当前位置:文档之家› 现代配位化学研究的领域及配位化学的应用

现代配位化学研究的领域及配位化学的应用

现代配位化学研究的领域及配位化学的应用
现代配位化学研究的领域及配位化学的应用

现代配位化学研究的领域及配位化学的应用

一、现代配位化学研究的领域

我国配位化学的研究在中华人民共和国成立前几乎属于空白。1949年后随着国家经济建设的发展,仅在个别重点高等院校及科研单位开展了这方面的教学和科研工作,60年代中期以前。主要工作集中在简单配合物的合成、性质、结构及其应用方面的研究。特别是在溶液配合物的平衡理论、混合和多核配合物的稳定性、取代动力学、过渡金属配位催化以及稀土和W、Mo等我国丰产元素的分离提纯以及配位场理论的研究。除了个别方面的研究外,总体来说与国际水平差距还较大。80年代后。在改革开放政策指引下,我国的配位化学取得了突飞猛进的发展。我国配位化学研究已步入国际先进行列,研究水平大为提高。特别在下列几个方面取得了重要进展:

(1)新型配合物、簇合物、有机金属化合物和生物无机配合物。特别是配位超分子化合物的基础无机合成及其结构研究取得丰硕成果,丰富了配合物的内涵。

(2)开展了热力学、动力学和反应机理方面的研究.特别在溶液中离子萃取分离和均向催化等应用方面取得了成果。

(3)现代溶液结构的谱学研究及其分析方法以及配合物的结构和性质的基础研究水平大为提高。

(4)随着高新技术的发展,具有光、电、热、磁特性和生物功能配合物的研究正在取得进展。它的很多成果还包含在其他不同学科的研究和化学教学中。

我国配位化学的进展具有一系列特点。作为化学的重要分支领域之一的配位化学。在其学科本身发展的同时创造出更为奇妙的新材料.揭示出更多生命科学的奥妙。在研究对象上日益重视与材料科学和生命科学相结合。在从分子进到材料合成的研究中更加重视功能体系的分子设计。金属离子在生物体系中的成键。除维生素B12中的Co—C键以外.几乎都是以配位键形式结合。其功能体系组装是一个更为复杂的问题。这时要求将正确的物种放在正确的位置(在与动力学有关的问题中,还要按着正确的时间)才能发挥应有的功能。高效、经济和微量的组合化学的应用,将有助于分子合成和设计的实践。从超分子之类的新观点研究分子的合成和组装.在我国日益受到重视。化学模板有助于提供组装的物种和创造有序的组装。但是其最大的困难在于克服

二、配位化学的应用

1、分析化学中的应用

在分析化学中,常应用许多配合物具有特征的颜色来鉴定某些离子的存在。例如:[Fe(NCS)n]3-n呈血红色,[Cu(NH3)4]2+为深蓝色,[Co(NCS)4]2-在丙酮中显鲜蓝色,等等。它们形成时产生的特征颜色常被认为是有关金属离子存在的依据。又如螯合物中介绍的丁二肟可与Ni2+形成鲜红色的沉淀,这个反应在氨碱性条件下具有灵敏度高、选择性强的特点,这种配位剂也可称为特效剂。在分析鉴定中,常会因某种金属离子的存在而发生干扰,影响鉴定工作的正常进行。例如,Fe3+的存在对用NCS-鉴定Co2+就会发生干扰,因为NCS-与Fe3+和Co2+都能配位分别形成血红色和鲜蓝色的配合物,所以鉴定Co2+受到Fe3+的妨碍而无法观察清楚。但只要在溶液中加入NaF,F-与Fe3+可以形成更稳定的无色的[FeF6]3-,使Fe3+不再与NCS-配位,也就是说,把Fe3+“掩蔽”起来,避免了对Co2+鉴定的干扰。容量分析中的配位滴定法(络合滴定法),是测定金属含

量的常用方法之一,依据的原理就是配合物的形成与相互转化,而最常用的分析试剂就是EDTA,即

2、电镀工业中的应用

许多金属制件,常用电镀法镀上一层既耐腐蚀又增加美观的Zn、Cu、Ni、Cr、Ag等金属。在电镀时必须控制电镀液中的上述金属离子以很小的浓度,并使它在作为阴极的金属制件上源源不断地放电沉积,才能得到均匀、致密、光洁的镀层,配合物能较好地达到此要求。CN-可以与上述金属离子形成稳定性适度的配离子,所以,电镀工业中曾长期采用氰配合物电镀液,但是,由于含氰废电镀液有剧毒、容易污染环境,造成公害,近年来已逐步找到可代替氰化物作配位剂的焦磷酸盐、柠檬酸、氨三乙酸等,并已逐步建立无毒电镀新工艺。

3、湿法冶金中的应用

配合物的形成,对于一些贵金属的提取起着重要作用。我们知道,贵金属很难氧化,但有配位剂存在时,可形成配合物而溶解。Au、Ag等贵金属的提取就是应用这个原理。用稀的NaCN溶液在空气中处理已粉碎的含Au、Ag的矿石,Au、Ag便可形成配合物而转入溶液:

4Au+8NaCN+2H2O+O2--->4Na[Au(CN)2]+4NaOH

4Ag+8NaCN+2H2O+O2--->4Na[Ag(CN)2]+4NaOH

2[Ag(CN)2]-+Zn--->[Zn(CN)4]2-+2Ag

然后用活泼金属(如Zn)还原,可得单质Au或Ag: 2[Au(CN)2]-+Zn--->[Zn(CN)4]2-+2Au 贵金属Pt的提取是利用王水溶解含Pt矿粉,Pt便转化为H2[PtCl6],再将H2[PtCl6]转化为氯铂酸铵沉淀,将沉淀分离出来在高温下分解便可制得海绵状Pt: 3Pt+18HCl+4HNO3--->3H2[PtCl6]+4NO+8H2O H2[PtCl6]+2NH4Cl--->(NH4)2[PtCl6]+2HCl

3(NH4)2[PtCl6]-800℃->3Pt+16HCl+2NH4Cl+2N2

上述提取贵金属的过程,不同于高温火法冶炼金属,这是在溶液中进行的,因而称为湿法冶金。除Au、Ag、Pt以外,一些稀有金属的提取,也有采用湿法进行的。

4、配位催化

利用配合物的形成,对反应所起的催化作用称为配位催化(络合催化),有

些已应用于工业生产。例如,以PdCl2作催化剂,在常温常压下可催化乙烯氧化为乙醛: C2H4+PdCl2+H2O--->[PdCl2H2O(C2H4)]--->CH3CHO+Pd+2HCl 2CuCl2+Pd--->2CuCl+PdCl2

2CuCl+(1/2)O2+2HCl--->2CuCl2+H2O

三式相加得总反应:C2H4+(1/2)O2--->CH3CHO。配位催化反应具有活性高、反应条件温和(常不需要高温高压)等优点,在有机合成、高分子合成中已有重要的工业化应用。

5、生物化学中的作用

金属配合物在生物化学中具有广泛而重要的应用。生物体中对各种生化反应起特殊作用的各种各样的酶,许多都含有复杂的金属配合物。由于酶的催化作用,使得许多目前在实验室中尚无法实现的化学反应,在生物体内实现了。生命体内的各种代谢作用、能量的转换以及O2的输送,也与金属配合物有密切关系。以Mg2+为中心的复杂配合物叶绿素,在进行光合作用时,将CO2、H2O合成为复杂的糖类,使太阳能转化为化学能加以贮存供生命之需。使血液呈红色的血红素结构是以Fe2+为中心的复杂配合物,它与有机大分子球蛋白结合成一种蛋白质称为血红蛋白。氧合血红蛋白具有鲜红的颜色,而血红蛋白本身是蓝色的。这就解释了为什么动脉血呈鲜红色(含氧量高),而静脉血则带蓝色(含氧量低)。血红蛋白 H2O(蓝色)+O2 血红蛋白 O 2(鲜红色)+H2O 上述平衡对O2的浓度很敏感。在肺部因有大量的O2,平衡右移。O2以血红蛋白配合物的形式为红血球所吸收,并输送给各种细胞组织,以供应新陈代谢所需要的O2。某些分子或负离子,如CO或CN-,可以与血红蛋白形成比血红蛋白?O2更稳定的配合物,从而使血红蛋白中断输O2,造成组织缺O2而中毒,这就是煤气(含CO)及氰化物(含CN-)中毒的基本原理。另外,人体生长和代谢必需的维生素B12是Co的配合物,起免疫等作用的血清蛋白是Cu和Zn的配合物;植物固氮菌中的的固氮酶含Fe、Mo的配合物等。目前,世界各国的科学界都在致力于这些配合物的组成、结构、性能和有关反应机理的研究,探索某些仿生新工艺,这显然是一个十分重要和倍受关注的科学研究领域。除上述各领域外,在医药领域中,配合物已成为药物治疗的一个重要方面。例如:EDTA已用作Pb2+、Hg2+等中毒的解毒剂;顺式[Pt(NH3)2Cl2](又称顺铂)具有抗癌作用而用作治癌药物。这方面的研究和发展也很快。再如原子能、半导体、激光材料、太阳能储存等高科技领域,环境保护、印染、鞣革等部门也都与配合物有关。

配合物在医学中的应用

配合物在医学中的应用

————————————————————————————————作者:————————————————————————————————日期: ?

配位化合物在医学中的应用 配位化合物是一类广泛存在、组成较为复杂、在 理论和应用上都十分重要的化合物。目前对配位化 合物的研究已远远超出了无机化学的范畴。它涉及 有机化学、分析化学、生物化学、催化动力学、电化学、量子化学等一系列学科。随着科学的发展,在生物学和无机化学的边缘已形成了一门新兴的学科生物无机化学。新学科的发展表明,配位化合物在生命过程中起着重要的作用。除此之外,配位化合物广泛应用于生化检验、药物分析、环境监测等方面。本文对配位化 合物理论的发展及其在医学、药学中的重要作用和应用作简单的论述。 1 配位化合物及其理论的发展 1. 1 配位化合物的组成配位化合物(coordination compound, 简称配合物,旧称络合物)是指独立存在的稳定化合物进一步结合而成的复杂化合物。从组成上看,配位化合物是由可以给出孤对电子对或多个不定域电子的一定数目的离子或分子(统称为配位体)和具有接受孤电子对或多个不定域电子空位的原子或离子(统称中心原子)按一定组成和空间构型所形成的化合物。 中心原子大多是位于周期表中部的过渡元素。配位体中可作为配原子的总共约有14种元素,它们主要是位于周期表的A、A、A族及H-和有机配体中的C原子,这些元素是: H、C、O、F、P、S、Cl、As、Se、Br、Sb、Te 、I[ 1]。 1. 2 配位化合物理论的发展配位化合物理论的发展经历了一个漫长的过程。国外最早的文献记载是在1704年,普鲁士染料厂的工人迪巴赫(Dies-bach) 把兽皮或牛血、Na2CO3在铁锅中煮,得到一种兰色染料普鲁士蓝( Fe4[Fe( CN)6]3)[2]。虽然如此,人们通常还是认为配位化合物始自1798年法

配位化学文献综述

金属苯合成文献综述 1 金属苯的简介 近年来,对于具有特殊性能的新型功能材料不断增长的需求,使得人们对过渡金属有机共轭体系的合成及性能研究予以关注。其中,金属苯作为一类新颖的过渡金属有机芳香体系,以其特殊的分子结构,预期的化学与物理性能,在过渡金属有机化学研究中居于越来越重要的地位。 早在1825年,英国著名的物理学家和化学家Michael Faraday就已从当时用作照明气体中分离出典型的芳香族化合物——苯。1865年,德国化学家Kekule 引入了“芳香性”这一术语来描述这类化合物的结构,成键和独特性能。其后,“芳香性”被大量运用于解释和预测芳香族化合物分子结构,化学与物理性质等的研究,逐渐发展成有机化学的奠基石之一。一个多世纪以来,芳香化学一直是最受关注的研究领域之一。许多芳香族化合物,包括苯环上的一个CH集团被等电子杂原子(N,P,As,O+,S+)取代之后所生成苯的衍生物,都被证实具有“芳香性”(即π电子离域,高热力学稳定性,低化学反应性以及抗磁环电流等特性)。 金属苯是过渡金属杂苯(metallabenzene)的简称,它是苯分子上一个CH集团被一个含配体的过渡金属(ML n)取代的过渡金属杂环己三烯。与传统的含杂原子芳香化合物(吡啶,呋喃,噻吩等)不同的是,金属苯中过渡金属的d(π)轨道和环上碳原子之间的π成键形成d-pπ共轭体系,而主族杂原子则形成p-pπ共轭体系。 1979年,理论化学家Thron和Hoffmann最先将Huckel规则运用到金属苯的理论推测上[1],预言如图1中所示的三类金属杂环(L=含孤对电子的中性配体,X=卤素)应该存在着离域键并且可能显示一些芳香特性。他们认为,六元环

