进行控制。对塑流性大的松软土体也可采用专用土砂泵、管道排土。 地层含砂量超过一定限度时,土体流性明显变差,土舱内的土体发生堆积、压密、固结,致使碴土难于排送,盾构推进被迫停止。解决这个问题的措施是向土舱内注水、空气、膨润土或泥浆等注入材,并作连续搅拌,以便提高土体的塑流性,确保碴土的顺利排放。 1.1.1.2 砂质土层掘削面的稳定机理 就砂、砂砾的砂质土地层而言,因土颗粒间的摩擦角大故摩擦阻力大;渗透系数大。当地下水位较高、水压较大时,靠掘削土压和排土机构的调节作用很难平衡掘削面上的土压和水压。再加上掘削土体自身的流动性差,所以在无其它措施的情况下,掘削面稳定极其困难。为此人们开发了向掘削面压注水、空气、膨润土、粘土、泥水或泥浆等添加材,不断搅拌,改变掘削土的成分比例,以此确保掘削土的流动性、止水性,使掘削面稳定。 1.1.1.3 土压盾构的种类 按稳定掘削面机构划分的土压平衡盾构大致有如下几种,见表1。 表1 土压盾构的种类 图1 土压盾构基本形状

复杂条件下的大直径泥水盾构掘进参数控制

万方数据

万方数据

构转向困难,应该更换边滚刀和周边刮刀。隧道最小转弯半径550nl,如通过以上步骤还不能转向,就需要使用仿型刀,设定开挖角度范围,增大开挖面直径辅助盾构转向。 图1掘进方向控制 Fig.1Excavationdirectioncontrol 2.3同步注浆量及压力的控制 在掘进过程中,控制好同步注浆量及注浆压力,及时填充掘进留下的空隙,保证管片的稳定性,提高隧道的防水性能,是控制地面沉降的必要手段。盾构机同步注浆系统有6根注浆管,圆周方向分布在盾构机尾盾上,注浆量根据开挖直径、管片外径计算出理论注入量。实际则需根据地层特点、盾构姿态等来控制,基本原则是注入量不小于理论注入量,确保顶部两根管路的注入量。注浆压力通常大于同等水平位置开挖舱泥水压力0.02~0.03MPa,压力低则注入量不够,过高会损坏盾尾密封刷或通过地层空隙进入开挖仓。因砂浆凝固会导致注浆管路堵塞,因此每掘进1环,在掘进的最后20cm就停止注浆。在盾构机完成掘进拼装管片时,每隔45—75rain注一次,每次每根管注入0.01一O.02m3。盾构掘进时也应留意注浆量,如遇到松散砂卵石地层或有地下空洞等导致注入量增加时应放慢掘进速度以保证填充密实。因盾构自重,砂浆会向下流,一般盾构上部注浆量要占到总注入量的一半以上,只有保证顶部注入量,才能最大限度地减少地表沉降。 2.4盾尾密封油脂系统 盾尾密封有3道,前、中、后,每一道的压力设定非常重要,假如设定压力过小,油脂注入量少,盾尾密封刷易损坏出现漏浆涌水现象。压力过大,油脂消耗量增大,造成经济损失。3道密封的压力设定以开挖仓土压力及注浆压力为依据,最外层压力应比开挖仓底部压力高约0.1MPa,中层取开挖仓底部压力或等于外层设定压力,内层则比中间层压力减少0.1MPa或与之相同,压力设定完毕后还应统计油脂消耗,并适当调整注脂泵的压力。经计算,每掘进1环,盾尾油脂理论消耗量在100~110kg(视掘进时间而定),可以依据该值调整注脂泵压力保证注入量即可…。 2.5泥水循环系统的控制 根据目前掘进距离统计,盾构机停止掘进80%的原因来自泥水循环系统,包括泵站停机、管路破损、泵及管路堵塞、泥水处理设备故障等(见图2)。 图2泥水循环控制系统 Fig.2Controlsystemofslurrycycle 2010年第12卷第12期67万方数据

超大直径泥水平衡盾构穿越深水浅覆土区风险分析与对策研究

超大直径泥水平衡盾构穿越深水浅覆土区风险分析与对策研 究 摘要:本文以南京纬三路过江隧道工程超大直径泥水平衡盾构机穿越江中深槽段施工为例,通过对风险源的分析与应对措施研究,提出了超大泥水平衡盾构长距离穿越深水浅覆土地区应对措施。 1.工程背景 南京纬三路过江通道工程采用直径14.93m泥水平衡盾构,盾构穿越江中深槽段总长度为586m,该段掘进全部位于江中段,是工程中风险最高、难度最大的施工区段。在该段深槽线路范围内,线路位于右偏R=1500m的圆曲线内,线路为V字型,坡度从-3.892%过最低点(SDK4+780)后变为2.45%。江底最低覆土深度为14.46m(到盾构机顶部),水深最深为34.9m(2009年9月数据)。江中段地质情况见表1。 表1 地质分层分段情况表 2.施工风险分析 2.1地质勘测准确性风险 由于江底深水地质勘测难度大、成本高,准确性也难以保证,江底隧道地质勘探具有极大的局限性,遇到未勘查清楚的不良地质或存在未查明的地下障碍物的风险十分可能发生。因此,施工准备阶段和施工过程中,需要通过对筛分渣样的分析达到地质预测的目的,可部分揭示开挖面前方地层情况。同时江底可能会出现特异性的障碍物,如废弃铁块、沉船等影响盾构掘进。 2.2盾构机的适应性、可靠性风险 盾构机选型极大程度上是工程成功的决定性因素,盾构机穿越江底掘进过程中,盾构机选型尤为重要,主要表现在以下几个方面: (1)刀盘、刀具磨损:盾构机长距离掘进对刀盘、刀具磨损大;在软硬不均的地层及卵石地层掘进时,刀具不可避免的产生卡刀或偏磨等问题。 (2)泥浆泵及管路磨损、堵塞:泥水循环回路泥浆中的砂石成分会磨损泥浆泵及排送管路,导致盾构机排渣不畅; (3)主轴承磨损,密封件防水失效:因主轴承在长距离掘进被磨损可能导致密封件防水失效,泥浆向盾构机内渗漏,保压系统失衡; (4)盾尾密封:盾尾密封系统的不适应性或受管片及周围土体的磨损影响,导致盾构间隙增大或油脂仓保压失效,盾构机发生渗漏; (5)数据采集系统、传感器失灵:受开挖面恶劣条件影响,盾构工作面数据采集系统、传感器有失效风险,盾构掘进参数或正面舱压等指标无法准确显示; (6)液压推进系统漏油:液压推进系统漏油,推力不足可能导致盾构后退风险; (7)注浆管路堵塞:由于浆液残留结块等原因可能导致注浆管路堵塞,无法进行正常的同步注浆; (8)主轴承断裂:由于主轴承磨损或在掘进复杂地层中偏心力矩致过大可导致主轴承断裂。 2.3江底冒浆风险 由于隧道穿越复合地层、上软下硬地层控制难度大,卵砾石层、粉砂岩层等地层表现为孔隙较大的特点,要依据地层条件及时调整泥浆质量和泥水压力,加

