当前位置:文档之家› 运动生物化学(6.2.1)--运动对蛋白质代谢的影响

运动生物化学(6.2.1)--运动对蛋白质代谢的影响

【高考生物】运动生物化学考题(A卷)

(生物科技行业)运动生物化学考题(A卷)

运动生物化学考题(A卷) 一.名词解释:(每题4分,共24分) 1.电子传递链(呼吸链) 2.底物水平磷酸化(胞液) 3.糖酵解作用 4.酮体 5.氨基酸代谢库 6.运动性疲劳 二.填空题:(每空1分,共25分) 1.运动生物化学是生物化学的分支,是研究时体内的化学变化即及其调节的特点与规律,研究运动引起体内变化及其的一门学科。是从生物化学和生理学的基础上发展起来的,是体育科学和生物化学及生理学的结合。 2.据化学组成,酶可以分为:类和类,在结合蛋白酶类中的蛋白质部分称之为,非蛋白质部分称为(或辅助因子)。 3.人体各种运动中所需要的能量分别由三种不同的能源系统供给。即、、。 4.生物氧化中水的生成是通过电子呼吸链进行的,在呼吸链上有两条呼吸链,一条为:NADH 氧化呼吸链,一分子NADH进入呼吸链后可产生分子的ATP;另一条为FADH2氧化呼吸

链,一分子FADH2进入呼吸链后可产生分子ATP。 在肝脏,每分子甘油氧化生成乳酸时,释放能量可合成ATP;如果完全氧化生成CO2和H2O时,则释放出的能量可合成ATP。 5.正常人血氨浓度一般不超过μmol/L。 评价运动时体内蛋白质分解代谢的常用指标是尿素氮;尿中。 血尿素在安静正常值为毫摩尔/升 6.运动强度的生化指标有、、;运动负荷量的生化评定指标主要有:、、、。 三、辨析题:(判断正误,如果表述错误,请将正确的表述论述出来。每题判断正误2分,论述2分,共16分) 1.安静时,运动员血清酶活性处于正常范围水平或正常水平的高限;运动后或次日晨血清酶活性升高;血清中酶浓度升高多少与运动持续时间、强度和训练水平有关。运动员安静时血清升高是细胞机能下降的一种表现,属于病理性变化。 2.底物水平磷酸化与氧化磷酸化都是在线粒体中进行的。 3.所有的氨基酸都可以参与转氨基作用。 4.脂肪分子中则仅甘油部分可经糖异生作用转换为糖。脂肪酸不能转化为糖。

运动生物化学

运动生物化学资料(仅供参考) 一、名词解释 1、生物氧化:指物质在体内氧化生成二氧化碳和水,并释放出能量的过程。 2、呼吸链:线粒体内膜上的一系列递氢、递电子体按一定顺序排列,形成 一个连续反应的生物氧化体系结构。 3、糖原分解:由葡萄糖、果糖或半乳糖等单糖在体内合成糖原的过程。 4、糖异生:丙酮酸、乳酸、甘油和生糖氨基酸等非糖物质转变为葡萄糖合 或糖原的过程。 5、运动肌“乳酸穿梭”:IIb型快肌纤维中生成的乳酸不断进入IIa型快肌 纤维或I型慢肌纤维中被氧化利用。 6、血管间“乳酸穿梭”:指运动时工作肌内生成的乳酸不是在工作肌肉本 身中进行代谢,而且穿出肌细胞膜进入毛细血管,再通过血液循环将乳酸运到体内其他各种器官中进一步代谢。 7、乳酸阈:指进行递增强度运动时,血乳酸浓度升到4m mol/L 所对应的运 动强度。 8、脂肪动员:脂肪细胞内储存的脂肪经脂肪酶催化水解释放出脂肪酸,并 进入血液循环供给全身各组织摄取利用的过程。 9、脂肪酸活化:在脂酰CoA合成酶的催化下,脂肪酸转变为脂酰CoA的 过程,称脂肪酸活化。 10、酮体:肝细胞内脂肪酸氧化并不完全,生成的乙酰CoA有一部分转变 成乙酰乙酸、β-羟丁酸和丙酮。 11、血浆游离脂肪酸(FFA):脂肪酸在血液中的运输形式,以清蛋白作 为脂肪酸的载体。 12、血脂:指人体血浆中的脂质,包括胆固醇、三酰甘油、磷脂和游离脂 肪酸。 13、运动性疲劳:有机体生理过程不能维持其机能在特定水平上和或不能 维持预定的运动强度。 14、运动性外周疲劳:指运动引起的骨骼肌功能下降,不能维持预定收缩

强度的现象。 15、运动性中枢疲劳:指由运动引起的,发生在从大脑到脊髓运动神经系 统的疲劳,即指由运动引起的中枢神经系统不能产生和维持足够的冲动给肌肉以满足运动所需的现象。 16、半时反应:运动后恢复中,消耗的能源物质恢复一半或代谢产物消除 一半所需要的时间称半时反应。 17、过度训练:是一种常见的运动性疾病,即由不适宜训练造成的运动员 运动性疲劳积累,进而引发运动能力下降,并出现多种临床症状的运动性综合症。 18、尿肌酐系数:指24小时每公斤体重排出的尿肌酐的毫克数。 二、简答题or论述题 1.酶催化反应的特点:1.高效性 2.高度专一性 3.可调控性 2.影响酶促反应速度的因素 1.底物浓度与酶浓度对反应速度的影响 2.PH对反应速度的影响 3.温度对反应速度的影响 4.激活剂和抑制剂对反应速度的影响 3.简述运动与酶适应的表现 答:1.酶催化能力的适应:有效的运动训练,可以使机体对酶的调控能力增强,酶更容易被激活 2.酶含量的适应:运动训练可促进蛋白质的合成,使酶含量适应性增多,长 时间运动训练造成酶含量的适应性变化,维持时间较长,消退较慢。4.简述运动时血清酶活性的影响因素 答:1.运动强度 2.运动时间 3.训练水平 4.环境 5.运动方式 5.简述运动时ATP的再合成途径 答:1.高能磷酸化合物如磷酸肌酸快速合成ATP 2.糖无氧酵解再合成ATP 3.有氧代谢再合成ATP:糖、脂肪、蛋白质 6.生物氧化合成ATP的方式有哪两种,分别解释 答:ATP的合成方式包括底物水平磷酸化,氧化磷酸化。 1.底物水平磷酸化:将代谢底物分子高能磷酸基团直接转移给ADP生成的