实验十一 配合物的生成、性质与应用

实验十一 配合物的生成、性质和应用 一、实验目的 1.了解配合物的生成和组成。 2.了解配合物与简单化合物的区别。 3.了解配位平衡及其影响因素。 4.了解螯合物的形成条件及稳定性。 二、实验原理 由中心离子(或原子)与配体按一定组成和空间构型以配位键结合所形成的化合物称配合物。配位反应是分步进行的可逆反应,每一步反应都存在着配位平衡。 M + nR MR n s n [MRn] [M][R]K 配合物的稳定性可由K 稳 (即K s )表示,数值越大配合物越稳定。增加配体(R)或金属离子(M)浓度有利于配合物(MRn)的形成,而降低配体和金属离子的浓度则有利于配合物的解离。如溶液酸碱性的改变,可能引起配体的酸效应或金属离子的水解等,就会导致配合物的解离;若有沉淀剂能与中心离子形成沉淀的反应发生,引起中心离子浓度的减少,也会使配位平衡朝离解的方向移动;若加入另一种配体,能与中心离子形成稳定性更好的配合物,则同样导致配合物的稳定性降低。若沉淀平衡中有配位反应发生,则有利于沉淀溶解。配位平衡与沉淀平衡的关系总是朝着生成更难解离或更难溶解物质的方向移动。 配位反应应用广泛,如利用金属离子生成配离子后的颜色、溶解度、氧化还原性等一系列性质的改变,进行离子鉴定、干扰离子的掩蔽反应等。 三、仪器和试药 仪器:试管、离心试管、漏斗、离心机、酒精灯、白瓷点滴板。 试药:H 2SO 4 (2mol·L -1)、HCl (1mol·L -1)、NH 3·H 2O (2, 6mol·L -1)、NaOH (0.1, 2mol·L -1) 、CuSO 4 (0.1mol·L -1, 固体)、HgCl 2 (0.1mol·L -1)、KI (0.1mol·L -1)、BaCl 2 (0.1mol·L -1)、K 3Fe (CN)6 (0.1mol·L -1)、NH 4Fe (SO 4)2 (0.1mol·L -1)、FeCl 3 (0.1mol·L -1)、KSCN (0.1mol·L -1)、NH 4F (2mol·L -1)、(NH 4)2C 2O 4 (饱和)、AgNO 3 (0.1mol·L -1)、NaCl (0.1mol·L -1)、KBr (0.1mol·L -1)、 Na 2S 2O 3 (0.1mol·L -1,饱和)、Na 2S (0.1mol·L -1)、FeSO 4 (0.1mol·L -1)、NiSO 4 (0.1mol·L -1) 、CoCl 2 (0.1mol·L -1)、CrCl 3 (0.1mol·L -1)、EDTA (0.1mol·L -1)、乙醇 (95%)、CCl 4、邻菲罗啉 (0.25%)、二乙酰二肟(1%)、乙醚、丙酮。 四、实验内容 1.配合物的生成和组成 (1)配合物的生成 在试管中加入0.5g CuSO 4·5H 2O (s), 加少许蒸馏水搅拌溶解,再逐滴加入2mol·L -1的氨水溶液,观察现象,继续滴加氨水至沉淀溶解而形成深蓝色溶液,然后加入2mL 95%乙醇,振荡试管,有何现象?静置2分钟,过滤,分出晶体。在滤纸上逐滴加入2 mol·L -1NH 3·H 2O 溶液使晶体溶解,在漏斗下端放一支试管承接此溶液,保留备用。写出相应离子方程式。 (2)配合物的组成 将上述溶液分成2份,在一支试管中滴入2滴0.1mol·L -1BaCl 2溶液,另一支试管滴入2滴0.1mol·L -1NaOH 溶液,观察现象,写出离子方程式。 另取两支试管,各加入5滴0.1mol·L -1CuSO 4溶液,然后分别向试管中滴入2滴0.1mol·L -1 BaCl 2溶液和2滴0.1mol·L -1NaOH 溶液,观察现象,写出离子方程式。 比较二实验结果,分析该配合物的内界和外界组成,写出相应离子方程式。

化学文献综述

手型金属络合物的合成及应用 姓名:杨小玲1学号:2009296094专业:化学 (山西大学化学化工学院) 摘要:随着化学化工的发展,人们已将重点转向如何更有效地模拟自然,高选择性地合成自然界中存在的那些具有特殊活性 的物质,设计并合成具有新的特殊活性的物质。其中一个极为重要的和富有活力的领域就是手性物质的合成,简称手性合成。随着 手性合成研究的深入,新型的高效手性催化剂层出不穷。本文旨在就其中一种催化剂即手性金属络合物催化剂的制备和应用做一介绍。所谓手性即立体异构形式,具有手性的两个分子的结构彼此间的关系如同镜像和实物或左手和右手间的关系,相似但不叠合。 关键词:手性金属络合物催化剂 Synthesis and application of chiral metal complexes Name: Xiaoling yang Number: 2009296094 Professional : Chemical (Chemistry and Chemical Engineering , Shanxi University) Abstract Along with the development of chemical industry, people already will focus on how to more effectively simulate natural, high selectivity synthesis exist in nature that have special active substances, design and synthesis of new special activity of the material. One of them is very important and dynamic area is the synthesis of chiral material, hereinafter referred to as chiral synthesis. With the deepening of the research chiral synthesis, new high-efficiency chiral catalysts are endless. This paper aimed at one of the catalyst that chiral metal complex catalyst preparation and application of this paper. The so-called hand nature is stereo heterogeneous form, with two of the chiral molecule structure relation to each other as a mirror and material or left and right hand, the relation between similar but not composite. Keywords: chiral Metal complex catalyst 前言 手性金属络合物的发现和认识对早期配位化学理论的建立起了积极的作用它在生物无机化学,不对称催化剂,超分子化学等化学分支学科中都具有重要的应用已知在一些重要体系中精确的分子识别和严格的结构匹配都与手性密切相关。近年来, 随着在国际范围内对有机化学新反应、新试剂需求量的急剧增长, 使金属有机化合物的合成成为世界各国有机合成和催化学家关注的焦点, 其中对含不饱和键的金属有机化合物的研究尤为引人注意. 特别是自20 世纪90 年代以来, 合成了许多高活性、高选择性金属络合物催化剂,并被广泛地用于催化有机化学反应. 有的立体选择性反应甚至达到几乎定量的结果, 展现了它们在医药、生物及化工等领域的广阔的应用前景, 从而成为金属有机化学的前沿研究课题. 随着对手性金属络合物的深入研究除了配体和中心金属离子的合理选择外其它如溶剂效应,氢键效应配体间非共价键作用等因素对立体选择性也有重要的影响。

配合物在医学中的应用.