泥水平衡盾构机施工方案

针对本项目的特性技术方案简述 施工技术篇 一、工程概述 二、总体施工部署及施工思路 2.1 初步施工安排 2.2 总体计划 2.3 工程管理目标 2.4 施工的前准备工作 2.5 施工组织管理 2.6 项目施工总体思路及工艺 2.7 施工总平面图布置规划 三、重点、关键和难点工程的施工方案、工艺及其措施简述 3.1 重点、关键和难点工程分析及应对措施 3.1.1 城市中心区的和谐施工 3.1.2 交通疏解、管线改迁及征地拆迁对工程前期推进影响大 3.1.3 盾构始发与到达施工难度大 3.1.4 基坑安全施工 3.1.5 顶管施工重难点分析及应对措施 3.1.6 泥水盾构刀盘、刀具设计 3.2 本项目主要工程施工方案及工艺简述 3.2.1 竖井(工作井)施工 3.2.2 顶管施工 3.2.3 盾构施工 3.2.4 管道功能性试验 3.2.5 其他附属及机电安装工程 四、交通疏导方案规划 4.1 交通疏导原则及规定 4.2 交通疏解实施程序 4.3 交通疏解方案

五、地下管线及其他地上地下设施的保护加固措施 5.1 地下管线保护措施 5.2 建构筑物保护措施 六、施工保障措施 6.1 施工质量保障措施 6.1.1 质量目标 6.1.2 质量保证体系 6.1.3 质量保证制度 6.1.4 主要工程施工质量控制措施 6.2 施工安全保障措施 6.2.1 安全目标 6.2.2 安全保证体系 6.2.3 安全保证制度 6.2.4 主要工程施工安全控制措施 6.3 应急预案 6.3.1 应急救援中心的职责 6.3.2 信息报告及处理 6.3.3 应急决策及响应 6.3.4 应急救援的资源配置 6.4 文明施工及环境保护措施 6.4.1 管理体系 6.4.2 文明施工措施 6.4.2 环境保护措施 七、本项目拟配备的机械设备情况

泥水平衡盾构始发工艺

- 217 - 始发端地层加固 安装始发基座 盾尾通过洞口密封后进行注浆回填 盾构掘进与管片安装 泥水平衡盾构始发工艺 3.5.1 工艺概述 盾构始发是指盾构从组装调试,到盾构完全进入区间隧道并完成试掘进为止的施工过程。根据大量的工程经验,盾构的始发是盾构施工最为危险,也是最为重要的一个环节。顺利的始发能显著的节约工期、人力和物力。一旦始发出现事故,则必定是较为重大的事故,轻则造成工期延误,浪费资源,重则损坏主要施工机器和已经完成的隧道,造成巨大损失。 3.5.2 作业内容 主要作业内容:调制浆设备安装调试,泥浆的调制,泥水分离设备的安装调试,始发端地层加固,端头洞门凿除,始发基座安装,盾构机组装调试,安装反力架及洞门密封,安装负环管片, 注浆回填,盾构掘进与管片安装。 3.5.3 工艺流程图 图 3.5.3-1 泥水盾构始发流程框图 3.5.4 工序步骤 一、调制浆系统组装调试 1. 调制浆系统过渡池、调整池、新浆池、 清水池、废浆池的设置。 过渡池根据实际情况分为几级,用来接 收从分离站流过来的浆液,调整池和 P1.1 泵连接,向洞内提供循环泥浆,新浆池用来 调制新浆,清水池存放清水,废浆池用来存 放比重过大的废浆。这些池子可以在地上挖 也可是地面上的容器,根据现场情况确定。 调制浆系统及泥水分离设备安装调试 调制泥浆 安装负环管片与盾构机负载调 安装反力架、 洞口密封 盾构机组装、空载调试 端头洞门凿除

