当前位置:文档之家› 大学物理演示实验讲义(清华大学)

大学物理演示实验讲义(清华大学)

大学物理演示实验讲义(清华大学)
大学物理演示实验讲义(清华大学)

大学物理演示实验讲义

实验室功能介绍

本实验室将全面支持同学们的大学物理课学习;

本实验室为同学们提供了数十个定性或半定量实验。

本实验室还为同学们提供了大量的趣味物理展品。

实验和资料将帮助你理解物理概念,帮助你体会实验构思的巧妙,帮助你把理论与实践更好地结合起来,帮助你开阔知识视野。总之是为了帮助你早日成才!

本实验室采取互动方式教学,除了观察教师为你做的演示实验以外,你还可以选择自己最感兴趣的项目亲自动手做实验;你可以利用导学系统去学习,去思考,去探索;你还可以在课外参加创新实践活动,参加实验室建设,发展自己的个性与特长。

兴趣是最好的老师,在这个实验室的经历将会使你终生难忘!

锥体上滚

【实验目的】:

1.通过观察与思考双锥体沿斜面轨道上滚的现象,使学生加深了解在重力场中物体总是以降低重心,趋于稳定的运动规律。

2.说明物体具有从势能高的位置向势能低的位置运动的趋势,同时说明物体势能和动能的相互转换。

【实验仪器】:锥体上滚演示仪

图1,锥体上滚演示仪

【实验原理】:

能量最低原理指出:物体或系统的能量总是自然趋向最低状态。本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。实验现象仍然符合能量最低原理。【实验步骤】:

1.将双锥体置于导轨的高端,双锥体并不下滚;

2.将双锥体置于导轨的低端,松手后双锥体向高端滚去;

3.重复第2步操作,仔细观察双锥体上滚的情况。

【注意事项】:

1.移动锥体时要轻拿轻放,切勿将锥体掉落在地上。

2.锥体启动时位置要正,防止它滚动时摔下来造成变形或损坏。

陀螺进动

【实验目的】:

演示旋转刚体(车轮)在外力矩作用下的进动。【实验仪器】:陀螺进动仪

图2陀螺进动仪

【实验原理】:

陀螺转动起来具有角动量L,当其倾斜时受到一个垂直纸面向里的重力矩(r ×mg)作用,根据角动量原理, 其方向也垂直纸面向里。

下一时刻的角动量L+△L向斜后方,陀螺将不会倒下,而是作进动。

【实验步骤】:

用力使陀螺快速转动,将其倾斜放在支架上,放手后陀螺不仅绕其自转轴转动,而且自转轴还会绕支架旋转。这就是进动现象。

【注意事项】:

注意保护陀螺,快要停止转动时用手接住,以免掉到地上摔坏。

弹性碰撞仪

【实验目的】:

1. 演示等质量球的弹性碰撞过程,加深对动量原理的理解。

2. 演示弹性碰撞时能量的最大传递。

3. 使学生对弹性碰撞过程中的动量、能量变化过程有更清晰的理解。【实验仪器】:弹性碰撞仪

图3,弹性碰撞仪

【实验原理】:

由动量守恒和能量守恒原理可知:在理想情况下,完全弹性碰撞的物理过程满足动量守恒和能量守恒。当两个等质量刚性球弹性正碰时,它们将交换速度。多个小球碰撞时可以进行类似的分析。事实上,由于小球间的碰撞并非理想的弹性碰撞,还是有能量损失的,故最后小球还是要静止下来。

【实验步骤】:

1.调整固定摆球的螺丝,尽量使摆球的中心处于同一直线上;

2.拉起最左边的一个摆球,释放,让其撞击其它的摆球,可以观察到最右侧的一个球立即摆起,其振幅几乎等于左边小球的摆幅;

3.同时拉起左侧的两个、三个或四个摆球,释放,让其撞击剩余的摆球,可观察到另一侧相同数目的摆球立即摆起,其摆幅几乎等于被拉起摆球的摆幅。【注意事项】:

1.随时注意保持7个摆球的球心处于同一直线上;

2.球的摆幅不要太大,否则效果反而不好;

3. 不要用力拉球,以免悬线断开。

伯努利悬浮球

【实验目的】:

了解伯努利原理及实验现象

【实验仪器】:伯努利悬浮球

图4伯努利悬浮球

【实验原理】:

据伯努利原理,单位质量的流体的动能(流速头)、势能(位置头)和压力能(压力头)的和在同一流线上为一定值。流体的流速大处,其压强小,流速小时,其压强大。

由此可知:当球体靠近喷口时,由于喷流从球体上向下喷出,就造成球体上方的压力低于下方的大气压力,由于两者之间的压差大于球体的重量,球体就被压在(托举在)喷口下方不被吹离。

【实验步骤】:

1.打开气泵,观察到气流从喇叭喷出;

2.拉起气球至喇叭正下方,释放,可以看球体就悬浮喷口下方不被吹离【注意事项】:

1.注意保护气球的完好;

2. 不要用力拉球,以免悬线断开。

傅科摆

【实验目的】:

1. 认识非惯性平台的各个组成部分;

2. 通过傅科摆演示,观察和理解地球的自传规律。

【实验仪器】:傅科摆

图5,傅科摆

【实验原理】:

傅科摆是法国物理学家傅科(J.B.L.Foucault)于1851年首先在巴黎万神殿的圆拱屋顶下悬挂一个重28公斤的铅球,挂线长67米的大单摆。发现在摆的过程中,摆动平面不断作顺时针方向的偏转,从而通过单摆摆动平面的旋转验证地球的自转运动。我国北京自然博物馆门口就有一个傅科摆。

地球自西向东旋转,其角速度?

的方向沿地轴指向北极(Z 轴)。处于北半

球某点的运动物体速度为υ

,那么该物体所受的科里奥利力的表达式为:

ω ?=v m f c 2

科里奥利力c f 的方向垂直于一个平面,这个平面是由υ 和?

的方向所组成的平面,所以c f 垂直于υ ,使υ

发生偏转。

傅科的演示直接证明了地球自西向东的自转。在地球的两级,傅科摆的摆动平面24小时转一圈,而在赤道上,傅科摆没有方向旋转的现象;在两极与赤道之间的区域,傅科摆方向的旋转速度介于两者之间。傅科摆在地球的不同地点旋转的速度不同,说明了地球表面不同地点的线速度不同,因此,傅科摆还可以用于确定摆所处的维度。

【实验步骤】:

1.将单摆拉开一定角度(不要超过底盘限定的范围),使其在竖直平面内摆动;

2.调节底盘上的定标尺,使其方向与单摆的摆动方向一致;

3,经过一段时间(大约1-2小时),观察单摆的摆动面与定标尺方向的夹角(大约10——20度)。

【注意事项】:

1.单摆初始角度不要超出底盘的限定范围; 2. 应避免用力拉球,以免摆线断开。

声波可见

【实验目的】:

借助视觉暂留演示声波;

【实验仪器】:声波可见演示仪

图6 声波可见演示仪

【实验原理】:

不同长度,不同张力的弦振动后形成的驻波基频、协频各不相同,即合成波形各不相同。本装置产生的是横波,可借助滚轮中黑白相间的条纹和人眼的视觉暂留作用将其显示出来。

【实验步骤】:

1.将整个装置竖直放稳,用手转动滚轮;

2.依次拨动四根琴弦,可观察到不同长度,不同张力的弦线上出现不同基频与协频的驻波;

3.重复转动滚轮,拨动琴弦,观察弦上的波形。

【注意事项】:

