当前位置:文档之家› 苯分子轨道和电子结构

苯分子轨道和电子结构

苯分子轨道和电子结构
苯分子轨道和电子结构

西南大学化学化工学院物理化学实验报告

实验名称苯分子轨道和电子结构

2013 级化工班姓名学号030同组人

指导老师实验日期2015 年 5 月11 日

实验环境室温℃大气压 mmHg 仪器型号

实验目的

( 1)掌握休克尔分子轨道法的基本内容

( 2)学会用休克尔分子轨道法分析和计算苯分子Π轨道分布

( 3)学会用计算的化学方法研究简单分子的电子结构

实验原理

离域Π键:形成Π键的电子不局限于两个原子的区域,而是在参加

成键的多个原子形成的分子骨架中运动,这种由多个原子形成的Π型化

学键称为离域Π键.

共轭效应:形成离域Π键,增加了Π电子的活动范围,使分子具有

特殊的物理化学性质,这种效应称为共轭效应.

分子轨道法:原子组合成分子时,原来专属于某一原子的电子将在

整个分子范围内运动,其轨道也不再是原来的原子轨道,而成为整个

分子所共有的分子轨道.

休克尔分子轨道法:为了讨论共轭体系的分子轨道,1 931年休克

尔应用LCAO-MO(分子轨道的原子线性组合)法,采用简化处理,解释了

大量有机共轭分子性质,该方法称为休克尔分子轨道法,简称HMO法.

休克尔分子轨道法主要运用了下列基本假设 :σ-Π分离体系, 独立π电子近似, LCAO-MO近似,huckel近似.

休克尔分子轨道法基本内容:在分子中把原子核、内层电子、非键电子连同σ电子一起冻结为“分子实”,构成了由σ键相连的分子骨架,π电子在分子骨架的势场中运动。由此,可写出一个Π电子的Hamilton算符及轨道方程Hψ=Eψ( 1-1).

采用变分法,π电子分子轨道表示为所有碳原子的对称性匹配的p原子轨道的线性组合:

ψ=C1φ1 + C2φ2 + …+ CNφN(1-2).

代入(1-1)式,按线性法处理得有关系数线性齐次方程组 : ( H11-E)C 1+( H12-ES12)C 2+…+( H1N-ES1N)= 0 ( HN1-E)C 1+( HN2-ESN2)C 2+…+( HNN-ES1N)=0 (1-3). 式中已假定原子轨道是归一化的,H rr,Srr代表能量积分及重叠积分:

H rs=∫φr?Hφdt, Srs=∫φr?φsdt (1-4) .

进一步的近似假定

(1)H rr=α(r=1,2,N),α称之为库伦积分

(2)H rs=β对应于原子r和s邻近,否则=0

(3)β 称为共振积分S rr=0(r≠s) 即为忽略重叠近似

做上述处理后久期方程可化为:

(1-5)

进一步做变换,X =(α-E)/ β,式(1-5)的非零解方程化为

(1-6)

由上述方程通过求X得N个E i值并回代到久期方程,再结合归一化条件得分子轨道组合系数Cik及Ψi

实验相关软件

Gaussian 98 程序包 Gaussian 图形查看程序Gview2

实验步骤

1.在e盘中新建文件夹019→再在019文件夹中新建文件夹ben和

dingerxi

2.构建苯分子结构:打开桌面Gauss View软件→点击Builder中的

Element,选择C原子→选择苯环模型→点击Builder中Add Valence,再点击苯环上的C原子,即加H→点击clean得到形状规则的苯环。

3.保存文件:点击calculate选择Gaussian→在弹出的对话框中输入:

e:/ben/019/ben→Job type选择optimization→点击Retain保留

→点击file,选择save保存,打开ben文件夹→命名为ben.gif,点击save保存→点击Calculate,选择Gaussian对话框中选择submit提交→连续点击两次save

4.系统计算过程:连续上述步骤对话框点击okay→计算机开始计算程

序→对话框选择“是”→选择新建一个输出文件,点击yes→选择chk 格式,点击ok→弹出chk输出文件

5.结果统计:打开ben文件夹中的BEN.LOG→将滚动条拉倒最下面,光

标放到最后→ctrl+F键弹出查找对话框→输入Orbital Symmetries,向上查找下一个→向下滚动少许找到The electronic state is 1-A1’→第17个数字为苯分子的第一个π轨道的能量,依次找出第17、20、21、22、23、24六个数据即为苯的六个π轨道能量。

6.绘制苯的六个π轨道图形:点击Results,选择surfaces→点击

Generate,Select Orbital 选择Othere→输入数字17,点击okay →选择Apply,弹出苯的第一个π轨道图形→将图形调至适当角度,点击file,选择Save Image→在弹出的保存对话框中命名为17.gif →同样的方法分别输入20、21、22、23、24查看剩余五个π轨道的图形并将其保存。