配位化合物在医学中的应用 配位化合物是一类广泛存在、组成较为复杂、在 理论和应用上都十分重要的化合物。目前对配位化 合物的研究已远远超出了无机化学的范畴。它涉及 有机化学、分析化学、生物化学、催化动力学、电化学、量子化学等一系列学科。随着科学的发展,在生物学和无机化学的边缘已形成了一门新兴的学科生物无机化学。新学科的发展表明,配位化合物在生命过程中起着重要的作用。除此之外,配位化合物广泛应用于生化检验、药物分析、环境监测等方面。本文对配位化 合物理论的发展及其在医学、药学中的重要作用和应用作简单的论述。 1 配位化合物及其理论的发展 1. 1 配位化合物的组成配位化合物( coordination compound, 简称配合物, 旧称络合物) 是指独立存在的稳定化合物进一步结合而成的复杂化合物。从组成上看,配位化合物是由可以给出孤对电子对或多个不定域电子的一定数目的离子或分子(统称为配位体)和具有接受孤电子对或多个不定域电子空位的原子或离子(统称中心原子)按一定组成和空间构型所形成的化合物。 中心原子大多是位于周期表中部的过渡元素。配位体中可作为配原子的总共约有14种元素,它们主要是位 于周期表的A、A、A族及H - 和有机配体中的C原子,这些元素是: H、C、O、F、P、S、Cl、As、Se、 Br、Sb、Te 、I[ 1]。 1. 2 配位化合物理论的发展配位化合物理论的发展经历了一个漫长的过程。国外最早的文献记载是在1704年,普鲁士染料厂的工人迪巴赫( Dies-bach) 把兽皮或牛血、Na2CO3在铁锅中煮, 得到一种兰色染料普鲁士蓝( Fe4[ Fe( CN)6]3)[ 2]。虽然如此,人们通常还是认为配位化合物始自1798年法

配位化学基础

配位化学基础 配位化学就是在无机化学基础上发展起来得一门具有很强交叉性得学科,配位化学旧称络合物化学,其研究对象就是配合物得合成、结构、性质与应用。配位化学得研究范围,除最初得简单无机加与物外,已包括含有金属-碳键得有机金属配位化合物,含有金属-金属键得多核蔟状配位化合物即金属簇合物,还包括有机配体与金属形成得大环配位化合物,以及生物体内得金属酶等生物大分子配位化合物。 一、配合物得基本概念 1、配合物得定义及构成 依据1980年中国化学会无机化学命名原则,配合物可以定义为:由可以给出孤对电子或多个不定域电子得一定数目得离子或分子(统称为配体)与具有接受孤对电子或多个不定域电子得空位得原子或离子(统称为中心原子),按一定得组成与空间构型所形成得化合物。结合以上规定,可以将定义简化为:由中心原子或离子与几个配体分子或离子以配位键相结合而形成得复杂分子或离子,统称为配体单元。含配体单元(又称配位个体)得化合物称为配位化合物。 配体单元可以就是配阳离子,配阴离子与中性配分子,配位阳离子与阴离子统称配离子。配离子与与之平衡电荷得抗衡阳离子或阴离子结合形成配位化合物,而中性得配位单元即时配位化合物。但水分子做配体得水合离子也经常不瞧成配离子。 配位化合物一般分为内界与外界两部分,配体单元为内界,抗衡阳离子或阴离子为外界,而含中性配位单元得配位化合物则无外界。配合物得内界由中心与配体构成,中心又称为配位化合物得形成体,多为金属,也可以就是原子或离子,配体可以就是分子、阴离子、阳离子。 2、配位原子与配位数 配位原子:配体中给出孤对电子与中心直接形成配位键得原子 配位数:配位单元中与中心直接成键得配位原子得个数配位数一般为偶数,以4、6居多,奇数较少 配位数得多少与中心得电荷、半径及配体得电荷、半径有关: 一般来说,中心得电荷高、半径大有利于形成高配位数得配位单元,如氧化数为+1得中心易形成2配位,氧化数为+2得中心易形成4配位或6配位,氧化数为+3得易形成6配位。配体得半径大,负电荷高,易形成低配位得配位单元。 配位数得大小与温度、配体浓度等因素有关: 温度升高,由于热震动得原因,使配位数减少;配体浓度增大,利于形成高配位。

黄酮类化合物在配位化学中的应用

黄酮类化合物在配位化学中的应用 李召 (齐齐哈尔大学化学与化学工程学院应化081班) 摘要:黄酮类化合物(flavonoids)是一类存在于自然界的、具有2-苯基色原酮(flavone)结构的化合物。它们分子中有一个酮式羰基,第一位上的氧原子具碱性,能与强酸成盐,其羟基衍生物多具黄色,故又称黄碱素或黄酮。黄酮类化合物在植物体中通常与糖结合成苷类,小部分以游离态(苷元)的形式存在。绝大多数植物体内都含有黄酮类化合物,它在植物的生长、发育、开花、结果以及抗菌防病等方起着重要的作用。 关键词:黄酮类化合物、配位化学、抗氧化性 Summary:flavonoids (flavonoids) are a class exists in nature, with 2 - phenyl chromone (flavone) structure of the compounds. They have a keto molecular carbonyl oxygen atoms on the first with alkaline salt with acid, and its hydroxyl derivatives with more yellow, it is also known as yellow alkali elements or flavonoids. Flavonoids in plants are usually combined into glycosides with sugar, a small proportion of the free state (aglycone) form. Most plants contain flavonoids, which in plant growth, development, flowering, fruiting, and disease prevention such as antibiotic side plays an important role. Keyword:Flavonoids、Coordination Chemistry、Antioxidant 1.1 黄酮类化合物 黄酮类化合物 flavonoid 黄酮醇分子结构图 以黄酮(2-苯基色原酮)为母核而衍生的一类黄色色素。其中包括黄酮的同分异构体及其氢化的还原产物,也即以C6-C3-C6为基本碳架的一系列化合物。黄酮类化合物在植物界分布很广,在植物体内大部分与糖结合成苷类或碳糖基的形式存在,也有以游离形式存在的。天然黄酮类化合物母核上常含有羟基、甲氧基、烃氧基、异戊烯氧基等取代基。由于这些助色团的存在,使该类化合物多显黄色。又由于分子中γ-吡酮环上的氧原子能与强酸成?盐而表现为弱碱性,因此曾称为黄碱素类化合物。 根据三碳键(C3)结构的氧化程度和B环的连接位置等特点,黄酮类化合物可分为下列几类:黄酮和黄酮醇;黄烷酮(又称二氢黄酮)和黄烷酮醇(又称二氢黄酮醇);异黄酮;异黄烷酮(又称二氢异黄酮);查耳酮;二氢查耳酮;橙酮(又称澳咔);黄烷和黄烷醇;黄烷二醇(3,4)(又称白花色苷元。 黄酮类化合物中有药用价值的化合物很多,如槐米中的芦丁和陈皮中的陈皮苷,能降低血管的脆性,及改善血管的通透性、降低血脂和胆固醇,用于防治老年高血压和脑溢血。由银杏叶制成的舒血宁片含有黄酮和双黄酮类,用于冠心病、心绞痛的治疗。全合成的乙氧黄酮又名心脉舒通或立可 定,有扩张冠状血管、增加冠脉流量的作用。许多黄酮类成分具有止咳、祛痰、平喘、抗菌的活性。护肝,解肝毒、抗真菌、治疗急、慢性肝炎,肝硬化。