“运动生物化学”课程教学大纲

“运动生物化学”课程教学大纲 教研室主任:田春兰执笔人:王凯 一、课程基本信息 开课单位:体育科学学院 课程名称:运动生物化学 课程编号:144213 英文名称:sports biochemistry 课程类型:专业方向任选课 总学时: 36理论学时:36 实验学时: 0 学分:2 开设专业:休闲体育 先修课程:运动解剖运动生理 二、课程任务目标 (一)课程任务 运动生物化学是从分子水平上研究运动与身体化学组成之间的相互适应,研究运动过程中机体内物质和能量代谢及调节的规律,从而为增强体质、提高竞技能力提供理论和方法的一门学科,是一门科学性和应用性很强的学科。重视最新科学成就的介绍和体现体育专业的特点及需要。在体育科学和体育教学中占有重要的地位,在体育专业各层次教学中被列为专业基础理论课,是体育院校学生的必修课。 (二)课程目标 在学完本课程之后,学生能够: 1.使学生初步了解运动与身体化学组成之间的相互适应,初步掌握运动过程中机体物质和能量 代谢及调节的基本规律。 2.为增强体质、提高竞技能力(如运动性疲劳的消除和恢复、反兴奋剂及其监测技术、机能监 控和评定、制定运动处方等)提供理论和方法。 3.增强学生的科学素养,培养科学思维的良好习惯。 三、教学内容和要求

第一章绪论 1.理解运动生物化学的概念,研究任务,发展、现状及展望; 2.了解运动生物化学在体育科学中的地位;激发学生学习本学科的兴趣; 3.使学生树立整体观、动态观,用辩证的思维去看待生命、看待运动人体。 重点与难点:运动生物化学的概念;运动生物化学的研究任务。 第二章糖代谢与运动 1.掌握糖的概念、人体内糖的存在形式与储量、糖代谢不同化学途径与ATP合成的关系; 2.了解糖酵解、糖的有氧氧化的基本代谢过程及其在运动中的意义; 3.掌握糖代谢及其产物对人体运动能力的影响; 4.熟悉糖原合成和糖异生作用的基本代谢过程及其在运动中的意义; 5.了解运动训练和体育锻炼中糖代谢产生的适应性变化。 重点与难点:糖代谢的不同化学途径及其与ATP合成的关系 第三章脂代谢与运动 1.掌握脂质的概念与功能、脂肪酸分解代谢的过程; 2.了解酮体的生成和利用及运动中酮体代谢的意义; 3.掌握运动时脂肪利用的特点与规律; 4.理解运动、脂代谢与健康的关系。 重点与难点:脂肪酸分解代谢的过程、酮体代谢的意义;运动时脂肪利用的特点与规律。第四章蛋白质代谢与运动 1.掌握蛋白质的概念、分子组成和基本代谢过程; 2.理解蛋白质结构与功能的辩证关系。 3.了解运动与蛋白质代谢和氨基酸代谢的适应。 重点与难点:运动时蛋白质和氨基酸代谢变化的规律;蛋白质的代谢过程; 第五章水无机盐维生素的生物化学与运动 1.了解掌握水的生物学功能与对运动能力影响 2.了解掌握无机盐的生物学功能及与运动能力的关系 3.了解掌握维生素的生物学功能与运动能力的关系 第六章酶与激素 1了解酶的特点,理解运动中酶的适应变化及运动对血清酶的影响和应用 2了解运动对

运动生物化学学习重点大全

绪论生物化学:是研究生命化学的科学,它从分子水平探讨生命的本质,即研究生物体的分子结构与功能、物质代谢与调节及其在生命活动中的作用。运动生物化学:是研究人体运动时体内的化学变化即物质代谢及其调节的特点与规律,研究运动引起体内分子水平适应性变化及其机理的一门学科。 运动生物化学的任务主要体现在:1、解释人体运动变化的本质;2、评定和监控运动人体的机能;3、科学的知道体育锻炼和运动训练。 第一章 1.酶催化反应的特点是什么?影响酶促反应速度的因素有哪些? 一、高效性;二、高度专一性;三、可调控性 一、底物浓度与酶浓度对反应速度的影响;二、PH对反应速度的影响;三、温度对反应速度的影响;四、激活剂和抑制剂对反应速度的影响; 2.水在运动中有何作用?水代谢与运动能力有何关系? 人体内的水是进行生物化学反应的场所,水还具有参与体温调节、起到润滑等作用,并与体内的电解质平衡有关。 运动时,人体出汗量迅速增多,水的丢失加剧。一次大运动负荷的训练可以导致人体失水2000~7000ml,水丢失严重时即形成脱水,会不同程度的降低运动能力。 3.无机盐体内有何作用?无机盐代谢与运动能力有何关系? 无机盐在体内中解离为离子,称为电解质,具有调节渗透压和维持酸碱平衡等重要作用。

4.生物氧化合成ATP有几种形式,他们有何异同? 生物氧化共有两种形式:1、底物水平磷酸化;2、氧化磷酸化 相同点:1、反应场所都是在线粒体;2、都要有ADP和磷酸根离子存在 不同点:1、在无氧代谢供能中以底物水平磷酸化合成ATP为主,而人体所利用的ATP约有90%来自于氧化磷酸化的合成即在有氧代谢中主要提供能量;2、底物水平低磷酸化不需要氧的参与,氧化磷酸化必须要有氧;3、反应的方式不同。 5.酶对运动的适应表现在哪些方面?运动对血清酶有何影响? 一、酶催化能力的适应;二、酶含量的适应。 ①、运动强度:运动强度大,血清酶活性增高 ②、运动时间:相同的运动强度,运动时间越长,血清酶活性增加越明显 ③、训练水平:由于运动员训练水平较高,因此完成相同的运动负荷后,一般人血清酶活性增高比运动员明显 ④、环境:低氧、寒冷、低压环境下运动时,血清酶活性升高比正常环境下明显。 6.试述ATP的结构与功能。 ATP分子是由腺嘌呤、核糖和三个磷酸基团组成的核苷酸,其分子结构 功能:生命活动的直接能源;合成磷酸肌酸和其他高能磷酸化合物 7.酶:酶是生物体的活性细胞产生的具有生物催化功能的蛋白质。 生物氧化:指物质在体内氧化生成二氧化碳和水,并释放出能量的过程。生物氧化实际上是需氧细胞呼吸作用中一系列氧化---还原反应,故又称为细胞呼吸。 同工酶:人体内有一类酶,他们可以催化同一化学反应,但催化特性、理