7.查看键长:点击file选择open,打开ben.chk→点击Band,再点击

chk文件中碳碳原子,可查看苯环中C-C键长

8.查看电荷:打开新文件夹ben中的BEN.LOG→找到Total atomic

charges→下面即为C原子和H原子的电荷。

9. 对丁二烯的操作重复以上步骤,不同的是丁二烯没有固定结构需要画出4个C 原子然后再连键。其它步骤都与苯的操作步骤相同。

数据记录与处理

一、苯分子

(1)苯的六个π轨道形状和能量

轨道数 能量 图形 轨道数 能量 图形 17 -0.50849

22 0.15124

20 -0.33900

23 0.15124

21 -0.33900

29 0.37550

(2)苯分子中离域π键的键长 C-C:1,380 C-H:1.072

(3)苯分子中碳原子和氢原子的电荷

C:-0.239 H:0.239

二、丁二烯分子

(1)丁二烯分子的π轨道形状和能量

轨道数 能量 图形 轨道数 能量 图形 14 -0.44802 15 -0.72517

16 0.13186 17 0.27026

(2)丁二烯分子中离域π键的键长

C-C:1.46 C=C:1.32 C-H:1.072

(3)丁二烯分子中碳原子和氢原子的电荷

单键C:-0.247 双键C:-0.412

单键H:0.210 双键H:0.231 0.217

实验讨论

(1)什么是离域Π键?

答:形成Π键的电子不局限于两个原子的区域,而是在参加成键的多个原子形成的分子骨架中运动,这种由多个原子形成的Π型化学键称为离域Π键

(2)什么是共轭效应?

答:形成离域Π键,增加了Π电子的活动范围,使分子具有特殊的物理化学性质,这种效应称为共轭效应。

(3)写出苯的HMO列式方程,并由此计算出相应的6个分子轨道波函数.

答:E1=α+2βΨ1=1

√6

(ψ1+ψ2+ψ3+ψ4+ψ5+ψ6)

E2=α+βΨ2=1

√12

(2ψ1+ψ2-ψ3-2ψ4-ψ5+ψ6)

E3=α+βΨ3=1

√4

(ψ2+ψ3-ψ5-ψ6)

E4=α-βΨ4= 1

√4

(ψ2-ψ3+ψ5-ψ6)

E5=α-βΨ5=1

√12

(2ψ1-ψ2-ψ3+2ψ4-ψ5-ψ6)

E6=α-2βΨ6=1

√6

(ψ1-ψ2+ψ3-ψ4+ψ5-ψ6)

(4)写出丁二烯的HMO列式方程,并由此计算出相应的4个分子轨道波函数.

E1=α+ 1.618βE2=α+ 0.618βE3=α- 0.618βE4=α- 1.618βΨ=0.3717ψ1+0.6015ψ2 +0.6015ψ3 +0.3717ψ4 Ψ=0.6015ψ1 +0.3717ψ2 -0.3717ψ3+0.6015ψ4 Ψ=0.6015ψ1-0.3717ψ2 -0.3717ψ3 +0.6015ψ4 Ψ=0.3717ψ1-0.6015ψ2 +0.6015ψ3 +0.3717ψ4

(5)写出苯分子的所有共振式

答:

(Ⅰ)式和(Ⅱ)式结构相似,能量最低,其余共振式的能量都比较高。能量最低而结构又相似的共振式在真实结构中参与最多,或称贡献最大。因此,可以说苯的真实结构主要是(Ⅰ)式和(Ⅱ)式的共振杂化体。

苯的两个共振结构式,仅在电子排布上不同,而原子核并未改变,这种结构共振所产生的共振杂化体,其稳定性较大。

实验建议

此实验为操作性实验,实际应用操作非常重要,在本次试验过程中老师的教学重点很突出,操作讲的很好懂,操作起来也很简单,但是关于休克尔分子轨道法的原理比较深化不好理解,所以在这一块儿形象突出的讲述可能会更有助于同学们加深理解,达到对知识回顾和实验原理学习一个比较好的结果。

苯分子轨道和电子结构

西南大学化学化工学院物理化学实验报告 实验名称苯分子轨道和电子结构 2011级1班姓名学号22201131621**** 同组人 指导老师实验日期2013 年 5 月22 日 实验环境室温34 ℃大气压99.8 mmHg 仪器型号 实验目的 ( 1)掌握休克尔分子轨道法的基本内容 ( 2)学会用休克尔分子轨道法分析和计算苯分子Π轨道分布 ( 3)学会用计算的化学方法研究简单分子的电子结构 实验原理 A、离域π键:形成π键的电子不局限于两个原子的区域,而是在参加成键的多个原子形成的分子骨架中运动,这种由多个原子形成的π型化学键称为离域π键。 B、共轭效应:由于形成了离域π键,增加了π电子的活动范围,使得分子具有特殊的物理化学性质,这种效应称为共轭效应或离域效应。 C、分子轨道法(MO法):当原子组合成为分子时,原来专属于某一原子所有的电子将在整个分子范围内运动,其轨道也不再是原来的原子轨道,而成为整个分子所共有的分子轨道。 D、微观系统状态随时间的深化规律由薛定谔方程描述(H - E)Ψ=0,其中H 是量子哈密顿算符。 休克尔为了讨论共轭体系的分子轨道,1931Huckel应用LCAO-MO(分子轨道的原子线性组合)法,采用简化处理,解释了大量有机共轭分子性质,该方法称为休克尔分子轨道法,简称HMO法。该方法针对平面共轭体系的主要特点,能给出离域π键体系的基本性质。 休克尔分子轨道法用了下列基本假设: 1、σ-π分离近似:对于共轭分子,构成分子骨架的σ电子与构成共轭体系的π电子由于对称性不同,在讨论共轭分子的结构时,可以近似的看成互相带独立的,把σ电子和π电子分开处理。 2、独立π电子近似:分子中的电子由于存在相互作用,运动不是独立的,但若将其它电子对某电子的作用加以平均,近似地看成是在核和其它电子形成的固定力场上运动,则该电子的运动就与其它电子的位置无关,是独立的。 3、LCAO-MO近似:对于π体系,可将每个π分子轨道看成是由各个碳原子提供的对称性匹配的p轨道φi进行线性组合得的。 ψ=C1φ1 + C2φ2 + …+ CNφN

分子轨道理论的基本要点

分子轨道理论的基本要点→分子轨道的概念 分子轨道的概念分子轨道理论的基本要点 在介绍分子轨道理论的基本要点之前,首先了解一下分子轨道的概念。 通过原子结构理论的学习,我们知道原子中的电子是处于原子核及其它电子所形成的势场中运动的,每个电子都具有一定的空间运动状态和能量。原子中存在着若干种空间运动状态ψ、ψ、ψ……,这些空间运动状态俗称原子轨道,即原子中存在1s、2s、2p……等原子轨道。分子轨道理论设想,在多原子分子中,组成分子的每个电子并不属于某个特定的原子,而是在整个分子的范围内运动。分子中的电子处于所有原子核和其它电子的作用之下,分子中电子的空间运动状态也可以用波函数来描述,这些波函数俗称分子轨道,即分子中电子的空间运动状态叫分子轨道(Molecular orbit),简称MO。 正如原子中存在对应能量的若干原子轨道一样,在分子中也存在对应一定能量的若干分子轨道。像原子结构那样遵循“能量最低原理”将分子中所有电子依次填入各分子轨道中,则可得到分子的电子构型,并由此说明分子的性质,这就是分子轨道理论的基本思路。现将其要点介绍如下。分子轨道理论的基本要点→分子轨道理论的基本要点★★ 分子轨道的概念分子轨道理论的基本要点 1.分子轨道是由原子轨道线性组合而成(linear combination of atomic orbital,简称LCAO),n个原子轨道组合成n个分子轨道。在组合形成的分子轨道中,比组合前原子轨道能量低的称为成键分子轨道,用ψ表示;能量高于组合前原子轨道的称为反键分子轨道,用ψ表示。 例如两个氢原子的1s原子轨道ψA与ψB线性组合,可产生两个分子轨道: ψ=C1(ΨA+ΨB)ψ=C2(ψA-ψB)(式中C1、C2为常数)

苯分子轨道与电子结构

苯分子轨道与电子结构 一、实验目的 ( 1)掌握休克尔分子轨道法的基本内容 ( 2)学会用休克尔分子轨道法分析和计算苯分子Π轨道分布 ( 3)学会用计算的化学方法研究简单分子的电子结构 二、实验原理 基本理论 离域Π键:形成Π键的电子不局限于两个原子的区域,而是在参加成键的多个原子形成的分子骨架中运动,这种由多个原子形成的Π型化学键称为离域Π键 共轭效应:形成离域Π键,增加了Π电子的活动范围,使分子具有特殊的物理化学性质,这种效应称为共轭效应 分子轨道法:原子组合成分子时,原来专属于某一原子的电子将在整个分子范围内运动,其轨道也不再是原来的原子轨道,而成为整个分子所共有的分子轨道 休克尔分子轨道法:为了讨论共轭体系的分子轨道,1 931年休克尔应用LCAO-MO(分子轨道的原子线性组合)法,采用简化处理,解释了大量有机共轭分子性质,该方法称为休克尔分子轨道法,简称HMO法。该方法针对平面共轭体系的主要特点,能给出离域Π键体系的基本性质 休克尔分子轨道法主要运用了下列基本假设 : σ-Π分离体系:对于共轭分子,构成分子骨架的σ电子与构成共轭体系的π电子由于对称性不同,在讨论共轭分子的结构时,可以近似的看

成互相独立的,把σ电子和π电子分开处理. 独立π电子近似:分子中的电子由于存在相互作用,运动不是独立的,但若将其它电子对某电子的作用加以平均,近似地看成是在核和其它电子形成的固定力场上运动,则该电子的运动就与其它电子的位置无关,是独立的. LCAO-MO近似:对于π体系,可将每个π分子轨道看成是由各个碳原子提供的对称性匹配的p轨道φi 进行线性组合得的.ψ=C1φ1+ C2φ2 + …+ C NφN huckel近似:认为每个电子在每个原子核附近运动时的能量相同 休克尔分子轨道法基本内容 在分子中把原子核、内层电子、非键电子连同σ电子一起冻结为“分子实”,构成了由σ键相连的分子骨架,π电子在分子骨架的势场中运动。由此,可写出一个Π电子的Hamilton算符及轨道方程 Hψ=Eψ( 1-1). 采用变分法,π电子分子轨道表示为所有碳原子的对称性匹配的p原子轨道的线性组合: ψ=C1φ1 + C2φ2 + …+ C NφN(1-2). 代入(1-1)式,按线性法处理得有关系数线性齐次方程组 : (H11-E)C 1+(H12-ES12)C 2+…+(H1N-ES1N)= 0 (H N1-E)C 1+(H N2-ES N2)C 2+…+(H NN-ES1N)=0 (1-3). 式中已假定原子轨道是归一化的,H rr,S rr代表能量积分及重叠积分: H rs=∫φr?Hφdt, Srs=∫φr?φsdt (1-4) .

分子轨道理论汇总

第三节分子轨道理论(MOT) 一、概述 要点: A、配体原子轨道通过线性组合,构筑与中心原子轨道对称性匹配的配体群轨道。 B、中心原子轨道与配体群轨道组成分子轨道。 C、电子按照能量由低到高的顺序,依次排在分子轨道中。 形成LCAO-MO的三原则: 二、ABn型分子构筑分子轨道的方法

1、步骤 1)列出中心原子A及配位原子B中参与形成分子轨道的原子轨道; 2)将B原子轨道按等价轨道集合分类(由对称操作可彼此交换的轨道称为等价轨道); 3)将每一等价轨道集合作为表示的基,给出表示;再将其分解为不可约表示; 4)用每一组等价轨道集合构筑出对应于上一步所求出的不可约表示的配体群轨道;

5)将对称性相同的配体群轨道与中心原子轨道组合得分子轨道。 三、金属与配体间σ分子轨道(d轨道能级分裂) 1)A原子用ns、np、(n-1)d 9个轨道,每个B原子用3个p(p x、p y、p z)轨道,共27个轨道形成分子轨道。 * 坐标系选择及配体编号

x y z 1 2 3 5 4 6 p x p y p z A 、中心原子取右手坐标系,配体取左手坐标系; B 、每个B 原子上三个p 轨道各用一个向量表示,方向指向波函数正值方向; C 、规定p z 向量指向中心原子,则p x 、p y 向量应存在于垂直于p z 向量的平

面内; D、规定第一个B原子的p x向量与y 轴平行(* 方向相同),则该B原子的p y向量应与z轴平行(* 方向相同); E、其余(6-1)个B原子的p x和p y 向量的方向由O h群对称性决定。 2)O h群将B原子的18个轨道分为如下等价轨道的集合: I、6个p z轨道(可用于形成σ分子轨道) II、12个p x或p y轨道(可用于形成π分子轨道)

分子轨道理论

分子轨道理论 简介 一种化学键理论,是原子轨道理论对分子的自然推广。其基本观点是:物理上存在单个电子的自 身行为,只受分子中的原子核和其他电子平均场的作用,以及泡利不相容原理的制约;数学上则企图将难解的多电子运动方程简化为单电子方程处理。因此,分子轨道理论是一种以单电子近 似为基础的化学键理论。描写单电子行为的波函数称轨道(或轨函),所对应的单电子能量称能级。对于任何分子,如果求得了它的系列分子轨道和能级,就可以像讨论原子结构那样讨论分 子结构,并联系到分子性质的系统解释。有时,即便根据用粗糙的计算方案所得到的部分近似分子轨道和能级,也能分析出很有用处的定性结果。 理论 1. 原子在形成分子时,所有电子都有贡献,分子中的电子不再从属于某个原子,而是在整个分 子空间范围内运动。在分子中电子的空间运动状态可用相应的分子轨道波函数书(称为分子轨道)来描述。分子轨道和原子轨道的主要区别在于: ