当前位置:文档之家› 煤矿地面变电所设计

煤矿地面变电所设计

煤矿地面变电所设计
煤矿地面变电所设计

摘要

本次设计为110KV变电站的初步设计书。首先根据任务书上所给系统与线路及所有负荷的参数,分析负荷发展趋势。从负荷增长方面阐明了建站的必要性,然后通过对拟建变电站的概括以及出线方向来考虑,并通过对负荷资料的分析,安全,经济及可靠性方面考虑,确定了110kV,35kV,10kV以及站用电的主接线.对电气设备的选型作了详细的说明和计算,短路电流的计算有严格的计算书。又通过负荷计算及供电范围确定了主变压器台数,容量及型号。最后,根据最大持续工作电流及短路计算的计算结果,做出线路保护,变压器保护,母线保护,防雷保护,从而完成了整个变电站设计。

关键词:变电站;负荷计算;主接线;电气设备选型;继电保护

ABSTRACT

The design of 110 KV substations is for preliminary design. First, according to the task given system and line book and all the parameters, make the analysis of load development trend. From the load increasing illustrates the necessity of the establishment of construction, and then through the generalization of substation and outlet to consider, and through the analysis of the data of load, safety, economy and reliability into consideration, determine the 110 KV and consumers 10 kV power station, as well as 35kV main connection. Analyses the argumentation of 110 KV substations auto-switch manner of various advantages of electrical equipment selection and calculation, the detailed description of short-circuit current calculation have strict calculations. And through the load calculation and scope of supply determined, the main transformer capacity and models. Finally, according to the maximum continuous working current and short circuit calculation results of calculation, make line protection, transformer protection, bus bar protection, lightning protection, substation to finish the whole design.

Keywords: Transformer substation;Consideration of load;Main Connection ;the choice of Electrical Equipment ;Relay

目录

1 概述

1.1课题来源 (1)

1.2设计依据 (1)

1.3设计范围 (1)

1.4设计分工 (1)

1.5设计的基本要求 (2)

1.6基础资料 (2)

1.6.1原始背景资料 (2)

1.6.2变电站负荷情况分析 (4)

2 电气主接线方案的确定 (5)

2.1选择原则 (5)

2.1.1 主接线设计的基本要求 (6)

2.1.2主接线的设计依据 (8)

2.2主接线的方案与分析 (8)

2.2.1 110KV侧主接线设计 (9)

2.2.2 35KV侧主接线设计 (11)

2.2.3 10KV侧主接线设计 (12)

2.2.4 所用电设计 (13)

3 主变压器台数和容量的选择 (14)

3.1变压器的选择原则 (14)

3.2主变压器型式的选择 (14)

3.3主变中性点接地设计 (15)

3.3.1 110kV侧中性点接地方式 (15)

3.3.2 35kV、10kV侧中性点接地方式 (15)

3.4主变全绝缘、半绝缘、绕组材料等问题的解决 (16)

3.5变压器台数的选择 (16)

3.6变电站负荷计算 (17)

3.7变压器容量的选择 (18)

3.7.1主变容量选择及校验 (18)

3.7.2所用变选择 (19)

4 短路电流的计算 (21)

4.1短路概述 (21)

4.2 短路电流计算的目的 (22)

4.3 短路电流计算的条件 (22)

4.3.1基本假定 (22)

4.3.2一般规定 (23)

4.4短路电流的标么值算法 (23)

4.5短路电流计算结果 (24)

5 变电所电气设备选择 (29)

5.1概述 (29)

5.2选择设备的基本原则 (30)

5.3断路器的选择 (31)

5.3.1选择断路器时应满足以下基本要求 (31)

5.3.2断路器的主要参数 (31)

5.3.3断路器选择其他考虑因素 (31)

5.3.4 110kV断路器的选择: (32)

5.3.5 35kV断路器的选择: (33)

5.3.6 10kV断路器的选择 (34)

5.4隔离开关的选择 (34)

5.4.1隔离开关的作用 (35)

5.4.2形式结构 (35)

5.4.3选择条件 (35)

5.4.4选择隔离开关基本要求 (35)

5.4.5 110kV隔离开关的选择 (36)

5.4.6 35KV隔离开关的选择 (36)

5.4.7 10kV隔离开关的选择 (37)

5.5母线的选择 (37)

5.6电流互感器的选择 (39)

5.7电压互感器的选择 (40)

6 继电保护配置 (42)

6.1电力系统继电保护的作用 (42)

6.2保护装置的装设原则: (43)

6.3电力系统继电保护的基本任务 (44)

6.4继电保护的选择要求 (45)

6.5继电保护的装置选择与整定 (46)

6.6线路末端短路电流 (46)

6.7线路保护整定 (46)

6.8变压器保护: (48)

6.8.1变压器装设的保护种类 (48)

6.8.2变压器保护的整定方法 (50)

6.8.3变压器差动保护整定计算 (52)

6.9母线保护 (52)

7 防雷接地保护 (54)

7.1变电所可能出线大气过电压的种类 (54)

7.2直击雷保护: (54)

7.3避雷针装设注意问题 (54)

7.4雷电侵入保护 (55)

7.4.1保护措施 (55)

7.4.2避雷器的设置 (55)

7.5变电站的保护 (56)

总结 (57)

参考文献 (58)

致谢 (59)

附录: 110KV变电站电气主接线图 (60)

1 概述

1.1 课题来源

本课题为本人毕业设计题目,具有一定的实践性和可行性。为满足经济发展的需要,根据有关单位的要求,决定修建一座110KV变电站。本变电站和电力系统中的S1、S2发电厂形成环网结构。负荷分为35KV和10KV两个等级。

1.2 设计依据

1、中华人民共和国电力公司发布的《35kV~110kV无人值班变电所设计规程》(征求意见稿)

2、某110kV变电站工程设计委托书。

3、电力工程电气设计手册(电气一次部分)。

1.3 设计范围

1、所区总平面、交通及长度约20米的进所道路的设计。

2、所内各级电压配电装置及主变压器的一、二次线及继电保护装置。

3、系统通信及远动。

4、所内主控制室、各级电压配电装置和辅助设施。

5、所区内给排水设施及污水排放设施。

6、所区采暖通风设施、消防设施。

7、所区内的规划。

8、编制主要设备材料清册。

9、编制工程概算书。

1.4 设计分工

1、110kV配电装置以出线门型架为界,10kV电缆出线以电缆头为界。电缆沟道至围墙外1米。

2、所外专用通信线、光纤系统通信、施工用电、用水等设施由建设单位负责。

1.5 设计的基本要求

(1)必须遵照国家标准,认真执行国家的技术经济政策,并应该做到保障人身和设备的安全、供电可靠、电能质量合格、

(2)积极采用新技术,提高自动化水平,尽量结合具体情况采用定型设计,做到工程技术先进、经济合理、安全适用,确保设计质量。

(3)根据规划进行设计,必要时可分期建设,做到远、近结合,以近期为主,适当考虑工程扩建发展的可能。

(4)从生产实际出发,树立设计、施工、运行的整体观念,防止片面性和绝对化。

(5)必须从全局考虑,统筹兼顾,按照负荷性质、用电容量、工程特点和本地区供电条件,合理确定设计方案,满足供电可靠性的要求。

电力工程设计技术人员应该坚持到现场调查,收集有关资料,使设计和施工、运行检修相结合,理论和实际相统一。

1.6 基础资料

1.6.1 原始背景资料

电力工业是国民经济的一项基础工业和国民经济发展的先行工业,它是一种将煤、石油、天然气、水能、核能、风能等一次能源转换成电能这个二次能源的工业,它为国民经济的其他各部门快速、稳定发展提供足够的动力,其发展水平是反应国家经济发展水平的重要标志。

随着社会的发展,电能被日益广泛的应用于工农业生产以及人民的日常生活中。电能可以方便的转化为其他形式的能源,例如机械能、热能、光能、磁能等,并且电能的输送和分配易于实现,可以输送到需要它的任何工作场所和生活场所。电能的应用规模也很灵活以电能作为动力,可以促进工农业的机械化和自动化。保证产品质量大幅度提高劳动生产率。同时提高电气化程度以电能代替其它形式的能源,是节约能耗消耗的一个重要途径。

为了满足市区生产和生活的供电要求,按照先行的原则,依据远期负荷发展,决定在本区兴建1中型110kV变电所。该变电所建成后,主要对本区用户供电为主,尤其对本地区大用户进行供电。改善提高供电水平。同时和其他地区变电所联成环网,

提高了本地供电质量和可靠性。待建110kV变电站地址选在市开发区的北部,西邻一条南北公路,有良好的交通运输条件。电站年负荷增长率为5%,变电站总负荷考虑五年发展规划。