1.滚轮转速不必太高。

2.拨动琴弦切勿用力过猛。

环驻波演示实验

【实验目的】:

借助驻波演示仪观察驻波,加深对驻波形成条件的理解。

【实验仪器】:环驻波演示仪

图7 环驻波演示仪

【实验原理】:

两列频率、振动方向及振幅都相同的简谐波,在同一直线上沿相反方向传播时叠加形成驻波。驻波中既没有相位的空间移动,也没有能量的定向传播,各点均在自己的平衡位置附近作简谐振动。振幅最大处为波腹,振幅为零处为波节。

本实验是利用振子端点反射的波与该点传出的入射波在环上叠加形成驻波。只有满足圆弧的长度等于驻波半波长的整数倍时,才可在环上形成驻波。通过改变入射波长(改变信号源的频率),可以形成不同波长的驻波。

【实验步骤】:

1.首先将信号源控制振幅电压输出调至最低,打开电源。

2.适当增大电压值环平稳振动;然后调节频率旋钮,直到出现环驻波;

3.缓慢改变信号源的频率,使环上出现不同个数的波腹与波节,并使之保持稳定;如果波腹的幅度小,可适当调高电压;

4.重复步骤2、3,多次进行观察。

【注意事项】:

1.实验中输出电压不能太高,每次变化不能太大。

2.为达到最佳效果,频率与电压需交替配合调整,变化要缓慢。

激光李萨如图形演示仪

【实验目的】:

利用光杠杆的原理,深入理解简谐振动、受迫振动、共振以及二维同频振动合成。

【实验仪器】:激光李萨如图形演示仪

仪器结构如下图:

图8 激光李萨如图形演示仪

【实验原理】:

激光李萨如图形演示仪的激光束向左发射,面板下的机箱内装有低频电压信号发生源。振动器1水平放置,代表X方向振动;振动器2垂直放置(部分振动条穿入机箱内),代表Y方向振动,两个振动器中的振动片分别由机箱内低频信号功率源驱动,做受迫振动。当线圈通以交流电时,穿过线圈的振动片被磁化,

极性不断变化,并于振动片两旁的磁体吸引、排斥,引起振动,在受迫振动中,通过改变低频率信号功率源的输出频率,实现振动频率的相互比率关系,反射激光束而形成李萨如图形。即:

1.当两个方向相互垂直、频率成整数比的简谐振动叠加时,在屏幕上就会显示李萨如图形。

2.利用光杠杆原理可以使微小的振动放大。

【实验步骤】:

1.演示二维同频振动合成:激光李萨如图形演示仪平放在桌上,激光照射在远处屏上,“X:Y转换开关”选择在“1:1”上,打开X方向振动开关,演示X方向振动;关闭X方向振动开光,打开Y方向振动开关,演示Y方向振动,最后打开X、Y方向振动开关,演示两个相互垂直方向的简谐振动合成。

2.演示二维不同频,但两者的频率成证书比的振动合成,“X:Y转换开关”分别选择在“1:2”、“2:3”、“3:4”上,演示李萨如图形,如要是图形稳定(相位差趋向定值),可调节Y频率微调旋钮。

【注意事项】:

在打开激光电源开关的情况下,不许用手直接接触激光管的电极接线,以免触电。

雅格布天梯演示实验

【实验目的】:

通过演示来了解气体弧光放电的原理。

【实验仪器】:雅格布天梯演示仪

图9 雅格布天梯演示仪

【实验原理】:

无论是在稀薄气体、金属蒸汽或大气中,当回路中电流的功率较大时,能够提供足够大的电流,使气体击穿,伴随有强烈的光辉,这时所形成的自持放电的形式是弧光放电。

雅格布天梯是演示高压放电现象的一种装置。给存在一定距离的两电极之间加上高压,若两电极间的电场达到空气的击穿电场时,两电极间的空气将被击穿,并产生大规模的放电,形成气体的弧光放电。

雅格布天梯中的两电极构成为一梯形,下端间距小,因而场强大。其下端的空气最先被击穿,产生大量的正负离子,同时产生光和热,即电弧放电。由于电弧加热(空气的温度升高,空气就越易被电离, 击穿场强就下降),使其上部的空气也被击穿,形成不断放电。结果弧光区逐渐上移,犹如爬梯子一般的壮观。当升至一定的高度时,由于两电极间距过大,使极间场强太小不足以击穿空气,电极提供的能量不足以补充声、光、热等能量损耗时弧光因而熄灭。此时高压再次将电极底部的空气击穿,发生第二轮电弧放电,如此周而复始,形成实验中的现象。

【实验步骤】:

打开电源开关,可看到高压弧光放电沿着“天梯”向上“爬”,同时听到放电声,直到上移的弧光消失,天梯底部将再次产生弧光放电。

【注意事项】:

1.千万做好安全防护,将仪器封闭,不能让人触及仪器,尤其是在工作时;

2.仪器工作时间不能过长,一般不超过3分钟,将自动断电进入保护状态, 稍等一段时间,仪器恢复后方可继续演示。

能量转换轮演示实验

【实验目的】:

验证能量转换与守恒定律。

【实验仪器】:能量转换轮演示仪

图10 能量转换轮演示仪

【实验原理】:

能量转换轮演示了电能、磁能、机械能、光能之间的相互转化。给电磁铁通电,电能经电磁铁转换成磁能,即产生交变磁场,转轮内的磁铁在该磁场的磁力作用下带动转轮旋转,磁能又转换成机械能;而转轮的旋转使永久磁铁的固定

磁场运动起来,则又在左侧的闭合线圈中产生感应电流,能量又被转换成电能,并通过发光二极管变为光能。根据能量转换与守恒定律,自然界的各种能量之间可以相互转化、但总能量保持不变。本实验也遵循这一定律。

【实验步骤】:

1.打开箱体前面板上的开关,使圆盘右侧铁芯产生变化的磁场;

2.轻轻转动大圆盘(圆盘上装有许多永磁铁)使其转起来,经过两磁场的相互作用,圆盘越转越快;

3.观察圆盘左侧线圈中发光二极管的发光情况;

4. 实验完毕,关掉电源。

【注意事项】:

1.因有一定的摩擦,因此,开始应给一定的驱动力;

2.易被磁化的物品应远离仪器,如机械手表;

3.如果大圆盘转动时系统晃动,请把底座垫平。

大学物理演示实验报告

实验一锥体上滚 【实验目的】: 1.通过观察与思考双锥体沿斜面轨道上滚的现象,使学生加深了解在重力场中物体总是以降低重心,趋于稳定的运动规律。 2.说明物体具有从势能高的位置向势能低的位置运动的趋势,同时说明物体势能和动能的相互转换。 【实验仪器】:锥体上滚演示仪 图1,锥体上滚演示仪 【实验原理】: 能量最低原理指出:物体或系统的能量总是自然趋向最低状态。本实验中在低端的两根导轨间距小,锥体停在此处重心被抬高了;相反,在高端两根导轨较为分开,锥体在此处下陷,重心实际上降低了。实验现象仍然符合能量最低原理。【实验步骤】: 1.将双锥体置于导轨的高端,双锥体并不下滚;

2.将双锥体置于导轨的低端,松手后双锥体向高端滚去; 3.重复第2步操作,仔细观察双锥体上滚的情况。 【注意事项】: 1.移动锥体时要轻拿轻放,切勿将锥体掉落在地上。 2.锥体启动时位置要正,防止它滚动时摔下来造成变形或损坏。