2.调制浆系统泵、搅拌机、刮泥机的安装调试。 每个过渡池中配备一台刮泥机以防止浆液沉淀,调整池中配备一台搅拌机保证浆液均匀。新浆池配备一台上料泵和一台将新浆送至调整池的渣浆泵,废浆池中配备一台渣浆泵将废浆抽出丢弃。清水池配备一台清水泵向各个池子送清水。泥浆从上级过渡池到下级过渡池及从过渡池调整池是通过泥浆槽自流进去的。 二、分离设备安装调试 1.基础设计 分离设备的基础是混凝土制成的槽,分离设备安装在混凝土槽的墙上。基础的结构形式根据分离设备的形式而定。 2.分离设备安装及管线布置 分离设备安装就是根据规范将设备安装在基础上。管线布置主要是从分离设备到过渡池的管线布置。泥浆从分离设备到过渡池是通过泥浆自流完成的。这需要泥水分离设备的基础高于过渡池的基础。 三、调制泥浆 在盾构机负载调试之前要制备循环泥浆。新浆的调制在新浆池中进行。添加剂会隧隧道地层的不同而变化。调制好的泥浆用渣浆泵抽至调整池中。 四、始发洞口地层加固、洞门凿除和洞门密封系统的安装。 1.始发洞口的地层加固 洞门地层加固方法如前所述。 2.洞门凿除 盾构始发的站或井的围护结构一般为钢筋混凝土的桩或连续墙,盾构刀盘无法直接切割通过,需要人工凿除。洞门凿除的时机必须把握良好,凿除太迟耽误盾构出洞,凿除太早让洞门后的土体暴露时间过长。一般直径为 6.6m,厚度为一米的洞门,人工凿除需要两个星期的时间。 洞门凿除施工时,不能把所有的钢筋和混凝土全部除掉,应保留围护结构的最后一层钢筋和钢筋保护层,待盾构刀盘到达之后再割除最后一层钢筋网,不能直接暴露出土体。 洞门凿除所用主要机具和人员为: 10 立方空压机一台、风搞 6~8 把、气割设备 2 套、铁锨若干,人员每班 8~10 个。 3.洞门密封系统的安装 洞门密封系统的作用为保证洞门口处的管片背后可靠注浆,对防止隧道贯通后的水土流失也能起到一定的作用。 洞门密封系统最好采用帘布橡胶板加折页压板的方式。 洞门密封系统主要由洞门框预埋的钢环板、帘布橡胶板、折页钢压板固定螺栓及垫片等组成。这种结构的优点为简单可靠,不需要人工调整,折页压板可以自动压紧在盾壳和管片上,可以保证注浆时浆液不会外漏。 五、盾构组装调试和反力架的安装 1.始发基座的安装就位 始发作为盾构拼装和试推进的工作平台,其拼装的要求就是精确和牢固。 始发基座一般分为基础部分和托架部分。基础部分一般为钢筋混凝土的条形梁结构,表面预埋钢板,其主要作用是为托架部分提供牢固和高度合适的平台。 托架部分为钢制的弧形结构,可以很好的托起盾构主机。托架部分为现场拼装,然后根据盾 构主机的始发中心位置精确定位,最后和基础部分的预埋钢板牢牢焊接固定。 2.盾构的组装调试 始发机座安装固定完成后,就开始盾构的组装调试。 首先,依次放下盾构的后配套系统,然后推入始发竖井的后部,为主机拼装让开空间,并分别连接。如果竖井内没有空间放下后配套系统,那就只有把后配套系统放在地面了,然后用延长管线连接后配套和主机。 主机的拼装是盾构组装最困难部分。主机的各部件体积和重量都很大,需多台吊机协调吊装,需各作业人员配合默契。主机各部件的连接要求很高,需要作业人员有较高的专业素质和丰富的经验。 盾构主机与后配套拼装连接完成后,就可以依次进行电气、液压等系统的调试。 - 218 -

泥水平衡盾构机施工总结

泥水平衡盾构机施工总结 本工程是我单位常规直径地铁盾构第一次采用泥水盾构机施工。在施工、操作方面可借鉴经验不多,造成在施工中走过了不少弯路,出现了许多问题。泥水盾构机操作的基本原则是:控制切口压力在技术交底范围内稳定和盾构机姿态在设计要求范围内的前提下,实现盾构机正常掘进。切口压力的稳定是保证地面沉降、安全掘进的前提条件,而盾构机姿态决定隧道走向是否与设计路线符合,成型隧道符合设计要求的先决条件。如果在掘进期间,切口压力不稳定,波动较大的话,轻则沉降较大,重则引起地面塌方。所以在操作泥水盾构机的时候,每一个操作手必须清楚的明白,保证切口压力稳定的重要性。而盾构机姿态是决定我们的施工是否按设计路线施工,如果出现姿态超限,轻则隧道管片出现错台、开裂、漏水等质量问题,重则需要联系设计单位和业主,进行调线。通过一年多的泥水盾构机施工经验,结合自己以前土压平衡盾构机的操作经验,对泥水盾构机的施工和质量控制方面的一些想法做如下总结。 一.工程概况: 东莞市城市快速轨道交通R2线工程(东莞火车站~东莞虎门站段)[2303A标:榴花公园站、茶山站~榴花公园站区间]土建工程施工项目,位于方中路上的茶山站后,正线隧道与出入段线隧道并行约100m由东向西穿越宽约200米的寒溪河,进入东岸大片农田(此时出入段线进入寒溪河东岸的东城车辆段)、通过中间风井及河西岸的数幢别墅后进入莞龙路。线路继续沿莞龙路前行,绕避了数架人行天

桥后到达榴花公园前的榴花公园站结束。 本标段起讫里程YDK2+298.728~ YDK5+502.598,包含1个明挖车站(【榴花公园站】)和1个区间(【茶山站~榴花公园站区间】),1条出段线盾构隧道(【中间风井~出段线盾构井】),1条入段线盾构隧道(【茶山站~入段线盾构井】)。其中正线段茶山站~榴花公园站区间左线起讫里程为:ZDK2+301.000~ZDK3+497.720、 ZDK3+653.485~ZDK4+118.812,左线长1662.041m; 右线起讫里程为:YDK2+298.728~YDK3+434.162、YDK3+601.659~ YDK4+110.000,右线长1643、775m;区间正线总长3406.628m。其中ZDK3+653.485~ZDK3+746.000、YDK3+601.659~ YDK3+690.000采用矿山法开挖,盾构管片衬砌。 二.操作注意事项: (一)泥浆粘度控制 在泥水盾构中,泥浆的作用有两种:维持开挖面稳定和运送弃土。泥水盾构机施工时稳定开挖面的原理为:以泥水压力来抵抗开挖面的土压力和水压力以保持开挖面的稳定,同时,控制掌子面变形和地面沉降;在掌子面形成弱透水性泥膜,保持泥水压力有效作用于掌子面。泥浆作为一种运输介质将开挖下来的渣土以流体形式输送,经地面泥水处离处理设备分离,将处理过的渣土运至弃土场。 泥浆的比重和粘度等性能决定它稳定开挖面和携带渣土的能力。(1)泥浆比重 为保持开挖面的稳定,即把开挖面的变形控制到最小限度,泥

大型泥水盾构现场施工中的泥水处理

精心整理大型泥水盾构施工中的 泥 水 分

第一章绪论 一、泥水加压式盾构及其泥水分离处理系统概述 盾构法施工已有170余年历史,随着科学水平的不断提高,盾构技术也得到不断发展和完善。至今,盾构已发展成为软土地层修建隧 施工提供了广阔的舞台。 泥水加压式盾构是在机械掘削式盾构的前部刀盘后侧设置隔板,它与刀盘之间形成压力室,将加压的泥水送入泥水压力室,当泥水压力室充满加压的泥水后,通过加压作用和压力保持机构,来谋求开挖面的稳定。盾构推进时由旋转刀盘切削下来的土砂经搅拌装置搅拌后

形成高浓度泥水,用流体输送方式送到地面。在地面调整槽中,将泥水调整到合适地层土质状态后,由泥水输送泵加压后,经管路送到开挖面泥水压力室,泥水在稳定开挖面的同时,将刀盘切削下来的土砂搅成浓泥浆,再由排泥泵经管路输送到地面。被送到地面的泥水,根据土砂颗粒直径,通过一次分离设备和二次分离设备将土砂分离并脱 在实际施工中,泥膜的形成是至关重要的。当泥水压力大于地下水压力时,泥水理论按达西定律渗入土壤,形成与土壤间隙成一定比例的悬浮颗粒,在“阻塞”和“架桥”效应的作用下,被捕获并积聚于土壤与泥水的接触表面,泥膜就此形成。随着时间的渐渐推移,泥膜的厚度不断增加,渗透抵抗力逐渐增强,当泥膜抵抗力远大于正面

土压时,产生泥水平衡效果。 2、泥水管理控制 (1)、进浆泥水指标 泥浆能否在渗入土壤时形成优质泥膜,能否稳定切口前方土体, 泥水的比重是一个主要控制指标。掘进中进泥比重不易过高或过低,前者将影响泥水的输送能力,后者将破坏开挖面的稳定。 泥水比重的范围应在1.15~1.30 g/cm3,下限为1.15 g/cm3,上限根据施工的特殊要求而定,在砂性土中施工、保护地面建筑物、盾构穿越浅覆层等,可达1.30 g/cm3。甚至可达1.35 g/cm3。

超大直径盾构

超大直径盾构施工关键技术综述 王华伟 (中铁十四局集团有限公司) 一、工程概况 1.1地理位置 南京长江隧道工程位于南京长江大桥与三桥之间,连接河西新城区-梅子洲-浦口区,是南京市跨江发展战略的重要标志性工程,它的建成将彻底改变目前南京市长江单一的桥梁过江交通方式,对于缓解跨江交通压力,促进沿江经济发展,造福百姓,具有十分重要的意义。 1.2水文和地质条件 盾构隧道穿越的江面宽度约2600m,最大水深约28.8m,最大水压力为6.5kg/cm2,江中最小覆土厚度为10.49m(0.7D)。隧道所穿越的主要地层包括:填土和淤泥质粉质粘土、粉土、粉砂、粉细砂、砾砂、圆砾以及少量强风化粉砂质泥岩。其中盾构穿越强透水地层(渗透系数达10-2-10-3cm/s)2672m,占盾构段总长度的88.4%,对刀具磨损严重、造成掘进困难的砾砂、圆砾复合地层地段长1325m,占整个隧道长度的43.8%。 1.3设计情况 南京长江隧道工程全长5853m,按双向6车道快速通道规模建设,设计车速80公里/小时。其中左线盾构施工段长3022m,右线盾构施工段长3015m。隧道施工采用两台直径14.93m的泥水平衡盾构机,由江北工作井始发向江心洲接收井同向掘进。 盾构隧道管片内径13.30m,外径14.50m,厚度60cm。每环衬砌由10块管片组成,环宽2m。管片拼装设计为7块标准

块、2块相邻块和1块封顶块,分Z型Y型两种管片模式。管片设计强度C60,防水等级S12。 二、国内外超大直径盾构隧道建设情况介绍 盾构法隧道施工技术问世至今已有近200年,作为隧道建造的一种先进技术——盾构法已广泛用于地铁、铁路、公路、市政、水电隧道等工程领域,但超大直径盾构隧道工程实例并不多见,国内外典型的工程项目主要有: 1、国外超大型水下盾构工程典型项目 (1)日本东京湾横断公路隧道:1997年建成,跨海双向4车道公路隧道,盾构机直径Φ14.14m,隧道总长度9.1公里,被人工岛分为4.6公里和4.5公里长的两段,每段由两台盾构机对向各掘进约2.5公里;主要地质为软弱的冲积、洪积黏性土层以及洪积砂层,最大水压6kg/cm2,属于当时最大直径盾构隧道。(2)德国汉堡易北河第四公路隧道:2000年1月底贯通,双向4车道公路隧道,盾构机直径Φ14.2m,隧道长度为2561米,穿越的地层主要为黏土、松散至细密的砂、砾石和冰山泥灰岩,最高水压约为4.5kg/cm2,打破东京湾横断公路隧道直径记录,成为世界当时最大直径盾构隧道。 (3)荷兰格林哈特隧道(绿心隧道):2004年年底贯通,双线铁路隧道,盾构机直径Φ14.87m,隧道全长7155m,分为4个区间(最长2200米)。地质主要为软粘土、泥煤层和细沙,最高水压5kg/cm2,又创造了一个新记录。 2、国内超大型水下盾构工程典型项目 国内超大型水下盾构工程典型项目主要有:上海沪崇苏过江隧道和南京长江隧道。武汉长江隧道、狮子洋隧道、穿黄河隧道三条盾构隧道虽然各有特点,但盾构直径较小,均在9.0m~

泥水加压平衡盾构工法122

施 工 技 术 CON STRU CT I ON T ECHNOLO GY 2001年2月 第30卷 第2期 [单位地址]上海市漕溪路201号 200233,电话:(021) 64387243—39,主要完成者:华学新、丁志诚、周文波、曾林鹤、任 道真。 泥水加压平衡盾构工法 (YJ GF 02-98) 上海隧道工程股份有限公司  [中图分类号]TU 621;TU 94+1[文献标识码]B [文章编号]100228498(2001)022******* Con struction M ethod of M ud -wa ter Pressure -add i ng Ba lance Sh ield (JGF 02-98) S hang ha i T unnel E ng ineering S tock Co .,L td . 泥水加压平衡盾构工法是从地下连续墙以及钻孔等工程所使用的泥水工法中发展起来的,它起源于英国,日本代表着当今世界的新潮流。上海隧道工程股份有限公司于1994年引进了日本设计并制造的 11220mm 大型泥水平衡盾构,并将其运用于延安东路隧道南线的圆隧道施工,其中《超大型泥水平衡盾构施工参数及地面沉降控制研究》等几项科研项目获得1997年上海市科技进步奖。 1 特点 粘性土层具有平衡效果好、施工速度快、质量和精度更高的特点。泥水加压平衡盾构具有以下特点: (1)在不稳定的地层中当开挖面受阻时,采用泥水加压 能使开挖面保持稳定,确保施工安全。 (2)在水位以下挖掘隧道,能在正常大气压下进行。(3)不会发生气压盾构那样的跑气喷发危险。 (4)对于气压盾构无法施工的滞水砂层,含水量高的粘 土层及高水压砾石层,泥水盾构均能进行施工,其适应土质的范围较广。 (5)由于采用了水力机械输送泥浆,管道占用空间小,故 井下作业环境好,作业人员的安全性高。 (6)可分离出适合弃土场地和运输方式的含水率土砂。2 适用范围 选用泥水加压平衡盾构工法施工需要大量的水,因此,施工水源要充足,还需要一套泥水处理系统来辅助施工。该工法适合在多种土层中掘进隧道。 泥水加压平衡盾构的覆土层一般不小于1D 的厚度,如果超过此范围,需采取特殊技术处理。 3 工艺原理 311 泥水加压平衡盾构 泥水加压平衡盾构与土压平衡盾构相比较有两点不同:①由技术特点决定了改土压舱为泥水舱;②由于出土形式的改变,省去了螺旋输送机,因此,盾构内部的空间扩大了许多,给设备的保养、维修带来了极大的方便。 312 工作原理 泥水加压平衡盾构工作原理如图1所示。图中M V 阀一般常闭,V 1…V 5阀为状态互换阀,通过阀的切换,分别形成循 环、推进、逆洗等三种状态。 由P 1泵将满足施工的泥浆从调整槽内送入盾构泥水舱,使泥水舱内保持一定的浓度、压力,推进时利用盾构前部的刀盘旋转切削,将正面土体切削下来的原状土以条状或块状通过挤压进入泥水舱,经过搅拌器充分搅拌,由P 1… P n 泵输送到泥水处理站,再从 混合泥浆中回收大部分泥浆进行调整进入调整槽重复利用,另一小部分劣浆或干土外运。 图1 泥水加压平衡盾构工作原理 值得注意的是在开挖面无论是推进阶段还是拼装阶段始终保持着一层泥膜,当刀盘刀头将泥膜切削后,新的泥膜很快形成,周而复始,即这层泥膜始终保持着开挖面的稳定。 4 工艺流程 施工准备(包括泥水系统、同步注浆、中央控制室等设备安装)→盾构就位、调试→系统总调试→盾构出洞→盾构推进、同步注浆(施工参数的采集与调整)→管片拼装→盾构进洞→拆除盾构、车架及其它设备→竣工。 5 施工要点 泥水盾构的施工要点基本类同于其它盾构,除了一些共性外,还需掌握以下要领。 511 泥水管理 泥水管理就是对泥浆质量的控制,即对泥浆四大要素的调整。四大要素为:最大颗粒粒径,粒径分布,泥浆水密度和泥浆水压力。 (1)泥水配合比 出洞初期要配制大量的工作泥浆。工 作泥浆的配制分2种,即天然土泥浆和膨润土泥浆,前者成本低,但在天然粘土中或多或少存在些杂质、粉砂等,故质量不太高;后者成本高,但浆液的质量可得到保证。 天然土泥浆配合比(重量比)为天然粘土 C M C 纯碱 水 =400 212 11 700。 膨润土泥浆配合比(重量比)为膨润土 C M C 纯碱 水= 330 212 11 870。 泥浆质量指标如下:泥浆密度112g c m 3;泥浆粘度30s (漏斗粘度);析水率<5%;颗粒<74Λm 。 8 4

浅析大直径泥水盾构的施工成本及控制

建筑与预算 CONSTRUCTION AND BUDGET 2018年第1期 DOI:10.13993/https://www.doczj.com/doc/d62845546.html,ki.jzyys.2018.01.004 中图分类号:U455.43 文献标志码:B 文章编号:1673-0402(2018)01-0015-03 收稿日期:2017-09-07 作者简介:曹方方(1986-),女,本科,经济师,主要从事经济管理工作。 穿越城市地下铁路的隧道施工中,大直径的盾构法施工因其施工速度快、安全性高、环保、避开征拆难度等诸多优点,越来越多地受到设计、业主、施工各单位的青睐,而对于施工单位来说,大直径盾构施工除了关注工期、安全、质量等优势,如何把大直径泥水盾构的施工效益最大化,合理控制泥水盾构隧道的施工成本、降低工程造价,也是必须关注和研究的课题。 1大直径泥水盾构施工特点 盾构机选型是工程成败与否的关键,对于具有强度较高承压水的地层、淤泥层、松散砂层地质且具有城市施工特点的大直径地下铁路隧道、公路隧道、市政管廊工程,大直径的泥水平衡盾构机尽显优势。泥水平衡盾构机采用泥水加压,通过泥浆对掌子面起到支撑作用,保持开挖面的稳定。施工过程中,通过水压输送泥浆,经过泥水处理系统,分离出符合环保 要求和便于运输的弃土,保证掘进效率,安全性能高,对外界环境影响较小。但又因其自身构造因素,工序繁多,相关配合的人员、材料、设备随之增多,施工精度和配合度要求高,尤其是其独特的泥水处理系统,不仅增加了工序,同时加大了施工和技术难度,泥浆池的修建、泥浆外运、地上泥水分离设备的隔音设施、文明施工、分包管理等成本控制的关键控制点也有所增加[1]。 2大直径泥水盾构施工成本分析 盾构施工成本要素包含人工成本、材料成本、机械使用成本、管理费、规费和税金等。人、材、机的成本消耗包括施工工人的工资、奖金、福利津贴等;消耗的原材料、辅助材料、构配件等费用;周转材料的摊销或租赁费;盾构机、后配套、小型机械的折旧费或租赁费等。大直径泥水盾构施工成本的主要影响因素包括盾构机和泥水分离设备的机械使用、 浅析大直径泥水盾构的施工成本及控制 曹方方 (中铁十六局集团有限公司,北京100124) 摘要:泥水平衡盾构机适用于具有强度较高承压水的地层、淤泥层、松散砂层地质,由于增加泥水处理系统,该设备价格和施工成本较高;但又因其施工工艺日趋成熟、安全性高、避开城市导行、征拆难度等诸多优点,其在城市大直径的地下铁路隧道、公路隧道、市政管廊工程中得到了广泛的应用。文章通过对大直径泥水盾构的施工成本进行分析,对其成本的控制具有一定的参考意义。关键词:盾构机;泥水处理系统;钢筋混凝土