课题:配合物的应用

课题:配合物的应用 课型:课时:上课时间: 学习目标: 1、了解配合物的性质及应用 学习过程: 【自主学习】配合物在许多方面有广泛的应用 1、在实验研究中,常用形成配合物的方法来检验金属离子、分离物质、定量测定物质的组成。 2、在生产中,配合物被广泛应用于染色、电镀、硬水软化、金属冶炼领域。 3、在许多尖端领域如激光材料、超导材料、抗癌药物的研究、催化剂的研制等方面,配合物发挥着越来越大的作用。 一、在冶金工业上的应用 从矿石中提取金:(原理) 二、在电镀工业中的应用 三、在元素分离和分析化学中的应用 1、鉴定Fe3+、Cu2+ 2、分离Zn2+、Al3+ 3、Co2+的鉴定 四、在化工和生物化学中的应用 1、乙烯催化氧化制乙醛: 催化机理: 2、人造血 五、生物医药中的应用 1、煤气中毒的原因

2、铅中毒的治疗 3、治癌药物顺铂[Pt(NH3)2Cl2] 课堂训练 1、、要证明某溶液中不含Fe3+而可能含有Fe2+,进行如下实验操作时,最佳顺序为 ①加入足量氯水②加入足量酸性高锰酸钾溶液③加入少量NH4SCN溶液 A.①③B.③② C.③①D.①②③ 2、某白色固体可能由①NH4Cl ②AlCl3 ③NaCl ④AgNO3 ⑤KOH中的一种或几种组成,此固体投入水中得澄清溶液,该溶液可使酚酞呈红色,若向溶液中加稀硝酸到过量,有白色沉淀生成。对原固体的判断不正确的是A.肯定存在① B.至少存在②和⑤ C.无法确定是否有③ D.至少存在①、④、⑤ 3、从金矿中提取金,传统的方法是用氰化提金法。氰化提金法的原理是:用稀的氰化钠溶液处理粉碎了的金矿石,通入空气,使金矿中的金粒溶解,生成能溶于水的物质Na[Au(CN)2]。试写出并配平金粒溶解的化学方程式。然后再用锌从溶液中把金置换出来,试写出并配平该化学方程式

新型茂混配镁配合物的合成【文献综述】

毕业论文文献综述 应用化学 新型茂混配镁配合物的合成 β-二亚胺是一类含有-N=C-C-C=N-结构的不饱和亚胺化合物。β-二亚胺作为配体,是含氮配体中非常重要的一类。早在上世纪40年代人们就已经报道了用β-二亚胺作为配体合成β-二亚胺金属化合物。但是,人们研究的重点放在性质和合成方面,直到上个世纪60年代,科学家用β-二亚胺成功的形成了肽键,使β-二亚胺在有机化学的很多领域得到广泛的应用。在配位化学中,β-二亚胺作为一类配体有其自身的优点。比如,其合成原料容易获得,合成路线简单方便,毒性小,与金属离子的配位方式非常多样,具有很强的配位能力,通常可以作为纯粹的σ-电子给体,或者以σ、π-复合电子给体的形式出现,立体效应、电子效应、配体骨架等都容易调节,可以作为一类新型的催化体系。 近年来,以 -二亚胺作为配体,合成过渡和主族金属的有机配合物以及将这些金属有机配合物应用于催化有机合成反应、高分子聚合反应的研究,已经引起了科学家们广泛的注意,并也有其相关的文献报道。 姚英明教授等以β-二亚胺基作为辅助配体合成了一些金属有机配合物,发现这一配体是合成混配型稀土金属有机配合物的理想配体,并具有独特的催化反应性能。同时发现了用Na-K合金还原混配型β-二亚胺基稀土金属氯化物,可以合成二价双烯酮亚胺基稀土金属配合物,而且这些二价稀土金属配合物可以有效地催化ε-己内酯的开环聚合。含有非茂类配体的金属有机配合物合成是聚烯烃领域的研究热点,它继承了Zieglar-Natta催化剂的优点,具有活性更高、亲氧性弱、结构可调范围大的特点。如β-二亚胺基镍通过配体的修饰,中心金属反应性很容易调整控制,可形成优良的催化剂,可以将乙烯与β-烯烃聚合成具有独特微观结构的高分子量聚合物,这类催化剂不仅能催化乙烯聚合,还可以催化β-烯烃均聚成为高分子量聚合物。因此,近年来,β-二亚胺配体作为乙烯聚合催化剂的研究十分活跃。 β-二亚胺配体作为一类新型的非茂金属催化体系,是一类通用型配体。此类非茂金属催化体系不仅仅局限于烯烃聚合催化剂研究,对于新型非茂金属和后过渡金属催化剂的开发与研制都有广泛的影响。通过对β-二亚胺配体体系的深度开发,此类非茂金属催

现代配位化学研究的领域及配位学的应用

现代配位化学的研究领域及配位化学的应用现代配位化学既有理论又有事实,它把最新的量子力学成就作为自己阐述配合物性质的理论基础, 也力图用热力学、动力学的知识去揭示配位反应的方向 和历程。 已经进入到了现代发展阶段的现代配位化学具有如下三个特点: ●从宏观到微观 现代配位化学进入到物质内部层次的研究阶段,也即进入了微观水平的研 究阶段。现在不只研究配位化合物的宏观性质,而且更重视物质微观结构的研 究即原子、分子内部结构特别是原子、分子中电子的行为和运动规律的研究, 从而建立了以现代化学键理论为基础的化学结构理论体系。 现代配位化学是既有翔实的实验资料又有坚实的理论基础的完全科学。 ●从定性描述向定量化方向发展 现代配位化学特别是结构配位化学已普遍应用线性代数、群论、矢量分析、拓扑学、数学物理等现代的数学理论和方法了,并且应用电子计算机进行科学 计算,对许多反映结构信息及物理化学性能的物理量进行数学处理。这种数学 计算又与高灵敏度、高精确度和多功能的定量实验测定方法相结合,使对配位 化合物性质和结构的研究达到了精确定量的水平。 ●既分化又综合,出现许多边缘学科 现代配位化学一方面是加速分化,另一方面却又是各分支学科之间的相互 综合、相互渗透,形成了许多新兴的边缘学科。 配位化学的地位 一、现代配位化学的研究领域

现代配位化学主要有七大活跃领域部分,分别为超分子化学、兀酸配休及小分子配体络合物、过渡金属有机络合物、金属原子簇络合物、络合催化、生物配位化学、富勒烯化学-老元素新发现(纳米材料)。 (一)超分子化学 超分子化学是研究两种以上的化学物种通过分子间力相互作用缔结而成为具有特定结构和功能的超分子体系的科学。简而言之,超分子化学是研究多个分子通过非共价键作用,而形成的功能体系的科学。 超分子化学是一门处于化学学科与物理、生命科学相互交叉的前沿学科。它的发展不仅与大环化学(冠醚、穴醚、环糊精、杯芳烃、富勒烯等)的发展密切相关,而且与分子自组装、分子器件和新颖有机材料的研究息息相关。从某种意义上讲,超分子化学将四大基础化学(有机化学、无机化学、分析化学和物理化学)有机地融合成一个整体。 1.分子识别 所谓分子识别是指主体(受体)对客体(底物)选择性结合并产生某种特定功能的过程,是分子组装及超分子功能的基础(锁与钥匙的关系)。

