当前位置:文档之家› 波动和声物理力学复习资料

波动和声物理力学复习资料

波动和声物理力学复习资料
波动和声物理力学复习资料

第十章波动和声

思考题

10.1 因为波是振动状态的传播,在媒质中各体元都将重复波源的振动,所以一旦掌握了波源的振动规律,就可以得到波动规律,对不对?为什么?

解:不对。因为要知道波动规律,不仅要知道波源的振动规律,还要知道媒质的情况。 10.2在振源和无色散媒质的条件下传播机械波。(1)若波源频率增加,问波动的波长、频率和波速哪一个将发生变化?如何变?(2)波源频率不变但媒质改变,波长、频率和波速又如何变?(3)在声波波源频率一定的条件下,声波先经过温度较高的空气,后又穿入温度较低的空气,问声波的频率、波长和波速如何变化? 解:(1)频率、波长将发生变化。频率增加,波长减小。 (2)波速、波长变化,波的频率不变。 (3)因为μ

γRT

v =

,声速与温度有关,所以声波先经过温度较高的空气,波速大,穿入温度较低的空气,波速变小。 声波频率不变。 波长变短。

10.3平面简谐波中体元的振动和前一章所谈质点作简谐振动有什么不同? 解:(1)平面简谐波中作简谐振动的体元的园频率ω并非决定于振动系统本身性质,而取决于波源的频率,前一章所谈质点作简谐振动的频率决定于振动系统本身的性质。

(2)平面简谐波中体元振动的动能、势能可同时达到最大值,能量以波速向外传播,而且体元的势能是因形变而为体元所有。前一章所谈质点作简谐振动时,当动能最大时势能为零,势能最大时动能为零,振动系统的能量守衡,不向外传播,而势能属于振动质点和其它物体所共有,如:弹簧振子的势能为质点和弹簧所共有。 10.4 平面简谐波方程)(cos v

x

t A y -

=ω中x 取作某常数,

则方程表示位移y 作简谐振动;若取t 等于某常数,也表示位移作简谐振动。这句话对不对?为什么?

解:不对。因为平面简谐波方程)(cos v

x

t A y -

=ω中x 取作某常数,

,而ω不决定于振动系统本身性质,而取决于波源的频率,所以不表示位移y 作简谐振动。当t 等于某常数时,表示t 时刻波线上各体元位移分布、波形,不表示位移y 作简谐振动。

10.5 波动方程2

222x y

t

y ??=??ρω的推导过程用到那些力学基本规律?其使用范围如何? 解:波动方程的推导过程用到胡克定律、牛顿第二定律。使用范围:弹性媒质并且各质点的

形变是在弹性限度内。

10.6用手抖动张紧的弹性绳的一端,手抖的越快,振幅越大,波在绳上传播得越快,又弱又慢的抖动,传播得较慢,对不对,为什么?

解:不对,因为波速仅与介质有关,而于波源的频率、振幅无关。手抖的快,波源频率大,但波速不变,所以传播的并不快,抖度即幅度决定于振源的振幅,所以幅度并不一定大 10.7波速和媒质内体元振动的速度有什么不同?

解:波速是一定振动状态(位相)向前传播的速度,媒质内体元振动的速度是质点位移随时间变化的速度。

10.8所谓声压即有波传播的媒质中的压强,对不对?

解:不对。因为在有声波传播的空间,某一点在某一瞬时的压强p 与没有声波时压强0p 的差,叫做该点处该瞬时的声压。

10.9举例说明波的传播的确伴随着能量的传播,波传播能量与粒子携带能量有什么不同?

解:(1)每个体元的能量)(sin 222v

x t A dv dE -=ωωρ,每个体元的能量由振动状态决定,而振动状态又以波速传播,所以能量也以波速传播。例如:一质点的振动能引起邻近质点的振动,邻近质点的振动又能引起较远质点的振动,质点振动具有能量,说明能量也以波速传播。

(2)波传播能量与粒子携带能量的区别:每个体元的能量在波传播过程中是随时间作周期性变化的,而粒子携带能量不随时间变化,如光子能量hv 不随时间变化。

10.10 通过单位面积波的能量就叫能流密度。这种说法是否正确?能流密度和声强有什么区别和联系? 解:(1)不对,因为能流密度的定义为单位时间通过与波的传播方向垂直的单位面积的能量。 (2)联系:声波平均能流密度的大小叫声强。

区别:能流密度是矢量,方向沿波传播方向,声强为标量。 10.11能否想出一个测量声压从而测出声强的办法?

解:用声压计测出声压,代入声强和声压的关系式Z

p

I 22

m ax =即可测出声强。

10.12若两列波不是相干波,则当相遇时相互穿过且互不影响,若为相干波则相互影响。这句话对不对?

解:不对。因为不论两列波是否为相干波,是否相遇,都各自以原有的振幅、波长和频率独立传播,彼此互不影响。 10.13试举出驻波和行波不同的地方。 解:(1)行波中每个体元的能量以波速传播。驻波中没有能量的定向传播。 (2)行波波形以波速向前传播,驻波波形不变,不向前传播。 (3)行波是波,驻波不是波。

10.14若入射平面波遇到界面而形成反射平面波和透射平面波,问入射波和反射波的振幅是否可能相同?试解释之。 解:。不可能相同。`因为反射波和透射波能量都来自于入射波。 但当两媒质波阻相差悬殊时,根据反射系数=2

2

121)(

z z z z +-,透射系数=1-反射系数。其中1z 与

2z 为媒质1和2的波阻。此时主要是反射,可认为反射波入射波振幅相同。

10.15用手抖动两端固定的弦使其振动,能否分析基频和谐频哪一个衰减得更快一些?如何分析?

解:谐频衰减得更快一些。

因为阻尼的作用是难以避免的,振动质点要克服外界阻力做功,能量就不断减少,从而振幅不断减小,振动发生衰减。谐频的频率高,振动的快,单位时间内比基频减少的能量多,所以谐频衰减得更快一些。

10.16为什么用超声波而不是普通声波进行水中探测和医学诊断。 解:水中超声波的衰减系数比在空气中小得多,而且超声波在软组织和肌肉中衰减系数也较小,更兼超声波波长短,直进性强,遇障碍物时易形成反射,所以用超声波而不是普通声波进行水中探测和医学诊断。

10.17群速与相速有什么不同?

解:相速是行波中一定的振动位相向前传播的速度,群速是波包向前传播的速率。无色散时二者相等,有色散时二者不等。

习题

10.2.1频率在20至20000Hz 的弹性波能使人耳产生听到声音的感觉。00C 时,空气中的声速为331.5m/s ,求这两种频率声波的波长。

解:根据公式 ν

υλ=

m 58.16205.33111===

νυλ m 3221058.16200005.331-?===

νυλ 10.2.2一平面简谐声波的振幅为0.001m ,频率为1483Hz ,在200C 的水中传播,写出其波方程。

解:此声波在200C 的水中传播,其波速为s m /1483=υ

角频率 πππνω2966148322=?== A=0.001m

波方程为 )cos(υ

ωωx t A y μ

= )22966cos(001.0x t ππμ=

10.2.3 已知平面简谐波的振幅A=0. 1cm ,波长1m ,周期为10-2s ,写出波方程(最简形

式)。又距波源9m 和10m 两波面上的相位差是多少?

解:选波源处为坐标原点,初相位为零的时刻为计时起点

s /1010

1

122==T =

-ν 波方程 ??? ?

?

=λνπx A y μt 2cos

()[

]

χπμt 102cos 102

3-=

m x 9=处 振动相位 ()9t 1022

1

μπα= m x 10=处 振动相位()01t 1022

2μπα=

位相差παα212=-

10.2.4 写出振幅为A,f =ν波速为c v =,沿ox 轴正方向传播的平面简谐波方程.波源

在原点O ,且当t =0时,波源的振动状态被称为零,速度沿ox 轴正方向.

解:根据题意 波源的振动方程为

)cos(?ω+=t A y )sin(αωω+-=t A v

0=t 0cos 0==αA y 0sin 0>-=αωA v

解之得α=2

π

-

则波方程 ])-

t (2cos[αυ

πν+=x

A y

= ]2

)c

(2cos[π

π-

-x t f A

10.2.5已知波源在原点(x=0 )的平面简谐波方程为y=Acos(bt-cx) ,A,b,c 均为常量.试求(1)振幅、频率、波速和波长;(2)写出在传播方向上距波源λ处一点的振动方程式,此质点振动的初相位如何?

解:(1)振幅A

频率ππω22b

v =

= 波速c

b

k v ==

ω

波长λ

π

2=

k c

k π

πλ22=

=

(2)距波源λ处一点的振动方程式

y=Acos(bt-c λ)

其振动初位相为-c λ

10.2.6 一平面简谐波逆x 轴传播,波方程为y=)3t (2cos ++

υ

πνx

A ,试利用改变计时

起点的方法将波方程化成最简形式。

解:设相对于原来计时起点的某一时刻为 t ,相对于新的计时起点此瞬时为t / ,且

新计时起点可使原点初位相为零,则 )3(22/

+=t t πνπν 3/+=t t 这样原波方程化为 y= )(2cos /υ

πνx

t A +

计时起点提前3秒。

10.2.7平面简谐波方程y=)4(2cos 5χ

π+t ,试用两种方法画出t=s 5

3

时的波形图。

(SI )

2)平移法 )

25cos(5x y π+=

=)5

12

(2

cos

5+

x π

先做出x y 2

cos

=的波形曲线,再向左平移

5

12

个单位长,即得做之图线

X/m

10.2.8 λ=0.30m,画出x=0.20m 处体元的位移-时间曲线。画出t=3s,6s 时的波形图。

解:根据已知得出平面简谐波方程为

)3

.012(2cos 01.0x

t S -=π

m x 20.0= 处体元的振动方程为

)3

4

6cos(01.0)3212(2cos 01.0πππ-=-=t t S

S/m

-0.01

s

t3

=时的波形为)

3.0

4

1

(

2

cos

01

.0

x

S-

s

t6

=时的波形为)

3.0

2

(

2

cos

01

.0

S-

10.2.9

x1、、、x2、x3以及ξ1、ξ2、ξ3各质元的位移和速度为正还是为负?它们的相位如何?(对于x2和ξ3只要求说明其相位在第几象限)

题图.

解:根据波动就是振动状态在空间的传播,并且沿波的传播方向各体元有一定位相落后设质元振动最高处位相为2π,这样可判断各点的相位。再根据图形判断位移的正负。根据

10.2.10图(a )、(b )分别表示t=0s 和t=2s 时的某一平面简谐波的波形图。试写出此平面简谐波波方程。

X/m x/m

解:由图可知 振幅A=2m 由已知和图可得振动在2秒钟内传播

λ4

1

,则 波速s m /25.022

41241=?==λυ

频率s /125.02

25

.0===λυν

由图知t=0时A y =则初位相0=α传播方向为沿着ox 正方向

故波方程为

)(2cos 2υχπν-

=t y

)25

.0(25.0cos 2x t -

=π )25.0(cos 2χπ-=t

10.3.1 一圆形横截面的铜丝,受张力1.0N ,横截面积为1.0mm 2。求其中传播纵波和横

波时的波速各多少?铜的密度为8.9×103kg/m 3,铜的杨氏模量为12×109N/m 2

解:由已知得 T=1.0N 3

3

/109.8m kg ?=ρ Y=1229/10m N ? 根据ρ

T

v =

横 ρ

Y

v =

得s m v /1006.1?=横

s m v /1016.13?=纵

10.3.2 已知某种温度下水中声速为1.45×103

m/s,求水的体变模量。 解:根据ρ

K

v =

得2

9

3

)32

/101.2101045.12

ms Kg v K ?=??==(ρ 10.4.1在直径为14cm 管中传播的平面简谐声波。平均能流密度9erg/s.cm 2,ν=300Hz, υ=300m/s.(1)求最大能量密度和平均能量密度,(2)求相邻同相位波面间的总能量。

解:(1) 根据平均能流密度的大小为v I ε=

得平均能量密度为3

52

47/10310

310109m J v I ---?=???==ε 又因为 222

1A ρωε= 而 2

2A ρωε=最大

所以3

5/1062m J -?==εε最大

(2)相邻同位相波面间的距离为λ 则管在λ长的体积为ν

υπλπ22R R V == 总能量J V E 75221062.4103300

300

)107(14.3---?=???

??==ε 10.4.2空气中声音传播的过程可视作绝热过程,其过程方程式为=γ

pv 常量。求证声压

p=p 1-p 0可表示作p ≈-γp 0

1v v v -,其中p 0和0v 表示没有声波传播时一定质量空气的压强和体积,1ν是有声波时空气的体积。

证明:由绝热过程公式 pv γ

=常量

两边微分 01

=+-dp V dV V

p γγγ

则V dV

p V dV V p dp γγγ

γ-=-=-1

而 01V V dV -≈ 0V V ≈ =-≈01p p dp P

则P 0

10

V V V p --≈γ 10.4.3 面向街道的窗口面积约40m 2,街道上的噪声在窗口的声强级为60dB,问有多少声功率传入室内(即单位时间内进入多少声能)?

解:根据声强级公式 0

lg 10I I L = 由已知 L=60 所以 6=0

lg

I I 60

10=I I

2661260/10101010m w I I --=?=?= 窗口的面积为40m 2 则传入室内的声功率为 W IS N 56100.44010--?=?==

10.4.4距一点声源10m 的地方,声音的声强级为20dB 。求(1)距声源5m 处的声强级;(2)距声源多远,就听不见1000Hz 的声音了?

解:(1)根据声强级公式 ][lg 100

dB I I

L = r 1=10m 处 ][lg

100

10

10dB I I L = 由于声源为点声源,故传播的波为球面波,则

2

12

2

21r r I I =其中1I 为 r 1=10m 处的声强,2I 为r 2=5m 处的声强。 112

2

2

112425

100

I I r r I I ==

=

db L I I

I I I I L 262060.0104lg 10lg 104lg 104lg 10lg

10100

101025=+?=+=+=== (2)由(1)知20lg

100

1

=I I 得01100I I = 又刚好能听见的1000Hz 声音的声强约212/10m W -为标准声强0I 设声强为0I 处距点声源为0r

根据球面波的特点21

2

001r r I I

=得

1001002

00r I I =

m r 1000=

10.5.1 声音干涉仪用于显示声波的干涉,见图。薄膜S 在电磁铁的作用下振动。D 为声音检测器,SBD 长度可变,SAD 长度固定。声音干涉仪内充满空气。当B 处于某一位置时,在D 处听到强度为100单位的最小声音,将B 移动则声音加大,当B 移动1.65cm 时听到强度为900单位的最强音。(1)求声波的频率,(2)求到达D 处两声波振幅之比。已知声速为342.4m/s 。

S B A

D 耳朵

10.5.1题图.

解:根据题意S 的振动向两个方向传播成为两列传播方向相反的相干波,干涉结果为振动最强和最弱的点相距

4λ (1)由已知得cm 65.14

m cm 2106.66.6-?==λ

Hz 5188106.64.3422

=?==-λυν

(2)由声强公式ρυω222

1

A I =

得出

22

2

1

21A A I I =(由于两列波的频率相同且在同一媒质中传播 ,所以21ωω= 2211υρυρ=)

3

1901002121

===I I A A

10.5.2

两个波源发出横波,振动方向与纸面垂直,两波源具有相同的相位,波长

0.34m 。(1)至少求出三个x 数值使得在P 点合振动最强,(2)求出三个x 数值使得在P 点合振动最弱。

解:由于两个波源均发出横波,在同一媒质中传播,波长又相同,故频率一定相同。两波源又具有相同的位相,即位相差恒定,由此得出两波源为相干波源。

两波源在P 点引起的振动为 )cos(11kL t A y -=ω

)](cos[22x L k t A y --=ω

其位相差kx kL t x L k t =----=?)()]([ωω

1) 要使P 点的合振动为最强 πn kx 2==? (n =0,1,2,…) n n n x 34.022===

λλ

π

π

当n =0,1,2时

0=x m x 34.0= m x 68.0= 2)要使P 点的合振动为最弱

λλ

π

π

)12(2)12(+=+=

n n x

π)12(+==?n kx (n =0,1,2,…)

当n =0,1,2时

m x 17.0= m x 51.0= m x 85.0=

10.5.3试证明两列频率相同、振动方向相同、传播方向相反而振幅大小不同的平面简谐波相叠加可形成一驻波与一行波的叠加。

证明:根据题意,设这两列波方程分别为 )cos(11kx t A y -=ω (1)

)cos(22kx t A y +=ω (2) 其中21A A >

根据波的叠加原理,可把第一列波视为两列频率相同、振动方向相同、传播方向相同、初相相同、振幅分别为2A 和/

A 的波叠加而成,即

//

1/1/21)cos()cos(y y kx t A kx t A y +=-+-=ωω

显然/

1y 和2y 叠加而成驻波,而//

1y 为一行波,即

)

cos()cos()cos(/2221kx t A kx t A kx t A y y -+++-=+ωωω

L P

L-x

)cos(cos )cos 2(/

2kx t A t kx A -+=ωω证毕 10.5.4入射波)]34

(2000cos[10104x

t y -

?=-π在固定端反射,

坐标原点与固定端相距0.51m ,写出反射波方程。无振幅损失。(SI )

解:由已知条件可知反射波与入射波有相同的振幅、频率、波长,因此只需求出反射波在原点的初相φ即可得出反射波的波方程。

对入射波而言,设固定端比原点位相落后1φ,在原点0=x ,质点的振动方程为在

t

A y ωcos 1=

在固定端L x =质点的振动表达式为)cos(2kL t A y -=ω 则λ

π

λ

π

φ251

.021==

=L kL

在固定端反射,有半波损失,即反射波比入射波在固定端位相落后π 则在固定端,反射波的位相为 πφωφ--=12t

根据已知条件,反射波在原点的位相比在固定端的位相又落后λ

π

251.0

故反射波在原点的初相

πλ

π

φπφφ-??-

=---=251.0211

πππ6151.01000

342

2-=-??-

= 则反射波方程为]61)34(2000cos[10104/ππ-+

?=-x

t y ])34(2000cos[10104ππ-+?=-x

t

10.5.5 入射波方程为)](2cos[λ

πx

T t A y +=,在0=x 处的自由端反射,求反射波的

波方程。无振幅损失。

解:由于是在0=x 处的自由端反射,即反射处与原点距离为零,并且自由端反射无半波损失,故反射波与入射波不仅振幅、频率、波长、振动方向相同,而且初相也相同 则反射波方程为

)(

2cos λ

πx T t A y -= 10.5.6 图示某一瞬时入射波的波形图,在固定端反射。试画出此瞬时反射波的波形图。无振幅损失。

解:(1)首先假设无MN ,将波形图继续向右方延伸

(2)取PQ 让其到MN 的距离为半个波长,将此半个波长的波去掉(即半波损失) (3)将b 点右边的波形改为向左传播的波,并平移到A 点(即虚线部分),此波形图即反射波形图。

10.5.7 若10.5.6题图中为自由端反射,画出反射波波形图。

x 0点右方的波形改为向左传播即可。

10.5.8 一平面简谐波自左向右传播,在波射线上某质元A 的振动曲线如图示。后来此波在前进方向上遇一障碍物而反射,并与该入射平面简谐波叠加而成驻波,相邻波节波腹距离为3m ,以质元A 的平衡位置为oy 轴原点,写出该入射波波方程。

t/s

由振动图线可知: 振幅 A=m 2.0 周期s T 2= 波速s m T

v /6==

λ

设A 点的振动表达式为 )cos(φω+=t A x

由图中可知 当0=t 时 0=x 0)sin(<+-==?ωωt A dt

dx

v 则 φcos 0A = 0sin 0<-=φωA v 得2

π

φ=

从而得入射波方程

]2

)122(2cos[2.0π

π+-=y t x

]2

6

cos[2.0π

π

π+

-

=y t

10.5.9 同一媒质中有两个平面简谐波波源作同频率、同方向、同振幅的振动。二波

相对传播,波长8m 。波射线上A 、B 两点相距20m 。一波在A 处为波峰时,另一波在B 处相位为-

2

π

。求AB 连线上因干涉而静止的各点的位置。 解:根据题意,两波源作同频率、同方向、同振幅的振动,两波相对传播,波长均为8m ,故两波在媒质中相遇,叠加而成驻波。

以A 为坐标原点建立A —x 轴,设由A 向B 传播的波方程为

)cos(1kx t A y -=ω 其中4

822ππλπ

==

=

k

由B 向A 传播的波方程为 )cos(2φω++=kx t A y

由已知条件: 一波在A 处为波峰时,另一波在B 处位相为2

π

-

,得此瞬时 πω2=-kx t πω2=t

2

π

φω-

=++kx t 即2

204

φπ

π-

=+?+

得πφ2

15-

= 故)2

cos()215cos(2π

ωπω++=-

+=kx t A kx t A y )2

cos()cos(21π

ωω+

++-=+kx t A kx t A y y

)4

cos()4

cos(2π

ωπ

+

+

=t kx A

由于干涉而静止的点为0)4

cos(=+π

kx

即2

)

12(4

π

π

+=+n kx ,...)2,1,0(=n 则

2

)

12(4

π

π

+=+

n x

14+=n x

故AB 连线上因干涉而静止的各点的位置为m x 10=,m x 51=,m x 92=,m x 133=

m x 174=

10.5.10 一提琴弦长50cm ,两端固定。不用手指按时,发出的声音是A 调:440Hz 。若欲发出C 调528Hz ,手指应按在何处? 解:琴弦发出声音的音调是指基波频率 根据弦振动频率公式ρ

νT

L

n n 2=

在这里1=n 即L

T L 2211υ

ρν=

=

当手指不按时m L L 5.01== 基频率为Hz 4401=ν 当手指按时2L L = 基频率为Hz 5282=ν

则112L v

v =

2

22L v v =

12

21L L v v = m m L L 212121067.414167.05.0528

440-?==?==

νν 即手指按在m 2

1067.41-?处。

10.5.11张紧的提琴弦能发出某一种音调,若欲使它发出的频率比原来提高一倍,问弦内张力应增加多少倍?

解:弦振动的频率公式ρ

νT

L n 2=

乐器发出声音的音调指基频即1=n

设变化后的频率为/ν且νν2/= 张力为/T 则有 ρ

νT

L 21=

ρ

ν/

/

21T L =

T

T /

/=

νν

因为νν2/

= 所以2/=T

T 即 T T 4/=

弦内张力应增加3倍。

10.7.1 火车以速率v 驶过一个在车站上静止的观察者,火车发出的汽笛声频率为f 。求观察者听到的声音的频率的变化。设声速是0v 。

解:此问题有两个物理过程

第一过程:声源以速率v 驶近静止的观察者,在此过程中观察者听到的声音的频率为1ν,根据多普勒效应

f v

v v -=

00

第二过程:声源以速率v 离开静止的观察者,在此过程中观察者听到的声音的频率为2ν,根据多普勒效应

f v

v v 00

2+=

ν

观察者听到的频率的变化为21νν- f f f 2200000021v

v v

2v v v v v v v -=+--=

-νν

10.7.2 两个观察者A 和B 携带频率均为1000Hz 的声源。如果A 静止,而B 以10m/s

的速率向A 运动,那么A 和B 听到的拍是多少?设声速为340m/s.

解:对于观察者A ,相当于声源(B )以速率v =10m/s 驶近静止的观察者,则A 听到的由B 传来的声音的频率为1ν,根据多普勒效应

Hz 33

34000

100010340340v v v 001=?-=-=

νν 而自A 所携带的声波发出Hz 1000=ν的声音。

则A 听到的拍为:频率为1ν、ν的两个振动的合成 拍频为s /301/

=-=ννν

对于B ,相当于观察者(A )以v =10m/s 的速率接近静止的声源,根据多普勒效应,则B 听到的由A 传来的声音的频率为2ν 34

35000)340101(1000)v v 1(02=+?=+

=νν 而自B 所携带的声源发出1000Hz =ν的声音

则B 所听到的拍频应为ν、2ν两振动的合振动

s /292//

=-=ννν

10.7.3 一音叉以速率v s =2.5m/s 接近墙壁,观察者在音叉后面听到拍音频率3=νHz ,求音叉振动频率。声速340m/s.

解:观察者所听到的声音是由两个频率的声速叠加而成的

一是音叉以 2.5m/s v =远离观察者的声音,其频率为1ν,二是音叉以 2.5m/s v =接近墙壁发出的声音又被墙壁反射回去,其频率为2ν 设音叉的频率为0ν,根据多普勒效应 000

1ννv

v v += 000

2ννv

v v -=

观察者所听到的拍频35

.342340

5.337340012=-=-=νννν Hz 2040=ν

10.7.4 在医学诊断上用多普勒效应测内脏器壁或血球的运动速度。设将频率为ν的超声脉冲垂直射向蠕动的胆囊壁,得到回声频率νν>',求胆囊壁的运动速率。设胆内声速为v 。

解:此问题为波源静止而观察者(蠕动的胆囊壁)运动的情况。蠕动的胆囊壁接收到的频率

/ν(回声频率)为 )1(v v /观+

=νν 其中v 观为胆囊壁的运动速率

故胆囊壁的运动速率为v.)1(v./

-=ν

ν

大学物理学习方法

大学物理学习方法 物理学不但紧密联系着现代社会,同时也深刻影响着人的发展。“物理学是专业学习的基础。”张宇如是说。物理在他眼中并不是单纯的知识积累,其中贯穿了许多可贵的思想方法。如物理中常用的“理想模型法”体现了哲学中矛盾论的思想。对大一同学来说,学好物理学、掌握这些重要思想方法可以触类旁通,对未来其他课程的深入学习大有裨益。 大学物理学习方法 一、大学物理和中学物理的学习方法有本质区别 起初学习大学物理时,学生们可能会觉得很多概念、定律、定理等都是中学时学过的,并且会发现有些问题仍然可以用中学时学习过的数学知识就可以解决。从而导致部分学生掉以轻心,不认真听讲,有了这种想法之后,到了后期就会觉得学起来越来越困难,跟不上教师的教学进度。最终出现批量学生掉队、对大学物理课程失去兴趣的现象,这也是大学物理课程不及格率较高的重要原因之一。因此,教师在进行大学物理课程教学之前,一定强调大学物理和中学物理的学习方法是有本质区别的,让学生在课堂上要绷紧学习神经,戒骄戒躁。 二、大学物理与中学物理的差异 回顾中学物理的学习方式,可以简单的总结为:学生在教师讲解知识点后,要劳记一些概念、公式、定律和定理,然后会利用它们解决实际物理问题即可。也就是说我们中学时教师讲解知识点,最注重的是如何利用所学的知识点去解题,教师在讲解知识点时,并不注重讲解这些概念、公式定律和定理都是如何演绎过来的。而在学习大学物理的过程中,学生们不仅仅要牢记一些物理概念、公式、定律和定理,最重要的是要掌

握每个概念、定理的形成过程,要知道他们阐明了什么样的物理规律,体现了什么样的物理思想以及它们的适应条件和范围都是什么,在此基础上还要求学生们学会运用高等数学知识来解决物理问题。 三、高等数学是大学物理研究的重要工具 高等数学贯穿于大学物理知识学习的全过程,学习大学物理知识的过程就是应用高等数学知识的过程。大学物理学习中常用的高等数学的知识主要有:微积分、矢量和数学建模。微分、积分主要应用于公式推导的定量,同时微积分的思想方法是解决大学物理中实际问题的主要方法。比如:讨论变力的功问题时,即采用了高等数学中的积分方法又采用了微分方法。因此,学生们一定要把高等数学学好,灵活的运用数学知识解决物理问题。 四、提高课堂听课效率,掌握正确的学习方法 1.在物理课堂上,学生们应该更注重对物理思想和科学研究方法的掌握,学会举一反三,不能死记硬背,不能只生搬硬套公式,要加深对物理概念、公式等的理解,了解定理的演绎过程,从本质上弄清楚每个知识点中涉及到的物理原理。 2.课堂上学生一定要认真记笔记,跟上教师的讲课进度。由于大学物理课程课时的限制以及讲解内容的限制,教科书上有些相对不重要的知识点会被教师略讲或者删除。讲解的重点内容都将体现在课堂板书或者说学生的笔记中,所以学生一定要认真听教师讲解知识点的同时,有选择的记录教师讲解的重点、难点内容,特别是课上例题和解决方法都要详细记录在笔记中。在期末复习时,一本记录详实的笔记,会给学生们的期末复习带来很大的便利,是期末复习的好帮手,也是今后学生走上工作岗位的指导书。

高中物理力学公式集合

高中物理力学公式集合 一、力(常见得力、力得合成与分解) 1)常见得力 1、重力g=mg (方向竖直向下,g=9、8m/s2≈10m/s2,作用点在重心,适用于地球表面附近) 2、胡克定律f=kx {方向沿恢复形变方向,k:劲度系数(n/m),x:形变量(m)} 3、滑动摩擦力f=μfn {与物体相对运动方向相反,μ:摩擦因数,fn:正压力(n)} 4、静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力) 5、万有引力f=gm1m2/r2 (g= 6、67×10-11n?m2/kg2,方向在它们得连线上) 6、静电力f=kq1q2/r2 (k=9、0×109n?m2/c2,方向在它们得连线上) 7、电场力f=eq (e:场强n/c,q:电量c,正电荷受得电场力与场强方向相同) 8、安培力f=bilsinθ (θ为b与l得夹角,当l⊥b时:f=bil,b//l时:f=0) 9、洛仑兹力f=qvbsinθ (θ为b与v得夹角,当v⊥b时:f=qvb,v//b时:f=0) 注: (1)劲度系数k由弹簧自身决定; (2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定; (3)fm略大于μfn,一般视为fm≈μfn; (4)其它相关内容:静摩擦力(大小、方向)〔见第一册p8〕; (5)物理量符号及单位b:磁感强度(t),l:有效长度(m),i:电流强度(a),v:带电 粒子速度(m/s),q:带电粒子(带电体)电量(c); (6)安培力与洛仑兹力方向均用左手定则判定。 2)力得合成与分解 1、同一直线上力得合成同向:f=f1+f2, 反向:f=f1-f2 (f1>f2) 2、互成角度力得合成:f=(f12+f22+2f1f2cosα)1/2(余弦定理) f1⊥f2 时:f=(f12+f22)1/2

高中物理 力学专题 试题及其答案

(2)按下列要求画出弹力的方向: ①搁在光滑竖直墙与水平地面间的棒在A,B两处受到的弹力(图1); ②搁在光滑半球形槽内的棒在C,D两处受到的弹力(图2); ③用细绳悬挂、靠在光滑竖直墙上的小球受到的弹力(图3) 3)如图所示,质量为m的物体被水平推力F压在竖直的墙上,静止不动.当水平力F逐渐增大时,物体m所受的静摩擦力将怎样变化? (1)一条盘在地上的长为l的铁链向上刚好拉直时,它的重心位置升高了多少? (2)运动员用双手握住竖直的竹杆匀速攀上和匀速下滑,他所受的摩擦力分别是f1和f2,那么: A.f1向下,f2向上,f1=f2 B. f1向下,f2向上,f1>f2 C. f1向上,f2向上,f1=f2 D. f1向上,f2向下,f1=f2 (3)当人骑自行车在平直路面上前进时,前轮和后轮所受摩擦力的方向 A.前后轮受到的摩擦力方向都向后; B.前后轮受到的摩擦力方向都向前; C.前轮受到的摩擦力向前、后轮受到的摩擦力向后 D.前轮受到的摩擦力向后、后轮受到的摩擦力向前 (1)如图所示,在水平桌面上放一个重为G A=20N的木块,木块与桌面间的动摩擦因数μA=0.4,使这个木块沿桌面作匀速运 动时的水平拉力F为多少?如果再在木块A上加一块重为G B=10N的木块B,B与A之间的动摩擦因数μB=0.2,那么当A、B 两木块一起沿桌面匀速滑动时,对木块A的水平拉力应为多少?此时木块B受到木块A的摩擦力多大?

(2)水平的皮带传输装置如图所示,皮带的速度保持不变,物体被轻轻地放在A端皮带上,开始时物体在皮带上滑动,当它到达位置C后滑动停止,随后就随皮带一起匀速运动,直至传送到目的地B端,在传输过程中,该物体受摩擦力情况是 [ ] A.在AC段受水平向左的滑动摩擦力 B.在AC段受水平向右的滑动摩擦力 C.在CB段不受静摩擦力 D.在CB段受水平向右的静摩擦力 (3)如图1,在水平桌面上放一木块,用从零开始逐渐均匀增大的水平拉力F拉着木块沿桌面运动,则木块所受到的摩擦力f随拉力F变化的图像(图)正确的是[ ] (1)某物体在四个共点力F1、F2、F3、F4作用下处于平衡状态,若F4的方向沿逆时针方向转过90°角,但其大小保持不变,其余三个力的大小和方向均保持不变,此时物体受到的合力的大小为 [ ] A. 0 B. F4 C. 2F4 D. F4 (2).有三个力,F1=2N,F2=5N,F3=6N,则 [ ] A.F1可能是F2和F3的合力 B.F2可能是F1和F3的合力 C.F3可能是F1和F2的合力 D.上述说法都不对(3)由图6所示,下列有关静止在斜面上的物体受到的重力的两个分力的说法正确的是: A.F1是物体所受重力的下滑分力,大小为Gsinθ; B.F2是物体斜面的正压力,大小为Gcosθ;

【物理】物理力学练习题含答案

【物理】物理力学练习题含答案 一、力学 1.下列有关力的说法正确的是() A.用力捏橡皮泥,橡皮泥发生形变,说明力可以改变物体的形状 B.推门时离门轴越近,用力越大,说明力的作用效果只与力的作用点有关 C.用手提水桶时,只有手对水桶施加了力,而水桶对手没有力的作用 D.放在桌面上的水杯对桌面的压力不是弹力 【答案】A 【解析】 试题分析:用力捏橡皮泥,橡皮泥发生形变,说明力可以改变物体的形状,故A正确;推门时离门轴越近,用力越大,说明力的作用效果与力的作用点有关,另外力的大小和方向也影响力的作用效果,故B错误;因为物体间力的作用是相互的,用水提水桶时,只有手对水桶施加了力,同时水桶对手也有力的作用,故C错误;放在桌面上的水杯对桌面的压力是由于水杯发生弹性形变而产生的,故属于弹力,故D错误;故应选A. 【考点定位】力的作用效果;力作用的相互性;弹力 2.某弹簧的一端受到100N的拉力作用,另一端也受到100N的拉力的作用,那么该弹簧测力计的读数是() A. 200N B. 100N C. 0N D. 无法确定 【答案】 B 【解析】【解答】弹簧测力计两端沿水平方向各施加100N的拉力,两个拉力在一条直线上且方向相反,所以是一对平衡力。弹簧测力计的示数应以弹簧测力计挂钩一端所受的拉力(100N)为准,所以,其示数是100N。 故答案为:B 【分析】由于力的作用是相互的,弹簧测力计的示数是作用在弹簧测力计挂钩上的力。3.忽略空气阻力,抛出后的小球在空中运动轨迹如图所示,抛出后的小球由于() A. 不受力,运动状态发生改变 B. 不受力,运动状态不发生改变 C. 受到重力作用,运动状态发生改变 D. 受到推力作用,运动状态发生改变 【答案】 C 【解析】【分析】(1)抛出的物体不再受到手的推力的作用,物体由于惯性要保持原来的运动状态. (2)地面附近的物体受到重力的作用. (3)物体的运动速度和运动方向的变化都属于运动状态的改变.

高中物理与大学物理之比较

高中物理与大学物理之比较 上海师范大学附属中学 李树祥 暑假后,将会有一大批同学进入大学深造。其中又会有很多同学将会学习大学物理,那么高中物理与大学物理有哪些不同? 教材内容不同 中学物理和大学物理虽然内容上都是由力学、电磁学、热学、光学、原子物理学这五大部分组成,但中学物理只是这些方面的一些基本知识,而且与数学知识的结合不是非常紧密,物理中要用到的数学知识,学生已在数学课上学过,所以难度较小。另外中学物理教材一般由演示实验、生产实际、生活经验等引入相关知识,配有较多的插图,所以比较形象生动;每节内容后都配置有关本节主要内容的练习题,这除了使学生掌握本节主要内容外,还有二个重要作用:一是帮助学生及时巩固、复习所学内容,二是增强学生学好物理的自信心,因为每节内容后给出的练习题都是本节公式、原理的直接应用,大多同学能够做出,而教学心理学的研究表明,学生能正确求解习题时会有一种成功的感觉,这种感觉不仅会提高学习物理的兴趣,而且会增强学好物理的自信心(中学物理实验编排在教材之中)。大学物理教材很少从演示实验,生产实际,生活经验等引入相关知识,它注重理论上的分析、推理、论证;插图较少,所以比较抽象;每章后才配有思考题和习题,对学生及时巩固、复习带来一定的困难(大学物理实验不编排在教材中)。且大学物理教材在深度和广度上都有加深和拓展,而且与高等数学知识的结合比较紧密,所以难度增加了。以“重心”概念为例,中学和大学是从不同角度对重心进行研究的,中学阶段对重心是这样讲述的:地球上一切物体都受到地球的吸引,这种由于地球的吸引而使物体受到的力叫做重力。从效果看,我们可以认为各部分受到的重力作用集中于一点,这一点叫做物体的重心,重心实际上就是重力的作用点。质量分布均匀,形状规则的物体,重心就在物体的几何中心。质量分布不均匀的物体,重心位置与质量分布及物体的形状都有关,重心可能在物体内,也可能在物体外。 大学阶段关于重心的讲述则是按以下方法进行的: 将地面上的物体视为刚体,并将其分割成无数质元来看待。它的各个质元所受的重力是同向平行的,如果改变刚体在空间的位置,各个质元所受的重力大小以及相对于地球的方向均不变,只是相对于刚体的方向有所改变,不论如何改变刚体在空间的位置,它的各个质元所受重力的合力都通过与刚体相关联的某一点,即刚体各质元所受重力之合力的作用点,这一点就是刚体的重心。 由刚体各个质元重心的坐标可求出刚体重心G 的坐标为: m x m x i i G ?∑= m y m y i i G ?∑= m z m z i i G ?∑= m 为整个刚体的质量。 中学阶段,限于教学要求,只能给出重心的定性定义以及寻求重心的简易方法;大学阶段,重心的定义则是在中学基础上将物体看作由无数质元组成,各质元所受重力之合力的作用点定义为刚体的重心,并根据力矩等效导出重心的坐标,由此便可定量化地确定物体的重心位置。 讲课方法不同 中学物理由于教学内容少,课时多,所以教学进程相对较慢,老师有时间对内容进行详

高中物理力学公式

高中物理力学公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

一、力学 1、f = k x :胡克定律 (x 为伸长量或压缩量,k 为劲度系数,只与弹簧的长度、粗细和材料 有关) 2、 G = mg :重力 (g 随高度、纬度、地质结构而变化,g 极>g 赤,g 低纬>g 高纬) 3、θcos 2212221F F F F F ++=合 : 求F 1、F 2的合力的公式 2221F F F +=合 : 两个分力垂直时 注意:(1) 力的合成和分解都均遵从平行四边行定则。分解时喜欢正交分解。 (2) 两个力的合力范围: F 1-F 2 F F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。 推论:三个共点力作用于物体而平衡,任意一个力与剩余二个力的合力一定等值反 向。 解三个共点力平衡的方法: 合成法,分解法,正交分解法,三角形法,相似三角形法 4、摩擦力的公式: (1 )f = N :滑动摩擦力 (动的时候用,或时最大的静摩擦力) 说明:①N 为接触面间的弹力(压力),可以大于G ;也可以等于G ;也 可以小于G 。 ②为动摩擦因数,只与接触面材料和粗糙程度有关,与接触面积大小、 接触面相对运动快慢以及正压力N 无关。 (2 ) 0 f 静 f m (f m 为最大静摩擦力) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关。 大小范围: 说明:①摩擦力可以与运动方向相同,也可以与运动方 向相反。 ②摩擦力可以作正功,也可以作负功,还可以不作功。 ③摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。 ④静止的物体可以受滑动摩擦力的作用,运动的物体可以受静摩擦力的作 用。 5、F=G 221r m m : 万有引力(适用条件:只适用于质点间的相互作用) G 为万有引力恒量:G = ×10-11 N ·m 2 / kg 2 (1)在天文上的应用:(M :天体质量;R :天体半径;g :天体表面重力 加速度;r 表示卫星或行星的轨道半径,h 表示离地面或天体表面的高 度)) a 、 F 万=F 向 万有引力=向心力 即 由此可得: ①天体的质量: ,注意是被围绕天体(处于圆心处)的质量。 ②行星或卫星做匀速圆周运动的线速度: ,轨道半径越大,线速度越小。 ③ 行星或卫星做匀速圆周运动的角速度: ,轨道半径越大,角速度越小。 ④行星或卫星做匀速圆周运动的周期: ,轨道半径越大,周期越大。 ⑤行星或卫星做匀速圆周运动的轨道半径: ,周期越大,轨道半径越大。 ⑥行星或卫星做匀速圆周运动的向心加速度:2 r GM a =,轨道半径越大,向心加速度越小。 ⑦地球或天体重力加速度随高度的变化:22)('h R GM r GM g +== 特别地,在天体或地球表面:20R GM g = 022) ('g h R R g += 23 24GT r M π=

高一物理力学受力分析专题(精选)

受力分析练习: 1.画出静止物体A 受到的弹力:(并指出弹力的施力物) 2.画出物体A 受到的摩擦力,并写出施力物:(表面不光滑) B A A 静止不动 A 向右匀速 A 沿着斜面向上运动 A 相对斜面静止 A 沿着斜面向下运动 A 匀速下滑

3:对下面物体受力分析: 1)重新对1、2两题各物体进行受力分析(在图的右侧画)2)对物体A进行受力分析(并写出各力的施力物) 3)对水平面上物体A和B进行受力分析,并写出施力物(水平面粗糙) 4)分析A和B物体受的力分析A和C受力(并写出施力物) A沿着水平面向左运动A沿着墙向上运动A 沿着水平面向右运动 A、B相对地面静止 A与皮带一起向右匀速运动 A、B一起向右匀速运动 A、B一起向右加速运动 A、B相对地面静止 木块A沿斜面匀速上滑 A、B相对地面静止A、 B、C一起向右加速运动 A、B一起向右加速运动 物体静止不动 A 在水平力F作用下A、B沿桌面匀速运动,

思路点拨 1、如图所示,质量为m=2kg 的物体在水平力F=80N 作用下静止在竖直墙上,物体与墙面之间的动摩擦因数为0.5,用二力平衡知识可知物体受到的摩擦力大小为______N ,弹力大小为________N 。(g=10N/kg ) 2、如图所示,在水平面上向右运动的物体,质量为20kg ,物体与水平面间1.0=μ,在运动过程中,物体还到一个水平向左的大小为F =10N 的拉力的作用,则物体受到的滑动摩擦力大小为______N ,方向_______。(g=10N/kg ) 3、如图,A 和B 在水平力F 作用下,在水平面上向右做匀速直线运动。试分析A 、B 物体 所受的力,并指出B 所受的每一力的反作用力。 基础训练 1、如图所示的物体A ,放在粗糙的斜面上静止不动,试画出A 物体受力的示意图,并标出个力的名称。 2、重G =5N 的木块在水平压力F 作用下,静止在竖直墙面上,则木块所受的静摩擦力f = N ;若木块与墙面间的动摩擦因数为μ=0.4,则当压力F N = N 时木块可沿墙面匀速下滑。 3、如图(1)人和木板的质量分别为m 和M ,不计滑轮质量及滑轮与绳之间的摩擦,保持系统静止 时,求人对绳子的拉力T 2=? 4、如图所示,物体A 沿倾角为θ 的斜面匀速下滑.求摩擦力及动摩擦因数。 5、如图所示,重G 1=600N 的人,站在重G 2=200N 的吊篮中,吊篮用一根不计质量的软绳悬挂,绳绕过不计质量和摩擦的定滑轮,一端拉于人的手中。当人用力拉绳,使吊篮匀速上升时,绳的拉力T 及人对吊篮底部的压力N ’多大? 6、两个大人和一个小孩沿河岸拉一条小船前进,两个大人的拉力分别为F 1=400N 和F 2=320N ,它们的方向如图所示.要使船在河流中间行驶,求小孩对船施加的最小的力。 7、如图所示,质量为m 的物体放在水平面上,在外力F 的作用下物体向右作匀速直线运动,求物体与平面间的摩擦力系数。 F

常用岩土材料参数和岩石物理力学性质一览表

(E, ν) 与(K, G)的转换关系如下: ) 21(3ν-= E K ) 1(2ν+= E G (7.2) 当ν值接近0.5的时候不能盲目的使用公式3.5,因为计算的K 值将会非常的高,偏离实际值很多。最好是确定好K 值(利用压缩试验或者P 波速度试验估计),然后再用K 和ν来计算G 值。 表7.1和7.2分别给出了岩土体的一些典型弹性特性值。 岩石的弹性(实验室值)(Goodman,1980) 表7.1 土的弹性特性值(实验室值)(Das,1980) 表7.2 各向异性弹性特性——作为各向异性弹性体的特殊情况,横切各向同性弹性模型需要5 中弹性常量:E 1, E 3, ν12,ν13和G 13;正交各向异性弹性模型有9个弹性模量E 1,E 2,E 3, ν12,ν13,ν23,G 12,G 13和G 23。这些常量的定义见理论篇。 均质的节理或是层状的岩石一般表现出横切各向同性弹性特性。一些学者已经给出了用各向同性弹性特性参数、节理刚度和空间参数来表示的弹性常数的公式。表3.7给出了各向异性岩石的一些典型的特性值。 横切各向同性弹性岩石的弹性常数(实验室) 表7.3

流体弹性特性——用于地下水分析的模型涉及到不可压缩的土粒时用到水的体积模量K f ,如果土粒是可压缩的,则要用到比奥模量M 。纯净水在室温情况下的K f 值是2 Gpa 。其取值依赖于分析的目的。分析稳态流动或是求初始孔隙压力的分布状态(见理论篇第三章流体-固体相互作用分析),则尽量要用比较低的K f ,不用折减。这是由于对于大的K f 流动时间步长很小,并且,力学收敛性也较差。在FLAC 3D 中用到的流动时间步长,? tf 与孔隙度n ,渗透系数k 以及K f 有如下关系: ' f f k K n t ∝ ? (7.3) 对于可变形流体(多数课本中都是将流体设定为不可压缩的)我们可以通过获得的固结系数νC 来决定改变K f 的结果。 f 'K n m k C + = νν (7.4) 其中 3 /4G K 1 m += ν f 'k k γ= 其中,' k ——FLAC 3D 使用的渗透系数 k ——渗透系数,单位和速度单位一样(如米/秒) f γ——水的单位重量 考虑到固结时间常量与νC 成比例,我么可以将K f 的值从其实际值(Pa 9 102?)减少,利用上面得表达式看看其产生的误差。 流动体积模量还会影响无流动但是有空隙压力产生的模型的收敛速率(见1.7节流动与力学的相互作用)。如果K f 是一个通过比较机械模型得到的值,则由于机械变形将会产生孔隙压力。如果K f 远比k 大,则压缩过程就慢,但是一般有可能K f 对其影响很小。例如在土体中,孔隙水中还会包含一些尚未溶解的空气,从而明显的使体积模量减小。 在无流动情况下,饱和体积模量为: n K K K f u + = (7.5) 不排水的泊松比为:

水声学原理试题+答案

《水声学原理》课程考试题(A卷) 一、填空题(15%) 1. 声阻抗率是单位表面(或体积)产生单位质点振速所需要的。 2. 潜艇的目标强度随角度的变化规律呈形状。 3. 用ka描述高、低频近似,k为波数,a为空间尺度,高频近似和低频近似分别可以表示为和。 4. 根据辐射噪声产生的来源不同,辐射噪声可分为、和三类。 5. 气泡可称作空气弹簧,是因为其和弹簧一致。 6. 目标强度可能为正的物理原因是。 7. 表面声道中,跨度较大的声线平均水平传播速度较。 8. 复数声反射系数的模表示反射声波与入射声波的之比,幅角表示反射声波与入射声波的之差。 二、简答题(35%) 1. 简述复阻抗率的物理意义。(7%) 2. 利用简正波表示,简要解释相干能量和非相干能量。(7%) 3. 利用刚性小球的散射理论,简要解释晴朗天空呈蓝色、早晚天空呈红色的现象。(7%) 4. 利用散射场可以视作二次辐射计算的方法,简要叙述计算海水中气泡散射声场的步骤。(14%) 三、证明题(20%) 气泡内的气体是理想气体,气泡振动时声辐射过程是绝热过程,证明:气泡振动的恢复力和弹簧恢复力形式一致。 四、计算题(30%) 1. 一单频小球源以10瓦的功率向自由空间辐射频率为1000Hz的简谐球面波,求离开声源中心2米处的声压幅值、质点径向速度(振速)幅值和声强。(15%) 2. 均匀硬底浅海中,海水中声速为1500m/s,海深为100米。求频率为1.5kHz 时第一号简正波的水平波数。(15%)

《水声学原理》课程考试题(A 卷参考答案) 一、填空 1. 声压。 2. 蝴蝶。 3. 1 ,1<<>>ka ka 。 4. 机械噪声、螺旋桨噪声和流噪声。 5. 恢复力形式。 6. 散射截面大。 7. 快。 8. 振幅、相位。 二、简答 1. 要点:⑴ 从定义看,声阻抗是复数表示声压与质点振速相位不一致。这使得介质中的声强(损耗在介质中的声强)小于平面波声强,这部分损耗声强对应着声阻抗的实部。⑵由于声压与质点振速相位不一致,引起了声强转变为其它形式的能量(功率)。 2. 要点: ⑴ 各号简正波的能量为非相干能量。⑵ 不同号数简正波之间的耦合能量为相干能量。 3. 要点:⑴ 说明刚性小球散射能量正比于频率4次方。⑵说明晴天小颗粒散射起主要作用,天空呈蓝色。⑶ 说明早晚天空水蒸气多,高频吸收强,因此低频散射占优势,天空呈红色。 4. 要点:⑴ 利用波动方程求解散射场的通解。⑵把入射波利用勒让德函数展开。⑶ 由边界条件确定散射场中的待定系数,并最终确定散射场。 三、证明: 气泡内气体满足绝热状态方程:.const PV =γ 微分得:0 0V dV P dP p γ-==。 而:ξ0s dV =,所以,00 00/s k V s P p ξξγ-=- =,其中,0 2 0V s P k γ= 。 而恢复力ξk ps F -==0和弹簧恢复力形式一致。得证。 四、计算题 1. 解: 单频小球源辐射声场为球面波:声压)(kr t j e r A p -= ω,质点振速r p j u ??=ωρ0。 计算得声强:? ==T r c A dt u p T I 2 002 2]Re[]Re[1 ρ。

高中物理力学部分知识点归纳

高中物理力学部分知识点归纳 1、基本概念:力、合力、分力、力的平行四边形法则、三种常见类型的力、力的三要素、时间、时刻、位移、路程、速度、速率、瞬时速度、平均速度、平均速率、加速度、共点力平衡(平衡条件)、线速度、角速度、周期、频率、向心加速度、向心力、动量、冲量、动量变化、功、功率、能、动能、重力势能、弹性势能、机械能、简谐运动的位移、回复力、受迫振动、共振、机械波、振幅、波长、波速 2、基本规律:匀变速直线运动的基本规律(12个方程);三力共点平衡的特点;牛顿运动定律(牛顿第一、第二、第三定律);万有引力定律;天体运动的基本规律(行星、人造地球卫星、万有引力完全充当向心力、近地极地同步三颗特殊卫星、变轨问题);动量定理与动能定理(力与物体速度变化的关系—冲量与动量变化的关系—功与能量变 化的关系);动量守恒定律(四类守恒条件、方程、应用过程);功能基本关系(功是能量转化的量度)重力做功与重力势能变化的关系(重力、分子力、电场力、引力做功的特点);功能原理(非重力做功与物体机械能变化之间的关系);机械能守恒定律(守恒条件、方程、应用步骤);简谐运动的基本规律(两个理想化模型一次全振动四个过程五个物理量、简谐运动的对称性、单摆的振动周期公式);简谐运动的图像应用;简谐波的传播特点;波长、波速、周期的关系;简谐波的图像应用;

3、基本运动类型:运动类型受力特点备注直线运动所受合外力与物体速度方向在一条直线上一般变速直线运动的受力分析匀变速直线运动同上且所受合外力为恒力 1. 匀加速直线运动 2. 匀减速直线运动曲线运动所受合外力与物体速度方向不在一条直线上速度方向沿轨迹的切线方向合外力指向轨迹内侧(类)平抛运动所受合外力为恒力且与物体初速度方向垂直运动的合成与分解匀速圆周运动所受合外力大小恒定、方向始终沿半径指向圆心(合外力充当向心力)一般圆周运动的受力特点向心力的受力分析简谐运动所受合外力大小与位移大小成正比,方向始终指向平衡位置回复力的受力分析 4、基本方法:力的合成与分解(平行四边形、三角形、多边形、正交分解);三力平衡问题的处理方法(封闭三角形法、相似三角形法、多力平衡问题—正交分解法);对物体的受力分析(隔离体法、依据:力的产生条件、物体的运动状态、注意静摩擦力的分析方法—假设法);处理匀变速直线运动的解析法(解方程或方程组)、图像法(匀变速直线运动的s-t图像、v-t图像);解决动力学问题的三大类方法:牛顿运动定律结合运动学方程(恒力作用下的宏观低速运动问题)、动量、能量(可处理变力作用的问题、不需考虑中间过程、注意运用守恒观点);针对简谐运动的对称法、针对简谐波图像的描点法、平移法 5、常见题型:合力与分力的关系:两个分力及其合力的大小、方向六个量中已知其中四个量求另外两个量。斜面类问题:(1)斜面上静止物体的受力分析;(2)斜面上运动物体的受力情况和运动情况的分析(包括

(完整)高中物理力学模型及分析

╰ α 高中物理力学模型及分析 1.连接体模型是指运动中几个物体叠放在一起、或并排在一起、或用细绳、细杆联系在一起的物体组。 解决这类问题的基本方法是整体法和隔离法。 整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程 隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。 2斜面模型(搞清物体对斜面压力为零的临界条件) 斜面固定:物体在斜面上情况由倾角和摩擦因素决定 μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面 μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ) 3.轻绳、杆模型 绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。 杆对球的作用力由运动情况决定 只有θ=arctg( g a)时才沿杆方向 最高点时杆对球的作用力;最低点时的速度?,杆的拉力? 若小球带电呢? E m L · m2 m1 F B A F1 F2 B A F

假设单B下摆,最低点的速度V B=R 2g ?mgR=2 2 1 B mv 整体下摆2mgR=mg 2 R +'2 B '2 A mv 2 1 mv 2 1 + ' A ' B V 2 V=?' A V=gR 5 3 ;' A ' B V 2 V==gR 2 5 6 > V B=R 2g 所以AB杆对B做正功,AB杆对A做负功 若V0 V B=R 2g 所以AB杆对B做正功,AB杆对A做负功 若V0

物理力学试题经典及解析

物理力学试题经典及解析 一、力学 1.某同学从滑梯上匀速下滑,滑梯对该同学作用力 F的方向是 A.B.C.D. 【答案】A 【解析】 【详解】 该同学由于匀速下滑,受平衡力,滑梯对该同学的作用力与重力平衡,竖直向上,大小相等。故选A。 2.如图是打台球时的情景。下列分析正确的是() A. 用球杆击球时,台球的运动状态改变了,是由于受到球杆施加的力 B. 台球被击出后能继续向前运动,是由于受到了向前的力 C. 水平桌面上运动的台球没有受到摩擦力 D. 水平桌面上做减速运动的台球,在水平方向受到平衡力 【答案】A 【解析】【解答】力的作用效果有两个,一是力可改变物体的运动状态;二是力可改变物体的形状。当用球杆击球时,台球受到球杆施加的力,而改变了运动状态,A符合题意;球离开球杆后,就不再受到向前的力的作用,能继续运动是由于球有惯性,B不符合题意;水平桌面不是绝对光滑,在上面运动的台球由于受到摩擦力的作用而慢慢停下,C不符合题意;水平桌面上做减速运动的台球,运动状态发生改变,是处于非平衡状态,受到非平衡力的作用,D不符合题意, 故答案为:A。 【分析】二力平衡的条件:作用在同一物体上的两个力,如果大小相等、方向相反、并且在同一直线上,则这两个力二力平衡时合力为零. 物体间力的作用是相互的. (一个物体对别的物体施力时,也同时受到后者对它的力).

3.电子驱蚊器利用变频声波直接刺激蚊虫中枢神经,使其非常痛苦,食欲不振,繁殖力下降,无法在此环境生存,从而达到驱蚊的目的其部分参数见表格,取g=10N/kg关于驱蚊器下列说法错误的是() A. 驱蚊器的重力为0.6N B. 驱蚊器发出的声音能被正常人听到 C. 驱蚊器刺激蚊虫中枢神经利用的是超声波 D. 驱蚊器工作10h消耗电能为0.02kW?h 【答案】B 【解析】【解答】A、驱蚊器的重力,G=mg=0.06kg×10N/kg=0.6N,A不符合题意; B、人的听觉范围20~20000Hz;22kHz~55kHz超出了人的听觉范围,故驱蚊器发出的声音不能被正常人听到,B符合题意; C、22kHz~55kHz超出了人的听觉范围,故驱蚊器刺激蚊虫中枢神经利用的是超声波,C 不符合题意; D、蚊器工作10h消耗电能为W=Pt=0.002kW×10h=0.2kW?h,D不符合题意。 故答案为:B。 【分析】利用物体质量计算重力的大小,人耳的听声范围是20~20000Hz,超声波的频率超过20000Hz,利用功率和时间计算消耗的电能. 4.如图所示,用细线拉着木块在水平面上做匀速直线运动,下列说法正确的是() A. 木块受到的摩擦力和细线对木块的拉力是一对平衡力 B. 木块对细线的拉力和细线对木块的拉力是一对平衡力 C. 木块对水平面的压力和水平面对木块的支持力是一对相互作用力 D. 木块对细线的拉力和手对细线的拉力是一对相互作用力 【答案】C 【解析】【解答】A.木块受到的摩擦力和细线对木块的拉力的方向不在同一条直线上,所以二者不是一对平衡力,A不符合题意; BD.木块对细绳的拉力和细绳对木块的拉力是一对相互作用力,B、D不符合题意; C.木块对水平面的压力和水平面对木块的支持力是一对相互作用力,C符合题意。 故答案为:C。 【分析】二力平衡的条件:作用在同一物体上的两个力,如果大小相等、方向相反、并且

中学物理与大学物理的衔接之力学

中学物理与大学物理的衔接——力学部分 引言 中学力学到大学力学的过渡是一个重要的过程,它不仅直接影响到大学物理中力学部分的学习,也会对后续物理其它分支学科的学习产生间接的影响。大学力学中的部分基础知识是在中学力学知识的基础上往深处和广处发展的,若将大学力学学习的规律和公式做特殊化处理和恒定条件下或理想状态下等,就可以得出与中学力学中的基本规律或计算公式一样的表达形式。首先,从数学能力来看,在中学阶段,由于学生仅学习了初等数学的部分内容,缺少矢量运算、微积分乃至场论的学习,所以讨论的问题只能是一些特殊的简单情况。再加上中学对函数的认识还相对较弱,所以在讨论物理问题时往往仅对某一物理量的值进行计算而缺少从函数的角度分析物理量的变化。其次,考虑到学生的认知水平,中学阶段的学习过程往往更偏重于具体的案例分析,而对模型的抽象与分析相对较弱。对知识的迁移与应用的要求不高。在教学实践中,中学阶段对力学内容的讨论也多从实验入手,而对理论推导和分析的要求相对较低。再次,受限于中学课时和考试等因素,中学阶段的力学讨论的内容相较大学力学,有明显的压缩和简化。 所以,为了能更好地对中学力学和大学力学进行衔接过渡,学生因从多方面着手,逐步转变思维习惯,提升数学能力,培养理论分析和逻辑演绎的能力。 一、对数学工具的提升 (1)矢量运算 在大学力学的教学中,较为普遍地使用矢量去描述物理概念、表达物理原理、求解物理问题。而在中学阶段,考虑到学生的认知水平,在运动学和动力学上很多问题都在维度上进行了简化。比如运动学里研究更多的是一维直线上的运动,对速度、加速度等的运算都限于一维直线上的表达。但若将之矢量化,就能很顺利地过渡到大学力学中的一般运动规律表达。比如从一维上的2012s v t at =+推广到2012 s v t at =+v v v 就可以解决一般的匀加速运动(初速度与加速度不在同一方向上)而不仅限于直线运动。 物理概念 一维的情况 矢量表示 瞬时速度 0lim t s v t ?→?=? 0lim t s v t ?→?=?v v 加速度 0lim t v a t ?→?=? 0lim t v a t ?→?=?v v 位移 2012s v t at =+ 2012 s v t at =+v v v 牛顿第二定律 F ma = F ma =v v 动量守恒 0mv ∑= 0mv ∑=v 动量定理 mv F t =??∑∑ m v F t ?=??∑∑v v …… …… …… 在中学阶段,对矢量的加减运算虽然进行了介绍,但更多的是从形象化的图像入手,比 α

高中物理力学公式大全

高中物理力学公式大全 一、力(常见的力、力的合成与分解) 1)常见的力 1.重力g=mg (方向竖直向下,g=9.8m/s2≈10m/s2, 作用点在重心,适用于地球表面附近) 2.胡克定律f=kx {方向沿恢复形变方向,k:劲度系数(n/m),x:形变量(m)} 3.滑动摩擦力f=μfn {与物体相对运动方向相反,μ:摩擦因数,fn:正压力(n)} 4.静摩擦力0≤f静≤fm (与物体相对运动趋势方向相反,fm为最大静摩擦力) 5.万有引力f=gm1m2/r2 (g= 6.67× 10-11n•m2/kg2,方向在它们的连线上) 6.静电力f=kq1q2/r2 (k=9.0× 109n•m2/c2,方向在它们的连线上) 7.电场力f=eq (e:场强n/c,q:电量c,正电荷受 的电场力与场强方向相同) GAGGAGAGGAFFFFAFAF

8.安培力f=bilsinθ(θ为b与l的夹角,当l⊥b 时:f=bil,b//l时:f=0) 9.洛仑兹力f=qvbsinθ(θ为b与v的夹角,当v⊥b时:f=qvb,v//b时:f=0) 注: (1)劲度系数k由弹簧自身决定; (2)摩擦因数μ与压力大小及接触面积大小无关,由接触面材料特性与表面状况等决定; (3)fm略大于μfn,一般视为fm≈μfn; (4)其它相关内容:静摩擦力(大小、方向)〔见第一册p8〕; (5)物理量符号及单位b:磁感强度(t),l:有效长度(m),i:电流强度(a),v:带电粒子速度(m/s),q:带电粒子(带电体)电量(c); (6)安培力与洛仑兹力方向均用左手定则判定。 2)力的合成与分解 GAGGAGAGGAFFFFAFAF

高中物理动态分析专题

高中物理动态分析专题 一、力学中的动态问题分析 1、变动中力的平衡问题的动态分析 ①矢量三角形法 物体在三个不平行的共点力作用下平衡,这三个力必组成一首尾相接的三角形。 用这个三角形来分析力的变化与大小关系的方法叫矢量三角形法,它有着比平行四边形更简便的优点, 特别在处理变动中的三力问题时能直观的反映出力的变化过程。 例1、如图1a 所 示,绳OA 、OB 等长,A 点固定不动,将B 点沿圆弧向C 点运动的过程中绳OB 中的张力将( ) A 、由大变小; B 、由小变大 C 、先变小后变大 D 、先变大后变小 解:如图1b,假设绳端在B'点,此时O点受到三力作用平衡:T A 、书的 大小方向不断的变化(图中T 'B 、T ''B T '''B 、、、、、、),但T 的大小方向始终 不变,T A 的方向不变而大小改变,封闭三角形关系 始终成立、不难瞧出; 当T A 与T B 垂直时,即 a+ =90时,T B 取最小值,因此,答案选C 。 ②相似三角形法 物体在三个共点力的作用下平衡,已知条件中涉及的就是边长问题,则由力组成的矢量三角形与由边长组成的几何三角形相似, 利用相似比可以迅速的解力的问题。 例2、如图2a 所示,在半径为R的光滑半球面上高h 处悬挂一定滑轮。重力为G的小球用绕过滑轮的绳子站在地 面上的人拉住。 人拉动绳子,在与球面相切的某点缓慢运动到接近顶点的过程中,试分析半球对小球的支持力与绳子拉力如何变化? 分析与解:受一般平衡问题思维定势的影响,以为小球 在移动过程中对半球的压力大小就是变化的。对小球进行 受力分析:球受重力G、球面对小球的支持力N与拉力T, 如图2b 所示:可以瞧到由N、T、G 构成的力三角形与由边长L 、R 、h+R 构成的几何三角形相似,从而利用相似比 N/G=R /R+h,T /G=L /R+h 、 由于在拉动的过程中,R 、h 不变,L 减小,则N=R G/R+h 大小不变, 绳子的拉力T =L G/R+h 减小。 T A 图2a

波动和声物理力学答案

第十章波动和声 思 10.1 因为波是振动状态的传播,在媒质中各体元都将重复波源的振动,所以一旦掌握了波源的振动规律,就可以得到波动规律,对不对?为什么? 解:不对。因为要知道波动规律,不仅要知道波源的振动规律,还要知道媒质的情况。 10.2在振源和无色散媒质的条件下传播机械波。(1)若波源频率增加,问波动的波长、频率和波速哪一个将发生变化?如何变?(2)波源频率不变但媒质改变,波长、频率和波速又如何变?(3)在声波波源频率一定的条件下,声波先经过温度较高的空气,后又穿入温度较低的空气,问声波的频率、波长和波速如何变化? 解:(1)频率、波长将发生变化。频率增加,波长减小。 (2)波速、波长变化,波的频率不变。 (3)因为μ γRT v = ,声速与温度有关,所以声波先经过温度较高的空气,波速大, 穿入温度较低的空气,波速变小。 声波频率不变。 波长变短。 10.3平面简谐波中体元的振动和前一章所谈质点作简谐振动有什么不同? 解:(1)平面简谐波中作简谐振动的体元的园频率ω并非决定于振动系统本身性质,而取决于波源的频率,前一章所谈质点作简谐振动的频率决定于振动系统本身的性质。 (2)平面简谐波中体元振动的动能、势能可同时达到最大值,能量以波速向外传播,而且体元的势能是因形变而为体元所有。前一章所谈质点作简谐振动时,当动能最大时势能为零,势能最大时动能为零,振动系统的能量守衡,不向外传播,而势能属于振动质点和其它物体所共有,如:弹簧振子的势能为质点和弹簧所共有。 10.4 平面简谐波方程)(cos v x t A y - =ω中x 取作某常数,则方程表示位移y 作简谐振 动;若取t 等于某常数,也表示位移作简谐振动。这句话对不对?为什么? 解:不对。因为平面简谐波方程)(cos v x t A y - =ω中x 取作某常数,,而ω不决定于振动 系统本身性质,而取决于波源的频率,所以不表示位移y 作简谐振动。当t 等于某常数时, 表示t 时刻波线上各体元位移分布、波形,不表示位移y 作简谐振动。 10.5 波动方程 2 2 2 2 x y t y ??= ??ρω的推导过程用到那些力学基本规律?其使用范围如何? 解:波动方程的推导过程用到胡克定律、牛顿第二定律。使用范围:弹性媒质并且各质点的形变是在弹性限度内。 10.6用手抖动张紧的弹性绳的一端,手抖的越快,振幅越大,波在绳上传播得越快,又弱又慢的抖动,传播得较慢,对不对,为什么? 解:不对,因为波速仅与介质有关,而于波源的频率、振幅无关。手抖的快,波源频率大,但波速不变,所以传播的并不快,抖度即幅度决定于振源的振幅,所以幅度并不一定大 10.7波速和媒质内体元振动的速度有什么不同? 解:波速是一定振动状态(位相)向前传播的速度,媒质内体元振动的速度是质点位移随时间变化的速度。 10.8所谓声压即有波传播的媒质中的压强,对不对? 解:不对。因为在有声波传播的空间,某一点在某一瞬时的压强p 与没有声波时压强0p 的 差,叫做该点处该瞬时的声压。 10.9举例说明波的传播的确伴随着能量的传播,波传播能量与粒子携带能量有什么不同?

相关主题
文本预览
相关文档 最新文档