超大直径泥水盾构机长距离掘进常压换刀具技术

超大直径泥水盾构机长距离掘进常压换刀具技术 发表时间:2019-08-08T14:13:57.627Z 来源:《防护工程》2019年9期作者:莫康康陈郁[导读] 南京市纬三路过江通道工程位于南京市长江大桥和南京纬七路过江通道之间,本文所涉及S线工程其盾构段掘进长度为4135m。 中交一公局集团有限公司北京 100024 摘要:盾构法施工因刀盘所处地质条件不同,盾构机刀具和刀盘所受的磨损程度也不尽相同,而在岩石地质条件下,盾构法施工对刀具乃至刀盘的磨损尤为严重;为保证盾构机刀盘使用安全,减少带压进仓换刀的风险,设计常压可更换刀具的刀盘意识大势所趋,本文以南京市纬三路过江通道工程实例为依托,就复杂地质条件下大直径泥水平衡盾构机刀具磨损严重问题,对超大直径泥水平衡盾构机长距离掘进过程中常压换刀具技术展开研究。通过对本工程盾构掘进施工中常压进仓换刀作业的成功实施,总结出复杂地质条件下长距离盾构隧道施工中常压进仓换刀施工工艺和方法。 关键词:泥水平衡盾构机;复合地层;常压更换 1工程概况 南京市纬三路过江通道工程位于南京市长江大桥和南京纬七路过江通道之间,本文所涉及S线工程其盾构段掘进长度为4135m。工程采用三菱、石川岛和中交天和机械联合生产的泥水平衡盾构机,盾体直径φ14.93m,刀盘采用面板式结构,盾构机开挖直径15.02m,开口率25.7%,盾构刀盘主要为切削刀和滚刀两种类型,刀具共计812把,其中先行切削刀和可推出式切削刀(可调)高度为200mm、滚刀为160mm、主切削刀为100mm。常压可更换刀具为刀盘NO2、4、6、8辐条安装的80把推出式切削刀,更换刀具时作业人员从盾构机中心人闸进入辐条,在刀盘辐条内常压状态下可以伸、缩及更换刀具。为了刀具检修更换方便,刀盘可以整体向后滑动100mm,盾构机刀盘如图1-1所示。 中心人闸舱门直径为900mm,舱体直径为1700mm,总长为4800mm,共有3道舱门,配备压力控制调整系统一套,中心人闸具有带压作业功能。 刀盘共有4个独立的可更换刀具作业空间,每个辐条配备一道安全门,检查更换刀具前打开舱门,进入辐条内作业,辐条内作业空间高5360mm,宽度最小943mm,厚度最大为1970mm。 图1-1 盾构机刀盘 2穿越地质情况与刀具情况 2.1穿越地质情况 盾构所穿越地层从新到老大致可分为10个大层24个亚层,有关的地层性状描述见表2-1。

盾构知识试题

盾构知识试题 1、在盾构隧道贯通区间始发工作井联系测量不应少于次; 2、隧道贯通前地下控制导线和控制水准测量中,重合点坐标较 差应少于mm,且应采用平均值作为测量结果; 3、钢筋混凝土管片模具周转次必须进行检验; 4、管片不应存在露筋、孔洞、疏松、夹渣等缺陷,麻面面积不 得大于管片面积的。 % % % % 5、根据盾构的横向和竖向偏差及转动偏差,不能采用措施 调整盾构姿态; A.千斤顶分组控制 B. 反转刀盘 C.仿行到适量超挖 D. 打开铰接 6、盾构到达接收工作井米前,必须对盾构轴线进行测量并

作调整,保证盾构准确进入接收洞门; A. 100 C. 150 7、在带压进仓作业中,下列不符合《盾构法隧道施工与验 收规范》的规定; A.仓内压力为~时,仓内作业时间不得超过5小时; B.仓内的有毒有害气体检测可进行投入活体小动物进行试验; C.仓内压力为~时,作业人员出仓减压时间不少于51min; D.不论进仓人员身体素质如何,24小时内只允许进仓工作1次; 8、盾构隧道内空气中氧气含量不得少于; %%%% 9、在《盾构工程重大风险源控制关键节点验收管理办法》中, 对于采用搅拌、旋喷加固的到达端头,洞门水平探孔数量不得少于个,且孔深进入加固体不少于; 10、《盾构发隧道施工与验收规范》(GB50446)于正式实施; 、下列不属于混凝土管片严重外观质量缺陷; A.混凝土表面缺少水泥砂浆而形成石子外露

B.密封槽部位在长度500mm的范围内存在直径大小5mm、深度 大于5mm的气泡超过5个 C.混凝土中局部不密实 D.管片菱角磕碰、飞边 12、我司《盾构工程重大风险源关键节点验收管理办法》,风险 控制关键节点设置未包括; A.穿越重要建(构)筑物前 B.过江过河前 C.重要的换刀作业和气压作业前 D.联络通道特殊管 片的切割前 13、始发、到达端头加固体检查,如原土体为软土地层时,宜采 用的检测方法为; A.水平探孔 B.垂直抽芯C标准灌入试验. D. A+B 14、常用的盾构机盾尾钢丝刷,在注浆时为了防止盾尾刷击穿, 一般注浆压力不宜超过; 、在下列盾构机纠偏措施中,不正确的是; A.偏移量较大时,纠偏也要采取逐环、小量纠偏措施; B.在纠偏过程中,盾构机姿态变化应控制在每环±5mm之内; C.当盾构机处于轴线左边时,在纠偏时要首先提高盾构机左侧分

2.土压平衡盾构与泥水平衡盾构的结构原理

2土压平衡盾构与泥水平衡盾构的结构原理 上海市土木工程学会 1土压平衡盾构的结构原理 1.1土压平衡盾构的基本原理 图1土压盾构基本形状 土压平衡盾构属封闭式盾构。盾构推进时,其前端刀盘旋转掘削地层土体,切削下来的土体进入土舱。当土体充满土舱时,其被动土压与掘削面上的土、水压基本相同,故掘削面实现平衡(即稳定)。示意图如图6.1所示。由图可知,这类盾构靠螺旋输送机将碴土(即掘削弃土)排送至土箱,运至地表。由装在螺旋输送机排土口处的滑动闸门或旋转漏斗控制出土量,确保掘削面稳定。 1.1.1稳定掘削面的机理及种类 土压盾构稳定掘削面的机理,因工程地质条件的不同而不同。通常可分为粘性土和砂质土两类,这里分别进行叙述。 1.1.1.1粘性土层掘削面的稳定机理 因刀盘掘削下来的土体的粘结性受到破坏,故变得松散易于流动。即使粘聚力大的土层,碴土的塑流性也会增大,故可通过调节螺旋输送机转速和出土口处的滑动闸门对排土量进行控制。对塑流性大的松软土体也可采用专用土砂泵、管道排土。 地层含砂量超过一定限度时,土体流性明显变差,土舱内的土体发生堆积、压密、固结,致使碴土难于排送,盾构推进被迫停止。解决这个问题的措施是向土舱内注水、空气、膨润土或泥浆等注入材,并作连续搅拌,以便提高土体的塑流性,确保碴土的顺利排放。 1.1.1.2砂质土层掘削面的稳定机理

就砂、砂砾的砂质土地层而言,因土颗粒间的摩擦角大故摩擦阻力大;渗透系数大。当地下水位较高、水压较大时,靠掘削土压和排土机构的调节作用很难平衡掘削面上的土压和水压。再加上掘削土体自身的流动性差,所以在无其它措施的情况下,掘削面稳定极其困难。为此人们开发了向掘削面压注水、空气、膨润土、粘土、泥水或泥浆等添加材,不断搅拌,改变掘削土的成分比例,以此确保掘削土的流动性、止水性,使掘削面稳定。 1.1.1.3土压盾构的种类 按稳定掘削面机构划分的土压平衡盾构大致有如下几种,见表1。 表1土压盾构的种类

泥水式盾构机发展概况及工作原理

泥水式盾构机发展概况及工作原理 泥水式盾构机 1发展概况 泥水式盾构机是通过有一定压力的泥浆来支撑稳固开挖面;由旋转刀盘、悬臂刀头或水力射流等进行土体开挖;开挖下来的土料与泥水混合以泥水状态由泥浆泵进行输运。泥水式盾构机适用于各种松散地层,有无地下水均可。采用泥水式盾构机进行施工的隧洞工程都说明它是一种低沉降及安全的施工方法,在稳定的地层中其优点更加明显。 最初的泥水盾构要追溯到一百多年前的Greathead及Haag的专利。由于高透水性地层用压缩空气支撑隧洞开挖面非常困难,1874年,Greathead开发了用流体支撑开挖面的盾构,开挖出的土料以泥水流的方式排出。1896年Haag在柏林为第一台德国泥水式盾构申请了专利,该盾构以液体支撑开挖面,其开挖室是有压和密封的。1959年E.C.Gardner成功地将以液体支撑开挖面应用于一台用于建造排污隧洞的直径为3.35m的盾构。1960年Schneidereit引进了用膨润土悬浮液来支撑开挖面,而H.Lorenz的专利提出用加压的膨润土液来稳固开挖面。1967年第一台有切削刀盘并以水力出土、直径为3.1m的泥水盾构在日本开始使用。在德国,第一台以膨润土悬浮液支撑开挖面的盾构由Wayss&Freytag开发并投入使用。 泥水式盾构机的发展有三种历程,即日本历程、英国历程和德国历程。到目前则只有日本和德国两个主要的发展体系。日本的发展历程导致当今的泥水盾构,德国的发展历程导致水力盾构。以日本的泥水盾构为基础发展了土压平衡盾构,而德国的水力盾构导致很多不同的机型,如混合型盾构,悬臂刀头泥水盾构及水 力喷射盾构等。德国和日本体系的主要区别是,德国式的在泥水舱中设置了气压舱,便于人工正面控制泥水压力,构造简单;日本式的泥水密封舱中全是泥水,要有一套自动控制泥水平衡的装置。