配位化学基础

配位化学基础 配位化学是在无机化学基础上发展起来的一门具有很强交叉性的学科,配位化学旧称络合物化学,其研究对象是配合物的合成、结构、性质和应用。配位化学的研究范围,除最初的简单无机加和物外,已包括含有金属-碳键的有机金属配位化合物,含有金属-金属键的多核蔟状配位化合物即金属簇合物,还包括有机配体与金属形成的大环配位化合物,以及生物体内的金属酶等生物大分子配位化合物。 一、配合物的基本概念 1.配合物的定义及构成 依据1980年中国化学会无机化学命名原则,配合物可以定义为:由可以给出孤对电子或多个不定域电子的一定数目的离子或分子(统称为配体)和具有接受孤对电子或多个不定域电子的空位的原子或离子(统称为中心原子),按一定的组成和空间构型所形成的化合物。结合以上规定,可以将定义简化为:由中心原子或离子和几个配体分子或离子以配位键相结合而形成的复杂分子或离子,统称为配体单元。含配体单元(又称配位个体)的化合物称为配位化合物。 配体单元可以是配阳离子,配阴离子和中性配分子,配位阳离子和阴离子统称配离子。配离子与与之平衡电荷的抗衡阳离子或阴离子结合形成配位化合物,而中性的配位单元即时配位化合物。但水分子做配体的水合离子也经常不看成配离子。 配位化合物一般分为内界和外界两部分,配体单元为内界,抗衡阳离子或阴离子为外界,而含中性配位单元的配位化合物则无外界。配合物的内界由中心和配体构成,中心又称为配位化合物的形成体,多为金属,也可以是原子或离子,配体可以是分子、阴离子、阳离子。 2.配位原子和配位数 配位原子:配体中给出孤对电子与中心直接形成配位键的原子 配位数:配位单元中与中心直接成键的配位原子的个数配位数一般为偶数,以4、6居多,奇数较少 配位数的多少和中心的电荷、半径及配体的电荷、半径有关: 一般来说,中心的电荷高、半径大有利于形成高配位数的配位单元,如氧化数为+1的中心易形成2配位,氧化数为+2的中心易形成4配位或6配位,氧化数为+3的易形成6配位。配体的半径大,负电荷高,易形成低配位的配位单元。 配位数的大小与温度、配体浓度等因素有关: 温度升高,由于热震动的原因,使配位数减少;配体浓度增大,利于形成高配位。 配位数的大小与中心原子价电子层结构有关: 价电子层空轨道越多一般配位数较高 配位数的大小与配体位阻和刚性有关: 配体的位阻一般都会使中心原子的配位数降低,位阻越大、离中心原子越近,配位数的降低程度也就越大。配体的刚性不利于配体在空间中的取向,长回事中心原子的配位数降低。 3.配体的类型

化学文献综述

安阳工学院 文献综述 姓名:葛会丹 学号:2 院系:化学与环境工程学院 专业:09级化学工程与工艺 指导老师:贾太轩 2012-12-8

手型金属络合物的合成及应用 摘要:随着化学化工的发展,人们已将重点转向如何更有效地模拟自然,高选择性地合成自然界中存在的那些具有特殊活性的物质,设计并合成具有新的特殊活性的物质。其中一个极为重要的和富有活力的领域就是手性物质的合成,简称手性合成。随着手性合成研究的深入,新型的高效手性催化剂层出不穷。本文旨在就其中一种催化剂即手性金属络合物催化剂的制备和应用做一介绍。所谓手性即立体异构形式,具有手性的两个分子的结构彼此间的关系如同镜像和实物或左手和右手间的关系,相似但不叠合。 关键词:手性金属络合物催化剂 前言: 手性金属络合物的发现和认识对早期配位化学理论的建立起了积极的作用它在生 物无机化学,不对称催化剂,超分子化学等化学分支学科中都具有重要的应用已知在一些重要体系中精确的分子识别和严格的结构匹配都与手性密切相关。近年来, 随着在国际范围内对有机化学新反应、新试剂需求量的急剧增长, 使金属有机化合物的合成成为世界各国有机合成和催化学家关注的焦点, 其中对含不饱和键的金属有机 化合物的研究尤为引人注意. 特别是自20 世纪90 年代以来, 合成了许多高活性、高选择性金属络合物催化剂,并被广泛地用于催化有机化学反应. 有的立体选择性反应 甚至达到几乎定量的结果, 展现了它们在医药、生物及化工等领域的广阔的应用前景, 从而成为金属有机化学的前沿研究课题. 随着对手性金属络合物的深入研究除了配 体和中心金属离子的合理选择外其它如溶剂效应,氢键效应配体间非共价键作用等因素对立体选择性也有重要的影响。 1手性金属络合手物的立体选择性合成[1-7] 1.1立体性选择合成手性金属络合物催化剂 采用立体选择性合成的方法制备特定手性构型的金属络合物在不对称催化领域中 由于在催化前手性底物形成手性产物的过程中手性诱导剂和底物之间的距离可能是 重要的影响因素此距离越近则手性转移和光学诱导越容易进行而当中心金属作为手

