当前位置:文档之家› 细探荧光灯电子镇流器工作原理

细探荧光灯电子镇流器工作原理

细探荧光灯电子镇流器工作原理
细探荧光灯电子镇流器工作原理

这几年来,电子镇流荧光灯行业持续大发展,产品水平不断提高,中国在世界上作为节能灯大国的地位已经确立;中国还要进一步成为节能灯强国,这就需要对产品技术和相应的技术基础理论进行进一步的探索。在对灯用三极管损坏机理的深入研讨中,笔者感到这以前对荧光灯电子镇流工作原理的描述越来越满足不了需要,甚至其中还有谬误之处,有必要对其进行更深入仔细的研究探讨。为避免复杂的数学推导,本文用较多的实测波形图加以说明。

电子镇流器工作最基本的原理是把50HZ的工频交流电,变成20-50KHZ的较高频率的交流电,半桥串联谐振逆变电路中上下两个三极管在谐振回路电容、电感、灯管、磁环的配合下轮流导通和截止,把工频交流电整流后的直流电变成较高频率的交流电。但是,具体工作过程中,不少书刊上把谐振回路电容充放电作为主要因素来描述,甚至认为“振荡电路的振荡频率是由振荡电路充放电的时间常数决定的”。

我们感到谐振回路电容充电和放电是变流过程中的一个重要因素,但是,振荡电路的振荡频率却不能说就是由振荡电路的充放电时间常数决定的,电路工作状态下可饱和脉冲变压器(磁环)磁导率变化曲线的饱和点和三极管的存储时间ts是工作周期的重要决定因素。

三极管开关工作的具体过程中,不少书刊认为“基极电位转变为负电位”使导通三极管转变为截

止,”T1(磁环)饱和后,各个绕组中的感应电势为零”“VT1基极电位升高VT2基极电位下降”;我们认为实际工作情况不是这样的。

一、三极管开关工作的三个重要转折点:

1、三极管怎样由导通转变为截止——第一个转折点:

不管是图1用触发管DB3产生三极管的起始基极电流Ib,还是基极回路带电容的半桥电路由基极偏置电阻产生三极管VT2的起始基极电流Ib,三极管的Ib产生集电极电流Ic,通过磁环绕组感应,强烈的正反馈使Ic迅速增长,三极管导通,那么三极管是怎样由导通转变为截止的?

图1原理图

图2磁环磁化曲线与三极管Vce、Ic、Ib

实践证明,三极管导通后其集电极电流Ic增长,其导通转变为截止的过程有两个转折点,首先是可饱和脉冲变压器(磁环)磁导率μ的饱和点。

图2中上面为磁环磁化曲线(B-H)及磁导率μ-H变化曲线,μ=B/H,所以μ就是B-H曲线的斜率,开始时μ随着外场H的增加而增加,当H增大到一定值时μ达到最大,其最大值为μ-H曲线的峰值即可饱和脉冲变压器磁导率的峰值。此后,外场H增加μ减小。在电子镇流荧光灯电路中,磁环工作在可饱和状态,它在每次磁化过程中其μ值必须过其峰值。

在初期可饱和脉冲变压器(磁环)磁导率随着Ic的增长而增长(图2);Ic增长到一定值,可饱和脉冲变压

器的磁导率μ过图2中峰值点,磁环绕组感应电压V环=-Ldi/dt,而磁环绕组电感量(此公式还说明了磁环尺寸在这方面的作用),也就是说磁环绕组感应电压与可饱和脉冲变压器(磁环)磁导率μ成正比,磁环绕组感应电压V环过峰值(关于磁环绕组内电流的情况在本文后面说明,这里先以实测波形图说明),三极管基极电流Ib同步过峰值(图2、图3),图2下半部分为三极管Vce、Ic、Ib波形图,图2上半部分和下半部分有一根垂直的联线,把基极电流Ib的峰值点和可饱和脉冲变压器的磁导率μ的峰值点联系到了一起,这是外部电路改变三极管工作状态的重要信号点,也就是三极管由导通转变为截止的第一个转折点。随着V环的下降Ib也下降,但这时基区内部的电压仍然是正的,当磁环绕组感应电压V环低于

基区内部的电压时(基区外电路所加电压下降到低于基区内部的电压但仍然是正的),少数的载流子就从基区流出.基极电流反向为负值Ib2(图3红色曲线2);图3显示了三极管基极电流Ib峰值(红色曲线2)和磁环绕组感应电压峰值(兰色曲线1)是同步的,过峰值后基极电流反向为负值。在这期间,基区电流(称为IB2)是负,但是VCE维持在饱和压降VCEsat(图4兰色曲线1),而IC电流正常流动(图4红色曲线2),这时期对应存储时间(Tsi)。在这段时间Vbe始终是正的,但是基区电流(称为IB2)是负的。有的书上说导通管的关闭是因为其基极电位转变为负电位,也有的书上说“T1(磁环)饱和后,各个绕组中的感应电势为零”,这不符合实际情况,从波形图上我们可以清楚地看到这段时间Vbe始终是正的。导通管的基极电位转变为负电位是在Ic存储结束,流过磁环绕组的电流达到峰值-Ldi/dt等于零的时刻之后,而不是在Ic存储刚开始的时刻。

图3磁环绕组感应电压V环及三极管基极电流Ib

图4三极管电压Vce及基极集电极电流IbIc

不少书刊说导通管的关闭是因为其基极电位转变为负电位,这里多加几幅插图加以说明。从图5可以看到在整个三极管集电极电流Ic导通半周期内,其基极电压Vbe都是正的,一直到Ic退出饱和开始下降;从图6可以看到在整个三极管集电极电流Ic导通半周期内,其磁环绕组感应电压V环也都是正的,一直到Ic退出饱和开始下降才开始下降变负。

图5三极管集电极电流Ic及基极电压Vbe

图6三极管集电极电流Ic及磁环绕组感应电压V环

比较图5和图6可以看到在三极管集电极电流Ic接近最大值,也就是三极管进入存储工作阶段时Vbe>V 环,这也可以用来解释IB2是负值的原因。

基极电流反向为负值是因为三极管进入存储工作阶段时Vbe>V环,但是,由于V环是正的,而不是负的,所以基极电流反向电流是“流”出来的,而不是“抽”出来的。

磁环次级绕组电压是由流经电感的电流-di/dt所决定,过零点在峰值点,即电流平顶点(图7);经过电感流向灯管的电流IL,在磁环绕组和扼流电感上产生感应电压,其过零点为IL的峰值顶点(di/dt=0)(图8),这里也可以看到V环变负的真正时间。

图7磁环次级绕组电流及两端电压

图8电感电流及两端电压VL

2、三极管从存储结束退出饱和,到三极管被彻底关断(tf):第二个转折点及第三个转折点

(1)、三极管进入存储时间阶段,Ib变为负值并一直维持(图4绿色曲线A);

三极管存储结束退出饱和:当Ib负电流绝对值开始减小的时刻(图4绿色曲线A),也就是Ic存储结束开始减小(图4红色曲线2),Vce离开饱和压降Vcesat开始上升的时刻(图4兰色曲线1),这也就是三极管由导通转变为截止的第二个转折点。整个过程也由两部分组成,开始很快降低,后面还有很长一段电流很小的拖尾。

当没有残余电荷在基区里面时,IB2衰减到零,而IC也为零,这是下降时间,三极管被彻底关断,BC 结承担电路电源电压,一般应为310V左右(图4绿色曲线A上毛刺对应的时刻兰色曲线1Vce值为314V))。也就是三极管由导通转变为截止的第三个转折点。

在第二个转折点到第三个转折点之间这段时间,Vce离开饱和压降Vcesat,开始上升到电路电源电压。(图4兰色曲线1)

(2)、电感电流IL与上下两个三极管集电极电流Ic1、Ic2的关系,C3R2的作用(关断过程之二):

在第二个转折点与第三个转折点之间Ic1Ic2的波形有一个缺口,IL波形没有缺口

图9上管集电极电流Ic1与下管集电极电流Ic2之间的缺口

图10流过R2C3的电流和Vce电压波形

三极管Ic存储结束,电流开始快速下降,后面还有很长一段电流很小的拖尾;在这个时候另一个三极管仍然是截止的,还没有开始导通,这样就会造成一个电流缺口(图9)。但是电感L上的电流是不可能中断的,这个缺口由上管CE之间的R2C3的充放电电流来填补(图10)。