超大直径泥水盾构穿越长江大堤施工技术

1 工程概况 南京长江隧道工程左汊盾构隧道设计 为双向6车道,隧道长3022m,采用两台直径Φ14.93m的泥水盾构、由江北始发井出发,同向掘进施工,隧道管片内径13.3m,外径14.5m,厚度60cm。南京长江隧道于RK3+733.7处下穿长江北岸防洪堤,基底至隧道顶的距离在11.5~12.5m之间,长江防洪堤为重要防洪工程,保护等级定为二级,在盾构通过时必须确保防洪堤万无一失。长江防洪堤与盾构隧道的位置关系见图1。 盾构机穿越长江大堤时间选择在2008年3月份,属于长江枯水期。 2 风险分析 盾构穿越长江大堤时,主要的风险即由于盾构掘进掌子面失稳造成地层坍塌,从而引起大堤坍塌,造成江水涌出危及附近群众的生命和财产安全;其次在盾构穿越大堤时可能因为泥水压力过大击穿覆土层,造成江水由盾尾密封处或管片防水薄弱位置涌入隧道,给施工人员和设备造成威胁。 3 施工技术措施 3.1施工调查 施工前我项目部认真对长江防洪大堤进行了详细的调查,明确其结构和基础状况。进一步判断接近施工影响程度。已查明长江防洪堤为素土回填,迎水面为30cm厚干砌块石,砂浆灌缝,背水面为黏土回 填,上有植被覆盖(江堤防护林)。 3.2水土压力控制 施工过程中加强泥水管理,并根据周围地层的渗透性调整泥浆性状,以保持泥水仓压力与开挖面水土压力平衡。 ⑴ 切口泥水压力值的设定是控制开挖面水土压力平衡的关键:切口水压力波动太大,会增加正面土体的扰动,导致影响大堤的稳定,因此应尽可能减少切口水压波动,在技术上要求操作人员由自动控制改为人工手动控制,将切口水压波动值控制在-0.1bar~+0.1bar之间,保证掌子面稳定。 ⑵ 加强对正面土体的支护,采用重浆推进。泥水进浆比重控制在1.15~1.20g/cm3之间,黏度控制在23~25s。泥水采用优质膨润土结合不同级别的大分子材料和原植物纤维、惰性矿物质组装的新型材料进行调制。 ⑶ 在推进过程中,要加大泥浆测试频率,及时调整泥浆质量,保证推进顺利进行。 ⑷ 开挖过程中加强盾构机操作管理,减少盾构机偏转和横向偏移,防止蛇行发生,保持地层的稳定。 3.3管片壁后注浆管理 同步注浆材料为水泥砂浆,施工时通过同步注浆及时充填建筑空隙,减少施工过程中的土体变形,保证长江大堤的稳固不受破坏。另外根据监测情况,同当同步注浆无法满足要求时,则通过管片预留的二次注浆孔灌注双液浆(水泥浆和水玻璃),在较短时间内使土体固结稳定从而对大堤进行补充加固。 3.4加强盾尾保护 盾构穿越大堤区域属于透水系数大,自稳性差的地层,其显著特点就是对盾尾密 封止水性能的要求非常高,在掘进过程中,要时刻注意盾尾是否有漏浆情况,并每掘进一段距离要通过二次补浆孔进行检查(距离可根据实际情况而定),如发现漏或油脂仓内油脂含有其他杂质时,要及时清洗油脂仓。 3.5跟踪注浆补强 在盾构通过过程中,根据监测情况采用跟踪注浆对防洪堤地基进行加固,加固方案为在盾构轴线周围各25m范围内,在大堤背水面坡角预埋PVC注浆管,注浆管与铅垂面呈30度夹角,距隧道顶3m,间距1m。 4 监控量测 在盾构机穿越大堤施工过程中,必须随时了解和掌握盾构掘进前后的变形位移情况和地表沉降、地下水位变化、土体位移对大堤以及周围建筑物的影响等,将信息反馈给设计、监理、优化设计参数及施工方法,组织信息化施工,实行动态管理,因此需对隧道施工的全过程进行全方位的监测,以确保大堤及隧道的施工安全。监测点、监测人员及方式见表一。 5 应急预案 盾构穿越长江大堤前召开专项会议,针对可能出现的各类风险进行讨论分析,并制定相应的对策,详见表二。 具体操作控制要点如下: ⑴为防止大堤坍塌,在掘进过程中需安排专人检查掘进指令是否落实到位,泥水参数是否符合要求。 ⑵地面监测情况需及时反馈至值班领导、技术人员和盾构机、泥水场操作人员处。 ⑶如长江大堤出现坍塌现象,需提高泥水仓压力,增加泥水比重,增加大堤的跟踪注浆孔数量,加大注浆量,以对大堤底部进 超大直径泥水盾构穿越长江大堤施工技术 杨有诗 中铁十四局集团有限公司 DOI :10.3969/j.issn.1001-8972.2011.15.030 表一 表二

盾构始发风险

2 始发风险 (1)破壁时涌水涌砂 在对洞门凿除时,正面土体由于采用高压旋喷桩加固,强度较高,不易出现坍塌,主要风险因素为加固土体与竖井外壁表面结合薄弱,以及高压旋喷桩之间的密实度未达到施工要求,在高外水压力作用下,形成渗漏通道,大量的涌水涌砂会对始发造成严重影响,甚至会威胁到井内人员和设备的安全。 (2)盾构密封失效 盾构施工中,盾构内部是完全密封的,始发过程中,在强大的外部压力下,盾尾密封装置若配置不合理或受力后被磨损、撕拉后容易失效,造成隧洞内部涌水涌砂。管片由于拼装出现质量问题也有可能产生裂缝,形成渗漏,从而影响施工进度,严重时可能造成安全事故。 (3)泥水压力达不到平衡 盾构机刀盘切入掌子面后,要建立泥水压力平衡,由于洞门钢圈与盾壳之间存在缝隙,有可能出现泥水外溢现象,造成泥水大量损失,盾构机泥水平衡难以建立。 (4)盾构前方土体塌方 盾构机掘进时,泥水不断循环,保持开挖面相对平衡,但由于本工程地层条件复杂,在遇到砂土、卵石以及泥砾石层和砂砾石层时,渗透系数突然加大,会导致泥水大量流失从而引起泥水仓失去平衡造成盾构机前方土体坍塌。 (5)高水压下主驱动密封系统失效 在掘进施工过程中,还应特别注意主驱动密封系统的稳定性。 (6)隧洞上浮 在建立泥水平衡开始正常掘进时,具有一定压力的泥水会从开挖面沿着盾壳窜至盾尾,甚至窜到已建成的隧洞衬砌外。实际施工中发现,泥水会从开挖面一直窜至盾尾约30米处,已建成的隧洞就会处于泥水的包裹中而产生上浮的风险。 (7)其它风险 大雨台风等恶劣天气、隧洞内燃烧和焊接事故等。 3 防范措施 (1)为防止洞门凿除时发生涌水涌砂,对盾构始发区地基采用高压旋喷桩进行加固,提高土体承载力,降低土体渗透系数,为提高安全系数,对洞口区正面土体又进行全面冷冻

相关主题
文本预览
相关文档 最新文档