配位化学在工业中的应用

配位化学在工业中的应用 配位化学又称络合物化学,配位化合物简称配合物或络合物。配合物是由一个或几个中心原子或中心离子与围绕着它们并与它们键合的一定数量的离子或分子(这些称为配位体)所组成的。配位化合物在化学工业和生活中起着重要的作用,1963年化学诺贝尔奖金联合授给德国M.普朗克学院的K.齐格勒博士和意大利米兰大学的G.纳塔教授。他们的研究工作是发展了乙烯的低压聚合,这使数千种聚乙烯物品成为日常用品。齐格勒-纳塔聚合催化剂是金属铝和钛的配合物。而今,配位化学的研究已经有了很大的突破,现代配位化学理论在推进工业研究中得到了应用并成为工业设计原理的一个组成部分。 1、配位化学的前期发展历程 配合物在自然界中普遍存在,历史上最早有记载的是1704 年斯巴赫(Diesbach)偶然制成的普鲁士蓝KCN·Fe(CN)2·Fe(CN) 3,其后1798 年塔斯赫特(Tassert)合成[Co(NH3)6]Cl3。十九世纪末二十世纪初,创立了配位学说,成为化学历史中重要的里程碑。 二十世纪以来,配位化学作为一门独立的学科,以其蓬勃发展之势,使传统的无机化学和有机化学的人工壁垒逐渐消融,并不断与其他学科如物理化学、材料科学及生命科学交叉、渗透,孕育出许多富有生命力的新兴边缘学科,为化学学科的发展带来新的契机[1]。 2、配位化学新的发展及应用趋势 本世纪60 年代初期,由于发现了一批具有金属- 金属化学键的配合物,配位化学的研究重点从单核配合物转向多配合物,从而开始了对多金属偶合体系的研究。在此研究过程中,发现很早已为人们熟知利用的普鲁士蓝等一类混合价配合物,不仅可以用于传统的染料工业,还可以更广泛地应用于陶瓷、矿物、材料科学、高温超导等许多领域。如可用于合成高导电率的分子金属和超导材料、磁性材料、优良的非线性光学材料以及非线性导电材料等。因此,此类配合物引起各个学科研究者,如合成化学家、固体化学家、地质学家、生物学家、物理学家 的极大兴趣,成为当前化学基础研究的前沿领域。 混价配合物的中心原子,无论相同或不同的金属离子都具有两种明显不同的氧化态。它包括了元素周期表中的大多数金属元素。但是目前人们关注的焦点,多集中在过渡金属和稀土金属元素,因为这些元素的配合物常常具有独特的光、电、磁性质,并与生命活动密切相关。如混价配合物MnIIMnIIIMnIIO(OAc)6(py)3等。研究者通过对混合价过渡金属和稀土金属配合物的研究,合成了一系列新型分子材料和与生命活动紧密相关的模型化合物,建立了较完整的理论体系[2]。 3、配位化学在化学化工工业中的应用 配位化学在许多领域都有非常广泛的应用,尤其是在化学化工方面,显示出了它的应用优越性。 天然水和废水中配合物的形成 在水处理化学领域中,天然水和废水中配合物的形成是很重要的。水体中溶解态的重金属,大部分以配合物形式存在,因为水体中存在多种无机和有机配位体。重要的无机配位体有OH-、Cl-、CO32-、HCO32-等。有机配位体情况比较复杂,有动植物组织的天然降解产物,如氨基酸、糖、腐殖酸等,由于工业及生活废水的排入使存在的配位体更为复杂,如CN-、有机洗涤剂、NTA(氮基三乙酸N(CH2CO2H)3的三钠盐,洗涤剂的组分)、EDTA(乙二胺四乙酸的钠盐)、农药和大分子环状化合物。湖水中汞大部分与腐殖酸配合,而在海水中汞则主要与Cl-配合。 改变水溶液中的金属物种

配位化合物知识点讲解(教师版)

1、配位化合物 (1)概念:金属离子或原子与某些分子或离子以配位键结合而形成的化合物称为配位化合物,简称配合物。 作为电子对接受体的金属离子或原子称为中心离子(原子),又称配合物的形成体,作为电子对给予体的分子或离子称为配体。 [Cu(H2O)4]2+的空间结构为平面正方形。 (2)配合物的结构 [Cu(NH3)4]SO4为例说明。 注意:离子型配合物是由内界和外界组成,内界由中心离子和配体组成。 (3)配合物的命名: 例如:[Cu(NH3)4]SO4硫酸四氨合铜 练习:对下列配合物进行命名 [Cu(NH3)4]Cl2K3[Fe(SCN)6] Na3[AlF6] 3、几种常见的配合物 实验:硫酸四氨合铜的制备。 现象:向CuSO4溶液中加入氨水,生成蓝色沉淀,继续加入氨水,沉淀溶解,得到深蓝色溶液。再加入乙醇,析出深蓝色的晶体。 有关反应的离子方程式为:Cu2++2NH3·H2O=Cu(OH)2↓+2OH- Cu(OH)2+4NH3=[Cu(NH3)4]2++2OH- 蓝色沉淀深蓝色溶液 在[Cu(NH3)4]2+里,中心离子是Cu2+,配体是NH3,NH3分子的氮原子给出孤电子对,以配位键形成了[Cu(NH3)4]2+: [Cu(NH3)4]2+的空间结构为平面正方形。 实验:硫氰化铁的制备。向氯化铁溶液中滴加硫氰化钾溶液。 现象:形成血红色溶液。有关反应的化学方程式为:FeCl3+3KSCN=Fe(SCN)3+3KCl

Fe(SCN)3呈血红色,它是一种配合物。上述实验可用于鉴定溶液中存在Fe3+。 呈血红色的是一系列配合物:Fe(SCN)2+、Fe(SCN)2+、Fe(SCN)3、Fe(SCN)4-、Fe(SCN)52-、Fe(SCN)63-,配位数从1~6。 注意:配位键的强度有大有小,因而有的配合物很稳定,有的不很稳定。许多过渡金属离子对多种配体具有很强的结合力,因而,过渡金属配合物远比主族金属配合物多。 [随堂练习] 1.铵根离子中存在的化学键类型按离子键、共价键和配位键分类,应含有() A.离子键和共价键B.离子键和配位键 C.配位键和共价键D.离子键答案:C 2.下列属于配合物的是() A.NH4Cl B.Na2CO3·10H2O C.CuSO4·5H2O D.Co(NH3)6Cl3 答案:CD 3.下列分子或离子中,能提供孤对电子与某些金属离子形成配位键的是() ①H2O ②NH3③F-④CN-⑤CO A.①②B.①②③ C.①②④D.①②③④⑤答案:D 4.配合物在许多方面有着广泛的应用。下列叙述不正确的是() A.以Mg2+为中心的大环配合物叶绿素能催化光合作用 B.Fe2+的卟啉配合物是输送O2的血红素 C.[Ag(NH3)2]+是化学镀银的有效成分 D.向溶液中逐滴加入氨水,可除去硫酸锌溶液中的Cu2+ 答案:D 5.下列微粒:①H3O+②NH4+③CH3COO-④NH3⑤CH4中含有配位键的是() A.①②B.①③ C.④⑤D.②④答案:A 6.下列不属于配位化合物的是() A.六氟和铝酸钠B.氢氧化二氨合银(银氨溶液)C.六氰合铁酸钾D.十二水硫酸铝钾答案:D 7.指出配合物K2[Cu(CN)4]的配离子、中心离子、配位体、配位数及配位原子。 8.亚硝酸根NO2-作为配体,有两种方式。其一是氮原子提供孤对电子与中心原子配位;另一是氧原子提供孤对电子与中心原子配位。前者称为硝基,后者称为亚硝酸根。 [Co(NH3)5NO2]Cl2就有两种存在形式,试画出这两种形式的配离子的结构式。

大学各专业名称英文翻译——理科SCIENCE

大学各专业名称英文翻译——理科SCIENCE 理科 SCIENCE 课程中文名称课程英文名称 矩阵分析 Matrix Analysis 面向对象程序设计方法 Design Methods of Object oriented Program 李代数 Lie Algebra 代数图论 Algebraic Graph Theory 代数几何(I) Algebraic Geometry(I) 泛函分析 Functional Analysis 论文选读 Study on Selected Papers Hoof代数 Hoof Algebra 基础代数 Fundamental Algebra 交换代数 Commutative Algebra 代数几何 Algebraic Geometry

Hoof代数与代数群量子群 Hoof Algebra , Algebraic Group and Qua numb G roup 量子群表示 Representation of Quantum Groups 网络算法与复杂性 Network Algorithms and Complexity 组合数学 Combinatorial Mathematics 代数学 Algebra 半群理论 Semigroup Theory 计算机图形学 Computer Graphics 图的对称性 Graph Symmetry 代数拓扑 Algebraic Topology 代数几何(II) Algebraic Geometry(II) 微分几何 Differential Geometry 多复变函数 Analytic Functions of Several Complex Varian les 代数曲面 Algebraic Surfaces 高维代数簇 Algebraic Varieties of Higher Dimension 数理方程 Mathematics and Physical Equation

配合物的生成和性质讲解学习

配合物的生成和性质

配合物的生成和性质 一、实验目的 1、了解有关配合物的生成,配离子及简单离子的区别。 2、比较配离子的稳定性,了解配位平衡与沉淀反应、氧化还原反应以及溶液酸度的关系。 二、实验原理 由一个简单的正离子和几个中性分子或其它离子结合而成的复杂离子叫配离子,含有配离子的化合物叫配合物。配离子在溶液中也能或多或少地离解成简单离子或分子。例如:[Cu(NH 3)4]2+配离子在溶液中存在下列离解平衡: 32243NH 4Cu ])NH (Cu [+?++ )])(([)()(243342++?=NH Cu C NH C Cu C K d 不稳定常数K d 表示该离子离解成简单离子趋势的大小。 配离子的离解平衡也是一种化学平衡。能向着生成更难离解或更难溶解的物质的方向进行,例如,在[Fe(SCN)]2+溶解中加入F -离子,则反应向着生成稳定常数更大的[FeF 6]3- 配离子方向进行。 螯合物是中心离子与多基配位形成的具有环状结构的配合物。很多金属的螯合物都具有特征的颜色,并且很难溶于水而易溶于有机溶剂。例如,丁二肟在弱碱性条件下与Ni 2+生成鲜红色难溶于水的螯合物,这一反应可作检验Ni 2+的特征反应。 四、仪器及试剂

1、仪器 试管、滴定管 2、试剂 HgCl2(0.1mol·L-1)、KI(0.1 mol·L-1)、NiSO4(0.2 mol·L-1)、BaCl2(0.1mol·L-1)、NaOH(0.1mol·L-1)、1:1(NH3·H2O)、FeCl3(0.1mol·L-1)、KSCN(0.1 mol·L-1)、 K3[Fe(CN)6](0.1 mol·L-1)、AgNO3(0.1mol·L-1)、NaCl(0.1 mol·L-1)、CCl4、 FeCl3(0.5 mol·L-1)、NH4F(4 mol·L-1)、NaOH(2mol·L-1)、1:1H2SO4、HCl(浓)、NaF(0.1 mol·L-1)、CuSO4(0.1 mol·L-1)、K4P2O7(2 mol·L-1)、NiCl2(0.1 mol·L-1)、NH3·H2O(2 mol·L-1)、1%丁二肟、乙醚。 五、实验内容 1、配离子的生成与配合物的组成 (1)在试管中加入0.1 mol·L-1HgCl2溶液10滴(极毒!),再逐滴加入0.1 mol·L-1KI 溶液,观察红色沉淀的生成。再继续加入KI溶液,观察沉淀的溶解。 反应式:HgCl2+2KI=HgI2↓+2KCl HgI2+2KI=K2[HgI4] (1)在2只试管中分别加入0.2 mol·L-1NiSO4溶液10滴,然后在这2只试管 中分别加入0.1 mol·L-1BaCl2溶液和0.1 mol·L-1NaOH溶液, 反应式:NiSO4+BaCl2= Ba SO4↓+NiCl2 NiSO4+2NaOH= Ni(OH)2↓+Na2SO4

配位化学的发展进程

配位化学论文

工业中的配位化学 摘要:配位化学从1704年发展至今,不断创造出许多富有生命力的新领域,为化学工业的发展带来新的契机。配位化学在化学化工方面显示出了不可替代的实用优越性。配位化学又称络合物化学,它是近三十年来发展最迅速的化学学科之一,其研究已渗透到无机化学、分析化学、有机化学、生物化学、电化学等学科中,并在金属的提取和富集、工业分析、催化、制药、染料、水质处理等方面得到广泛的应用。本文综述了配位化学在工业方面的应用,浅议配位化学的新发展及其近几年在化学化工工业中的发展前景。 关键词: 配位化学;配合物;发展;化学化工;应用 1前言 配位化学又称络合物化学,配位化合物简称配合物或络合物。配合物是由一个或几个中心原子或中心离子与围绕着它们并与它们键合的一定数量的离子或分子(这些称为配位体)所组成的。本世纪五十年代后,配位化学的发展突飞猛进,大量新配合物的制得及其结构研究,配合物中价键理论的研究,配合物的反应动力学的研究等方面在世界化学文献中占有重要的地位。配位化学之所以有今日的进展,固然和近代科学技术及侧试设备的进步有关,而更重要的是配位化学在科学技术及工农业生产上有极广泛和重要的应用。在工业生产中,多数应用到金属(或金属离子)的部门、工艺技以及原料、产品的分析皆或多或少地涉及到配合物。由于配位化学在工业中的应用面广、量大不能一一详述,下面拟几个方面做扼要介绍。 2 配位化学的前期发展历程 配合物在自然界中普遍存在,历史上最早有记载的是1704年斯巴赫(Die sib ach)偶然制成的普鲁士蓝KCN·Fe(CN)2·Fe(CN)3,其后1798 年塔斯赫特(T assert)合成[Co(NH3)6]Cl3。十九世纪末二十世纪初,A. W e r n e r创立了配位学说,成为化学历史中重要的里程碑。 二十世纪以来,配位化学作为一门独立的学科,以其蓬勃发展之势,使传统的无机化学和有机化学的人工壁垒逐渐消融,并不断与其他学科如物理化学、材料科学及生命科学交叉、渗透,孕育出许多富有生命力的新兴边缘学科,为化学学科的发展带来新的契机[2]。 1缓蚀剂原则上讲,缓蚀剂的缓蚀作用,是由子水中加入它后,在金属材质表面形成了钝化型膜、沉淀型膜或吸附型膜,因而有效地阻止或降低水中腐蚀介质对金属的腐蚀速度。多数情况下成膜和形成配合物有关。例如,长久以来,应用铬酸盐作为缓蚀剂,它形成钝化型膜迅速、膜层牢固、缓蚀率高,但由于它对许多水生物有毒性,故近年来,国内外都在研究用钼酸盐、钨酸盐来代替铬酸盐,当水中存在一定量的O2时,钼酸盐在金属表面的成膜机理可表示为:

相关主题
文本预览
相关文档 最新文档