《运动生物化学》的考试题目及参考答案

1.多糖: 由多个(>10个)单糖分子缩合而成的糖类,不溶于水,皆无甜味,也无还原性。 2.生物氧化:有机物质在生物体细胞内氧化分解产生二氧化碳、水,并释放出大量能量的过程称为生物氧化。又称细胞呼吸。 3.必需脂肪酸:是指人体自身不能合成或合成速率低不能满足人体需要,必须从食物中摄取进行补充的氨基酸。 4.运动性疲劳:在运动过程中,当机体生理过程不能继续保持着特定水平上进行和或不能维持预定的运动强度时,即称之为运动性疲劳。 5.高住低训:利用高原或人工低氧环境进行的训练统称为高住低训。 6.运动营养品:是指适用于专业和业余运动人群食用的、能满足运动人体的特殊营养需要,或具有特定运动营养保健功能的食品及口服制品。 7.α-氨基酸:是指在紧连羧基的碳原子上同时连有了一个氨基丁氨基酸。 8.多不饱和脂肪酸:有多个双键的脂肪酸称为多不饱和脂肪酸或高度不饱和脂肪酸。 9.同工酶:指催化同一种化学反应,而酶蛋白的分子结构、理化性质及生物学性质不同的一类酶。10.酮体:是脂肪酸在肝内分解氧化时代特有的中间代谢产物,包括乙酰乙酸、β——羟丁酸和丙酮。 11.缓冲溶液:一种弱酸和该弱酸盐所形成的、具有缓冲酸碱能力的混合溶液。 12.双糖:由2分子单糖以糖苷键连接而成,水解后又生成2分子单糖。 13.酶活性:酶所具有的催化能力称为酶活性,或酶活力。 14.转氨基作用:是某一种氨基酸与α—酮酸进行氨基转移反应,生成相应的α—酮酸和另一种氨基酸。 2.简述糖的有氧氧化分哪两个阶段?第一阶段是由 葡萄糖生成的丙酮酸,在细胞质中进行;第二阶段是丙酮酸进入线粒体中,经氧化脱羧生成乙酰CoA进入三羧酸循环,进而氧化生成CO2和H2O,同时NADH+H+等可经过呼吸链传递,伴随氧化磷酸化过程生成H2O和A TP。 3. 什么是β-氧化?一次β-氧化包括哪几个步骤?在氧供应充足的条件下,脂肪酸分解为乙酰CoA,彻底氧化成C2O和H2O,其碳链的断裂是在β位碳原子出发生的,故把脂肪酸的氧化分解称为β—氧化。每一次β—氧化包括:脱氢、水化、再脱氢、硫解4个步骤。 4.简述血糖的生物学功能。(1) 中枢神经系统的主要供能物质(2)血糖是红细胞的唯一能源(3)血糖是运动肌的燃料 5.发展有氧代谢能力的训练方法有哪些?(1)乳酸阈强度训练法(2)最大乳酸稳态强度训练法(3)高住低训法(4)高原训练法 6.什么是高住低训?高住低训提高运动员有氧代谢能力的机制是什么? 答:高住低训是指运动员居住证高原或模拟的高原上,而在1000米以下的平原训练。机制:运动员居住在模拟高海拔的低氧环境下,刺激运动员自身的促红细胞生成素分泌,提高机体的造血功能。促红细胞生成素分泌并维持在高水平,引起红细胞总量增加, 随之最大摄氧量增加,因此,提高了运动员的有氧耐 力。 7.简述葡萄糖—丙氨酸循环的意义。1)丙酮酸转化 成丙氨酸,减少乳酸生成,有利于缓解肌肉内环境酸 化和保障糖分解代谢畅通;(2)肌肉中氨基酸的α —氨基转移给丙酮酸合成丙氨酸,避免血氨过度升 高;(3)丙氨酸生成葡萄糖,可以维持血糖浓度,保 证运动能力。 8.简述脂肪的供能特点。(1)储存能量多。体内糖原 的储量较少,而脂肪的储量可高达体重的10%-20% 以上,并可长期储存。(2)供能效率高。体内氧化脂 肪的供能价值可高达37KJ/g,而氧化糖原和蛋白质 分别只有17kJ/g和16kJ/g。(3)占居空间少。脂肪可 以无水状态存在,而1g糖原须结合2-3g水,所以1g 无水脂肪储存的能量是1g水合糖原的6倍多。 9.运动员合理膳食营养的原则是什么?对于运动员 的膳食营养你能提出哪些合理化建议?应遵循“四 多”和“三少”原则。“四多”是指主食、蔬菜、水 果、奶制品的摄入量应较多。“三少”是指油脂、肉 类、油炸食品的摄入应少。 建议:1、自由地摄入复杂的碳水化合物,占膳 食总热量的55%-60%,甚至70%。2.适量地摄入蛋白 质。3.生吃蔬菜、水果、增加维生素和膳食纤维的摄 入。4.运动前、中、后使用运动饮料。5.控制脂肪的 摄入量,特别是要控制饱和脂肪酸的摄入。6.注意早 餐和午餐的质量。 10.简述经典的糖原填充法的实施步骤。(1)在比赛 前一周进行一次性力竭运动(2)后3天继续减量运 动,膳食中糖减至每日250-350g(3)赛前两天每天 食用糖类500-700g 11.酶的命名原则有哪些?并举例说明。(1)根据酶 的底物命名。如水解淀粉、蛋白质和脂肪的酶,分别 称为淀粉酶、蛋白酶、脂肪酶。(2)根据酶催化 的反应性质来命名。①催化底物进行氧化还原反应的 酶,类称为氧化还原酶,包括乳酸脱氢酶、琥珀酸脱 氢酶、过氧化酶等;②催化底物发生水解反应的酶类, 称为水解酶,包括淀粉酶、蛋白酶和脂肪酶.(3) 根据酶的特点来命名,如胃蛋白酶。 12.运动员膳食营养的常见问题有哪些?1、碳水化合 物摄入不足2、脂肪和蛋白质摄入过多3、部分维 生素摄入不足4、三餐摄食量分配不合理5、钙摄 入不足6、运动中忽视了水和无机盐的及时补充 四、论述题 1. 试分析400米跑运动的供能特点、训练方法、疲 劳特点及在运动前后应注意的营养问题。答:(1)供 能特点:是糖有氧代谢、糖酵解和磷酸原三种供能系 统兼有的混合代谢。随运动项目中距离的增加,逐渐 从无氧代谢供能为主的混合代谢过程向有氧代谢供 能为主的混合代谢过程过度。(2)训练方法:乳酸阈 强度训练法、最大乳酸稳态强度训练法、高原训练法、 高住低训法。(3)疲劳特点:中枢疲劳、外周疲劳、 局部疲劳、整体疲劳、骨骼肌疲劳、心血管疲劳、呼 吸系统疲劳等。(4)注意营养问题:各种食物的能量 比例要合理;合理安排一日三餐的能量分配;食物应 当是浓缩的,体积重量要小;合理的每日食物摄入量; 合理的进食时间 2.合理补液对运动能力有何重要意义?如何进行科 学合理的补液? 答:合理补液可以降低运动过程的心率、降低体温、 保持血浆流量。维持正常生理机能和运动能力具有重 要的作用。补液的原则是保持水平衡和少量多次的补 充。(1)运动前补液:运动前两小时补液400~600ml; 运动前15分钟左右补液100~300ml,补充的饮料中 可以加入一定量的电解质和糖。(2)运动中补液:一 般每隔15~20分钟,补液150~300ml,或每跑2~3公 里,补液100~200ml,每小时总量不超过800ml。(3) 运动后补液:脱水后的复水越早越好,补液量可根据 体重的丢失情况确定,应补充含电解质及糖的运动饮 料,要遵循少量多次的原则,切忌暴饮,忌饮纯水。 3.试述乳酸消除的主要途径及其生物学意义。运动 后影响乳酸消除的因素有哪些?P55 答:1、乳酸消除的主要途径:第一,在心肌、骨骼 肌内氧化成CO2和H2O;第二,在肝、肾经糖异生 作用转变成为葡萄糖或糖原;第三,经汗、尿排出体 外;第四,在肝内合成脂肪、丙氨酸等。(1)乳酸直 接氧化成CO2和H2O。在氧供应充足的条件下,心 肌、骨骼肌及其他组织能从血液中吸收乳酸,在乳酸 脱氢酶作用下脱氢生成丙酮酸,丙酮酸进入线粒体, 再经三羧酸循环彻底氧化生成C2O和H2O并释放能 量。(2)乳酸异生成葡萄糖或糖原。在肝内异生成葡 萄糖或糖原,肝葡萄糖再进入血循环系统补充血糖的 消耗,或扩散入肌细胞再合成肌糖原,称为乳酸循环。 意义:(1)有利于乳酸的再利用,乳酸可随血循环入 心肌和氧化能力强的骨骼肌,进行优化释能或者肝脏 作糖异生的底物,加速肝糖原、肌糖原的恢复,维持 血糖的平衡。(2)乳酸代谢可防止因乳酸过多而引起 的代谢性中毒,对维持机体酸碱平衡有积极作用。(3) 乳酸的汽清除使酵解终产物不断移去,有利于糖酵解 继续进行,以维持糖酵解的供能速率。 4. 试述运动员应如何进行科学合理的补糖。(1)运 动前补糖:①大量运动前数日增加膳食中糖类比例占 总能量的60%-70%,在赛前一周内逐渐减少运动量, 同时逐渐增加糖量至70%。②运动前4小时内补糖一 般为4g/kg,运动前2-4小时补糖一般为1-5g/kg,运 动前2小时内补糖一般为以液体含糖饮料为主,浓度 应低于8%。(2)运动中补糖:运动中每隔30-60分 钟补充含糖饮料或容易吸收的含糖食物,一般不超过 60g/h,于20-60g/h,一小时内不超过80g,分3-4次 补充。(3)运动后补糖:运动后开始补糖的时间越早 越好,运动后即刻、头2小时以及每隔1-2小时连续 补糖。运动后即刻补充液体糖至少0.7g/kg,24小时 内补充糖量9-16g/kg。