实验二陀螺进动 【实验目的】: 演示旋转刚体(车轮)在外力矩作用下的进动。 【实验仪器】:陀螺进动仪 图2陀螺进动仪 【实验原理】: 陀螺转动起来具有角动量L,当其倾斜时受到一个垂直纸面向里的重力矩(r ×mg)作用,根据角动量原理, 其方向也垂直纸面向里。

下一时刻的角动量L+△L向斜后方,陀螺将不会倒下,而是作进动。 【实验步骤】: 用力使陀螺快速转动,将其倾斜放在支架上,放手后陀螺不仅绕其自转轴转动,而且自转轴还会绕支架旋转。这就是进动现象。 【注意事项】: 注意保护陀螺,快要停止转动时用手接住,以免掉到地上摔坏。 实验三弹性碰撞仪 【实验目的】: 1. 演示等质量球的弹性碰撞过程,加深对动量原理的理解。 2. 演示弹性碰撞时能量的最大传递。 3. 使学生对弹性碰撞过程中的动量、能量变化过程有更清晰的理解。 【实验仪器】:弹性碰撞仪 图3,弹性碰撞仪

清华大学固体物理:第六章 晶格动力学

清华大学固体物理:第六章晶格动力学 6.1 固体物理性质的变化依赖于他们的晶格动力学行为:红外、拉曼和中子散射谱;比热,热膨胀和热导; 和电声子相互作用相关的现象如金属电阻,超导电性和光谱的温度依赖关系是其中的一部分。事实上, 借助于声子对这些问题的了解最令人信服地说明了目前固体的量子力学图像是正确的。 晶格动力学的基础理论建立于30年代,玻恩和黄昆1954年的专题论文至今仍然是这个领域的参考教科书。这些早期的系统而确切地陈述主要建立了动力学矩阵的一般性质,他们的对称和解析性质,没有 考虑到和电子性质的联系,而实际上正是电子性质决定了他们。直到1970年才系统地研究了这些联系。一个系统电子的性质和晶格动力学之间的联系的重要性不仅在原理方面,主要在于通过使用这些关系, 才有可能计算特殊系统的晶格动力学性质。 现在用ab initio 量子力学技术,只要输入材料化学成分的信息,理论凝聚态物理和计算材料科学就 可以计算特殊材料的特殊性质。在晶格动力学性质的特殊情况下,基于晶格振动的线性响应理论,大量 的ab initio 计算在过去十年中通过发展密度泛函理论已经成为可能。密度泛函微扰理论是在密度泛函理 论的理论框架之内研究晶格振动线性响应。感谢这些理论和算法的进步,现在已经可以在整个布里渊区

的精细格子上精确计算出声子色散关系,直接可以和中子衍射数据相比。由此系统的一些物理性质(如 比热、熱膨胀系数、能带隙的温度依赖关系等等)可以计算。 1 从固体电子自由度分离出振动的基本近似是Born-Oppenhermer (1927) 的绝热近似。在这个近似中,系统的晶格动力学性质由以下薛定谔方程的本征值,R和本征函数决定。 , 22 ERRR,,, (6.1.1) 22MRIII 这里RRER是第I个原子核的坐标,是相应原子核的质量,是所有原子核坐标的集合,是RMIII 系统的系统的限位离子能量,常常称为Born-Oppenhermer能量表面。ER是在固定原子核场中运动的 R相互作用电子系统的基态能量。他们依赖参量作用在电子变量上的哈密顿量为 2222Zee1IHERR (6.1.2) 2BONijiI22mrrRiIirrij 这里eER是第I个原子核的电荷数,是电子电荷,是不同核之间的静电相互作用: ZNI 2ZZeIJER (6.1.3) NIJ2RRIJ 系统的平衡几何排布由作用在每一个原子核上为零决定: ERF0 (6.1.4) IRI 而振动频率,由Born-Oppenhermer能量的Hassian本征值决定,由原子核的质量标度为: 2ER12 (6.1.5) det0,RRMMIJIJ

固体物理(清华大学)--N01_C02

第二章:化学键与晶体形成 在固体物理发展的早期阶段,人们从化学的角度来研究固体,所以化很大的精力去计算各种固体的结合能(binding energy),并依此对固体进行粗略的分类。后来在原子物理和量子力学发展以后,人们依据电子在实空间的分布来对固体进行分类,也就是化学键或者是晶体的键合(crystal binding)的理论。最精确的固体分类是在能带理论发展以后才实现的。 原子物理研究了单个原子中的电子能级.首先,考虑一个电子,单个电子是以一定的几率在原子核周围的空间中分布,几率分布的密度 ()()2r r ψ=ρ(()r ψ是单个电子的波函数). 根据量子力学,三维空间中单 个电子的波函数),()()( φθ=ψlm n Y r R r 是能量E,轨道角动量2L 和分量z L 三个算符的共同本征函数,其量子数分别为n, l, m(221n E n -=,n=n ’+l+1),一组量子数确定电子的一个轨道.在考虑一个原子中的多个电子的时候,忽略了电子之间很强的库仑排斥作用(很奇怪和大胆的近似,但误差不大),认为多个电子根据泡利不相容原理(Pauli ’s exclusion principle)以及洪特规则(Hund ’s rule)依次排入单个电子的轨道.这就分别形成了(1s,2s,2p,3s,3p,3d,...)等电子壳层和亚壳层.

在原子结合成为固体的过程中,内部满壳层的电子(core electrons)基本保持稳定,价电子(valence electrons)在实空间会随着原子之间的相互作用重新分布。按化学家的语言说,就是在原子之间形成了化学键(Chemical bond)。不同的固体拥有不同的化学键。晶体:原子、离子或分子呈空间周期性排列的固体,以区别于内部不具有周期性的非晶体。 原子间引力:一般来说,晶体比自由原子的空间混乱集合稳定,这意味着原子之间存在等效的相互吸引力(本质是库仑相互作 用加上量子效应),从而构成晶体。 结合能:晶体能量比同样数量的自由原子集合的能量低,能差为结合能, 吸引力F=-dU/da。 化学键:也称原子键。原子间引力作用构成原子之间的键(形象的说法)。键保证晶体稳定。 2。1 离子键、共价键与金属键(Ionic, Covalent and Metal Bonds) 离子键(Ionic Bond):[以NaCl(Sodium Chloride)晶体为例] 饱和的电子壳层是最稳定的原子核外电子结构。为了趋向于饱和壳层的结构,Na原子把唯一的价电子转移给附近的缺

清华大学校园部分景点介绍

清华大学校园部分景点介绍 清华主楼:1966年5月落成,建筑总面积近8万平方米,是由清华大学有关专业的师生结合毕业设计而自行设计的校园杰作之一。由“西主楼”、“东主楼”和“中央主楼”三部分组成,并以四个“过街楼”联成一个整体。整个建筑气势雄伟,浑然一体,是清华校园中规模最宏大的建筑群,体现了清华师生宽广的胸怀和豪迈的气魄。清华主楼不仅在教学、科研中发挥着重要作用,并且是学校举办重大活动、接待重要来宾的主要场所。美国总统布什、联合国秘书长安南等许多政界领袖和诺贝尔奖获得者等学术大师、著名跨国公司总裁等企业名流,都曾在中央主楼向清华师生发表演讲。 第六教学楼:由台湾裕元集团捐资800万美元,清华大学注入7500万元人民币兴建的第六教学楼,于2003年建成使用,命名为“裕元楼”。有7000多个座位,是目前清华规模最宏大、设施最先进的教学大楼。

新土木馆:由香港何善衡慈善基金会捐资兴建,1998年落成,命名为“何善衡楼”,又称新土木馆。该馆是清华土木工程学科教学与科研工作的一个重要基地。 综合体育中心:由香港曹光彪先生捐资兴建,清华建筑设计院设计,占地12600平方米,主要用于体育比赛、大型演出、集会和体育课,还可为校体育代表队的训练和同学的日常锻炼提供场所。主馆包括三个标准篮球场及5000个座位。2001年建成使用以来,每年的开学和毕业典礼均在这里举行。清华大学90周年校庆大会和21届世界大学生运动会的篮球比赛也曾在这里举行。

跳水馆:这是具有国际标准的比赛场馆,总建筑面积达到9400平方米,拱形建筑,由清华大学建筑设计院设计,包括一个游泳池和一个跳水池,共有1208个观众席位。21届世界大学生运动会跳水比赛在此举行。 紫荆学生公寓:总建筑面积近37万平方米,集运动、娱乐、住宿、生活于一体的现代化学生公寓,为学生营造了良好的学习生活的氛围。

清华大学介绍

清华大学介绍 清华大学的前身是清华学堂,始建于1911年,1912年更名为清华学校,1925年设立大学部,开始招收四年制大学生,1928年更名为 “国立清华大学”,并于1929年秋开办研究院。1937年抗日战争爆发后,南迁长沙,与北京大学、南开大学联合办学,组建国立长沙临时 大学,1938年迁至昆明,改名为国立西南联合大学。1946年,清华大 学迁回清华园原址复校,设有文、法、理、工、农等5个学院,26个系。 1952年,全国高校院系调整后,清华大学成为一所多科性的工业 大学,重点为国家培养工程技术人才,被誉为“工程师的摇篮”。 1978年以来,清华大学进入了一个蓬勃发展的新时期,逐步恢复理科、经济、管理和文科类学科,并成立了研究生院和继续教育学院。1999年,原中央工艺美术学院并入,成为清华大学美术学院。在国家和教 育部的大力支持下,经过“211工程”建设和“985计划”的实施,清 华大学在学科建设、人才培养、师资队伍建设、科研开发以及整体办 学条件方面均跃上了一个新的台阶。当前,清华大学已成为一所设有理、工、文、法、医、经济、管理和艺术等学科的综合性大学。 全国重点学科49个;本科专业58个,硕士学位授权点159个, 博士学位授权点123个,博士后科研流动站27个。学校现有国家重点 实验室11个,国家专业实验室2个,教育部重点实验室14个、体育 总局社会科学研究基地1个、科技部重点实验室1个、教育部网上合 作研究中心6个、教育部人文社科重点研究基地3个,教育部网上研 究中心6个。学校藏书400余万册。学校占地面积400余公顷,建筑 面积230余万平方米。出版物有《清华大学学报》(分自然科学版、 英文版、哲学社会科学版)、《世界建筑》、《装饰》、《清华大学 教育研究》等。 清华大学治学严谨,有着较高的学术水平和教学质量。清华大学 传承“培养具有为国家社会服务之健全品格的人才”的教育理念,建

清华大学校史

清华大学校史 清华大学是一所历史悠久的学校,可溯至民国前一年(公元一九一一年)的「清华学堂」。最初之酝酿,是在前清光绪三十年至三十一年间,我国驻美公使梁诚,因美国国务卿海约翰(John Hay)氏有「美国所收庚子赔款原属过多」之语,一方面分向美当局劝请核减,一方面上书清廷请以此款设学育才。中间虽因发生粤汉铁路废约之关系而生阻,但梁氏努力不懈,卒得美国国会之赞同,将处置赔款全权付与总统罗斯福。照条约我国应付美国赔款二千四百四十四万七百七十八元八角一分,经总统决定将当时尚未付足之一千零七十八万五千二百八十六元一角二分,从一九0九年一月起退还我国。 光绪三十四年(公元一九0八年)七月十一日,美国核减赔款之文告由驻华公使柔克义送达我国,我外务大臣庆亲王答复上述公文说:「体会新近贵国总统希望鼓励我国学生赴美入学校及求高深学问之诚意,并有鉴于以往贵国教育对于我国之成效,大清帝国政府谨诚恳表示此后当按年派送学生到贵国承受教育。」同日,外务部致美国公使馆函称:「从赔款退还之年起,前四年我国将次第派送一百学生;迨四年终局,我国将有四百学生在美,从第五年起,直至赔款完毕之年,每年至少派送五十名学生。」并派唐绍仪为特使赴美表示谢意。 民国前三年(宣统元年,公元一九0九年)是为美国退还赔款之第一年,外

务部与美国驻华公使柔克义商定学生游美细则后,会同学部奏请设立「游美学务处」及附设「肄业馆」。六月初四日游美学务处奉准设立,派外务部丞参周自齐为总办,主事唐国安及学部郎中范源廉为会办,驻美公使馆参赞容揆为驻美学生监督。初赁北京东城侯位胡同民房一所为办公处,后又迁入史家胡同。九月奏准将北京西直门外「清华园」作为游美学务处兴建「肄业馆」馆舍之用。是为清华得名之始。清华园原系道光帝赐其第五子惇亲王(奕综)之赐园,俗称小五爷园。惇亲王死后,长子载濂袭爵为王。庚子之乱,拳匪曾集于园中设坛,事后载濂被削职,赐园为内务府收回。因外务部在呈奏游美学生办法内,建议在京城外清旷地方设立肄业馆,中堂那桐等颇表赞同,派员各处觅地,认为清华园比较相宜,即拨作馆址。面积凡五百三十亩。择定清华园为肄业馆馆址后,即着手修理及建筑,原希望一九一0年秋可以使用,不料工人罢工数月,耽误时期。迨至馆舍相继完成,将肄业馆改称「清华学堂」,于民国前一年(公元一九一一年)四月初一日(阳历为四月二十九日,是为清华校庆日之由来)正式开学,在工字厅举行开学仪式。游美学务处亦迁入工字厅办公。首任教务长为胡敦复。清华学堂成立之初,乃由正副监督三人管理,即是由游美学务处之总办与会办担任。同年十月,武昌起义开始,学生纷纷请假回家,清华学堂被迫停课。 经过一阵惊心动魄的革命,清帝宣统于公元一九一二年三月三十日退位,中华民国建立。民国成立之后,将「清华学堂」改名为「清华学校」,于五月一日重行开课,并裁撤「游美学务处」,使之隶属外交部。任命唐国安为清华学校第

大学物理创新实验报告

大学物理创新实验报告 篇一:大学物理创新实验报告 大学物理实验报告总结 一:物理实验对于物理的意义 物理学是研究物质的基本结构,基本的运动形式,相互作用及其转化规律的一门科学。它 的基本理论渗透在基本自然科学的各个领域,应用于生产部门的诸多领域,是自然科学与 工程科学的基础。物理学在本质上是一门实验学科,物理规律的发现和物理理论的建立都 必须以物理实验为基础,物理学中的每一项突破都与实验密切相关。物理概念的确立,物 理规律的发现,物理理论的确立都有赖于物理实验。 二:物理实验对于学生的意义 大学物理实验已经进行了两个学期,在这两个学期,通过二十几个物理实验,我们对物理 学的理解和认识又更上了一步台阶。通过对物理实验的熟悉,可以帮助我们掌握基本的物 理实验思路和实验器材的操作,进一步稳固了对相关的定理的理解,锻炼理性思维的能力。在提高我们学习物理物理兴趣的同时,培养我们的科学思维和创新意识,掌握实验研究的 基本方法,提高基本科学实验能力。它也是我们进入大学接触的第一门实践性教学环节, 是我们进行系统的科学实验方法和技能训练的重要必修课。它还能培养我们“实事求是的 科学态度、良好的实验习惯、严谨踏实的工作作风、主动研究的创新与探索精神、爱护公 物的优良品德”。 三:我眼中的物理实验的缺陷 1:实验目的与性质的单一性 21世纪的学科体系中,多种学科是相互结合,相互影响的,没有一门学科能独立于其他 学科而单独生存,但是在我们的实验过程中,全都是关于物理,这一单科的实验内容,很 少牵涉到其他。有些实验完全是为了实验而实验,根本不追求与其他学科的联系与结合。2:实验的不及时性及实验信息的不对称性 物理是一门以实验为基础的基本学科,在我们所学的物理内容中,更多的是关于公式定理的,这些需要及时的理解和记忆,最简单的方式是通过实验来进行。但是我们所做的实验,都是学过很久以后,甚至是已经学完物理学科后进行的,这就造成我们对物理知识理解的 不及时性,不能达到既定的效果。而且,我们重复科学实验伟人的实验很大程度上是得知结论后凭借少量的实验数据轻易得出相似的结论,与前人广袤的数据量不可同日而语,这就造成实验信息的不对称性, 不利于从本质上提高我们的实验能力。

大学物理演示实验报告.doc

大学物理演示实验报告 学物理演示实验报告--避雷针 一、演示目的 气体放电存在多种形式,如电晕放电、电弧放电和火花放电等,通过此演示实验观察火花放电的发生过程及条件。 二、原理 首先让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。这是由于电荷在导体上的分布与导体的曲率半径有关。导体上曲率半径越小的地方电荷积聚越多(尖端电极处),两极之间的电场越强,空气层被击穿。反之越少(球型电极处),两极之间的电场越弱,空气层未被击穿。当尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离时,其间的电场较弱,不能击穿空气层。而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。 三、装置 一个尖端电极和一个球型电极及平板电极。 四、现象演示 让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。接着让尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离,放电在球型电极与平板电极之间发生

五、讨论与思考 雷电暴风雨时,最好不要在空旷平坦的田野上行走。为什么? 学物理演示实验报告--避雷针 一、演示目的 气体放电存在多种形式,如电晕放电、电弧放电和火花放电等,通过此演示实验观察火花放电的发生过程及条件。 二、原理 首先让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。这是由于电荷在导体上的分布与导体的曲率半径有关。导体上曲率半径越小的地方电荷积聚越多(尖端电极处),两极之间的电场越强,空气层被击穿。反之越少(球型电极处),两极之间的电场越弱,空气层未被击穿。当尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离时,其间的电场较弱,不能击穿空气层。而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。 三、装置 一个尖端电极和一个球型电极及平板电极。 四、现象演示 让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。接着让尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离,放电在球型电极与平板电极之间发

固体物理(清华大学)--N01_C03B

3.4 倒易点阵与布里渊区(Reciprocal Lattice and Brillouin Zone) 在晶格振动理论中原子的振动以机械波的形式在晶体中传播,在能带理论中电子的几率分布用波函数的形式描述,是在整个晶体中分布的几率波。上述两种波都受制于晶格的周期性。倒易空间就是定 义在晶格上的波()r ψ的波矢k 的空间. 从数学上讲,倒易点阵和Bravais 点阵互相是对应的傅里叶空间。 倒易点阵基矢(Reciprocal Basis)与晶格基矢正交归一: a a i j ij *?=2πδ。 倒易点阵基矢:()()()() a a a a a a a a a a a a c c c c 123231123312222***,=?=?=??=?πππΩΩΩΩ即原胞体积。 倒易格矢量: *3*2*1a l a k a h G hkl ++=,其中h, k, l 为任意整数.构成倒易点 阵。 Bravais 点阵的倒易点阵也是Bravais 点阵,在绝大多数情况傅里叶 变换并不改变点阵的晶格结构.普遍而言 倒易点阵属于点阵同一晶系. (1) 面心立方与体心立方互为正、倒易点阵。例子:面心---体心互

换。 )???(2 ),???(2),???(2321z y x a a z y x a a z y x a a -+=+-=++-= (2) 体心四方变成面心四方,也就是回到体心四方. )???(2 1),???(21),???(21321z c y a x a a z c y a x a a z c y a x a a -+=+-=++-= (3) 底心正交还是变成体心正交. z c a y a x a a y b x a a ?),??(2 1),??(21321=-=+= 倒易点阵在晶体学中的应用:晶面的定量描述。倒格矢 G ha ka la hkl =++123***垂直于()hkl 晶面。面间距d G hkl hkl =2π/。所以 倒格矢hkl G 可以代表()hkl 晶面. 证明:设晶面在基矢上的截距为x y z ,,,Miller 指数()h k l x y z ,,,,=?? ?? ?111。被晶面截出的基矢方向的矢量差为 u ya xa 1221=-,2 323a y a z u -=和3131a z a x u -=。以Miller 指数组成倒格矢 G ha ka la hkl =++123***,正好与三个截距矢量差都垂直:() G u hx ky hkl ?=-+=1220π。所以 G hkl 与由 u 12, u 23和 u 31张成的晶面垂直。 晶 面的间距也可以计算出来:d xa G G xh G G hkl hkl hkl hkl hkl =?== 122///ππ.

清华历史简介

站在清华大学校门时,一种激动的心情无语言表。一直都很向往的大学就这样矗立在我的眼前,犹如心中的一块圣地。站在门口,我对孩子说,清华大学是1911年建立的,到现在是95载春秋的发展历程,清华大学有着独特的魅力和深厚的文化底蕴。“自强不息、厚德载物”的校训、“行胜于言”的校风和“严谨、勤奋、求实、创新”的学风构成了清华精神的核心内涵,也激励和鼓舞着一代代清华人为了中华民族的崛起与腾飞做出不息的努力。 进清华大学的校址原来也是圆明园的一部分,前身是清华学堂,是清政府利用美国政府“退还”的部分“庚子赔款”,于1911年办起来的留美预备学校。辛亥革命后更名为清华大学。“导游”一边缓缓开车,一边为我们讲解。“导游”把车开到了清华大学校内的校门(也称二门)时,停了下来,叫我们下车照相留念,参观的人很多,照相的更多,我知道,大家的心情是一样的,都想在这里留下自己的身影,圆自己的清华梦。 清华园是清华大学校本部,它占地395公顷(近6000亩),建筑面积118万平方米,地处北京西北郊名胜风景园林区,明朝时为一私家花园,清朝康熙年间成为圆明园一部分,称熙春园,道光年间分为熙春园和近春园,咸丰年间改名为清华园。周围高等学府和名园古迹林立,园内苍松翠柏、水清木华,清澈的万泉河从腹地蜿蜒而过,勾连成一处处湖泊、小溪,同时也滋养着清华学子特有的志趣和气质。 看着眼前的一池青绿的荷塘,满眼翠绿的荷叶呈现在我们面前。难道这就是著名的散文家朱自清先生所写的《荷塘月色》?正在我满眼诱惑的时候,“导游”开口了——这就是有名的“荷塘月色”。“是朱自清先生笔下的荷塘吗?”“正是这个荷塘。美吧?”“哇!太美了!”我沿着湖岸情不自禁地跑起来,一边跑,一边用眼尽情地饱览着这副早在中学时代就映入脑子里的荷塘和荷叶了。 “曲曲折折的荷塘上面,弥望的是田田的叶子。叶子出水很高,象亭亭的舞女的裙。层层的叶子中间,零星地点缀着些白花,有袅娜地开着的,有羞涩地打着朵的;正如一粒粒的明珠,又如天里的星星。

大学物理上实验报告(共2篇)

篇一:大学物理实验报告 大学物理演示实验报告 院系名称:勘察与测绘学院 专业班级: 姓名: 学号: 辉光盘 【实验目的】: 观察平板晶体中的高压辉光放电现象。 【实验仪器】:大型闪电盘演示仪 【实验原理闪电盘是在两层玻璃盘中密封了 涂有荧光材料的玻璃珠,玻璃珠充有稀薄的 惰性气体(如氩气等)。控制器中有一块振荡 电路板,通过电源变换器,将12v低压直流 电转变为高压高频电压加在电极上。 通电后,振荡电路产生高频电压电场, 由于稀薄气体受到高频电场的电离作用二产 生紫外辐射,玻璃珠上的荧光材料受到紫外 辐射激发出可见光,其颜色由玻璃珠上涂敷 的荧光材料决定。由于电极上电压很高,故 所发生的光是一些辐射状的辉光,绚丽多彩,光芒四射,在黑暗中非常好看。 【实验步骤】: 1. 将闪电盘后控制器上的电位器调节到最小; 2. 插上220v电源,打开开关; 3. 调高电位器,观察闪电盘上图像变化,当电压超过一定域值后,盘上出现闪光; 4. 用手触摸玻璃表面,观察闪光随手指移动变化; 5. 缓慢调低电位器到闪光恰好消失,对闪电盘拍手或说话,观察辉光岁声音的变化。 【注意事项】: 1. 闪电盘为玻璃质地,注意轻拿轻放; 2. 移动闪电盘时请勿在控制器上用力,避免控制器与盘面连接断裂; 3. 闪电盘不可悬空吊挂。 辉光球 【实验目的】 观察辉光放电现象,了解电场、电离、击穿及发光等概念。 【实验步骤】 1.将辉光球底座上的电位器调节到最小; 2.插上220v电源,并打开开关; 3. 调节电位器,观察辉光球的玻璃球壳内,电压超过一定域值后中心处电极之间随机产生数道辉光; 4.用手触摸玻璃球壳,观察到辉光随手指移动变化; 5.缓慢调低电位器到辉光恰好消失,对辉光球拍手或说话,观察辉光随声音的变化。

期中ref清华大学固体物理王燕

1.Cu和单晶硅晶体结构上的区别,分别说明它们的Bravais格子和基元是什么 2.研究晶体结构时为什么不能用可见光衍射? 3.晶体的结合能,晶体的内能,原子间相互作用势能有何区别和联系 4.为什么在集成电路制造工艺中要减少高温工艺 5.共价键的特点,并据此分析晶体的宏观特性 二.填空题 1.位错线运动方向与滑移方向垂直的是___位错,位错线方向与滑移方向垂直的是___位错 2.X射线的布拉格定律___;劳厄方程的在倒格子空间表示为___ 3.立方密积结构,晶格常数a,(100)晶面与(111)晶面的夹角为___;(111)面的面间距为___;原子面密度为___ 4.把Na原子从Na晶体移至表面的能量为w,温度为T时肖特基缺陷的相对密度为___ 5.金刚石结构,一个原子有___个最近邻,一个结晶学原胞中,包含___个原子,堆积球所占体积与总体积的比为___ 6.U(r)=-a*r^(-2)+b*r^(-8),已知r0,结合能w,a=___;b=___ 7.晶体热缺陷有___;___;___,Si材料,最容易出现的滑移面是___,位错线的主要方向___ 8.宏观对称操作有___种对称素,可组合成___点群 9.扩散的宏观定律___和___;微观角度看,晶体中原子扩散本质是___,以空位式扩散为例,空位扩散系数与温度的关系___ 10.一维扩散方程,如采用恒定表面源的边界条件,扩散物分布表现为___;如采用恒定表面浓度的边界条件,扩散物分布表现为___ 11.抗张强度是指___ 12.最硬的物质是___;已知熔点高达3500度以上的物质是___ 13.晶体的结合能可表示为___ 14.晶体的基本结合类型是___;___;___;___;___ 三.计算和证明题 1.给三个面,分别求面指数 2.证明(6字班)讲义P15-4倒格子性质4,K=2pi/d 3.习题2-5(江湖盛传每年习题不换题,7,8字班的如果换题了可以找5,6字班要) 4.习题3-2,说明同上

北大清华大学校史简介

北大清华校史简介 北京大学的校园又称燕园,建立在“九大园林”基础上:勺园历史上,这里曾是一片荒地,明代书法家米万钟在此修建了一处园林。取“海淀一勺”之意,所以被起名为勺园。畅春园原址是明朝明神宗的外祖父李伟修建的“清华园”。清代,康熙利用清华园残存的水脉山石,在其旧址上仿江南山水营建畅春园,作为在郊外避暑听政的离宫。蔚秀园其初为圆明园附园,称“含芳园”。咸丰八年(1858年)转赐醇亲王奕譞,御书“蔚秀园”。承泽园当年曾被誉为京西五大邸园之一。原来和镜春园同属春熙园,是圆明园附属园林之一。乾隆年间,被赐予驾前宠臣和珅为园,成为淑春园的一部分。(北大清华校史简介)镜春园 未名湖畔,曾是春熙园的一部分,是圆明园附属园林之一。嘉庆七年春熙园的东部改为镜春园,被赐予了庄静公主。朗润园原名“春和园”,曾是圆明园的附属园之一,赐给奕欣始称朗润园。载涛对保护园中文物做出了巨大贡献。 图书馆 简介原为京师大学堂藏书楼。西楼建于1975年,1998年,北京大学百年校庆之际,由香港实业家李嘉诚先生捐资兴建的新馆(东楼)落成,在建筑规模上成为亚洲第一大高校图书馆。邓小平同志亲自为图书馆题写馆名“北京大学图书馆”,江泽民同志为北京大学图书馆题词“百年书城”。藏书到2011年底,总、分馆文献资源累积量约1,100余万册(件)。其中纸质藏书800余万册,各类数据库、电子期刊、电子图书和多媒体资源约300余万册。现有古籍150万册,其中善本书17万册,金石拓片约24000种,56000份,绝大部分是石刻文字拓片,其数量居全国前列。被国务院批准为首批国家重点古籍保护单位。 著名馆长著名学者李大钊于1918年至1921年任图书部主任。他主张各类图书兼容,中外文化并存。与此同时(1917-1918年),毛泽东也曾担任过北京大学图书部助理员。 博雅塔 简介博雅塔原是一座水塔,仿照通州燃灯塔,下部为须弥座。高三十七米,十三级,内中空,有旋梯,井深64尺,时喷水高于地面十余尺,除基座外全是用钢筋水泥建筑,建于1924年,初为燕京大学提供生活用水。 命名主要由当时学校哲学系教授博晨光的叔父JamesPorter捐资兴建,1930年前,燕京大学校内的文物都是以捐款人的姓氏命名的,故取名“博雅”特色为维护燕园结构布局,

大学物理演示实验报告文档2篇

大学物理演示实验报告文档2篇College physics demonstration experiment report docu ment 编订:JinTai College

大学物理演示实验报告文档2篇 小泰温馨提示:实验报告是把实验的目的、方法、过程、结果等记录下来,经过整理,写成的书面汇报。本文档根据实验报告内容要求展开说明,具有实践指导意义,便于学习和使用,本文下载后内容可随意修改调整及打印。 本文简要目录如下:【下载该文档后使用Word打开,按住键盘Ctrl键且鼠标单击目录内容即可跳转到对应篇章】 1、篇章1:大学物理演示实验报告文档 2、篇章2:大学物理演示实验报告文档 篇章1:大学物理演示实验报告文档 院系名称:纺织与材料学院 专业班级:轻化工程11级03班 鱼洗是中国三大青铜器之一,在鱼洗内注入清水后摩擦其两耳,如果频率恰当,就会出现水面产生波纹,发出嗡嗡的声音并有水花跃出的现象。经验表明,湿润的双手比干燥的双手更容易引起水花飞跃。

鱼洗的原理应该是同时应用了波的叠加和共振。摩擦的 双手相当于两个相干波源,他们产生的水波在盆中相互叠加,形成干涉图样。这与实验中观察到的现象相同。按照我的分析,如果振动的频率接近于鱼洗的固有频率,才会产生共振现象。通过摩擦输入的能量才会激起水花。 令人不解的是,事实上鱼洗是否能产生水花与双手的摩 擦频率并没有关系。在场的同学试着摩擦的时候,无论是缓慢的摩擦还是快速的摩擦,都能引起水花四溅。通过查阅资料得知,鱼洗的原理其实是摩擦引起的自激振动。(就像用槌敲锣一样,敲击后锣面的振动频率并不等于敲击频率。)外界能量(双手的摩擦)输入鱼洗时,就会引起其以自己的固有频率震动。(正如在锣面上敲一下。) 为什么湿润的双手更容易引起鱼洗的振动呢?从实践的 角度,可能是因为湿润的双手有更小的摩擦系数,因为摩擦起来更流畅,不会出现干燥双手可能会出现的“阻塞”情况,这只是我个人猜想,并没有发现资料有关于这方面的讨论。 离心力演示仪是一个圆柱形仪器,中间有一个细柱,细 柱穿过一段闭合的硬塑料带上的两个正对小孔。塑料带的一段固定,静止时,系统为一个竖直平面的圆,中间由细柱传过。当摁下仪器上的按钮时,细柱带动塑料带在水平面旋转起来。

大学物理演示实验报告.doc

大学物理演示实验报告 大学物理演示实验报告一: 实验目的:通过演示来了解弧光放电的原理 实验原理:给存在一定距离的两电极之间加上高压,若两电极间的电场达到空气的击穿电场时,两电极间的空气将被击穿,并产生大规模的放电,形成气体的弧光放电。 雅格布天梯的两极构成一梯形,下端间距小,因而场强大(因)。其下端的空气最先被击穿而放电。由于电弧加热(空气的温度升高,空气就越易被电离, 击穿场强就下降),使其上部的空气也被击穿,形成不断放电。结果弧光区逐渐上移,犹如爬梯子一般的壮观。当升至一定的高度时,由于两电极间距过大,使极间场强太小不足以击穿空气,弧光因而熄灭。 简单操作:打开电源,观察弧光产生。并观察现象。(注意弧光的产生、移动、消失)。 实验现象: 两根电极之间的高电压使极间最狭窄处的电场极度强。巨大的电场力使空气电离而形成气体离子导电,同时产生光和热。热空气带着电弧一起上升,就象圣经中的雅各布(yacob以色列人的祖先)梦中见到的天梯。 注意事项:演示器工作一段时间后,进入保护状态,自动断电,稍等一段时间,仪器恢复后可继续演示,

实验拓展:举例说明电弧放电的应用 大学物理演示实验报告二: 学物理演示实验报告--避雷针 一、演示目的 气体放电存在多种形式,如电晕放电、电弧放电和火花放电等,通过此演示实验观察火花放电的发生过程及条件。 二、原理 首先让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。这是由于电荷在导体上的分布与导体的曲率半径有关。导体上曲率半径越小的地方电荷积聚越多(尖端电极处),两极之间的电场越强,空气层被击穿。反之越少(球型电极处),两极之间的电场越弱,空气层未被击穿。当尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离时,其间的电场较弱,不能击穿空气层。而此时球型电极与平板电极之间的距离最近,放电只能在此处发生。 三、装置 一个尖端电极和一个球型电极及平板电极。 四、现象演示 让尖端电极和球型电极与平板电极的距离相等。尖端电极放电,而球型电极未放电。接着让尖端电极与平板电极之间的距离大于球型电极与平板电极之间的距离,放电在球型电极与平板电极之间发生

清华大学固体物理:第一章 自由电子论

第一章 自由电子论 1.1 经典自由电子论 1900年特鲁德 (P. Drude) 首先提出金属中的价电子好比气体分子,组成电子气体,它们可以同离子碰撞,在一定的温度下达到热平衡。因此电子气体可以用具有确定的平均速度和平均自由时间的电子来描述。在外电场作用下,电子产生定向漂移运动引起了电流。在温度场中电子气体的定向流动伴随着能量传送,使金属具有良好的热导。金属的电导和热导之间的维德曼-夫兰兹(Wiedemann -Franz) 定律反映了它们都起因于电子气体的定向流动,支持了电子气体模型。特鲁德金属电子气体模型的基本假设为: (1) 在两次碰撞间隙,忽略给定电子和其它电子及离子的相互作用。没有外加电磁场时,电子作匀速直线运动,在有外加电磁场时,电子受电磁力,运动遵从牛顿运动定律。忽略其它电子和离子产生的复杂的附加场。在两次碰撞间隙,忽略电子-电子之间的相互作用称为独立电子近似;忽略电子-离子之间的相互作用称为自由电子近似。 (2) 一个电子在有限的时间间隔dt 内经历的碰撞次数为τdt ,τ 称为平均自由时间,或弛豫时间。特鲁德假定弛豫时间与电子的位置和速度无关。这称为弛豫时间近似。 (3) 电子通过碰撞和它们的环境达到热平衡。遵从玻尔兹曼统计。电子每一次碰撞后,完全丢失原来的速度和运动方向,随机地改变运动方向,获得新的速率近似地由发生碰撞处的温度决定。这样发生碰撞的区域越热,碰撞后电子的速率越大。 应用特鲁德理论可以成功地解释金属的一些输运性质: 1 电子的运动方程 在任意时间t 电子的平均速度为p (t ) / m ,p 是每个电子的总动量。我们来计算经过无穷小的时间间隔dt 后每个电子的总动量p (t+dt )。电子在这段时间间隔内的碰撞几率为τdt ,不遭受碰撞的几率为τdt -1。假设电子不遭受碰撞,但是受到越过空间均匀的电场或/和磁场力()t f 的作用,因此电子总动量的增量为()()2dt o dt t +f 。忽略碰撞对电子总动量的影响有: ()()()()()()()()()()22 1t dt dt t t dt o dt t dt t t dt o dt ττ??+=-++-++?? p p f =p p f (1.1.1) 因此得到: ()()()()()()2dt o dt t t dt t dt t ++-=-+f p p p τ (1.1.2) 方程两边同除以dt ,并取dt → 0时的极限: ()()()t t dt t d f p p +-=τ (1.1.3) 这就是电子的运动方程。 2 金属的直流电导 欧姆定律的微分形式为: j = σ E (1.1.4) 其中σ 称为电导率。设单位体积中n 个电子以相同的平均速度υ运动,由此产生的电流密度j 将平行于υ。在时间间隔dt 内电子在速度方向运动的距离为υdt ,这样将有n υdtA 的电子越过垂直于速度方向的面积A ,每一个电子携带电荷 - e ,在时间间隔dt 内越过面积A 的电荷为 -ne υdtA ,因此电流密度为: j = -ne υ (1.1.5) 在没有外加电场时,电子的平均速度为零,电流密度也为零。在有外加电场E 时,稳态时,按照电子运 动方程,()0=dt t d p ,()()t t f p =τ ,因此附加定向速度的平均值为υ = -e E τ / m ,τ 为弛豫时间。因此: E j m ne τ 2= (1.1.6) 因此金属的电导率为: m ne τ σ2= (1.1.7) 3 霍尔效应 1879年霍尔 (E. H. Hall) 研究了在磁场中的载流导体,发现当磁场B (设沿z 方向) 垂直于电流j x 时,在垂直于电流和磁场方向导体两边 (沿y 方向) 有电压降。首先定义两个重要的物理量: ()x x j E H =ρ (1.1.8) 称为横向磁阻。其中E x 为沿电流j x 方向的电场。

【精品】清华大学的ansys资料基础篇

“有限元分析及应用”本科生课程 有限元分析软件 ANSYS6.1ed 上机指南 清华大学机械工程系 2002年9月

说明 本《有限元分析软件ANSYS6.1ed:上机指南》由清华大学机械工程系石伟老师组织编写,由助教博士生孔劲执笔,于2002年9月完成,基本操作指南中的所有算例都在相应的软件系统中进行了实际调试和通过。 本上机指南的版权归清华大学机械工程系所有,未经同意,任何单位和个人不得翻印. 联系人:石伟 北京市清华大学机械工程系(邮编100084) Tel:Fax:(010)62770190

目录 Project1简支梁的变形分析 (1) Project2坝体的有限元建模与受力分析…………………………………………。3 Project3受内压作用的球体的应力与变形分析…………………………………。.5 Project4受热载荷作用的厚壁圆筒的有限元建模与温度场求解………………。。7 Project5超静定桁架的有限元求解………………………………………………。。9 Project6超静定梁的有限元求解 (11) Project7平板的有限元建模与变形分析 (13)

Project1梁的有限元建模与变形分析 计算分析模型如图1—1所示,习题文件名:beam 。 NOTE:要求选择不同形状的截面分别进行计算. 梁承受均布载荷:1.0e5 Pa 图1—1梁的计算分析模型 梁截面分别采用以下三种截面(单位:m ): 矩形截面:圆截面:工字形截面: B=0.1,H=0。15R=0.1w1=0.1,w2=0。1,w3=0.2, t1=0.0114,t2=0。0114,t3=0。007 1。1进入ANSYS 程序→ANSYSED6。1→Interactive →changethe workingdirectory intoyours →input Initialjobname :beam →Run 1.2设置计算类型 ANSYSMainMenu :Preferences →select Structural →OK 1。3选择单元类型 ANSYSMainMenu :Preprocessor →ElementType →Add/Edit/Delete…→Add…→select Beam2node188→OK (backto ElementTypes window)→Close (the ElementType window) 1.4定义材料参数 ANSYSMainMenu :Preprocessor →MaterialProps →MaterialModels →Structural →Linear →Elastic →Isotropic →input EX:2.1e11,PRXY :0。3→OK 1。5定义截面 ANSYSMainMenu:Preprocessor →Sections →Beam →CommonSectns →分别定义矩形截面、圆截面和工字形截面:矩形截面:ID=1,B=0。1,H=0.15→Apply →圆截面:ID=2,R=0。1→Apply →工字形截面:ID=3,w1=0.1,w2=0。1,w3=0.2,t1=0.0114,t2=0.0114,t3=0.007→OK

大学物理演示实验感想

大学物理演示实验感想 通过此次光学演示实验使我了解了光的实质,就是原子核外电子得到能量跃迁到更高的轨道上之后由于所处轨道不稳定,电子还要跃迁回去,跃迁回去会释放出一个光子,就是以光的形式向外发出能量,跃迁的能级不同,释放出来的能量不同,光子的波长就不同,光的颜色就不一样了。当复色光进入棱镜或光栅后,由于它对各种频率的光具有不同折射率,各种色光的传播方向有不同程度的偏折,因而在离开棱镜时就各自分散,形成光谱。使我深刻认识到光的传播、干射、衍射、散射、偏振等许多现象及其原理,还有发生这种现象的外部条件。通过对这些特性的理解,使我从现实方面认识到光的波粒二象性,认识到光在什么条件下表现粒子性,在什么条件下表现波动性。通过激光传播信号的演示实验中我知道光不但给人以美的感受还有诸多其它方面的用处。在光的色散实验中,我对牛顿环的印象最深刻,通过对牛顿环现象的认识,我加深了对等厚干涉的了解,尤其是半波损失对牛顿环的应用,对半波损失有了进一步的了解和记忆。 我觉得我们做的虽然是演示实验,但也很有收获,这是我们对课上所学知识的一个更直观的了解,通过此次光学演示实验使我对光有了一种感性的认识,加深了对光学现象及原理的认识,为今后光学的学习打下深厚的基础,此次演示实验把理论与现实相结合,让大家在现实生活中理解光波的本质,这给我们每天的理论学习增添了一点趣味。虽然说演示实验的过程是简单的,但它的意义绝非如此。我们学习的知识重在应用,对大学生来说,演示实验不仅开动了我们思考的马达,也让我们更好地把物理知识运用到了实际现象的分析中去,使我们不但对大自然产生了以前没有的敬畏和尊重,也有了对大自然探究的好奇心,我想这是一个人做学问最最重要的一点。因此我想在我们平时的学习中,要带着一种崇敬的心情和责任感,认认真真地学习,踏踏实实地学习,只有这样,我们才能真正学会一门课,学好一门

大学物理演示实验报告

【实验名称】弹性碰撞演示仪 【实验目的】 本实验用于演示正碰撞和动量守恒定律,形象地显现弹性碰撞的情形。 【实验原理】 根据动量守恒定律可知,如果正碰撞的两球,撞前速度分别为V10和V20,碰撞后的速度分别为V1和V2,质量分别为m1和m2. 则 (1) 由碰撞定律可知:(2) 若e=1时,则分离速度()等于接近速度() 解式(1)和式(2)可得: (3) (4) 若m1=m2=m;e=1则v1=0,v2=v10 即球1正碰球2时,球1静止,球2继续以V10的速度正碰球3,等等以此类推,实现动量的传递。【实验器材】 1、实验装置如实验原理图示: 1一底座 2—支架 3—钢球 4—拉线 5—调节螺丝 2、技术指标 钢球质量:m=7×0.2kg 直径:l=7×35mm 拉线长度:L=55Omm 【实验操作与现象】 l、将仪器置于水平桌面放好,调节螺丝,使七个钢球的球心在同一水平线上。 2、将一端的钢球拉起后,松手,则钢球正碰下一个钢球,末端的钢球弹起,继而,又碰下一个钢球,另一端的钢球弹起,循环不已,中间的五个钢球静止不动。但在一般情况下,两球碰撞时,总要损失一部分能量,故两端的钢球摆动的幅度将逐渐减弱。 【注意事项】 操作前一定将七个钢球的球心调至同一水平线上,否则现象不明显。 在理想情况下,物体碰撞后,形变能够恢复,不发热、发声,没有动能损失,这种碰撞称为弹性碰撞(elastic collision),又称完全弹性碰撞。真正的弹性碰撞只在分子、原子以及更小的微粒之间才会出现。生活中,硬质木球或钢球发生碰撞时,动能的损失很小,可以忽略不计,通常也将它们的碰撞看成弹性碰撞。碰撞时动量守恒。当两物体质量相同时,互换速度。 大型闪电盘(辉光盘)演示实验 【实验目的】: 观察平板晶体中的高压辉光放电现象。

相关主题
文本预览
相关文档 最新文档