1、环境条件

该站位于市开发区的北部,西邻一条南北公路。占地东西长69m,南北长66m,面积4554m2,合6.831亩。该站出线条件较好,110kV南面进出,35kV北面进出,10kV 电缆从西侧进出(电缆沟)。交通方便,靠近乡镇,职工生活方便。围墙内自然高差与公路相差3m左右,回填土方量较大。

(1)环境温度:-15°C~+35°C,年平均15°C。

(2)相对湿度:月平均≤90%,日平均≤95%。

(3)海拔高度:≤1000m。

(4)地震烈度:不超过8度。

(5)风速:≤35m/s。

(6)最大日温差:25°C。

(7)土壤电阻率:100Ω.cm。

(8)地耐力:2.4kg/cm2。

变电站选址避开了大气严重污秽和严重烟雾地区急冬季主导风向的影响,周围环境无易燃且无明显污秽,具有适宜的地质、地形和地貌条件(如避开断层、交通方便等)。并应考虑防洪要求,以及邻近设施的相互影响(如对通讯、居民生活等)。

2、环境保护

(1)变电所仅有少量生活污水,经处理后排入渗井。

变压器事故排油污水,经事故油池将油截流,污水排入生活污水系统,对周围环境没有污染。

(2)噪音方面是指变压器和断路器操作时所产生的电磁和机械噪声。对主变及断路器要求制造厂保证距离设备外壳2米处的噪声水平不大于65bB,以达到《工业企业噪声卫生标准》的规定。

3、绿化

在所内空闲地带种植草坪及绿篱,以美化环境。

1.6.2变电站负荷情况分析

本变电站和电力系统中的S1、S2发电厂形成环网结构,如果变电站110kV侧故障,则此环网结构就会瓦解,系统之间的紧密性就被破坏,轻则影响S1、S2发电厂的出力,重则可能会引起系统的解列等严重后果。对35kV侧来讲,本所供电对象是的冶炼厂,焦化厂,鞋厂,洗衣机厂的厂区和生活区及百货商场及其他散户,10kV侧供电对象是造纸厂,化工厂,毛纺厂,水泥厂,纺织厂,水厂,首饰厂的厂区和生活区及市医院和A、B、C三个居民小区。一旦停电,就会造成地区断电、断水等后果,严重影响的人民正常生活,还将造成机器停运,整个生产处于瘫痪状态,严重影响各厂生产的质量和数量。同时还可能造成对环境的污染,因此对本所的运行可靠性必须保证。在非特殊情况下,一般不允许对它们断电。

鉴于以上情况,110kV侧线路回数采用4回,其中2回留作备用,35kV侧线路回数采用8回,另有2回留作备用,A厂、B厂采用双回路供电,10kV侧线路回数采用12回,另有2回留作备用,f厂采用双回路供电,以提高供电的可靠性。

具体110KV变电所各电压级负荷数据如下表

表1.1 110KV侧系统线路参数表

110kV侧线路回数采用4回,其中2回留作备用。

35kV负荷同时系数为0.9。

35kV侧线路回数采用8回,其中2回留作备用。

10kV负荷同时系数为0.85

10kV侧线路回数采用12回,另有2回留作备用

2 电气主接线方案的确定

电气主接线是指发电厂或变电站中的一次设备按照设计要求连接起来表示生产、汇集和分配电能的电路,也称为主电路。电气主接线是由高压电器通过主接线,按其功能要求组成接受和分配电能的电路,组成为传输强电流、高电压的网络,故称为一次接线或电气主系统。变电所的电气主接线是变电所电气部分的主体结构,是电力系统网络结构的重要组成部分,它与电力系统供电电源情况、负荷对供电可靠性的要求、配电装置的布置、继电保护自动装置和控制方式的拟定都有决定性关系。因此,电气主接线的合理设计,必须综合处理好各个方面因素,经过技术经济论证比较后方可确定。

2.1 选择原则

电气主接线的设计原则,应根据变电所在电力系统中得地位,负荷性质,出线回路数,设备特点,周围环境及变电所得规划容量等条件和具体情况,并满足供电可靠性,运行灵活,操作方便,节约投资和便于扩建等要求。具体如下:

2.1.1 主接线设计的基本要求

主接线的基本要求:应满足安全性,可靠性,灵活性和经济性。

(1)安全性

安全是电力生产的首要任务,安全性的具体要求:

1高压断路器的电源侧及可能反馈电能的另一侧,必须装设高压隔离开关;

2低压断路器(自动开关)的电源侧及可能反馈电能的另一侧,必须设低压刀开关;

3装设高压熔断器、负荷开关的出线柜母线侧,必须装设高压隔离开关;、

4 35KV及以上线路末端,应装设与隔离开关连锁的接地刀闸。

5变配电所高压母线上及架空线路末端,必须装设避雷器。装于母线上的避雷器宜与电压互感器共用一组隔离开关,线路上避雷器前不必装隔离开关。

(2)可靠性

保证供电可靠是电力生产和分配的首要要求,主接线首先应满足这个要求。可靠性的具体要求:

1.断路器检修时,不宜影响对系统和负荷的供电;

2.断路器和母线故障以及母线检修时应尽量减少停运的回路数及停运时间,并要保证对一级负荷及大部分二级负荷的供电。

3.尽量避免发电厂、变电所全部停运的可能性。

4. 大机组超高压电气主接线应满足可靠的特殊要求;

5. 采用综合自动化,优化变电所设计:

(3)灵活性

主接线应满足在调度、检修及扩建时的灵活性。

1.调度时,应可以灵活地投入和切除变压器和线路,调配电源和负荷,满足系统在事故运行方式,检修运行方式以及特殊运行方式下的系统调度要求。

2.检修时,可以方便地停运断路器、母线及其继电保护设备,进行安全检修,而不致影响电力网的运行和对用户的供电。

3.扩建时,可以容易地从初期接线过渡到最终接线。在不影响连续供电或停电时间最短的情况下,投入变压器或线路而不互相干扰,并且对一次和二次部分的改建工作量最少。

具体来说1变电所的高低压母线,一般宜采用单母线或单母线分段接线;2两路电源进线,装有两台主变压器的变电所,当两路电源同时供电时,两台主变压器一般分列运行;当只一路电源供电,另一路电源备用时,则两台主变压器并列运行;3 35KV 及以上电源进线为双网络时,宜采用桥形接线或线路变压器组接线。4 带负荷切换主变压器的变电所,高压侧应装设高压断路器或高压负荷开关;5主接线方案应与主变压器经济运行的要求相适应。6电气主接线方案按企业发展规划留有一定的发展余地,考虑到将来的发展扩建需要。

(4)经济性

主接线在满足可靠性、灵活性要求的前提下,做到经济合理。

1.投资省

(1)主接线应力求简单清晰,以节省断路器、隔离开关、电流和电压互感器、避雷器等一次设备,而且应选用技术先进、经济适用的节能产品。

(2)要能使继电保护和二次回路不过于复杂,以节省二次设备和控制电缆。

(3)要能限制短路电流,以便于选择价廉的电气设备或轻型电器。

(4)如能满足系统安全运行及继电保护要求,110kV及以下终端或分支变电所可采用简易电器。

(5)由于工厂变配电所一般都选用安全可靠且经济美观的成套配电装置,因此变配电所主接线方案应与所选成套配电装置的主接线方案配合一致。柜型一般宜采用固定式;只在供电可靠性要求较高时,才采用手车式或抽屉式;

(6)中小型工厂变电所一般采用高压少油断路器,在需频繁操作的场合,则应采用真空断路器或SF

断路器。

6

2.占地面积小

主接线设计要为配电装置布置创造节约土地的条件,优化接线及布置,尽量使占地面积减少。

3.电能损失少

经济合理地选择主变压器的种类、容量、数量,要避免因两次变压而增加电能损失。工厂的电源进线上应装设专用的计量柜,其中电流,电压互感器柜只供计费的电能表用。应考虑无功功率的人工补偿,使最大负荷时功率因素达到国家规定的要求此外,在系统规划设计中,要避免建立复杂的操作枢纽。为简化主接线,发电厂、变电所接入系统的电压等级一般不超过两种。

总之,变电所通过合理的接线、设备无油化、布置的紧凑以及综合自动化技术,并将通信设施并入主控室,简化所内附属设备,从而达到减少变电所占地面积,优化变电所设计,节约材料,减少人力物力的投入,并能可靠安全的运行,避免不必要的定期检修,达到降低投资的目的。

2.1.2 主接线的设计依据

在选择电气主接线时应以下列各点作为设计依据:

1.发电厂、变电所在电力系统中的地位和作用;

2.发电厂、变电所的分期和最终建设规模;