运动生物化学 名词解释

运动生物化学:运动生物化学是生物化学的一个分支学科。是用生物化学的理论及方法,研究人体运动时体内的化学变化即物质代谢及其调节的特点与规律,研究运动引起体内分子水平适应性变化及其机理的一门学科。 1、新陈代谢:新陈代谢是生物体生命活动的基本特征之一,是生物体内物质不断地进行着的化学变化,同时伴有能量的释放和利用。包括合成代谢和分解代谢或分为物质代谢和能量代谢。 2、酶:酶是由生物细胞产生的、具有催化功能和高度专一性的蛋白质。酶具有蛋白质的所有属性,但蛋白质不都具有催化功能。 3、限速酶:限速酶是指在物质代谢过程中,某一代谢体系常需要一系列酶共同催化完成,其中某一个或几个酶活性较低,又易受某些特殊因素如激素、底物、代谢产物等调控,造成整个代谢系统受影响,因此把这些酶称为限速酶。 4、同工酶:同工酶是指催化相同反应,而催化特性、理化性质及生物学性质不同的一类酶。 5、维生素:维生素是维持人体生长发育和代谢所必需的一类小分子有机物,人体不能自身合成,必须由食物供给。 6、生物氧化:生物氧化是指物质在体内氧化生成二氧化碳和水,并释放出能量的过程。实际上是需氧细胞呼吸作用中的一系列氧化-还原反应,又称为细胞呼吸。 7、氧化磷酸化:将代谢物脱下的氢,经呼吸链传递最终生成水,同时伴有ADP磷酸化合成ATP的过程。 8、底物水平磷酸化:将代谢物分子高能磷酸基团直接转移给ADP生成ATP的方式。 9、呼吸链:线粒体内膜上的一系列递氢、递电子体按一定顺序排列,形成一个连续反应的生物氧化体系结构,称为呼吸链 。1、糖酵解:糖在氧气供应不足的情况下,经细胞液中一系列酶催化作用,最后生成乳酸的过程称为糖酵解。 2、糖的有氧氧化:葡萄糖或糖原在有氧条件下氧化分解,生成二氧化碳和水,同时释放出大量的能量,该过程称为糖的有氧氧化。 3、三羧酸循环:在线粒体中,乙酰辅酶A与草酰乙酸缩合成柠檬酸,再经过一系列酶促反应,最后生成草酰乙酸;接着再重复上述过程,形成一个连续、不可逆的循环反应,消耗的是乙酰辅酶A,最终生成二氧化碳和水。因此循环首先生成的是具3个羧基的柠檬酸,故称为三羧酸循环。 4、糖异生作用:人体中丙酮酸、乳酸、甘油和生糖氨基酸等非糖物质在肝脏中能生成葡萄糖或糖原,这种由非糖物质转变为葡萄糖或糖原的过程称为糖异生。 1、脂肪:脂肪是由3分子脂肪酸和1分子甘油缩合形成的化合物。 2、必需脂肪酸:人体不能自身合成,必须从外界摄取以完成营养需要的脂肪酸。如亚麻酸、亚油酸等。 3、脂肪动员:脂肪细胞内储存的脂肪经脂肪酶的催化水解释放出脂肪酸,并进入血液循环供给全身各组织摄取利用的过程,称为脂肪动员。 4、β-氧化:脂肪酸在一系列酶的催化作用下,β-碳原子被氧化成羧基,生成含2个碳原子的乙酰辅酶A和比原来少2个碳原子的脂肪酸的过程。 5、酮体:在肝脏中,脂肪酸氧化不完全,生成的乙酰辅酶A有一部分生成乙酰乙酸、β-羟丁酸、丙酮,这三种产物统称酮体。 1、氧化脱氨基作用:通过氧化脱氨酶的作用,氨基酸转变为亚氨基酸,再水解为α-酮酸和氨的过程。