上管从Ic存储结束,Vce开始上升,整个过程也有二部分组成,开始很快降低,后面还有很长一段电流很小的拖尾,Vce从零上升到310V,C3也得充电到310V,其充电电流即为填补缺口的那部分电流(图10),电感L中的电流得以平滑过渡。Vce从零上升到310V,C3也得以充电到310V的那一时刻,其充电电流被关断。VT1从截止转为导通时,R2C3放电,其放电电流填补电流缺口。

对于这一点,有的书上是这样说的:“C3R2组成相位校正网络,使输出端产生的基频电压同相”说的应该就是这个意思。

R2C3的存在,实际上也避免了两个三极管电流的重叠,即一个三极管尚未关断,另一个三极管已经导通,所谓“共态导通”的问题,提供了一个“死区时间”。

3、三极管是怎样由截止转变为导通的?有的书刊上说是三极管基极通过磁环次级绕组“得到正电位的激励信号电压而迅速导通”,实际上三极管Ic存储结束的这一时刻开始,磁环次级绕组的电压即过零开始变为正电位,但是直到VT2被彻底关断那一刻以前VT1一直没有开通(图5、图6)。图5、图6中可以清楚地看到三极管产生集电极电流Ic的时刻落后于基极电压Vbe(磁环绕组感应电压V环)变正的时刻一段时间。

确切地说,三极管产生集电极电流Ic(开始开通)的准确时刻应该是另一个三极管被彻底关断的时刻。从整个电子镇流荧光灯电路来说,这也就是前面所说三极管由导通转变为截止的第三个转折点。从时间上来说三极管产生集电极电流Ic(开始开通)的准确时刻也就是R2C3上的充放电电流终了的时刻,而这个时刻正是另一个三极管被彻底关断的时刻。

从波形图上看,三极管产生集电极电流Ic(开始开通)的时刻,正是电感L两端电压的峰值点(图11)。

另一管Ic的开通:电感L中的电流不能突变,而此时Vbe已为正,三极管产生一个反向电流,此时也正好是电感L两端电压的峰值点(图11)。

图11Ic的开通正好是电感L两端电压的峰值点

图12BE并联反向二极管三极管Vce、Ic波形图

为什么在电子镇流荧光灯电路中三极管的上升时间tr我们不予以关注?从上面对三极管集电极电流Ic 的开通过程就可以得到答案。在这里,三极管集电极电流Ic的上升过程不符合三极管的上升时间tr的定义,因此tr在这里也就失去了它原来的意义。

由于三极管Ic存储结束的这一时刻开始,磁环次级绕组的电压即过零开始变为正电位,但是在R2C3上的充放电电流终了的时刻那一刻以前,正常情况下VT1一直没有开通;必须注意的是,当线路调整不好的时候,这里Ic会产生一个有害的毛刺。

二、三极管集电极电流Ic初始值的讨论:

带电感负载的开关三极管,在三极管关断时因电感产生反电动势会受到一个高电压。但是,在目前国内大量采用的电子镇流荧光灯半桥电压反馈电路中,开关三极管电压的选择,是不考虑这个反电动势的;在实际生产中,用世界上最好的示波器去观察,也看不到高于整流滤波后电源电压的波形;对于灯用三极管设计生产厂家来说,三极管的电压参数选取得是否合理,关系到如何真正做到“低成本、高可靠”;如果不切实际地把三极管的电压参数选高了,用户最需要的电流特性就会受到影响。那么,电路中的这个反电动势,是通过什么渠道泄放掉的?在R2C3上的充放电电流终了后,实际上就是通过三极管集电极电流Ic初始值泄放的。(三极管CE并联反向二极管的话,这个初始值被二极管分流一部分)

由于电感L中的电流不能突变,三极管集电极电流Ic的初始值,必须和R2C3上的充放电电流终了值一致。R2C3上的充放电电流的初始值在数值上与另一个三极管Ic的关断终了值一致,但方向相反;而R2C3上的充放电电流的终了值与初始值相差不大,三极管集电极电流Ic一个很大的负电流初始值就是这样来的。这个很大负电流的流经方式要分四种情况讨论。

1、三极管BE并联反向二极管-三极管BC结(图1);

2、三极管CE并联反向二极管(图13);

3、三极管BE、CE同时并联反向二极管(图14)

4、三极管BE、CE都没有并联反向二极管(图15)

图13三极管CE并联反向二极管电路图

图14三极管BE、CE同时并联反向二极管电路图

图15三极管BE、CE不加并联反向二极管电路图

图16三极管Vce、BE并联反向二极管内电流波形图

在这四种情况中,我们首先讨论第一种情况:

从图12图16可以看到,流经三极管集电极的电流Ic从三极管BE之间的二极管流过(图16)。三极管集电极-发射极电压Vce加的是负电压,三极管反向工作。

在这以前,这几年我们一直在三极管的关断功率损耗上做文章,降低三极管的关断功率损耗,提高可靠性。其实三极管反向工作这一段时间的反向功率损耗也应该引起足够的注意,因为这一段时间三极管上的工作电压、电流、延续时间都比较可观,因此其上的功率损耗也比较可观,必须加以注意。

实际生产中,不加BE反向二极管,有一定比例的三极管损坏,而且是BE结损坏,认为是三极管BE 反向耐压不够,这是误解。应该是负电流的流经渠道不畅造成三极管功率损耗过大。

第二种情况,三极管CE并联反向二极管(图13):另一个三极管彻底关断、R2C3充放电结束的时刻,电感IL内的电流(相当于R2C3充放电电流终了值)大部分流经VD6(VD7),少部分仍然流经三极管BC结(体现为三极管集电极电流Ic)。

第三种情况,三极管BE、CE同时并联反向二极管(图14):另一个三极管彻底关断、R2C3充放电结束的时刻,电感IL内的反向电流(相当于R2C3充放电电流终了值)大部分流经CE并联反向二极管

VD6(VD7),少部分仍然流经三极管BE并联反向二极管-三极管BC结(体现为三极管集电极电流Ic)。

第四种情况,采用DB3触发的小功率节能灯在三极管功率余量足够时,可以不加BE反向二极管(图15),这是因为负电流有一个通过磁环次级绕组、基极电阻、三极管BC结的流经渠道(图17IB刚开始上跳时的波形),基极回路带电容的半桥电路不能没有BE并联反向二极管。

图17BE不并联反向二极管三极管Vce、IB波形图

采用BUL128D这一类带续流二极管的抗过驱动三极管,不要再加CE二极管。

三极管BE、CE并联反向二极管(基极回路带电容的半桥电路在BE并联反向二极管上还串联有电阻)对整个电路的工作状况有很大影响,特别是会对灯管起辉产生影响,对三极管电流波形产生影响。

这里只进行了初步的讨论,还应该有进一步讨论的余地。

三、Ic电流上升过程的讨论:

电路工作状态下可饱和脉冲变压器(磁环)磁导率变化曲线的饱和点和三极管的存储时间ts是工作周期的重要决定因素。那么什么是“电路工作状态下”?其实就是那个时候的Ic电流上升过程,更准确地说是流过磁环初级绕组的电流、三极管储存阶段流过的电流。这句话实际上包含了两重意思:一方面肯定了可饱和脉冲变压器(磁环)磁导率变化曲线和三极管的存储时间ts的重要性;另一方面也没有否定电路其它元器件(电容、电感、灯管)对电路工作状况的重要作用。

下管VT2刚开始导通时,电路相当于RLC串联电路加上直流电压:(图18)

图18RLC串联电路加上直流电压

图19三种工作状况及电流Ic初始值

电路电压方程:

电压平衡方程式是一个二阶微分方程。它的解与u的形式和u的初始条件(K接通时的u值)有关。加直流电压(图18)

电路电压方程:

瞬态电流分下列三种情况(图19)

尽管加的是直流电压,但电路中却可能存在着振荡电流。因为电路中存在着电阻,所以其振幅是衰减的。

2、下管VT2截止、上管VT1导通时,电路相当于电容充电后通过RL放电:(图20)

图20电容充电后通过RL放电

负载电流不但受灯动态电阻RL影响而且同时受可饱和脉冲反馈变压器(磁环)可变初级阻抗ZT、三极管存储时间ts的调制。

瞬态电流通过有效磁导率μe变化对电路稳态工作的控制作用:有效磁导率μe高,脉冲反馈变压器初级阻抗提高,较小的电流瞬时值就可以得到足够的V环,使电路提前转换。开关频率提高,电流初始值下降。