3.负荷大小和重要性

(1)对于一级负荷必须有两个独立电源供电,且当任何一个电源失去后,能保证对全部一级负荷不间断供电。

(2)对于二级负荷一般要有两个独立电源供电,且当任何一个电源失去后,能保证对大部分二级负荷的供电。

(3)对于三级负荷一般只需一个电源供电。

4.系统备用容量大小

装有2台组级以上主变压器的变电所,其中一台(组)事故断开,其余主变压器的容量应保证该所60%的全部负荷,在计及过负荷能力后的允许时间内,应保证用户的一级和二级负荷。

5.系统专业对电气主接线提供的具体要求。

2.2 主接线的方案与分析

目前变电站常用的主接线形式有:单母线、单母线分段、单母线分段带旁路、双母线等。我们在比较各种电气主接线的优劣时,主要考虑其安全可靠性、灵活性、经济性三个方面。

参考《35-110KV变电所设计规范》

第3.2.3条:35—110KV线路为两回及以下时,宜采用桥形线路变压器或线路分支接线。超过两回时,宜采用扩大桥形单母线或单母分段的接线形式,35~63KV线路为8回及以上时,亦可采用双目接线,110KV线路为6回及以上时,宜采用双母线接线。

第3.2.4条:在采用单母线、分段单母线或双母线的35~110KV主接线中,当不

允许停电检修断路器时,可以设置旁路设施。

当有旁路母线时,首先宜采用分段断路器或母联断路器兼做旁路断路器的接线,当110KV线路为6回及以上,35~63KV线路为8回及以上时,可装设专用的旁路断路器,主变压器35~110KV回路中的断路器,有条件时,亦可接入旁路母线,采用SF

6断路器的主接线不宜设旁路设施。

第3.2.5条:当变电站装有两台主变时,6~10KV侧宜采用分段单母线。线路为12回及以上时亦可采用双母线。当不允许停电检修断路器时,可设置旁路设施。

综合以上规程规定,结合本变电站的实际情况,10kV侧线路回数采用4回,其中2回留作备用,35kV侧线路回数采用8回,另有2回留作备用,A厂、B厂采用双回路供电,10kV侧线路回数采用12回,另有2回留作备用。故可对各电压等级侧主接线设计方案作以下处理:

2.2.1 110KV侧主接线设计

根据《变电所设计技术规程》第22条:110~220kV配电装置中,当出线数为2回时,一般采用桥形接线,当出线不超过4回时,一般采用分段单母线接线。

本所远景出线为4回,符合采用分段单母线接线,,从占地面积上看,采用单母分段也是合理的。

同时规程第24条规定:采用单母分段或双母线的110~220kV配电装置中除断路器允许停电检修外,一般设置旁路设施。

110KV侧是本站的进线段,它对本站的可靠性有很大影响。拟定以上两种接线方案:双母接线,单母分段带旁母接线,如下图2.1,2.2

图2.1双母线接线

图2.2单母线分段带旁母接线

双母接线的适用范围:

当母线回路数或母线上电源较多、输送和穿越功率较大、母线故障后要求迅速恢复供电、母线或母线设备检修时不允许影响对用户的供电、系统运行调度对接线的灵活性有一定要求时采用,各级电压采用的具体条件如下:

(1)6~10KV配电装置,当短路电流较大、出线需要带电抗器时。

(2)35~66KV配电装置,当出线回路数超过8回时,或连接的电源较多、负荷较大时。

(3)110~220KV配电装置出线回路数为5回及以上时,或当110KV~220KV配电装置,在系统中占重要地位,出线回路数为4回及以上时。

单母线分段带旁路接线范围:

(1)6~10KV配电装置出线回路数为6回及以上时。

(2)35~66KV配电装置出线回路数为6~8回时。

(3)110KV~220KV配电装置出线回路数为3~4回时。

到底选用哪种接线方式更为合理、可靠,现对这两种方案作一比较:

如下表2.1

由于本变电站担负着为本区供电的重任,和电力系统中的S1、S2发电厂形成环网结构,对本变电站的运行可靠性必须保证。因此经过比较后,决定采用单母分段带旁母作为110kV侧的主接线。架空线路型号选用LGJQ—300。

2.2.2 35KV侧主接线设计

35KV侧是本站的一个出线电压等级,它向冶炼厂,焦化厂,鞋厂,洗衣机厂的厂区和生活区及百货商场及其他散户供电。对35KV侧的主接线设计了两种方案:仍从双母接线和单母分段带旁母两种方案比较,由于35kV回路较多,采用双母接线接线后,可以轮流检修一组母线及任一回路的母线隔离开关,一组母线故障后,能迅速恢复供电,各个回路负荷可以任意分配到某一组母线上,因此就没有必要采用增设旁母。投资也较单母分段带旁母少。因此经过比较后,决定采用双母线接线作为35kV 侧的主接线。

2.2.3 10KV侧主接线设计

《变电所设计技术规程》第23条:6kV和10kV配电装置中,一般采用分段单母线或单母线接线。

《电气工程设计手册》1规定:6~10kV配电装置出线回路数为6回以上时,可采用单母线分段接线。

拟定单母接线和单母分段接线两种方案:如下图2.3,2.4

单母接线的适用范围:

一般适用于一台主变压器的以下三种情况:

(1)6~10KV配电装置的出线回路数不超过5回。

(2)35~66KV配电装置的出线回路数不超过3回。

(3)110KV~220KV配电装置的出线回路数不超过2回。

图2.3单母线分段接线

图2.4单母线接线

表2.2 单母分段和单母接线对比表

本所10kV侧出线数为12回,又水厂采用双回路供电,所以采用单母分段接线方式。该方式具有较高的可靠性和灵活性,双回线路分别接到不同母线上,这样当一回故障时,另一回可继续对其供电而不至使重要用户停电。

2.2.4 所用电设计

一所用电源引接方式

在选择所用变时一般情况下,厂家不生产110/0.4kV或35/0.4kV的双绕组变压器,又因为网络故障较多,从所外电源引接所用电源可靠性较低。这样所用电必须从主变低压侧(10kV)母线不同段上各引接一个。并要加装限流电抗器。

二所用电接线

《电力工程设计手册》1规定:所用变高压侧尽量采用熔断器,所用变的低压侧采用380/220V中性点直接接地的三相四线制,动力与照明合用,且设置一个检修电源。

本所站变电压等级10/0.4kV,低压侧为三相母线制运行,且0.4kV侧采用单母分段接线方式,以保证所用电的可靠性和灵活性。以维护变电所的正常运行。

3 主变压器台数和容量的选择

3.1 变压器的选择原则

变压器的型式、容量、台数直接影响主接线的形式和配电装置的结构。它的确定除依据传递容量基本原始资料外,还应根据电力系统5~10年发展规划、输送功率大小、馈线回路数、电压等级以及接入系统的紧密程度等因素,进行综合分析和合理选择。

为了保证每年电容按10%的增长,并在10年内能满足要求,并按下例方案进行综合考虑:

两台以上变压器工作方式有明备用和暗备用两种:

1.明备用方式,即所有主变压器的容量都满足的要求,任何情况下都只有1台运行,几台主变压器互相备用。

2.暗备用方式,即所有主变压器的容量之和满足的要求。正常情况下两台主变运行,各承担50%计算负荷,故障情况下一台运行,因此,每台变压器的容量应满足安全用电的要求,即保证Ⅰ、Ⅱ类负荷的供电,一般要求能满足全部负荷的70%--80%。

3.在设计中,初期主变压器可采用明备用方式,随着负荷的增加和发展,后期可采用暗备用方式。

3.2 主变压器型式的选择

参考《电力工程电气设计手册》和相应的规程中指出:在具有三种电压的变电所中,如果通过主变各绕组的功率达到该变压器容量的15%以上,或在低压侧虽没有负荷,但是在变电所的实际情况,由主变容量选择部分的计算数据,明显满足上述情况。

由于本变电站有三个电压等级110/35/10kV,因此应采用三绕组变压器,又考虑运行的经济性和合理性,选用三相式三绕组变压器。采用三相变压器比单相变压器合理之处在于:三相变压器的损失比单相变压器平均低12~15%,同时三相变压器比单相变压器在有效材料(Fe和Cn)的重量方面可节省20%左右,而故障率则因3台单相组成一组,为一台三相变压器的3倍。同时就本所来说,负荷总容量不是很大,且高压侧电压级不算高(110kV),根据规程,采用三相式最为合理。

参考《电力工程电气设计手册》和相应规程指出:变压器绕组的连接方式必须和

系统电压一致,否则不能并列运行。电力系统中变压器绕组采用的连接方式有星形和三角形两种,而且为保证消除三次谐波的影响,必须有一个绕组是三角形的。

本变电站所在的电力系统中潮流变化较大,电压偏移也较大,根据《变电所设计技术规程》19条:电力潮流变化大和电压偏移大的变电所,如经计算普通变压器不能满足电力系统和用户对电压的要求,应尽量采用有载调压变压器。当电力系统运行确有需要时,可装设单独的调压变压器。同时,有载调压方式能在额定容量范围内负荷调整电压,调压范围大,可以减少或避免电压大幅度波动,减小高峰、低谷电压差,如带有移相电容器时还可以充分发挥电容器的作用。当然,它与同容量的变压器相比,体积较大,造价较高,但从长远观点看是经济合理的。故选用有载调压方式。绕组连接方式为Yn/Yn0/d11。

3.3 主变中性点接地设计

3.3.1 110kV侧中性点接地方式

在110kV及以上电网中,绝缘费用在设备总价格中占有很大的比重,设备价格几乎和试验电压成正比,降低绝缘水平的经济效益很显著。因而着重考虑过电压和绝缘水平方面的问题。故采用中性点直接接地方式。中性点直接接地可以使系统内部过电压降低20~30%,变压器可作成分级绝缘,并可采用氧化锌避雷器作过压保护。

接地图为:如图3.1

图3.1 110KV侧中性点接地方式图

3.3.2 35kV、10kV侧中性点接地方式

在电压等级较低(60kV及以下)的电网,绝缘费用在总投资中所占的比重不大,降低绝缘水平的经济价值不甚显著,着重考虑供电可靠性的要求,一般采用中性点不接地方式,但是当电网单相接地电容电流超过一定数值后,如果电网发生单相电弧接地,接地电弧不易自动熄灭,这样其供电可靠性就受到影响,因此当单相接地电流

企业供电系统杜家村煤矿工程设计

信息与电气工程学院 课程设计说明书(2015/2016学年第一学期) 课程名称:企业供电系统工程设计 题目:杜家村煤矿35kV变电所设计 专业班级: 学生姓名: 学号: 指导教师: 设计周数: 1周 设计成绩: 2016年1月14日

目录 1 设计目的.................................................. 错误!未定义书签。 2 设计数据?错误!未定义书签。 2.1 给定数据............................................ 错误!未定义书签。 2.2 用电负荷数据?错误!未定义书签。 3 技术要求.................................................. 错误!未定义书签。 4 主要任务 (2) 5 变电所的设计?错误!未定义书签。 5.1 负荷计算?错误!未定义书签。 地面6kV高压:?2 5.2短路电流计算?错误!未定义书签。 5.2.1 35kV母线K1点短路......................... 错误!未定义书签。 5.2.2 6kV母线K2点短路:?错误!未定义书签。 5.2.3 6kV母线短路电流............................ 错误!未定义书签。 5.3 供配电系统的设计方案技术及经济性对比................ 错误!未定义书签。 5.4 供配电系统图的拟定和绘制?错误!未定义书签。 5.4.1 一次侧的设计................................... 错误!未定义书签。 5.4.2 二次侧的设计.................................. 错误!未定义书签。 5.5 变压器的选择........................................ 错误!未定义书签。 5.6 主要电气设备的选择.................................. 错误!未定义书签。 5.6.1 高压设备的选择?错误!未定义书签。 5.6.2 选隔离开关..................................... 错误!未定义书签。 5.6.3低压设备的选择?错误!未定义书签。 5.6.4 互感器的选择?错误!未定义书签。 5.6.5高压熔断器的选择?错误!未定义书签。 5.7线缆的选择?错误!未定义书签。 5.7.1 母线的选择?9 5.7.2 各负荷电缆的选择?错误!未定义书签。 6 心得体会.................................................. 错误!未定义书签。 7 参考文献.................................................. 错误!未定义书签。 8 指导教师评语?错误!未定义书签。

煤矿地面35KV变电所的设计论文

摘要 本设计初步设计了煤矿地面35KV变电所的设计。其设计过程主要包括负荷计算、主接线设计、短路计算、电气设备选择、防雷与接地等。通过对煤矿35KV变电所的负荷统计,用需用系数法进行负荷计算,根据负荷计算的结果确定主变压器的台数、容量及型号。用标幺值法对供电系统进行短路电流计算,为电气设备的选择及校验提供了数据。根据煤矿供电系统的特点,制定了矿井变电所的主接线方式、运行方式。其中35KV侧为全桥接线,6KV主接线为单母分段接线。两台主变压器采用分列运行方式。并根据电流整定值以及相关数据,选择了断路器、隔离开关、互感器等电气设备,并进行校验。 关键词:负荷计算;短路计算;变电所;运行方式

Abstract The coal mine ground 35KV transformer substation was designed. Design process is mainly including load calculate, the design of main electrical connection, short out calculate, electric equipment choose,lightning protection and grounding, etc. According to load statistics and the result of load calculation determine the quantity ,capacity and mode of the main voltage transformer .According to the characteristic of the coal electric system determine the main electrical connection and operation mode of the ground transformer substation .The side of 35KV is Full –bridge Connection and the bus of 6KV is single bus section .The two voltage transformers adopt the mode of split run .And according to the check–up of whole definite value and relevant data of the electric current , have chosen such electric equipment as the relay, voltage transformer ,etc. Keywords:Load calculation; short-circuit calculation; substations; operation mode

煤矿井下供电设计规范GB

煤矿井下供电设计规范-GB--

————————————————————————————————作者:————————————————————————————————日期:

煤矿井下供配电设计规范 GB50417-2007 中华人民共和国建设部 2007年05月21日发布2007年12月01日实施 煤矿井下供配电设计规范

GB50417-2007 2007—05—21 发布 2007—12—01实施 中华人民共和国国家建设部联合发布中华人民共和国国家质量监督检验检疫总局、中华人民共和国国家标准、中国煤炭建设协会主编、中华人民共和国建设部公告第646号,建设部关于发布国家标准《煤矿井下供配电设计规范》的公告,现批准《煤矿井下供配电设计规范》为国家标准,编号为 GB50417—2007,自2007年12月1日起实施。其中,第2.0.1、2.O.3、2.0.5、2.0.6、2.0.9、4.1.1、4.2.1、4.2.9、5.1.3、5.1.4(4.5.6)、6.1.4、6.3.1(4)、7.1.1、7.1.2、7.1.3、7.1.4、7.1.5、7.2.1、7.2.8 条(款)为强制性条文,必须严格执行。本规范由建设部标准定额研究所组织中国计划出版社出版发行。 中华人民共和国建设部二OO七年五月二十一日 前言 本规范是根据建设部建标函[2005]124号文件《关于印发“2005年工程建设标准制定、修订计划(第二批)”的通知》的要求,由中煤国际工程集团武汉设计研究院会同有关单位共同编制完成的。本规范在编制过程中,编制组认真分析、总结和吸取了十几年来国内外煤矿井下供配电采用新技术、新装备的经验及新的科研成果。所引用的技术参数和指标,是生产实践经验数据的总结。特别是高产高效工作面近几年发展较快,其供配电系统有了比较成熟的运行实践经验。编制组广泛征求了有关单位意见,经反复修改,最后经审查定稿。本规范共8 章,内容涉及煤矿井下供电的各个方面,主要包括: 总则、井下供配电系统与电压等级、井下电力负荷统计与计算、井下电缆选择与计算、井下主(中央)变电所设计、采区供配电设计、井下电气设备保护及接地、井下照明等。适用于煤矿井下供电设计咨询的各个阶段。本规范以黑体字标志的条文为强制性条文,必须严格执行。本规范由建设部负责管理和对强制性条文的解释,由中国煤炭建设协会负责日常管理,由中煤国际工程集团武汉设计研究院负责具体技术内容的解释。本规范在执行过程中,请各单位结合工程实践,认真总结经验,如发现需要修改或补充之处,请将意见和建议寄交中煤国际工程集团武汉设计研究院(地址:湖北省武汉市武昌区武珞路442号,邮编:430064),以便今后修订时参考。 本规范主编单位、参编单位和主要起草人。主编单位:中煤国际工程集团武汉设计研究院,参编单位:煤炭工业郑州设计研究院、煤炭工业合肥设计研究院,主要起草人:张建民周秀隆于新胜刘兴晖刘建平马自玫张焱杨敢李明胡腾蛟周桂华杨晓明 目次 1.总则

煤矿供电设计计算

煤矿供电设计计算 煤矿供电设计计算 一、供电方案:见供电系统示意图 二、变压器选型计算 1﹑负荷统计与变压器的选择(动力): ⑴﹑负荷统计表 负荷名称安装台数安装容量额定电压额定电流功率因数需用系数备注 刮板输送机3 55KW 660V 56.6 0.85 0.5 皮带1 55KW 660V 56.6 0.85 0.5 (2)﹑变压器容量的选择: 变压器视在功率:S=∑Pe×Kx/cos¢ =732.4×0.5/0.85 =430.82KV A 所选变压器为一台KSGB-500/6进行供电,满足要求。 式中:∑Pe—所有设备的额定功率之和:732.4KW cosφ—平均功率因数:0.85 Pn.max—该组用电设备中最大一台电动机的额定功率,55KW; ∑Pn—该组用电设备的额定功率之和,183.4KW; Kx—需用系数:K x=0.286+0.714×Pn.max/∑Pn =0.286+0.714×55/183.4 =0.5

2﹑负荷统计与变压器的选择(主风机) ⑴﹑负荷统计表 序号负荷名称安装台数安装容量额定电压额定电流功率因数需用系数备注 1 风机(主)1台2×30KW 660V 69A 0.85 1 2 风机(其它)1台60KW 660V 69A 0.85 1 单台 (2)﹑变压器容量的选择: 变压器视在功率:S=∑Pe×Kx/cos¢ =240×1/0.85 =282.35KV A ∑Pe—所有设备的额定功率之和:282.35KW 所选变压器为:KSGB- 315/6 一台,满足要求。 需用系数(Kx):K x=1 ⑶﹑平均功率因数(cosφ):0.85 三、电缆的选择: 1﹑馈电开关(1#)到(8#)开关 ①按长时允许电流选择电缆 A 选用MYP3×70+1×25电缆,70mm2电缆长时容许电流为215A 式中: Kx—电缆线路所带负荷的需用系数,0.42; ∑Pe—电缆所带负荷的额定功率183.4KW; Ue—电缆所在电网的额定电压,660V;

煤矿供电设计参考

某煤矿(整合0.15Mt/a)供电设计 (仅供参考) 第一节供电电源 一、供电电源 某煤矿矿井双回路电源现已形成,其中:一回路电源由1#变电所10kV直接引入,LGJ-70型导线,距离矿区7公里;另一回路电源由2#变电所10kV直接引入,LGJ-120型导线,距离矿区20公里。 第二节电力负荷计算 经统计全矿井设备总台数84台,设备工作台数66台;设备总容量1079.64kW,设备工作容量696.34kW,计算负荷为: 有功功率:513.24 kW 无功功率:425.94 kVar 自然功率因数COSΦ=0.77 视在功率:666.96 kVA 考虑有功功率和无功功率乘0.9同时系数后: 全矿井用电负荷 有功功率:461.92 kW 无功功率:383.35 kVar 功率因数COSΦ=0.77 视在功率:600.27 kVA 矿井年耗电量约243.89万kW·h,吨煤电耗约16.26kW·h/t。 负荷统计见表1。 第三节送变电 一、矿井供电方案 根据《煤矿安全规程》要求,矿井应有两回电源供电,当任一回路发生故障停止供电时,另一回路应能担负矿井全部负荷。根据本矿井现有的电源条件,设计在本矿井工业场地内建10kV变电所。两回10kV电源分别引自10kV 1#变电所

和2#变电所。 二、10kV供电线路 设计对线路导线截面,按温升、经济电流密度、线路压降等校验计算如下: 1、根据经济电流密度计算截面积 导线通过的最大电流:(两回10kV线路,当一回故障检修时,另一回10kV线路向本矿供电时,导线通过的电流最大) I j=P/(3UcosΦ)=513.24/(1.732×10×0.77)=38.5A 导线经济截面: S=I j/J=38.5/0.9=42.8mm2(J为经济电流密度) 通过计算,实际选用的钢芯铝绞线截面满足要求。 2、按电压降校验 由10kV1#变电所和2#变电所向本矿工业场地10kV变电所供电的两回10kV线路供电距离分别为7km和20km,正常情况下两回线路同时运行,当两回10kV线路中一回线路事故检修时,由另外一回10kV线路向本矿供电。按正常情况及事故情况对两回电源线路分别做电压降校验如下:1)正常情况下 两回10kV线路同时运行,线路电压损失: ⑴1#变电所10kV供电线路电压损失: ΔU%=Δu%PL/2 =0.745×0.51324×7/2 =1.34%。 线路能满足矿井供电。 ⑵2#变电所10kV供电线路电压损失: ΔU%=Δu%PL/2 =0.555×0.51324×20/2 =2.85%。 线路能满足矿井供电。 2)事故情况下 单回10kV供电线路电压损失: ⑴1#变电所10kV供电线路电压损失:

2019煤矿矿井供电设计

新临江煤矿(水井湾矿井) 供电设计 (一)矿井电源 设计矿井采用两回电源线路供电,一回、二回电源来自大竹木头变电 站不同电源母线端,电压 10kV ,供电距离 2km ,采用一趟 LGJ-3×70 型架 空线路输送至地面变电所。 (二)电源线路安全载流量及电压降校核 1、按经济电流密度选择电源线路截面 ? A e = n = = 60.14 mm 2 e J 1.15 来自大竹县木头变电站的不同母线段导线型号均采用 LGJ-3×70。 60.14 mm 2 <70mm 2 ,满足供电要求,并留有余地。 式中:矿井最大有功负荷 1078.2kW 。 2、按长时允许负荷电流校验电缆截面 线路 LGJ-3×70 允许载流量:环境温度为 25℃时为 275A (查表),考 虑环境温度 40℃时温度校正系数 0.81,则 Ix=275×0.81=222.75(A ) Ix=222.75A>I=69.17A 3、电源线路压降校核 供电线路LGJ-3×70/10kV 单位负荷矩时电压损失百分数:当cos ∮=0.9 时为 0.644%/MW.km (查表) 则电源线路电压降为:△U 1%=1.0523×2×0.644%=1.36%<5% 式中:电源线路长取 2km 。 全矿计算电流: 1078.2 3 10 0.9 = 69.17(A )

来自大竹县木头变电站不同母线段两回电源线路电压降均符合要求。 (三)电力负荷 1、矿井采用机械化采煤,投产时期即为最大负荷时期。机电设备布置 及使用情况统计详见表 10-1。 设备总台数 47 台 设备工作台数 36 台 设备总容量 1653.25kW 设备工作容量 1421.65kW 有功负荷 1078.2kW 无功负荷 801.54kvar 视在功率 1346.33kVA 功率因数 0.82 按补偿后功率因数达到约 0.95,则所需补偿电容容量为 0.82 0.82 -1- 0.95 0.95 -1 =377.38kvar 考虑到电容易的配置及矿井负荷的变化情况,变电所电容易室安装 BFMR11-420-3W 型高压电容自动补偿装置 2 套,补偿无功功率 420kvar 。补 偿后: 无功功率: 381.54kvar 视在功率: 1145.24kVA 功率因数: 0.95 矿井投产时年耗电量:2632802kW.h ,吨煤电耗 29.24kW.h/t 。 Q =P cos 2 1 -1 1 -1 - cos 2 Q = 1078.2

煤矿35KV地面变电所供电系统设计毕业论文

煤矿35KV地面变电所供电系统设计毕业论文 目录 摘要............................................................ 错误!未定义书签。ABSTRACT ......................................................... 错误!未定义书签。目录........................................................................... I 第一章概述.. (1) 1.1电源 (1) 1.2基本地质气象资料 (1) 第二章负荷计算及变压器选择 (1) 2.1负荷分析 (1) 2.1.1 负荷分类 (1) 2.2负荷曲线 (1) 2.3矿井用电负荷计算 (2) 2.3.1 设备容量确定 (2) 2.3.2 需用系数的含义 (2) 2.3.3 本系统的负荷计算 (3) 2.3.4 原始资料 (5) 2.4.1 计算负荷: (8) 2.4.2 全矿负荷统计 (12) 2.5无功功率的补偿 (12) 2.6主变压器的选择 (14) 2.6.1 主变压器容量的确定 (14) 2.6.2 主变压器台数的确定 (14) 2.7全矿总负荷的计算 (15) 2.7.1 变压器损耗计算 (15) 2.7.2 全矿总负荷 (15) 第三章电气主接线的设计 (16)

3.1 电气主接线的概述 (16) 3.2电气主接线的设计原则和要求 (16) 3.2.1 电气主接线的设计原则 (16) 3.2.2 电气主接线设计的基本要求 (17) 3.3电气主接线方案的比较 (18) 第四章短路电流的计算 (21) 4.1短路电流计算的一般概述 (21) 4.1.1 短路的原因 (21) 4.1.2 短路的危害 (21) 4.1.3短路的类型 (22) 4.2短路电流计算 (22) 第五章电气设备的选择与校验 (27) 5.1高压电器设备选择的一般原则 (27) 5.1.1 按正常工作条件选择高压电气设备 (27) 5.1.2 按短路条件校验 (29) 5.2电气设备的选择和校验 (30) 5.2.1 高压断路器的选择和校验 (30) 5.2.2 低压隔离开关的选择和校验 (31) 5.2.3 电流互感器的选择及校验 (31) 5.2.4 母线 (32) 5.2.5 高压开关柜的选择 (34) 第六章导线的选择与敷设 (36) 6.1导线选择的条件 (36) 6.2电缆型号的含义 (37) 6.3导线截面的选择 (37) 6.4电缆的选择与计算 (38) 第七章主变压器的继电保护 (40) 7.1继电保护的任务和基本要求 (40) 7.2保护的装设原则 (41) 7.2.1 电力变压器应装设的保护装置 (41) 7.2.2 保护形式 (42) 7.2.3 变电所的室外布置 (46) 第二部分采区变电所 (47) 第一章采区变电所的负荷统计 (47) 第二章变压器的选择 (49) 2.1变压器的选择 (49) 第三章采区电缆的选择 (52) 3.1电缆型号的确定 (52) 3.1.1电缆选择的基本原则 (52) 3.1.2 型号的确定 (52) 3.2电缆截面的选择 (52) 3.2.1 采区变电所6kv电源,电缆的选择 (52) 3.2.2按长时允许电缆流校验电缆截面: (53) 3.2.3 按电压损失校验。 (53) 3.2.4 按热稳定条件校验。 (54)

煤矿地面变电所设计

第一章矿井(区)概况 一、概述 1、目的与任务 变电所是电力配送的重要环节,也是煤矿生产供电的关键环节。变电所设计质量的好坏,直接关系到电力系统的安全、稳定、灵活和经济运行,为满足煤矿对生产发展的需要,提高供电的可靠性和电能质量。随着国民经济的发展,工农业生产的增长需要,迫切要求增长供电容量,拟新建35k V 变电所。变电站是电力系统的重要组成部分,它直接影响整个电力系统的安全与经济运行,是联系发电厂和用户的中间环节,起着变换和分配电能的作用。电气主接线是发电厂变电所的主要环节,电气主接线的拟定直接关系着全所电气设备的选择、配电装置的布置、继电保护和自动装置的确定,是变电站电气部分投资大小的决定性因素。此设计任务旨在体现自己对本专业各科知识的掌握程度,培养自己对本专业各科知识进行综合运用的能力,同时检验本专业的学习结果,是毕业前的一次综合性训练,是对所学知识的全面检查。通过本次毕业设计,既有助于提高自己综合运用知识的能力,同时也有助于以后在工作岗位能很快的适应工作环境。 2、矿井概述: 本矿井位于七台河市茄子河区东部,地跨茄子河区、桃山区,东起铁东-新富附近,西止308省道;南自万宝村断层,北至华楠县边界。东西长40~150km,南北宽135k m左右,面积约127平方公里。百年最高洪水位0.2米,交通便利,地处山区, 所在海拔高度120M。最高年平均气温8摄氏度,月平均气温16摄氏度。该矿采用综合开拓方式,年产200万吨,服务年限为100年,瓦斯等级为2级,煤尘爆炸指数为0.15% 二、拟建变电站概况 1、本变电所电源以双回路与 5km外的电厂相连。该电厂为汽轮机发

煤矿井下供电设计指导书(综采篇)

煤矿井下供电设计指导书 (综采篇) 引文:本指导书主要依据GB50417-2007《煤矿井下供配电设计规范》中相关内容进行编制,严格执行《煤矿安全规程》、《煤炭工业设计规范》、《煤矿井下供电设计技术规定》中的有关规定。 第一章井下综采供电设计概述 1、根据地质资料、巷口平面图以及采煤工艺,确定巷道及其设备布置,采煤方法,主要运输设备。 2、根据通风系统的要求,为确保工作面回采过程中通风系统的稳定,选择合适的通风方式,以及局扇通风设备。 3、根据工作面位置确定电源的取向,以及电压等级的确定。 表3 煤矿常用的电压等级及用途

4、根据地质部门提供的水文资料,选择排水设备。 第二章 井下电力负荷统计及计算 我矿工作面均为高产高效工作面,根据工作面基本参数,结合综采配套设备重新定型,电力负荷计算应符合下列规定: 1、能够较精确计算出电动机功率的用电设备,直接取其计算功率; 2、其他设备,一般采用需要系数法计算。 S= cos d K Pe φ ?∑ 式中:S —工作面的电力负荷视在功率(kV A ) ∑Pe—参加计算的所有用电设备额定功率之和,KW Kd —需用系数 Kd = r Klo Kt ηη ?? Klo —同时系数。该工作组在最大负荷时,工作着的用电设 备容量与该组用电设备总容量之比称为同时系数 Kt —负荷系数。该设备组在最大负荷时,工作着的用电设备 实际所需功率与工作着的用电设备总功率之比称为负荷系数,取0.74 r η—线路供电效率。线路末端功率与始端功率之比,一般 为0.95~0.98。

η—用电设备在实际运行功率时的效率,取0.9 cos Φ—加权平均功率因数,取0.85 第三章 变压器的选型 变压器是供电系统中的主要电气设备,对供电的可靠性、安全性和经济性有着重要意义,如果变压器容量选择得过大,不仅使设备投资费用增加,而且变压器的空载损耗也将过大,促使供电系统中的功率因数值减小;如果变压器容量选择得过小,在长期过负荷运行情况下,铜损将增大,使线圈过热而加速老化,缩短变压器寿命,既不安全也不经济。因此,正确的计算负荷和选用变压器是井下供电设计中的重要组成部分,必须予以重视。我矿根据多年来的实践经验,整合了一套计算方法,供有关单位及技术人员参考。 一、根据变压器二次侧实际工作负荷容量来计算 S b = cos d K Pe φ ?∑ 可知 式中:Sb —变压器计算容量,KV A ∑Pe—参加计算的所有用电设备额定功率之和,KW Kd —需用系数 Kd = r Klo Kt ηη ?? Klo —同时系数。该工作组在最大负荷时,工作着的用电设备容 量与该组用电设备总容量之比称为同时系数 Kt —负荷系数。该设备组在最大负荷时,工作着的用电设备实际 所需功率与工作着的用电设备总功率之比称为负荷系数,取0.74

煤矿井下供配电设计规范

煤矿井下供配电设计规范目次 1总则 2井下供配电系统与电压等级3井下电力负荷统计与计算 4井下电缆选择与计算 4·1电缆类型选择 4·2电缆安装及长度计算 4·3电缆截面选择 5井下主(中央)变电所设计5·1变电所位置选择及设备布置5.2设备选型及主接线方式 6采区供配电设计 6·1采区变电所设计 6·2移动变电站 6·3采区低压网络设计 7井下电气设备保护及接地7·1电气设备及保护 7·2电气设备保护接地 8井下照明 本规范用词说明 附:条文说明 1总则

1.0.1为在煤矿井下供配电设计中贯彻执行国家有关煤炭工业建设的法律、法规和方针政策,做到技术先进、安全可靠、经济合理、节约电能和安装维护方便,特制定本规范。 1.0.2本规范适用于设计生产能力0.45Mt/a及以上新建矿井的井下供配电设计。 1.0.3煤矿井下供配电设计应从我国国情出发,依靠科学技术进步,采用国内外先进技术,经实践检验成熟可靠的新设备、新器材,提高煤炭工业的装备水平和安全管理水平。 1.0.4煤矿井下供配电设计除应符合本规范外,尚应符合国家现行有关标准的规定。 2井下供配电系统与电压等级 2.0.1下列用电设备应按一级用电负荷设计,其配电装置必须由两回路或两回路以上电源线路供电。电源线路应引自不同的变压器和母线段,且线路上不应分接任何其他负荷。 1井下主排水泵: 2下山采区排水泵: 3兼作矿井主排水泵的井下煤水泵: 4经常升降人员的暗副立井绞车; 5井下移动式瓦斯抽放泵站。 2.0.2下列用电设备应按二级用电负荷设计,其配电装置宜由两回电源线路供电,并宜引自不同的变压器和母线段。当条件受限制时,其中一回电源线路可引自本条规定的同种设备的配电点处。 1暗主井提升设备、主井装载设备、大巷强力带式输送机、主运输用的井下电机车充电及整流设备; 2经常升降人员的暗副斜井提升设备、副井井底操车设备、元轨运输换装设备; 3供综合机械化采煤的采区变(配)电所; 4煤与瓦斯突出矿井的采区变(配)电所; 5井下移动式制氮机; 6井下集中制冷站; 7不兼作矿井主排水泵的井下煤水泵、井底水窝水泵; 8井下运输信号系统; 9井下安全监控系统分站。

矿山供电系统设计

9矿山生产系统设计 9.4 供电系统设计 9.4.1 概述 一供电的重要性和基本要求 电力是企业生产的主要能源。对企业应做到可靠、安全全和生产的需要,企业对供电提出以下基本要求:供电安全、供电可靠、供电优质、供电经济。 1.供电安全 在电能的供应、分配和使用过程中,不应发生人身伤亡和设备损坏事故。对于煤矿生产来说,由于主要是地下作业,工作环境特殊,供电线路和电气设备易受损坏,可能造成人身触电、电气火灾和电火花引起的瓦斯煤尘爆炸等事故,所以必须严格按照《煤矿安全规程》的有关规定进行供电,确保安全生产。 2.供电可靠 供电可靠就是要求供电具有连续可靠性。供电中断时不仅影响企业生产,而且可能损坏设备,产生废品,甚至发生人身伤亡事故。而煤矿一旦断电,不仅影响产量,还有可能引发瓦斯集聚、淹井、人身伤广和设备损坏,严重时将造成矿井的破坏。为了保证供电的可靠性,通常采用双电源。双电源可来自不同变电所或发电厂或同一变电所的不同母线上。对于煤矿,在一个电源发生故障的情况下,另一电源应能满足对主要个产设备的供电,以保证通风、排水以及生产的正常进行。 3.供电优质 在保证安全和可靠供电的前提下,还要保证供电的质量,用电设备在额定值下运行性能最好。因此要求供电质量方面有稳定的电压和频率,电压和频率足衡量电能质量的重要指标。 具体有以下4项指标: (1)电压:额定电压电压偏差不得超过允许值,电动机±5%,白炽灯+3%~-2.5。 (2)频率:额定频率50Hz,频率偏差不得大于±0.4%~±1%。 (3)波形:正弦波形,波形上不得有高次谐波产生的毛刺,以防造成电力污染。 (4)平衡度:三相电网电压平衡。 4.供电经济 一般考虑下列3个方面; (1)尽量降低企业变电所与电网的基本建设投资。 (2)尽量降低设备材料及有色金属的消耗量。 (3)注意降低供电系统的电能损耗及维护费用。 此外,企业还要求有足够的电能。这不仅要求电力系统或发电厂能提供充裕的电能而且要求企业供电系统的各项供电设施具有足够的供电能力。 二电力负荷分类 为了满足电力用户对供电可靠性的要求,即停电所造成的影响不同.同时又考虑到供电的经济件,根据用电设备在企业中所处的重要地位,以方便在不同情况下区别对待,通常将电力负荷分为3类。 1.一类负荷(一级负荷) 凡因突然小断供电,可能造成人身伤亡事故或重要设备损坏事故,给国民经济造成重大损失的或在政治上产生不良影响的负荷,均属于一类负荷。如钢厂炼

煤矿地面35kV变电站的设计毕业设计(论文)

摘要 本设计初步设计了煤矿地面35kV变电站的设计。其设计过程主要包括负荷计算、主接线设计、短路计算、电气设备选择、继电保护方案、变电所的防雷保护与接地等。通过对煤矿35KV变电站做负荷统计,用需用系数法进行负荷计算,根据负荷计算的结果确定出该站主变压器的台数、容量及型号。用标幺值法对供电系统进行了短路电流计算,为电气设备的选择及校验提供了数据。根据煤矿供电系统的特点,制定了矿井变电所的主结线方式、运行方式、继电保护方案。其中35KV 侧为全桥接线,6KV主接线为单母分段。两台主变压器采用分列运行方式。并根据电流整定值以及相关数据的校验,选择了断路器、隔离开关、继电器、变压器等电气设备。 关键字:负荷计算; 变电站; 继电保护;运行方式

目录 摘要 (1) ABSTRACT .............................. 错误!未定义书签。 1 概述 (1) 1.1 设计依据 (1) 1.2 设计目的及范围 (1) 1.3 矿井基础资料 (1) 2 负荷计算 (4) 2.1 负荷计算的目的 (4) 2.2 负荷计算方法 (4) 2.3 负荷计算过程 (5) 2.3.1 各用电设备组负荷计算 (5) 2.3.2 低压变压器的选择与损耗计算 (8) 2.3.3 6kV母线侧补偿前总计算负荷 (11) 2.3.4 无功补偿计算及电容器柜选择 (11) 2.3.5 补偿后6kV母线侧总计算负荷及功率因数校验 . 12 3 变电所主变压器选择 (13) 3.1 变压器的选取原则 (13) 3.2 变压器选择计算 (13) 3.3 变压器损耗计算 (14) 3.4 35kV侧全矿负荷计算及功率因数校验 (15) 3.5 变压器经济运行方案的确定 (15) 4 电气主接线设计 (16) 4.1 对主接线的基本要求 (16) 4.2 本所电气主接线方案的确定 (16) 4.2.1 确定矿井35kV进线回路 (16) 4.2.2 35kV、6kV主接线的确定 (17) 4.2.3下井电缆回数的确定 (17) 4.2.4 负荷分配 (18) 5 短路电流计算 (20) 5.1 短路电流计算的目的 (20) 5.2 短路电流计算中应计算的数值 (20) 5.3 三相短路电流计算计算的步骤 (20) 5.4短路电流计算过程 (21) 5.5短路参数汇总表 (30) 5.6 负荷电流统计表 (32) 6 高压电气设备的选择 (33)

煤矿供电设计高低压

一、负荷计算与变压器选择 工作面电力负荷计算是选择变压器和移动变电站台数、容量的依据,也是配电网络计算的依据之一。 1、负荷统计 按表1-1内容,把工作面的每一种负荷进行统计。 表1-1 工作面负荷统计表格式 平均功率因数计算公式: en e e en en e e e e pj P P P P P P ++++++=...cos ...cos cos cos 212211???? 加权平均效率计算公式:

en e e en en e e e e pj P P P P P P ++++++=......212211ηηηη 注:负荷统计表的设计参考北京博超公司的负荷统计表的设计 2、负荷计算 1)变压器需用容量b S 计算值为: pj e x b P K S ?cos ∑= ()KVA 2)单体支架各用电设备无一定顺序起动的一般机组工作面,按下式计算需用系数: ∑+=e x P P K max 714 .0286.0 3)自移式支架,各用电设备按一定顺序起动的机械化采煤工作面,按下式计算需用系数: ∑+=e x P P K max 6 .04.0 max P ——最大一台电动机功率,kw 。

井下其它用电设备需用系数及平均功率因数表

二、高压电缆选择计算和校验 1、按长时负荷电流选择电缆截面 长时负荷电流计算方法:pj pj e x e g U k P I η?cos 3103 ??= ∑ ∑e P ——高压电缆所带的设备额定功率之和kw ;(见变压器负荷统计中的结果) x k ——需用系数;计算和选取方法同前。(见变压器负荷统计中的结 果) e U ——高压电缆额定电压(V) V 10000、V 6000; pj ?cos ——加权平均功率因数; (见变压器负荷统计中的结果) pj η——加权平均效率。0.8-0.9 2、电缆截面的选择 选择要求是: g y I KI ≥ ―> 长时最大允许负荷电流应满足: K I I g y ≥,初步筛选出符合条件 的电缆 g I ——电缆的工作电流计算值,A ; y I ——环境温度为C o 25时电缆长时允许负荷电流,A ; K ——环境温度校正系数。

矿井供电设计

第一章电气 第一节供电电源 一、地方及矿区电力系统现状 山西煤炭运销集团张家湾煤业有限公司井田位于该矿位于大同市南郊区云岗镇白庙村西十里河北岸,行政隶属大同市新荣区上深涧乡管辖。该煤业有限公司当前供电源实际情况为:于该矿办公楼附近建有一座10kV变电所,其两回供电电源采用10kV 架空线,一回引自吴官屯35kV变电站10kV母线,供电距离9.5km,架空导线选用LGJ-70mm2;另一回引自上深涧35kV变电站10kV母线,供电距离8km,架空导线选用LGJ-70mm2。变电所安装S9-1000/10/6kV 1000kVA变压器2台,采用一用一备运行方式。 本矿周围电源情况: 于本矿东北面大约8km的上深涧乡建有1座35kV变电站,该变电站装有两台6.3MVA主变压器,配有10kV出线间隔,负荷率为40%;于本矿正东大约9.5km的吴官屯建有1座35kV变电站,该变电站装有两台6.3MVA主变压器,配有10kV出线间隔,负荷率为40%; 综上周围电源情况分析,矿井电源可靠,供电质量有保证;完全能够满足本矿生产生活供电的需要。 二、矿井供电电源 该矿现有10kV变电所设施已不满足本矿供电要求,考虑本矿的用电负荷大小、线路长度、允许电压损失等条件并结合矿井负荷地理分布和矿井周围电源情况,根据电力系统规划,本设计对该矿10kV变电所进行升级改造。该变电站两回电源分别为:其两回供电电源仍采用10kV架空线,一回引自吴官屯35kV变电站10kV母线,供电距离