运动生物化学考题

得分 名词解释:(每题4分,共24分) 1.电子传递链(呼吸链) 2.底物水平磷酸化(胞液) 3.糖酵解作用 4.酮体 5.氨基酸代谢库 6.运动性疲劳 得分 填空题:(每空1分,共25分) 1.运动生物化学是生物化学的分支,是研究时体内的化学变化即及其调节的特点与规律,研究运动引起体内变化及其的一门学科.是从生物化学和生理学的基础上发展起来的,是体育科学和生物化学及生理学的结合. 2.据化学组成,酶可以分为: 类和类,在结合蛋白酶类中的蛋白质部分称之为,非蛋白质部分称为(或辅助因子). 3.人体各种运动中所需要的能量分别由三种不同的能源系统供给.即, , . 4.生物氧化中水的生成是通过电子呼吸链进行的,在呼吸链上有两条呼吸链,一条为:NADH氧化呼吸链,一分子NADH进入呼吸链后可产生分子的ATP;另一条为FADH2氧化呼吸链,一分子FADH2进入呼吸链后可产生分子ATP. 在肝脏,每分子甘油氧化生成乳酸时,释放能量可合成ATP;如果完全氧化生成CO2和H2O时,则释放出的能量可合成ATP. 5.正常人血氨浓度一般不超过μmol/L. 评价运动时体内蛋白质分解代谢的常用指标是尿素氮;尿中. 血尿素在安静正常值为毫摩尔/升 6.运动强度的生化指标有, , ;运动负荷量的生化评定指标主要有: , , , . 得分 三,辨析题:(判断正误,如果表述错误,请将正确的表述论述出来.每题判断正误2分,论述2分,共16分) 1.安静时,运动员血清酶活性处于正常范围水平或正常水平的高限;运动后或次日晨血清酶活性升高;血清中酶浓度升高多少与运动持续时间,强度和训练水平有关.运动员安静时血清升高是细胞机能下降的一种表现,属于病理性变化. 2. 底物水平磷酸化与氧化磷酸化都是在线粒体中进行的. 3. 所有的氨基酸都可以参与转氨基作用. 4. 脂肪分子中则仅甘油部分可经糖异生作用转换为糖.脂肪酸不能转化为糖. 得分 简答题:(每题5分,共25分) 1.简述三大营养物质(糖原,脂肪,蛋白质)生物氧化的共同规律. 2.从葡萄糖至1,6-2磷酸果糖生成消耗多少ATP 消耗ATP的作用是什么 3.糖酵解过程可净合成多少分子ATP 根据运动实践谈谈糖酵解是何种运动状态下的主要能量来源. 4.描述糖有氧氧化的基本过程.(三个步骤) 5.乳酸消除的意义是什么 五.总结三大功能系统的特点(10分).

运动生物化学复习题111

运动生物化学复习题 一、判断题 1、运动时酮体可作为大脑和肌肉组织的重要补充能源。() 2、运动训练时血清GPT增高即可判断肝脏损伤。() 3、尿素是蛋白质分解代谢的终产物之一,运动时,当蛋白质代谢加强时,血液尿素浓度上升。() 4、400米跑是属于糖酵解代谢类型的运动项目。() 5、肌肉增粗是肌力增大的主要原因。() 6、维生素与运动能力关系密切,超量摄取维生素可提高运动能力。() 7、长时间运动的后期,糖异生合成的葡萄糖逐渐成为血糖的主要来源。 () 8、糖贮备的多少是限制极限强度运动能力的主要原因。() 9、被动脱水达体重2%左右时,就会影响长时间的运动能力。()10.三羧酸循环是糖、脂肪和蛋白质分解代谢的最终共同途径。() 11、人体内的物质组成不包括维生素。() 12、尽管运动项目不同,但运动时的供能特点是相同的。() 13、耐力性运动时,脂肪氧化供能起着节省糖的作用。() 14、长时间运动时,血糖下降是运动性疲劳的重要因素之一。() 15、能使蛋白质变性的因素,均可使酶活性失活。() 16、激素和酶极为相似,它们都是蛋白质,都能传递信息。() 17、尽管NADH +H+和FADH2要分别经NDAH和FAD氧化呼吸链进行氧化, 但他们释放的能量合成的ATP数是一样的。() 18、丙酮酸、乙酰乙酸、 —羟丁酸总称为酮体。() 19、同等重量的脂肪和糖在体内完全氧化时,释放的能量相同。 三羧酸循环是糖、脂肪和蛋白质分解代谢的最终共同途径。()21、人体的化学组成是相对稳定的,在运动影响下,一般不发生相应的变化。() 22、运动时的供能系统可分为磷酸原系统、糖酵解系统和有氧氧化系统三个供能系统。()23、蔬菜、水果中含有的葡萄糖、果糖、蔗糖属于糖类,淀粉、纤维素不属于糖类。() 24、常见的低聚糖是麦芽糖、半乳糖和蔗糖。() 25、蛋白质是体内含量和种类最多的物质,它承担着生命过程中几乎所有重要的生物功能。() 26、运动创伤时血清酶活性出现明显升高。() 27、由于运动训练时代谢加强,运动员对维生素的需要量比非运动员要多。 () 28、以最大速度进行短跑至力竭时,运动肌糖原接近耗尽。() 29、人体内各种能量物质都能以有氧分解和无氧分解两种代谢方式氧化供能。() 耐力性运动时,脂肪氧化起着节省糖的作用。() 二. 名词解释 微量元素;血浆脂蛋白;肉毒碱;必需氨基酸;SGOT;血脂;缺铁性贫血;糖异生作用;维生素;血尿素氮;宏量元素;水平衡;糖的有氧氧化;呼吸链;酶;超量恢复;乳酸能商;缺铁性贫血;半时反应;乳酸阈训练;运动性外周疲劳;运动性蛋白尿

运动生物化学期末重点

绪论 运动生物化学是生物化学的分支,是研究人体运动时体内的化学变化即物质代谢及其调节的特点与规律,研究运动引起体内分子水平适应性变化及其机理的一门学科。是从生物化学和生理学的基础上发展起来的,是体育科学和生物化学及生理学的结合。 运动生物化学的研究开始于本世纪的20年代;在40-50年代有较大的发展,尤其是该时期前苏联的雅科夫列夫等进行了较为系统的研究,并于1955年出版了第一本运动生物化学专著《运动生物化学概论》;初步建立了运动生物化学的学科体系; 第一章 人体的物质组成包括水、糖、脂、蛋白质、无机盐以及维生素、激素、核酸等多种化合物酶的化学本质除有催化活性的RNA之外几乎都是蛋白质 据化学组成,酶可以分为:单纯蛋白酶类和结合蛋白酶类,在结合蛋白酶类中的蛋白质部分称之为酶蛋白,非蛋白质部分称为辅因子(或辅助因子)。 酶催化反应的特点为:酶作用的高度专一性、酶作用的高效性、可调节性及可代谢性以及高度的不稳定性 糖、脂肪与蛋白质是细胞的三大化学燃料,A TP为通用的直接能源。 人体各种运动中所需要的能量分别由三种不同的能源系统供给。即磷酸原系统、糖酵解系统、氧化能系统。 生物氧化中水的生成是通过电子呼吸链进行的,在呼吸链上有两条呼吸链,一条为:NADH 氧化呼吸链,一分子NADH进入呼吸链后可产生3分子的ATP;另一条为FADH2氧化呼吸链,一分子FADH2进入呼吸链后可产生2分子ATP。 一般将水解时释放的标准自由能高于20.92KJ/mol(5千卡/摩尔)的化合物,称为高能化合物。 第二章 糖无氧代谢(糖酵解)过程是在细胞的胞质中进行。 1分子1,6-2磷酸果糖可生成2分子3-磷酸甘油醛 正常情况下血糖浓度:4.5~6.7mmo/L 第三章 脂解过程中释放的甘油,只在肾、肝等少数组织内氧化利用,而骨骼肌中的甘油释入血液循环到肝脏进行糖异生作用生成葡萄糖。 在肝脏,每分子甘油氧化生成乳酸时,释放能量可合成4ATP;如果完全氧化生成CO2和H2O 时,则释放出的能量可合成22A TP。 在安静、空腹状态时,人的血浆FFA浓度为6-16mg%(0.1mmol/L)。 第四章 镰刀状贫血病是血红蛋白β链N端第6个氨基酸(Glu)改为Val 联合脱氨基作用的类型共分为两种:转氨基偶联氧化脱氨基作用与转氨基偶联嘌呤核苷酸循环 正常人血氨浓度一般不超过0.6μmol/L。 评价运动时体内蛋白质分解代谢的常用指标是尿素氮;尿中3-甲基组氨酸。 血尿素在安静正常值为3.2-7.0毫摩尔/升 第五章 CP是肌肉内高能磷酸键的贮存库,C-CP能量穿梭系统使A TP水解与A TP再合成紧密耦联。

关于运动生物化学知识总结

辨析体能、体适能、体质、身体素质。 体能,即运动员身体素质水平的总称。即运动员在专项比赛中体力发挥的最大程度、也标志着运动员无氧训练和有氧训练的水平,反映了运动员机体能量代谢水平。体能即人体适应环境的能力。包括与健康有关的健康体能和与运动有关的运动体能。 体适能是Physical Fitness的中文翻译,是指人体所具备的有充足的精力从事日常工作(学习)而不感疲劳,同时有余力享受康乐休闲活动的乐趣,能够适应突发状况的能力。 美国运动医学学会认为:体适能包括“健康体适能”和“技能体适能”。 健康体适能的主要内容如下: ①身体成分:即人体内各种组成成分的百分比,身体成分保持在一个正常百分比范围对预防某些慢性病如糖尿病、高血压、动脉硬化等有重要意义。 ②肌力和肌肉耐力:肌力是肌肉所能产生的最大力量,肌肉耐力是肌肉持续收缩的能力,是机体正常工作的基础。 ③心肺耐力:又称有氧耐力,是机体持久工作的基础,被认为是健康体适能中最重要的要素。 ④柔软素质:是指在无疼痛的情况下,关节所能活动的最大范围。它对于保持人体运动能力,防止运动损伤有重要意义。 技能体适能包括灵敏、平衡、协调、速度、爆发力和反应时间等,这些要素是从事各种运动的基础,但没有证据表明它们与健康和疾病有直接关系。[1] “体适能”可视为身体适应生活、运动与环境(例如;温度、气候变化或病毒等因素)的综合能力。体适能较好的人在日常生活或工作中,从事体力性活动或运动皆有较佳的活力及适应能力,而不会轻易产生疲劳或力不从心的感觉。在科技进步的文明社会中,人类身体活动的机会越来越少,营养摄取越来越高,工作与生活压力和休闲时间相对增加,每个人更加感受到良好体适能和规律运动的重要性。在测量上,体适能分为心肺适能、肌肉适能、与体重控制三个面向。 体质:由先天遗传和后天获得所形成的,人类个体在形态结构和功能活动方面所固有的、相对稳定的特性,与心理性格具有相关性。个体体质的不同,表现为在生理状态下对外界刺激的反应和适应上的某些差异性,以及发病过程中对某些致病因子的易感性和疾病发展的倾向性。所以,对体质的研究有助于分析疾病的发生和演变,为诊断和治疗疾病提供依据。 身体素质,通常指的是人体肌肉活动的基本能力,是人体各器官系统的机能在肌肉工作中的综合反映。身体素质一般包括力量、速度、耐力、灵敏、柔韧等。