开关频率的下降会使得灯电流增加,灯电流增加的同时又提高了脉冲反馈变压器磁化场Hm。这样,在电路负变化过程中得以实现一定程度的频率反馈。

可以利用电路方程进行更深入的讨论,公式本身是可信的,但是如何将电路的实际工作状况转换成准确的电路模型却是很困难的。

要准确地描绘出流经三极管的电流变化曲线实际上是很困难的,因为它受较多因素的影响;数学推导公式中的R在灯启辉后两端还并联有一个电容C;除了数学推导公式中已经提到的诸因素以外,其实三极管并不是一个单纯的开关,灯管也不是一个纯电阻R:灯丝温度、负阻特性、点火电压等因素都会严重影响电流变化曲线。这里只提供一个思路,还没有准确地描绘出流经三极管的电流变化曲线,但是作为一种定性分析,再结合实际波形图,对解决实际问题还是很有指导意义的。

例如三极管ts的测试,应该在什么条件下?Ic是多少,基极加什么样的电压,通过本文前面的分析,应该是比较清楚了。三极管进入存储工作阶段时Vbe>V环,但是,由于V环是正的,而不是负的,基极电流反向电流是“流”出来的,而不是“抽”出来的。所以,传统的开关三极管ts测试时加负电压抽取的方法是不符合灯用三极管的实际工作情况的。

磁环尺寸、磁环初级绕组圈数N在电路中的作用,通过图2也可以得到解释,H=NI,N增加H也相应增加,有效磁导率μe也相应变化,其峰值点到来的时间提前,又因为磁环绕组电感量

,V环也相应增大;而磁环次级绕组圈数与次级绕组输出电压成正比,都会对三极管IB产生影响,但是由于电流和频率之间的反馈作用,这种影响得到一定的缓和。磁环有效导磁率和三极管ts配合工作的原理也可以得到一定的解释。磁环尺寸对工作频率有很大影响,磁环尺寸越小就容易饱和,所以工作频率就越高。

三极管在灯电路中的实际工作情况与在基极加一个方波电压,再在集电极接一个纯电阻负载R这种测量三极管开关参数的概念式是不完全相同的。三极管的集电极电流Ic并不完全受基极电压的控制,谐振回路其它元器件(电容、电感、灯管)对其工作状况有重要影响。

要进一步研讨这个问题,这至少牵涉到对磁性材料、电光源领域高频工作下的低压气体放电、半导体物理、电子电路等专业知识的深刻了解和它们之间的融会贯通。所以,这需要有关方面联手合作进一步做深入细致的工作。

荧光灯电子镇流器的工作原理分析

荧光灯电子镇流器的工作原理分析 工作原理 荧光灯镇流器有电感式镇流器和电子式镇流器。电子镇流器因具有高效、节能、重量轻等特点,而越来越被广泛使用。 电子镇流器是将市电经整流滤波后,再经DC/AC电源变换器(逆变)产生高频电压点亮灯管。其特点是灯管点燃前高频高压,灯管点燃后高频低压(灯管工作电压)。目前最广泛使用的是具有电压馈电半桥式逆变器类型的电子镇流器。现以该类型逆变器为例,介绍电子镇流器的电路组成和工作原理。 一、典型电路组成 典型的电压馈电半桥式逆变电路如图所示。 图中BR及C1构成整流滤波电路。R1、C2及VD2构成半桥逆变器的启动电路。开关晶体管VT1、VT2,电容器C3、C4及T1构成振荡电路。同时VT1、VT2兼作功率开关,VT1和VT2为桥路的有源侧,C3、C4是无源支路,L1、C5及FL组成电压谐振网络。 二、工作原理 在给电子镇流器加市电后,经BR整流C1滤波后,得到约300V的直流电压。电流流经R1对启动电容C2充电.当C2两端电压升高到VD2的转折电压值后,VD2击穿;C2则通过VT2的基极-发射极放电,VT2导通。在VT2导通期间半桥上的电流路径为:+VDc-C3-灯丝FL1-C5-灯丝FL2-振流圈L1-T1初级线圈Tla-VT2-地。电流随VT2导通程度的变化而变化。同时,流过Tla的电流在T1的两个次级线圈T1b和T1c两端产生感应电势。极性是各绕组同名端为负。T1c上的感应电势使得VT2基极的电位进一步升高。V12集电极电流进一步增大,这个正反馈过程,使VT2迅速进入饱和导通状态。V12导通后。C2将通过VD1和VT2放电。T1c、T1b 的感应电势逐渐减小至零。VT2基极电位呈下降趋势,IC2减小,T18中的感应电势将阻止IC2减少,极性是同名端为正。于是VT2基极电位下降,VT1基极电位升高,这种连续的正反馈使VT2迅速由饱和变到截止。而VT1则由截止跃变到饱和导通,半桥上的电流路径为: +VDc—VT1-T1a-L1-灯丝FL2-C5-灯丝FL1-C4-地。与VT2情况相同,正反馈又使得VT1迅速退出饱和变为截止状态。VT2由截止跃变为饱和导通状态。如此周而复始,VT1和V12轮流导通,流过C5的电流方向不断改变。由C5、L1及灯丝组成的LC网络发生串联谐振。C5两端产生高压脉冲,施加到灯管上,使灯点燃。灯点燃后L1起到了限流的作用。

荧光灯镇流器原理

图1 电子镇流器实物图 根据实物绘制的电路原理图如图2所示。 20~40W电子镇流器原理与维修 图2 电路原理图 本电路由整流滤波电路、功率开关与驱动电路、镇流器与灯丝负载回路三部分组成。组成电路的各个元件的作用如下: ①整流二极管VD1~VD4和滤波电容器C1、C2串联组成桥式整流滤波电路,功能是将220V交流电经整流滤波后在C1、C2两端得到空载310V的直流电压,为后面的高频逆变电路提供工作电源。 ②功率三极管VT1、VT2,作为开关管使用,工作于饱和与截止状态,其开关速度要快。 ③电阻R1、R6是起振电阻,是为VT2初始导通提供偏置,从而激发VT1、VT2形成自激振荡。 同时电阻R1与电容C3并联组成降压启动电路,可在一定程度上减少过电压所带来的损失。为保证电容C3可靠工作,其耐压值应选择大于两倍的电源电压,C3耐压值为630V. ④二极管D5和D6,其作用是保护三极管VT1、VT2,并联在三极管基极和发射极之间可以大大削弱电荷存储效应,从而提高三极管开关速度。 ⑤变压器T起信号互感耦合作用。它是由单股芯线T1、T2、T3绕在磁环上形成的,由于开关管与其驱动电路部分是紧密联系相互依存,因此它们参数之间的关系在生产过程中比较难确定。此电路中T1为3圈、T2为3圈、T3为5圈。

⑥电容C4并接于VT2基极和发射极之间,可防止基极和发射极间电位突变,能在一定程度上保护三极管VT2. ⑦电阻R2、R3、R4、R5为保护电阻,用来保护三极管的,但是作用有限。 ⑧电容C5是启动电容,有隔直流通交流的作用,阻止310V的直流电压直接进入日光灯管,允许20kHz的高频交流电压通过。 ⑨扼流圈L、谐振电容C6组成串联谐振电路,其作用是起辉日光灯管和限制灯管工作电流。 电子镇流器的基本功能是将50Hz的工频电源转换成20kHz高频电源,而直接点亮日光灯管。其工作过程是:接通电源后,经整流滤波后的310V直流电压通过C3、R1并联再与R5串联,给VT2的基极提供一个窄电流脉冲使VT2首先导通。在VT2导通期间,电流流通路径是:+V→C5→灯管上端灯丝→C6→灯管下端灯丝→扼流圈L→变压器T3→VT2的集电极-发射极→地形成回路,对谐振电容C6充电。由于变压器T的线圈T3对T1和T2的感应耦合作用,T1上的感应电压将使三极管VT1导通,而T2上的感应电压将使VT2截止。在VT1饱和导通期间,电流流通路径是:谐振电容C6→灯管上端灯丝→C5→VT1的集电极-发射极→变压器T3→扼流圈L→灯管下端灯丝→C6,该电流流向即为C6的放电回路。借助于变压器T的耦合作用,使三极管VT1、VT2交替导通,输出方波脉冲电压,此电压通过扼流圈L、灯丝电阻、C6组成串联谐振,在C6两端产生一个高压脉冲,将日光灯管中的汞蒸气电离击穿形成导电通路而将灯管点亮。电路起振后,电容C4将通过二极管D6和三极管VT2迅速放电,以防止VT2无法退出饱和导通状态。当日光灯管被点亮后,其内阻急剧下降,该内阻并联于C6两端,故C6两端下降为正常的工作电压(约80V),维持日光灯管稳定的正常发光。

荧光灯工作原理

日光灯工作原理 一、日光灯的构造 日光灯电路由灯管、镇流 器、启辉器以及电容器等部件组 成(见图3-1),各部件的结构和 工作原理如下。 1、灯管 日光灯管是一根玻璃管,内 壁涂有一层荧光粉(钨酸镁、钨 酸钙、硅酸锌等),不同的荧光 粉可发出不同颜色的光。灯管内 充有稀薄的惰性气体(如氩气) 和水银蒸汽,灯管两端有由钨制成的灯丝,灯丝涂有受热后易于发射电子的氧化物。 当灯丝有电流通过时,使灯管内灯丝发射电子,还可使管内温度升高,水银蒸发。这时,若在灯管的两端加上足够的电压,就会使管内氩气电离,从而使灯管由氩气放电过渡到水银蒸气放电。放电时发出不可见的紫外光线照射在管壁内的荧光粉上面,使灯管发出各种颜色的可见光线。 2、镇流器 镇流器是与日光灯管相串联的一个元件,实际上是绕在硅钢片铁心上的电感线圈,其感抗值很大。镇流器的作用是:①限制灯管的电流;②产生足够的自感电动势,使灯管容易放电起燃。镇流器一般有两个出头,但有些镇流器为了在电压不足时容易起燃,就多绕了一个线圈,因此也有四个出头的镇流器。 3、启辉器 启辉器是一个小型的辉光管,在小玻璃管内充有氖气,并装有两个电极。其中一个电极是用线膨胀系数不同的两种金属组成(通常称双金属片),冷态时两电极分离,受热时双金属片会因受热而变弯曲,使两电极自动闭合。 4、电容器 日光灯电路由于镇流器的电感量大,功率因数很低,在0.5~0.6左右。为了改善线路的功率因数,故要求用户在电源处并联一个适当大小的电容器。 5、实际电路图: 图3-1 日光灯组成电路

镇流器的作用是:升压和稳压起辉器的作用是:启动灯管 二、日光灯的启辉过程

镇流器与LED日光灯兼容问题

镇流器与LED日光灯兼容问题 镇流器是配合以前的荧光灯用,如果我们在用LED日光灯替换旧的荧光灯,就必须要在线路上做一些改动,即不能用LED日光灯直接替换荧光灯。因为两者的工作原理上有本质的区别。 如图上所示:当电源接通以后,电压加到启辉器的两端,使氖气放电而发出辉光,辉光产生的热量使U型动触片膨胀伸长,跟静触片接通,于是镇流器线圈和灯管中的灯丝就有电流通过。电路接通后,启辉器中的氖气停止放电,U型片冷却收缩(启辉器分压少、辉光放电无法进行,不工作),两个触片分离,电路自动断开。在电路突然断开的瞬间,由于镇流器电流急剧减小,会产生很高的自感电动势,方向与原来的电压方向相同喧个自感电动势与电源电压加在一起,形成一个瞬时高压,加在灯管两端,使灯管中的气体开始放电,于是日光灯成为电流的通路开始发光。日光灯开始发光时,由于交变电流通过镇流器的线圈,线圈中就会产生自感电动势,它总是阻碍电流变化的,这时镇流器起着降压限流的作用,保证日光灯正常工作。 由以上可知,在启动时镇流器和启辉器的作用下会产生一个瞬间的高压(可达400V以上),在正常点亮时,起到限压限流的作用,输出电压在几十到一百多伏不等(根据不同规格的日光灯而不同)。 如果不取掉镇流器和启辉器就直接将LED日光灯接,则可能会发生以下情况: 1、L ED日光灯管直接就被高压打坏 2、L ED日光灯管能正常点亮,但是LED灯管的寿命是没有办法保证的(原 因:在灯管启动过程中,电感两端的高压会对LED的冲击是无法预估)并且镇流器本身要损耗7-8W的功率,达不到节能的目的 3、L ED灯管出现闪烁,甚至不亮的现象 特别补充:国内目前有电源厂家开始着手开发能兼容镇流器的LED日光灯电源,但是由于镇流器型号规格繁多,各大厂商都不一样,因此,LED日光灯电源无法完全匹配市面上的镇流器,而且即使能匹配,电源的效率也很低。

荧光灯电子镇流器挑选方案

深圳杰瑞特科技有限公司 联系人:张罗生(先生) 专业提供电子镇流器方案,高压mos管,镇流器ic,免费申请试样 绿色照明cfl电子镇流器解决方案 目前,室内照明光源以荧光灯为主;点灯有电感镇流器和电子镇流器两种方式。以下分别将高性能电子镇流器与电感镇流器及普通电子镇流器使用情况做一全面比较: 一、与电感镇流器比较: 1、高效节能: 电感镇流器工作频率为50HZ,电子镇流器工作频率为20~50KHZ,灯管在高频下发光效率比工频提高10%,因而电子镇流器比电感镇流器点灯亮度提高;另电子镇流器自身耗电少,如在同等亮度下,采用电子镇流器比电感镇流器节电约20~30%;其中电感镇流器工作时增加室内温升,夏季需要空调降温的电费未计算在内。医院一般照明约占70%,采用高性能电子镇流器比优质电感镇流器年可节约2~3个月电费,可逐步回收灯具成本,降低物业运行成本。 2、舒适: 电感镇流器会产生频闪现象,在此环境下工作、学习视觉易疲劳。对高速旋转物体易产生错觉,存在事故隐患。同时电感镇流器发出50HZ的低频噪声,易使人烦躁。耳鼻喉科听音室在采用荧光灯照明时,应使用电子镇流器,以防误诊;病房、候诊大厅在使用荧光灯时,不宜选用电感镇流器,主要考虑频闪和噪音等会引起病人的不适。采用电子镇流器可消除频闪,保护视力,市场销售的学生护眼灯就是采用电子镇流器配备三基色灯管设计生产的。高性能电子镇流器无频闪、无噪音、护眼护脑,与三基色灯管配套使用,显色性好,色彩逼真;高光效;光衰小;舒适;净化工作、学习、生活环境;提高工作效

率,有利病人康复;尤其适用于病房、检查室等对照明要求高显色性的场所。 3、安全: 电感镇流器由于自身耗电量大,耗电转化为热能,表面温升高,尤其在电网电压波动较高时,温度可达120~130℃,成为火灾隐患,此类事故时有发生。电感镇流器在+10℃以上启动正常工作,低于-5℃启动困难;电网电压低于180V难于正常启辉;由于不能一次启动,多次启动易损坏灯管阴极,缩短灯管寿命。 电感镇流器功率因数低,大约0。4~0。6左右,致使大量无功功率增大了照明线路电流和变压器容量,从而大大增加线路和变压器损耗,也加大了电能损失,降低照明质量,同时对电网的运行带来威胁。安装补偿电容后,明显加大了谐波电流,因而对电网及网内其他仪器设备造成干扰和危害。高性能电子镇流器功率因数≥0。97,只有3%左右的无功损耗,无功节电45%以上;谐波含量小,使输入电流波形畸变小,对电网几乎无污染;并且可减少供电设备的增容。电子镇流器适应宽电压工作范围,在-10℃~+50℃环境下可正常工作,安全,高可靠。 高性能电子镇流器对灯管有保护作用,灯管开关次数可达万次以上,灯头无明显发黑,除保证达到灯管的标称寿命外,还能延长其寿命1。3~1。5倍。4、环保: 电感镇流器由于使用机械启辉器,会产生瞬时高压脉冲,对家电和其它用电设备产生干扰。使用电感镇流器,电压过高,过低都会缩短灯管寿命,废弃灯管回收不利将会引起汞泄露,带来二次污染。高性能电子镇流器使灯管的寿命延长,节约了频繁更换灯管的成本和劳务,既经济又有利于环保。 综上所述,对新建和改造工程,在项目资金运作、经济状况允许的条件下,应予以全面否定电感镇流器。 二、普通电子镇流器比较 电子镇流器是在电子"镇流"技术和晶体管开关电源技术基础上发展起来的高新技术产品,是灯用电子学的具体产品应用,它集光、电、磁等技术于一体,主要技术难题是功能和可靠性,开发符合国家标准,适合国内消费水平,具有市场竞争力、良好性价比的产品难度就更大。电子镇流器问市十余年以来,以其高效节能、无频闪、无噪音的优势得到普遍关注,并迅速发展,但由于产品的质量,主要是功能及可靠性曾存在许多问题:功率因数低、谐波含量高,电磁兼容性差;输出功率低,灯管亮度低,能效低,功耗大,温度高,特别是使用寿命短,大面积群灯使用,对电网污染严重;并且有互感自激,导致镇流器损坏,使消费者蒙受很大损失;严重损害了电子镇流器的整体形象;给电子镇流器造成节电不省钱的恶劣影响。近年来,电子镇流器原理及电子元器件的研发、生产水平整体提高,国内涌现出不少优秀产品。医院具有很多对电磁骚扰敏感度很高的仪器设备(包括心脏起博器等),电磁环境属于A类工业环境,因而在照明电器镇流器的选择上必须具备电磁兼容设计。普通高功率因数电子镇流器因无电磁兼容设计,谐波含量高,易干扰医疗仪器设备,因而不宜选用。对医院使用电子镇流器的选择应在注重其功能和可靠性的基础上,着重考察是否通过EMC认证,具有良好的电磁兼容性。电磁兼容设

日光灯工作原理图

日光灯的工作原理 简单的日光灯电路由灯管、启辉器和镇流器等组成,如上图所示。日光灯管的内壁涂有一层荧光物质,管两端装有灯丝电极,灯丝上涂有受热后易发射电子的氧化物,管内充有稀薄的惰性气体和水银蒸气。镇流器是一个带有铁心的电感线圈。启辉器由一个辉光管(管内由固定触头和倒U形双金属片构成)和一个小容量的电容组成,装在一个圆柱形的外壳内。 当接通电源时,由于灯管没有点燃,启辉器的辉光管上(管内的固定触头与倒U形双金属片之间)因承受了220V的电源电压而辉光放电,使倒U形双金属片受热弯曲而与固定触头接触,电流通过镇流器及灯管两端的灯丝及启辉器构成回路。灯丝因有电流(启动电流)流过被加热而发射电子。同时,启辉器中的倒U形双金属片由于辉光放电结束而冷却,与固定触头分离,使电路突然断开。在此瞬间,镇流器产生的较高感应电压与电源电压一齐(约 400--600V)加在灯管的两端,迫使管内发生弧光放电而发光。灯管点燃后,由于镇流器的限流作用,使得灯管两端的电压较低(30W灯管约100V左右),而启辉器与灯管并联,较低的电压不能使启辉器再次动作。 日光灯镇流器的作用 日光灯镇流器是指电感式镇流器,它起着以下三个作用:

⑴启动过程中,限制预热电流,防止预热电流过大而烧毁灯丝,而又保证灯丝具有热电发射能力。 ⑵建立脉冲高电势。启辉器两个电极跳开瞬间,在灯管两端就建立了脉冲高电势,使灯管点燃。 ⑶稳定工作电流,保持稳定放电。 32W日光灯镇流器电路图 电路如下图所示。该电路由整流滤波电容、高频振荡电路以及输出负载屯路三部分构成。 交流220V经整流滤波输出约300V直流为振荡电路提供电源。开机后,电源经R5对C3充电,使Vc3迅速升高,从而使VT2迅速达到饱和导通;此时由于T的反馈作用使VTI截止。VT2一旦导通,则Vc3下降,流过L2的电流减小,引起L2两端一个上负下正的电压。据同名端原则,L1得到上正下负的反馈电压,从而使VTI迅速饱和导通,同时T的正反馈作用又使VT2迅速截止,如此周而复始形成振荡方波(R6D6、R3D5起续流作用)。负载回路由L3、L4、C4构成。VTI、VT2产生的高频振荡方波由L3加给负载作激励源。灯管点亮前,由C4、L4等形成很大的谐振电梳流过灯丝,使管内氢气电离,进而使水银变为水银蒸汽,C4两端的高电压又使水银蒸汽形成弧光放电,激发管壁荧光粉发光。灯管点亮后,C4基本上不起作用,此时L4则起阻流作用。 常见故障 1.VTl、VT2击穿进而导致D1-D4被击穿,此时将引起电源短路; 2.R4偏置损坏; 3.振荡电路中L5.L6易损坏; 4.负载电路中C4因高压易被击穿。 最后特别说明,目前市场上所见的各种40W、32W节能日光灯以及各种环形灯,均可参考此电路进行分析。

电子镇流器的工作原理与常见故障修

电子镇流器的工作原理与常见故障修 一、概述 自GE公司的因曼博士(Inman)等在1938年发明了实际应用的荧光灯,到现在已有近70年的历史。虽然新型光源不断出现,但在一定的时间范围内,荧光灯作为主要照明光源的地位可能难以改变。在日光灯发展的过程中,廉价实用的电感镇流器和启辉器,解决了荧光灯的启动与限流问题,对荧光灯迅速发展和普及曾起到过积极推动作用。然而,时至今日,资源变得越来越紧张了,电感镇流器消耗太多的有色金属使人们一定要想办法用更廉价的电子产品来替代它,电子镇流器在上世纪八十年代应运而生,到目前已 经非常普及。 电子镇流器所用元器件少,电路简单,容易制造,并且市场需求量大,是电子爱好者开始创业时的首选产品,有条件的同学,如果打算出去后大干一场的话,也可以考虑先制造电子镇流器。据我所知在仙 桃市,就有几个人在专门制造电子镇流器。 本讲座开办的目的是让同学们关注灯具的变化,了解日光灯电子镇流器的工作原理,学会修理和制 造电子镇流器。 二、普通日光灯的缺陷 普通日光灯的缺陷除消耗有色金属太多外,其对电能的损耗也是不容忽视的。电感镇流器的绕组的欧姆损耗和铁芯的涡流损耗较大,约占灯功率损耗的15%左右。在荧光灯如此普及的今天,电感镇流器所消耗的总能量是十分巨大的。此外,电感镇流器的功率因数较低,一般为0.5左右,会造成电网的严重污染,电力部门不得不加大功率因数补偿电容,增加了电力成本。 三、电子镇流器的特点 电子镇流器的工作原理是将工频(50Hz或60Hz)电源变换成20~50KHz左右高频电源,直接点灯,无需其它限流器件。与电感镇流器相比,电子镇流器具有以下优点: 1、节能: 1)照明效率提高 普通荧光灯的工作频率为50Hz,其照明高效率因所谓的正电(或负电)降落的存在而很低,当电源频率在1000Hz以上时,这种正电(或负电)降落现象消失。而电子镇流器工作频率一般都在20一50kHz,不产生正电或负电电位跌落,这就是电子镇流器能提高照明效率的原因。 2)电子镇流器自身功率损耗低。 电子镇流器的自身消耗功率较难测量,经间接测量估算,工作点调整较好的电子镇流器,其自身消 耗一般都在灯功率的5%以下。 2、其它优点 由于应用了高频电感,电子镇流器体积小,重量轻;低电压可启动点燃灯管;无需启辉器;无频闪, 无噪声等等。 四、电子镇流器的组成与主流电路分析 1、电子镇流器的组成

荧光灯电子镇流器工作原理

荧光灯电子镇流器工作原理 该荧光灯电子镇流器电路由电源电路、高频振荡器和LC串联输出电路组成。电路中,电源电路由熔断器FU、电子滤波变压器T1、电容器C1、C2、压敏电阻器RV和整流二极管VD1 - VD4组成;高频振荡器电路由晶体管V1、V2,二极管VD5、V D6、电阻器R1一R6、电容器C3一C5和高频变压器TZ组成;LC串联输出电路由限流电感器L、电容器C6、C7和荧光灯管EL组成。接通电源,交流220V电压经T1和C1高频滤波、VD1一VD4整流及C2平滑滤波后,为高频振荡器提供300V左右的直流工作电压。在刚接通电源的瞬间,V1和V2中某只晶体管优先导通,在高频变压器T2的藕合和反馈作用下,V1和V2交替导通与截止,使高频振荡电路进人自激振荡状态,并通过L和C6为EL提供启辉电压。当C7两端电压达到EL的放电电压时,EL启辉点亮。 荧光灯电子镇流器电路图 本篇文章来源于百科全书转载请以链接形式注明出处网址:https://www.doczj.com/doc/d86573897.html,/dianyuan/nb/200911/381412.html 本篇文章来源于百科全书转载请以链接形式注明出处网址:https://www.doczj.com/doc/d86573897.html,/dianyuan/nb/200911/381412.html

18w荧光灯电子镇流器 作者:佚名文章来源:不详点击数:161 更新时间:2009-11-1 此荧光灯电子镇流器的工作电源范围为交流100一250V,适用于8一26W三基色直管式节能荧光灯。 电路中,整流滤波电路由整流二极管VD1一V D4和滤波电容器C1组成;触发电路由电阻器R6、电容器C3和双向二极管V3组成;高频振荡电路由晶体管V1、V2、二极管V D5一VD7、电阻器R1 -R5、电容器C2和高频变压器T(W1-W3)组成;LC串联输出电路由限流电感器L,电容器C4, C5和荧光灯管EL组成。 接通电源后,交流220V电压经VD1一V D4整流及C1滤波后,为高频振荡电路提供300V左右的直流电压。该直流电压还经R6对C3充电,当C3两端电压充至V3的转折电压时,V3迅速导通,C3上所充电荷经V3对T的W3绕组放电,在T的祸合作用下,Vi和V2交替导通与截止,高频振荡器振荡工作。高频振荡器振荡后,在C2两端之间产生一个近似正弦波的交变高频电压,此电压经C4、L1加在EL的灯丝上,当C5两端电压达到EL的放电电压时,EL启辉点亮。

荧光灯工作原理

荧光灯的工作原理 为了理解荧光灯就要对光本身有所认识。光是能量的一种形式是由原子释放出来的。它是由许多微小类似粒子的小团组成的,这些类似粒子的东西有能量和动量但没有质量。这些粒子叫做可见光子,是光的最基本单位。 当电子受到激发的时候原子就会释放出可见光子。如果你已经知道原子是如何工作的话,那你也就知道电子是围着原子核走来走去的负极电荷粒子。原子的电子有着不同等级的能量,主要取决几个因素,包括它们的速度和离原子核的距离。电子不同的能量等级占有不同的轨函数和轨道。通常来说,有着大能量的电子就会离原子核更远。 当原子得到或失去能量的时候,是以电子移动表示变化。当有某些东西将能量传到原子的时候---以热量为例子--电子可以暂时被推进到一个更高的轨道(远离原子核)。电子只是在这一轨道位置停留极短时间:几乎马上就被退回到原子核,到达它的原始轨道上。这时电子就以光子的形式放出额外的能量。发光的波长取决于有多少能量被释放出来,这也就取决于电子所在的轨道位置。因此,不同类的原子就会释放出不同类的可见光子。换句话说就是光的颜色是由受激发的原子种类决定。这几乎是在所有光源的最基本工作机制。这些光源的主要不同是在于激发原子的过程。在白炽灯光源里,原子是由通过加热来激发;而在灯管里,原子是通过化学反应来激发。荧光灯的中心元件就是它的一个密封的玻璃管。这个管含有少量水银和惰性气体,通常是氩惰性气体元素,这种惰性气体要保持非常低压。管也含有荧光粉,在玻璃管内单独涂上一层荧光粉。玻璃管两端各有一个电极,是连接到电流用的。 当你开灯的时候,电流就会穿过电路流到电极。有相当大的电压流过电极,所以电子会穿过来自管中的一端的气体到达另一端。这个能量的变化会将管内的水银从液体变为气体。由于电子和带电原子会在管内移动,它们中的一部分会和气态水银原子碰撞。这个碰撞激发出原子,电子会突然上升到一个更高的能量水平。当电子回复到它们的初始能量位置,它们就会释放出可见光子。 如上面所述,一个光子的波长是由原子里面的特别电子排列而决定的。由于在水银原子中的电子以这样的一种方式排列所以大部分会在紫外线波长范围内释放出可 见光子。然而,我们的眼睛看不见这些紫外线光子,所以要转化为可见光才行。当被暴露在光的地方磷是一种可以发光的物质。当一个光子撞击一个磷原子的时候,这时一个磷电子就会跳到一个更高的能量位置和原子加热。当电子回落到正常位置就会以其它光子形式释放出能量。这个光子比最初的光子的能量要少,因为加热时一些能量消失了。在荧光灯里,发出的光是以可见光谱发出的--磷发出我们可以看见的白色光。我们还可以通过将不同磷粉的结合制造出不同的颜色。 传统的白炽灯泡也都会发出少量紫外线光,但它们不能把这些紫外线光转换为任何可见光。因此,大量能量被浪费掉。荧光灯使这种可见光工作和更加有效能。总的来说,荧光灯比白炽灯节能达到4至6倍。由于白炽灯发出一种更“暖色的光”--一种 多红色小蓝色的光,所以人们通常会在家里使用白炽灯。

日光灯镇流器的计算

筑龙网 W W W .Z H U L O N G .C O M 日光灯镇流器的计算 计算日光灯镇流器时,应首先明确日光灯的电参数,如灯钮的工作电压,工作电流和预热电流。因不同规格的灯管,这些纽数是各不相同的。计算镇流器时,应以日光灯管的各项额定值为依据。一般应用经验公式计算如下。 (1)镇流器铁芯截面积计算: 式中A c ——铁芯截面积,cm 2; U ——电源电压,V ; U L ——灯管的额定电压,V ; P L ——灯管的额定功率,w ; K c ——铁芯截面系数,可选取0.5~0.7之间,取上限值时铁芯体积较大则耗料多,但温升低。 (2)镇流器的工作电压。镇流器的工作电压是制作镇流器的一个关键参数,它与电源电压,灯管电压有一定的矢量关系。由经验确定镇流器的损耗为灯管功率的20%~25%,镇流器的工作电压可由下式计算: 式中U w ——镇流器的工作电压,V 。 (3)线圈匝数计算。镇流器工作电压和铁芯截面积确定后,线圈匝数和最大磁感应强度B m 的取值成反比,即磁感应强度取值高,则线圈匝数就相对的减少。一般两根引线镇流器铁芯的磁感应强度取11000~13000GS ;对于有起动绕组的四根引线镇流器的磁感应强度取值为11000~12000GS 。 式中 N ——线圈的匝数; B m ——最大磁感应强度,GS 。 对于四引线镇流器的起动线圈N st 按N 的6%~9%绕制。 (4)线圈导线直径的计算。线圈所用导线的粗细决定于单位面积所取的电流

筑龙网 W W W .Z H U L O N G .C O M 密度,线径计算公式如下: 式中 b ——铁芯叠厚,cm ; a ——铁芯腿宽,cm 。 镇流器铁芯留有一定的气隙,这是为了减小铁芯的饱和程度和适应启辉与正常工作时不同电流的要求。日光灯在起动时,通过镇流器的电流较大,铁芯中的磁力线将增加,相应的磁路气隙的漏磁也增大,使铁芯中的磁力线保持在一定的数量,不致因镇流器的电压降太大而影响起动电流减小;日光灯在正常工作时,流经镇流器的电流将减小到灯管的额定值,铁芯中的磁力线和漏磁也相应的下降,使铁芯中的磁力线保持在正常的数量。所以,铁芯的气隙大小不能忽视。铁 芯磁路有两个气隙,每个气隙如下: 气隙间可放入厚度为δ的纸板,装好后应根据额定电流加以调整。

日光灯、启辉器、镇流器的各部分的原理、作用

日光灯、启辉器、镇流器的各部分的原理、作用 电源接通后,220V交流电经过镇流器,在镇流器互感的作用下产生约600V的高压,加在灯管上,灯管无反映,但并联在灯管另一边的起辉器,由于通过灯丝得到了600V的高压电,并加在了起辉器的两端,由于起辉器内部的氖泡承受不了600V的高压,击穿氖泡里的氖气,而发出红光,并发出热量,氖泡里的热敏触点,在热力的作用下,身展,并碰到另一个触点,接触上后,此时,氖泡处于短路状态,短路后,灯管的灯丝在短路的作用下,通电,发光,发热。由于,氖泡内短路,氖泡两端不在有电,不一会,氖泡里的热敏丝冷却,而收缩,触点断开。由于,起辉器内不的氖泡里的热敏丝断开,所以,灯管两端的灯丝得不到电压而停止发光发热,但灯管内不的水银蒸气未凉,在起辉器断开的同时,灯管里的水银蒸汽在热力的作用下,和600V高压的作用下,导通发光。发光后的灯管两端电压积聚下降,降到了110V左右。灯管在110V交流电的供应下,稳定的工作,而,起辉器由于电压降到了110V,内部的氖泡无法导通发光,所以,起辉器不在动作。到 此,日光灯的工作程序,全部完成。 如果一次未能启动灯管的话,起辉 器将反复的通断,直到灯管正常工 作位止。 镇流器的作用是:升压和稳压 起辉器的作用是:启动灯管 1.日光灯的启辉器的工作原理是 怎么样的?如果不用镇流器直接将 220V接上灯管 会有什么反应没? 答:刚接通灯具电源时全部电压加 在启辉器上,启辉器放电而发热双金属片弯曲 接通电源,接通后启辉器没有电压放电停止双金属片冷却断开,在断开的瞬间灯 管发光,起动后一半以上的电压降落在镇流器上,启辉器电压不足不能放电保持 断开状态 不用镇流器烧会烧毁灯管 2.启辉器 启辉器是老式的日光灯必需的一个元件。其构造是一个冲氖气的小灯泡,但里 面不是灯丝,是由双金属片做成的一个接触开关。起辉器在日光灯管电路中与 镇流器一同发挥作用。当日光灯管电路接通的时候,220付电压使氖气发出红色 的辉光,同时生热,双金属片受热变形,两灯柱由断开变成接通,接通瞬间电 路中的镇流器产生冲击电压,将日光灯管点亮。日光灯管点亮以后,所需要的 电压很低,具体是由镇流器控制的,这个电压不足以支持氖泡继续发光,于是 起辉器熄灭,双金属片冷却复原。 “启辉器”也叫“启动器”也叫“氖气启动器” 作用是当启动时加热灯丝,启动后电流中电子撞击电极时能产生足够的电子。当按下开关时, 让电流流经灯丝,待灯丝加热至能够产生足够的热电子时, 这些逃脱灯丝的电子,经灯管两端的电压(场)作用而加速=> 碰撞=> 游离更多电子=> 加速=> ...循环 於是原本不易导电的气体灯管,突然变成容易导电的游离气体。 於是放电过程开始进行了! 在加热的过程中,一直试图产生放电过程

日光灯工作原理

附录3 日光灯工作原理 一、日光灯的构造 日光灯电路由灯管、镇流 器、启辉器以及电容器等部件组 成(见图3-1),各部件的结构和 工作原理如下。 1、灯管 日光灯管是一根玻璃管,内 壁涂有一层荧光粉(钨酸镁、钨 酸钙、硅酸锌等),不同的荧光 粉可发出不同颜色的光。灯管内 充有稀薄的惰性气体(如氩气) 和水银蒸汽,灯管两端有由钨制成的灯丝,灯丝涂有受热后易于发射电子的氧化物。 当灯丝有电流通过时,使灯管内灯丝发射电子,还可使管内温度升高,水银蒸发。这时,若在灯管的两端加上足够的电压,就会使管内氩气电离,从而使灯管由氩气放电过渡到水银蒸气放电。放电时发出不可见的紫外光线照射在管壁内的荧光粉上面,使灯管发出各种颜色的可见光线。 2、镇流器 镇流器是与日光灯管相串联的一个元件,实际上是绕在硅钢片铁心上的电感线圈,其感抗值很大。镇流器的作用是:①限制灯管的电流;②产生足够的自感电动势,使灯管容易放电起燃。镇流器一般有两个出头,但有些镇流器为了在电压不足时容易起燃,就多绕了一个线圈,因此也有四个出头的镇流器。 3、启辉器 启辉器是一个小型的辉光管,在小玻璃管内充有氖气,并装有两个电极。其中一个电极是用线膨胀系数不同的两种金属组成(通常称双金属片),冷态时两电极分离,受热时双金属片会因受热而变弯曲,使两电极自动闭合。 4、电容器 日光灯电路由于镇流器的电感量大,功率因数很低,在0.5~0.6左右。为了改善线路的功率因数,故要求用户在电源处并联一个适当大小的电容器。 二、日光灯的启辉过程 图3-1 日光灯组成电路

当接通电源时,由于日常灯没有点亮,电源电压全部加在启辉光管的两个电极之间,启辉器内的氩气发生电离。电离的高温使到“U”型电极受热趋于伸直,两电极接触,使电流从电源一端流向镇流器→灯丝→启辉器→灯丝→电源的另一端,形成通路并加热灯丝。灯丝因有电流(称为启辉电流或预热电流)通过而发热,使氧化物发射电子。同时,辉光管两个电极接通时,电极间电压为零,启辉器中的电离现象立即停止,例“U”型金属片因温度下降而复原,两电极离开。在离开的一瞬间,使镇流器流过的电流发生突然变化(突降至零),由于镇流器铁心线圈的高感作用,产生足够高的自感电动势作用于灯管两端。这个感应电压连同电源电压一起加在灯管的两端,使灯管内的惰性气体电离而产生弧光放电。随着管内温度的逐渐升高,水银蒸汽游离,碰撞惰性气体分子放电,当水银蒸汽弧光放电时,就会辐射出不可见的紫外线,紫外线激发灯管内壁的荧光粉后发出可见光。 正常工作时,灯管两端的电压较低(40瓦灯管的两端电压约为110伏,20瓦的灯管约为60伏),此电压不足以使启辉器再次产生辉光放电。因此,启辉器仅在启辉过程中起作用,一旦启辉完成,便处于断开状态。

t5荧光灯镇流器工作原理分析文档

杰瑞特科技原厂研发镇流器方案,搭配我们自己的ic与mos管配套使用,可达到点灭次数15000次以上,高功率因数等特点。 深圳杰瑞特科技有限公司,张罗生(先生) 工作原理 荧光灯镇流器有电感式镇流器和电子式镇流器。电子镇流器因具有高效、节能、重量轻等特点,而越来 越被广泛使用。 电子镇流器是将市电经整流滤波后,再经DC/AC电源变换器(逆变)产生高频电压点亮灯管。其特点是灯管点燃前高频高压,灯管点燃后高频低压(灯管工作电压)。目前最广泛使用的是具有电压馈电半桥式逆变器类型的电子镇流器。现以该类型逆变器为例,介绍电子镇流器的电路组成和工作原理。 一、典型电路组成 典型的电压馈电半桥式逆变电路如图所示。 图中BR及C1构成整流滤波电路。R1、C2及VD2构成半桥逆变器的启动电路。开关晶体管vT1、VT2,电容器C3、C4及T1构成振荡电路。同时VT1、VT2兼作功率开关,VT1和VT2为桥路的有源侧,C3、C4是无源支路,L1、C5及FL组成电压谐振网络。 二、工作原理 在给电子镇流器加市电后,经BR整流C1滤波后,得到约300V的直流电压。电流流经R1对启动电容C2充电.当C2两端电压升高到VD2的转折电压值后,VD2击穿.C2则通过VT2的基极-发射极放电,VT2

导通。在VT2导通期间半桥上的电流路径为:+VDc-C3-灯丝FL1-C5-灯丝FL2-振流圈L1-T1初级线圈Tla-VT2-地。电流随VT2导通程度的变化而变化。同时,流过Tla的电流在T1的两个次级线圈T1b和T1c 两端产生感应电势。极性是各绕组同名端为负。T1c上的感应电势使得VT2基极的电位进一步升高。V12集电极电流进一步增大,这个正反馈过程,使VT2迅速进入饱和导通状态。V12导通后。C2将通过VD1和VT2放电。T1c、T1b的感应电势逐渐减小至零。VT2基极电位呈下降趋势,ic2减小,T18中的感应电势将阻止IC2减少,极性是同名端为正。于是VT2基极电位下降,VT1基极电位升高,这种连续的正反馈使VT2迅速由饱和变到截止。而VT1则由截止跃变到饱和导通,半桥上的电流路径为:+VDc—VT1-T1a-L1-灯丝FL2-C5-灯丝FL1-C4-地。与VT2情况相同,正反馈又使得VT1迅速退出饱和变为截止状态。VT2由截止跃变为饱和导通状态。如此周而复始,VT1和V12轮流导通,流过C5的电流方向不断改变。由C5、L1及灯丝组成的LC网络发生串联谐振。C5两端产生高压脉冲,施加到灯管上,使灯点燃。灯点燃后L1 起到了限流的作用。 荧光灯电子镇流器的工作原理分析 电路图纸

日光灯的组成及工作原理

第三讲 上课时间:2014年9月11日星期三 课时:两课时 总课时数:两课时 教学目标:1.掌握日光灯的结构连接图 2.理解日光灯的工作原理 教学重点:日光灯的结构连接图 教学难点:日光灯的工作原理 教具:电子白板 教学过程: 一、组织教学 检查学生人数,填写教室日志,组织学生上课秩序。 二、复习导入 1.用电保护的方式 2.几种常见情况的保护方式 变压器的中性点接地是(工作接地)。 用电设备金属外壳接地是(保护接地)。 避雷针和避雷线是(保护接地)。 三、讲授新课: (一)日光灯的组成 日光灯主要由灯管、镇流器、启辉器组成 1.日光灯管的两端各有一个灯丝,灯管内充有微量的氩气和稀薄的汞蒸气,灯管内壁上涂有荧光粉。两个灯丝之间的气体导电时发出紫外线,使涂在管壁上的荧光粉发出可见光。 2.镇流器 镇流器是一个带铁芯的线圈,自感系数很大。 3. 启辉器(即启动器) 启辉器主要是一个充有氖气的玻璃泡,里面装有两个电极,一个是静触片,一个是由两个膨胀系数不同的金属制成的U型动触片(双金属片——当温度升高时,因两个金属片的膨胀系数不同,导致其向膨胀系数低的一侧弯曲)。 启辉器的内部结构和工作原理是什么? 日光灯启辉器结构很简单,就是把一个双金属片电极和一个固定电极封装在一个氖气泡里,刚接通日光灯电源开关时,因为日光灯管还没有点燃,所以通过镇流器的电流很小,镇流器的压降也很小,近220V的交流电压使启辉器氖气泡产生辉光放电,双金属片电极受热变形与固定电极接通,使镇流器、日光灯管灯丝、启辉器串联通电,完成对日光灯管灯丝的预热;同时,由于氖气泡内两电极接通,使启辉器氖气泡辉光放电结束,双金属片电极冷却变形与固定电极分离,使通过镇流器的电流突然中断。镇流器是电感元件,必然会产生一个自感电压阻止电流突变,这个电压与电源电压串联加在日光灯管两端,使灯管内形成气体放电通路,日光灯管进入正常工作状态。灯管正常工作后,通过镇流器的电流增大,镇流器的压降也增大,加在启辉器氖气泡两电极之间的电压降低到小

电子荧光灯镇流器原理

20~40W电子镇流器原理与维修 一.本电路由整流滤波电路、功率开关与驱动电路、镇流器与灯丝负载回路三部分组成。组成电路的各个元件的作用如下: ①整流二极管VD1~VD4和滤波电容器C1、C2串联组成桥式整流滤波电路,为后面的高频逆变电路提供工作电源。 ②功率三极管VT1、VT2,作为开关管使用,工作于饱和与截止状态,其开关速度要快。 ③电阻R1、R6是起振电阻,是为VT2初始导通提供偏置,从而激发VT1、VT2形成自激振荡。同时电阻R1与电容C3并联组成降压启动电路,可在一定程度上减少过电压所带来的损失。为保证电容C3可靠工作,其耐压值应选择大于两倍的电源电压,C3耐压值为630V. ④二极管D5和D6,其作用是保护三极管VT1、VT2,并联在三极管基极和发射极之间可以大大削弱电荷存储效应,从而提高三极管开关速度。 ⑤变压器T起信号互感耦合作用。它是由单股芯线T1、T2、T3绕在磁环上形成的,由于开关管与其驱动电路部分是紧密联系相互依存,因此它们参数之间的关系在生产过程中比较难确定。此电路中T1为3圈、T2为3圈、T3为5圈。 ⑥电容C4并接于VT2基极和发射极之间,可防止基极和发射极间电位突变,能在一定程度上保护三极管VT2. ⑦电阻R2、R3、R4、R5为保护电阻,用来保护三极管的,但是作用有限。 ⑧电容C5是启动电容,有隔直流通交流的作用,阻止310V的直流电压直接进入日光灯管,允许20kHz的高频交流电压通过。 ⑨扼流圈L、谐振电容C6组成串联谐振电路,作用是起辉日光灯管和限制灯管工作电流。

二. 电子镇流器的基本功能是: 将50Hz的工频电源转换成20kHz高频电源,而直接点亮日光灯管。 其工作过程是: 接通电源后,经整流滤波后的310V直流电压通过C3、R1并联再与R5串联,给VT2的基极提供一个窄电流脉冲使VT2首先导通。在VT2导通期间,电流流通路径是:+V→C5→灯管上端灯丝→C6→灯管下端灯丝→扼流圈L→变压器T3→VT2的集电极-发射极→地形成回路,对谐振电容C6充电。由于变压器T的线圈T3对T1和T2的感应耦合作用,T1上的感应电压将使三极管VT1导通,而T2上的感应电压将使VT2截止。在VT1饱和导通期间,电流流通路径是:谐振电容C6→灯管上端灯丝→C5→VT1的集电极-发射极→变压器T3→扼流圈L→灯管下端灯丝→C6,该电流流向即为C6的放电回路。 借助于变压器T的耦合作用,使三极管VT1、VT2交替导通,输出方波脉冲电压,此电压通过扼流圈L、灯丝电阻、C6组成串联谐振,在C6两端产生一个高压脉冲,将日光灯管中的汞蒸气电离击穿形成导电通路而将灯管点亮。电路起振后,电容C4将通过二极管D6和三极管VT2迅速放电,以防止VT2无法退出饱和导通状态。当日光灯管被点亮后,其内阻急剧下降,该内阻并联于C6两端,故C6两端下降为正常的工作电压(约80V),维持日光灯管稳定的正常发光。 图1

电子镇流器的工作原理

第二章电子镇流器的工作原理 2.1荧光灯简介 2.1.1气体放电灯的基本原理 所谓气体放电灯是指带有能量的电子碰撞气体原子造成气体放电的现象,利用此原理所造成的气体放电灯有多种,使用较多的是辉光放电与弧光放电两种。不论哪一种,其结构大同小异,一般包括阳极、阴极,灯管外壳,灯管内填充的气体。对于交流灯来说则无阴极与阳极之分,两电极可以交替作为阴、阳极之用。对于气体放电灯来说,当加至灯管阴极与阳极之间的电场足够大,便会使灯管放电,此放电过程可以分为三个阶段: 第一阶段:在外加电场的作用下,自由电子被加速。 第二阶段:加速的自由电子与灯管内的气体原子碰撞,使得气体原子呈现激发状态。 第三阶段:受激发的气体,能量激发到更高的能阶并返回基态,所吸收的能量以辐射光的形式释放出来。若电子碰撞气体原子的能量足够大,则会使气体原子产生电离,电离所产生的电子又在电场中加速造成再次电离,使得自由电子成倍数增加,称此为汤生雪崩效应(Thomson Avalanche Effect)。所以,只要外加电场持续存在,则上述的放电过程就不断的重复,也就不断的放光。由于电流的主要成分为电子,为了使放电电流持续进行,阴极必须不断的提供自由电子,提供自由电子的主要方式分别叙述如下: (1)热电子发射:当阴极的温度越高,则越多的电子得到足够的能量从阴极中发射出来,此种发射方式是弧光放电灯主要的发射形式。而T5荧光灯就属于弧光放电灯。 (2)正离子轰击发射:当电极之间的电位差足够大时,使得正离子的速度足够快,此速度足够快的正离子撞击阴极便会轰击出自由电子。因此,电极材料必须能承受正离子的轰击,否则会使得电极的材料大量飞溅,减短电极的寿命并造成灯管早期发黑的现象。辉光放电灯便是以正离子轰击发射为主要发射形式。 (3)场致发射:若外加电场足够大,使得阴极获得足够的能量而直接发射电子,此现象称为场致发射。在气体放电灯中,有时灯管上的电压并不高,但如果在电极附近很小的范围内形成很强的空间电荷层,则可能在此区域造成很强

(完整版)高中物理教案日光灯原理

高二新课电磁感应 §16.5日光灯原理 要点:知道普通日光灯的组成和电路图,知道日光灯管在电亮和正常发光时对电压和电流的不同要求.知道起动器和镇流器的构造和工作原理. 教学难点:镇流器的作用 课堂设计:本节课是上节堂中自感现象的一个常见例子,日光灯跟学生的实际生活联系比较多。为提高学生的学习兴趣,可让学生先观察日光灯的结构(有 条件,可让学生拆开日光灯观察),让学生通过日光灯的实际工作过程, 从而了解各部分起到的作用。有时间可让学生动手组装日光灯 解决难点:以实验为基础,通过课本中的介绍来理解。 培养能力:通过学生动手安装日光灯,培养学生的动手能力通过分析事例,培养学生全面认识和对待事物的科学态度. 学生现状:经常与日光灯为伴,照明用得最多的是日光灯,却不知具体的工作原理课堂教具:可拆日光灯 一、引入新课 上节课我们已经学过自感现象,自感现象是广泛存在的,利用自感现象的一个常见的例子——日光灯 二、新课教学 你知道普通日光灯由哪几部分组成吗? (结合日光灯工作原理的示教板,说明日光灯电路结构) 【板书】1、日光灯的组成 (1)灯管(课本图P206) 出示碎日光灯,如图,向学生介绍灯管 的构造及发光原理. 日光灯开始点燃时,需要一个高电压,正常发光时灯管只允许通过不大的电流,这时要求加在灯管上的电压低于电源电压. (2)镇流器构造: 出示拆开的镇流器如图. 观察并总结镇流器的主要构造。镇流器是一 个带铁芯的线圈,自感系数很大一个带电芯的线圈 (3)起动器构造 出示拆开的起动器,如图所示. 起动器主要是一个充有氖气的小玻璃 泡,里面装有两个电极,一个是静触片,一个 是由两个膨胀系数不同的金属制成的U形 动触片.

相关主题
文本预览
相关文档 最新文档