9.5km,架空导线改用LGJ-185mm2;另一回引自上深涧35kV变电站10kV母线,供电距离8km,架空导线改用LGJ-185mm2。两回电源一回工作,另一回带电备用,完全能够满足本矿在供电安全性、可靠性、供电容量等方面的要求,矿井两回电源线路均为专线,严禁装设负荷定量器。 地区电力系统地理接线示意图见图11-1-1。 第二节电力负荷 本矿设备在矿井最大涌水时,经负荷统计计算电力负荷为: 矿井用电设备总台数: 149台 矿井用电设备工作台数: 118台 矿井用电设备总容量: 4216.8kW 矿井用电设备工作容量: 3462.75kW 补偿前矿井计算有功功率: 2438.31kW 补偿前矿井计算无功功率: 2223.33kVar 补偿前矿井计算视在容量: 3299.79kVA 补偿前矿井自然功率因数: 0.70 10kV母线补偿用电容器容量: 1500kVar 补偿后折算至10kV侧计算有功功率: 2438.31kW 补偿后折算至10kV侧计算无功功率: 723.33kVar 补偿后折算至10kV侧计算视在容量: 2543.34kVA 补偿后矿井功率因数: 0.96 全矿年耗电量: 755×104 kWh 吨煤电耗: 25.17kWh 具体电力负荷统计见表11-2-1。 变压器选择见表11-2-2。

煤矿采区变电所供电设计

XXXX煤矿 采区变电所设计 设计: 审核: 批准: 二0一三年二月五日

一、概况 -400西变电所位于-520水平上平台,负责-350水平变电所、西五采区、-520水平的供电,-350水平变电所负责西四采区和西三采区的供电;西五采区现有一个掘进工作面,一个采煤工作面,-520水平现有一个掘进工作面;各采区采掘均分开供电,并实行“三专两闭锁”,掘进工作面均采用双风机双电源,采区变电所设在大巷进风流中,高压供电电压为6kv,采区用电设备电压为660v,信号照明电压为127v。 二、采区设备负荷统计 1、-350水平变电所负荷统计 2、西五采区负荷统计 1、采煤设备负荷统计表

3、-520水平负荷统计

三、高压电缆截面确定 (1)-400西变电所电缆截面 按设计规定,初选MYJV 22-3×35交联聚氯乙烯干式高压电缆,其主芯线截面A=35mm 2。电缆长度为实际敷设距离1900m 的1.05倍,为1995m 。 ①按照长时允许电流校验高压电缆截面 查表得这类电缆在25°的环境中的长时允许负荷电流为I g =148A , pj pj e x e g U k P I ηcos 3∑ = ∑ e P ——高压电缆所带的设备额定功率之和,kw ; x k ——需用系数;计算取0.5; e U ——高压电缆额定电压(V), 6000v ; pj cos ——加权平均功率因数, 0.6; pj η——加权平均效率,0.8-0.9; A U k P I pj pj e x e g 1365.61 760.55 0.90.661.7320.51.1521ηcos 3∑ ==××××= = 注:负荷统计中,包括三台水泵电机的负荷。 I g =136A<148A,故所选电缆能够满足长时工作发热需要。 ②按照经济电流密度校验高压电缆截面 24.6025 .2136 mm j I A n === >253mm 查表经济电流密度: 2 25.2mm A J = 所选电缆截面略小,不够经济,但能满足使用要求。

2019煤矿矿井供电设计

新临江煤矿(水井湾矿井) 供电设计 (一)矿井电源 设计矿井采用两回电源线路供电,一回、二回电源来自大竹木头变电站不同电源母线端,电压10kV ,供电距离2km ,采用一趟LGJ-3×70型架空线路输送至地面变电所。 (二)电源线路安全载流量及电压降校核 1、按经济电流密度选择电源线路截面 全矿计算电流: ) (A 17.699 .01032 .1078=??= I 14.6015 .117.69===J I A n e 2mm 来自大竹县木头变电站的不同母线段导线型号均采用LGJ-3×70。 2 mm <702 mm ,满足供电要求,并留有余地。 式中:矿井最大有功负荷。 2、按长时允许负荷电流校验电缆截面 线路LGJ-3×70允许载流量:环境温度为25℃时为275A (查表),考虑环境温度40℃时温度校正系数,则Ix=275×=(A ) Ix=>I= 3、电源线路压降校核 供电线路LGJ-3×70/10kV 单位负荷矩时电压损失百分数:当cos ∮=时为%/(查表) 则电源线路电压降为:△U 1%=×2×%=%<5% 式中:电源线路长取2km 。 来自大竹县木头变电站不同母线段两回电源线路电压降均符合要求。 (三)电力负荷 1、矿井采用机械化采煤,投产时期即为最大负荷时期。机电设备布置及使用情况统计详见表10-1。 设备总台数 47台 设备工作台数 36台 设备总容量 设备工作容量 有功负荷 无功负荷 视在功率 功率因数 按补偿后功率因数达到约,则所需补偿电容容量为 ??? ? ??---=1cos 11cos 1202??P Q ??? ? ??-?--?=195.095.01 182.082.012.1078Q = 考虑到电容易的配置及矿井负荷的变化情况,变电所电容易室安装BFMR11-420-3W 型高压电容自动补偿装置2套,补偿无功功率420kvar 。补偿后: 无功功率: 视在功率:

某煤矿井下采区变电所供电系统设计

煤矿采区供电设计所需原始资料 煤矿采区供电设计所需原始资料 在进行井下采区供电设计时,必须首先收集以下原始资料,作为设计的依据。 (1)矿井的瓦斯等级,采区煤层走向、倾角,煤层厚度、煤质硬度、顶底板情况、支护方式。 (2)采区巷道布置,采区区段数目、区段长度、走向长度、采煤工作面长度,采煤工作面数目,巷道断面尺寸。 (3)采煤方法,煤、矸、材料的运输方式,通风方式。 (4)采区机械设备的布置,各用电设备的详细技术特征。 (5)电源情况。了解采区附近现有变电所及中央变电所的分布情况,供电距离、供电能力及高压母线上的短路容量等情况。 (6)采区年产量、月产量、年工作时数,电气设备的价格、当地电价、硐室开拓费用、职工人数及平均工资等资料。 此外,在做井下采区供电设计时还需要准备下述资料: 《煤矿安全规程》、《煤炭工业设计规范》、《煤矿井下供电设计技术规定》、《矿井低压电网短路保护装置整定细则》、《矿井保护接地装置安装、检查、测定工作细则》、《煤矿井下检漏继电器安装、运行、维护与检修细则》、《煤矿电工手册》第二分册(下)、《中国煤炭工业产品大全》、各类有关的电气设备产品样本、各类供电教材。煤矿采区供电设计供电系统的拟定

拟定采区供电系统,就是确定变电所内高、低压开关和输电线路及控制开关的数量。在拟定供电系统时,应考虑以下原则: (1)在保证供电安全可靠的前提下,力求所用的开关、起动器和电缆等设备最少; (2) 原则上一台起动器只控制一台低压设备;一台高压配电箱只控制一个变压器。当高压配电箱或低压起动器三台及以上时,应设置进线开关;采区为双电源供电时,应设置两台进线高压配电箱。 (3)当采区变电所的动力变压器多于一台时,应合理分配变压器的负荷,原则上一台变压器负担一个工作面的用电设备;且变压器最好不并联运行; (4)由工作面配电点到各用电设备宜采用辐射式供电,上山及顺槽的输送机宜采用干线式供电;供电线路应走最短的路线,但应注意回采工作面(机采除外)、轨道上下山等处不应敷设电缆,溜放煤、矸、材料的溜道中严禁敷设电缆,并尽量避免回头供电; (5)大容量设备的起动器应靠近配电点的进线端,以减小起动器间电缆的截面; (6)低瓦斯矿井掘进工作面的局部通风机,可采用装有选择性漏电保护装置的供电线路供电,或采用掘进与采煤工作面分开供电; (7)瓦斯喷出区域、高瓦斯矿井、煤(岩)与瓦斯(二氧化碳)突出矿井中,掘进工作面的局部通风机都应实行三专(专用变压器、专用开关、专用线路)供电; (8)局部通风机与掘进工作面的电气设备,必须装有风电闭锁装置。

相关主题
文本预览
相关文档 最新文档