运动生物化学》试卷

《运动生物化学》试卷1 一、填空(20分) 1、ATP是生命活动的能源,ATP和CP统称 为。写出ATP的结构式。ATP再合成的途径有、 和。 2、无机盐是人体重要的组成成份,可分为常量元素和两类。 3、糖是和及其衍生物的总称。动物多糖又称主要贮存于和组织中。血糖是指。 4、糖异生是指,其过程主要在组织进行,糖异生主要的底物有、、和。 5、脂肪又称为,其通式是。酮体是的正常代谢中间产物,包括、和。酮体主要在组织中生成。 6、氨基酸脱氨基主要有和两种方式,支链氨基酸包括、和。 7、尿素是分解代谢的最终产物之一。血尿素升高一般出现在运动后。训练周期中,血尿素开始上升,然后逐渐恢复正常,说明。 8、乳酸是的最终产物。运动时,是

生成乳酸的主要部位。乳酸的消除途径有、、 、。 二、名词解释(10分) 1、同工酶: 2、氧化磷酸化: 3、血浆脂蛋白: 4、葡萄糖-丙氨酸循环(图示): 5、运动性蛋白尿: 三、选择题(单选或多选)(10分) 1、乳酸脱氢酶同工酶LDH5主要存在于。 A、心肌B、肝脏C、肾脏D、骨骼肌 2、糖酵解的关键限速酶是。 A、CKB、LDHC、PFKD、HK 3、运动训练对磷酸原系统的影响有。 A、明显提高ATP酶活性B、明显提高ATP储量 C、提高CK活性D、提高ATP转换速率。 4、导致外周疲劳的代谢因素有。 A、γ-氨基丁酸浓度升高B、能源物质消耗 C、代谢产物堆积D、5-羟色胺增多 5、酶催化反应的特点是。 A、高效性B、高度专一性 C、不稳定性D、可调控性 四、判断题(正确的打“√”错误的打“×”)(10分) 1、肌糖元可分解为葡萄糖,释放入血供其他组织利用。() 2、辅酶I(NAD+)分子中含维生素PP,其功能是传递氢原子。

运动生物化学测试题

第一小组: 一.选择题: 1、下列哪个酶不属于糖酵解酶类(B) A.磷酸化酶 B.肌酸激酶 C.磷酸果糖基酶 D.乳酸脱氢酶 2、下列不属于生物氧化意义的是(D) A.能量逐渐释放,持续利用 B.合成人体的直接能源A TP C.产生热量,维持体温 D.加速新陈代谢 3、乳酸阈(乳酸无氧阈)强度训练,主要发展(C )供能能力的训练 A.磷酸原系统 B.无氧代谢 C.有氧代谢 D.神经系统 4、短时间剧烈运动时,血糖浓度变化的趋势是(D) A.上升 B.先不变后上升 C.下降 D.无明显变化 5、耐力训练可以提高脂肪的分解代谢水平,主要是提高了(A) A.HDL B.CM C.VLDL D.LDL 二.填空题: 1.运动时人体的主要三个供能系统是磷酸原系统、糖酵解系统、糖有氧氧化系统 2.糖酵解是体内组织的葡萄糖/糖原在无氧条件下分解生成乳酸同时释放能量的过程。 3.糖酵解过程中的关键霉是磷酸果糖激素酶 4.酶是生物细胞产生的具有催化功能的蛋白质 5.糖异生是非糖物质转变成为葡糖糖/糖原的过程 三.是非题: 1.乳酸在体内重新合成葡萄糖和糖原的代谢途经属于糖异生过程。(×) 2.三磷酸腺苷和磷酸肌酸是人体内重要的能源物质(√) 3.糖酵解是运动时尤其是长时间大强度运动时的重要能量代谢(×) 4.绝大多数酶的化学本质是蛋白质(√) 5.糖是大脑的主要能源物质(√) 四.问答题: 1.运动时糖的生物学功能 答:(1)糖可以提供机体所需的能量;(2)糖对脂肪代谢具有调节作用;(3)糖具有节约蛋白质的作用;(4)糖可以促进运动性疲劳的恢复 2.试述耐力训练对肝糖原利用的影响 答:耐力训练适应后,运动肌脂肪酸氧化供能的比例提高,引起运动肌吸收利用血糖的比例降低,防止肝糖原的过多分解。这种适应性变化的意义在于提高血糖正常水平的维持能力,有利于保持长时间运动能力和防止低血糖症的发生 . 第二大组: 一.选择题: 1.运动生物化学的主要研究对象是(A)

运动生物化学

科目:运动生物化学 1、名词解释:运动生物化学 运动生物化学是从分子水平探讨运动人体的变化规律,并将这些理论应用于体育锻炼与竞技体育的实践的一门学科。 2、运动生物化学的主要学习内容有哪些? 运动生物化学的主要学习内容有: (1)、揭示运动人体变化的本质 (2)、评定和监控运动人体的机能 (3)、科学地指导体育锻炼和运动训练 第二章糖代谢与运动 1. 名词解释: 糖:O O || || 糖是一类含有多羟基(—OH)的醛类(—C—H)或酮类(—C—)化合物的总称。 血糖:葡萄糖是血糖的基本成分,人体空腹血糖浓度大约为4.4~6.6mmol/L,总量为6g。糖酵解:糖在氧气供应不足情况下,经细胞液中一系列酶催化,最后生成乳酸的过程称为糖酵解。 糖的有氧氧化:葡萄糖或者糖原在有氧条件下氧化分解,生成二氧化碳和水,同时释放出大量的能量。是人体内糖分解代谢的主要途径。 糖异生作用:p56 2. 说明糖的分类和生物学功能。 糖的种类繁多,根据其结构特点,可以分为单糖、寡糖、多糖三类。 1、糖可提供机体所需的能量 2、糖在脂肪代谢中的调节作用 3、糖具有节约蛋白质的作用 4、糖具有促进运动性疲劳恢复的作用 3. 糖酵解和糖有氧氧化的过程是?产物是?一分子葡萄糖释放多少ATP? 糖酵解的产物是乳酸,一分子葡萄糖分子经糖酵解产生2分子的ATP,一分子糖原分子则产生3A TP。

有氧氧化的产物是水、二氧化碳和ATP。一分子葡萄糖分子彻底氧化产生38分子的A TP,一分子糖原分子则产生39ATP。 4. 糖异生作用在运动中的意义是什么? 1、ni补体内糖量不足,维持血糖相对稳定。体内糖储量有限,糖的消耗量大于储量,仅靠肝糖原分解维持血糖浓度还不够,故糖异生在此诱发了他的作用。 2、乳酸异生为糖有利于运动中乳酸消除,回收乳酸分子中的能量,更新肝糖原,防止乳酸中毒有重要意义。 5. 说明不同运动时,随时间的延长,血糖的变化情况。为什么说血糖与长时间运动耐力有关? 血糖浓度在正常空腹时较为恒定,大约为4.4~6.6mmol/L。进行1~2min的短时间大强度运动时,血糖浓度基本上无明显变化。进行4~10min的全力运动时,血糖浓度开始明显上升,可能出现尿糖现象。进行15~30min的全力运动时,血糖浓度开始回落,但仍高于正常值。进行1~2h的长时间运动至疲劳,吸收、利用血糖的速率接近最大值,血糖水平处在正常范围,也属于低限区间。进行超过2~3h的运动至疲劳是,可能会出现低血糖,甚至是低血糖性休克。 正常血糖浓度为4.4~6.6毫摩尔/升,糖异生的葡萄糖很难满足运动肌的需要时,出现低血糖,且浓度越低,对机能影响越明显;中枢神经系统因血糖供能缺乏而出现中枢疲劳;影响红细胞的能量代谢,使氧的运输能力下降;由于运动肌外源性糖供应不足导致外周疲劳而使运动能力下降。 第三章脂代谢与运动 1. 名词解释 脂肪动员:脂肪细胞内储存的脂肪经脂肪酶催化水解释放出脂肪酸,并进入血液循环供给全身各组织摄取利用的过程,称为脂肪动员。 酮体:在某些组织如肝细胞内脂肪酸氧化并不完全,生成的乙酰CoA有一部分转变成乙酰乙酸、β-羟丁酸和丙酮,这三种产物统称为酮体。 血脂:是指人体血浆中的脂质,包括胆固醇、三酰甘油、磷脂和游离脂肪酸。 体成分:人体脂肪重量占体重的%被称为体成份,是判断是否肥胖的标准,并用以衡量、比较不同人的身体组成上的差异,评价其健康状况等。 2. 说明脂类的生物学功能。 P74-75 乳糜微粒,运输甘油三酯和胆固醇酯,从小肠到组织肌肉和脂肪组织。极低密度脂蛋白(VLDL),在肝脏中生成,将内源性脂类运输到组织中。低密度脂蛋白(LDL),把胆固醇运输到组织。高密度脂蛋白(HDL)将外周的胆固醇脂运输到肝转化为胆汁酸,可能负责清除细胞膜上过量的胆固醇。

2014年运动生物化学答案

一、名词解释 1、半时反应:是指恢复运动时消耗物质二分之一所需要的时间。 2、必需氨基酸:机体无法自身合成必须由食物途径获得的氨基酸称之为必需氨基酸。 3、生物氧化:指物质在体内氧化生成二氧化碳和水,并释放出能量的过程。 4、底物磷酸化:代谢物分子的高能磷酸基直接转移给ADP生成ATP的方式,称为底物水平 磷酸化,简称为底物磷酸化。 5、氧化磷酸化:在生物氧化过程中,将代谢物脱下的氢,经呼吸链传递,最终生成水,同 时伴有ADP磷酸化合成ATP的过程,称为氧化磷酸化。 6、脂肪动员:脂肪细胞内储存的脂肪经脂肪酶催化水解释放出脂肪酸,并进入血液循环供 给全身各组织摄取利用的过程,称为脂肪动员。 7、能量氨基酸: 也称支链氨基酸,包括L-亮氨酸、L-异亮氨酸、L-缬氨酸,它们都属于必需 氨基酸,主要在骨骼肌代谢,是长时间持续运动时参与供能的重要氨基酸。 8、过度训练:由不适宜训练造成的运动员运动性疲劳积累,进而引发运动能力下降,并出 现多种临床症状的运动性综合症。 9、尿肌酐系数:是指24小时每公斤体重排出的尿肌酐的毫克数。 10、限速酶:将催化能力较弱,对整个代谢过程的反应速度起控制作用的酶称为限速酶。 11、必需脂肪酸:通常把维持人体正常生长所需而体内又不能合成必须从食物中摄取的 脂肪酸称为必须脂肪酸。 12、同工酶:人体内有一类酶,它们可以催化同一化学反应,但催化特性、理化性质及 生物学性质均有所不同,这一类酶称为同工酶。 13、兴奋剂:指国际体育组织规定的禁用药物和方法的总称。 14、激素:人或高等动物体内的内分泌腺或内分泌细胞分泌的具有高度活性的有机物质 称为激素。 15、酮体:是肝内脂肪酸不完全氧化的产物,乙酰乙酸、β-羟丁酸和丙酮的统称。 16、超量恢复:在运动消耗的能源物质在运动后一段时间不仅恢复到原来水平,甚至超 过原来水平,这种现象称为“超量恢复”。 17、支链氨基酸:是亮氨酸、异亮氨酸和缬氨酸的统称。 18、运动性疲劳:由于运动(训练)引起的机体机能水平下降和|或运动能力下降,从 而难以维持一定的运动强度,但经过适当地休息又可以恢复的现象。 19、血糖:指血液中的糖,多指葡萄糖。 二、填空 1、糖类是一类多羟基的(醛类)或(酮类)化合物的总称。 2、参加运动时代谢调节的主要激素有(肾上腺激素)(去甲肾上腺激素)(胰岛素)(胰高 血糖素)(生长激素) 3、一个酶单位是指在酶作用的最是条件下,25℃,分钟内催化(1微摩尔)底物发生变化 的量。 4、血脂是指人体血浆中的脂质,包括(胆固醇)(三酰甘油)(磷脂)和(游离脂肪酸) 5、运动中主要功能系统有(磷酸原系统)(糖酵解系统)(有氧氧化系统) 6、酶的主要催化特征是(高效性)(专一性)(不稳定性)(可调控性) 7、相同运动负荷运动量后运动血清酶水平高于(高于或低于)非运动员水平。 8、对马拉松运动员导致运动性疲劳的主要原因体温上升,脱水,电解质代谢失调 9、酶根据化学组成可分为(单纯酶)和(结合酶) 10、糖酵解中的关键酶有(糖激酶)(果糖磷酸激酶)(丙酮酸激酶) 11、运动时影响运动员肌糖原供能的主要因素有()()()()()()

相关主题
文本预览
相关文档 最新文档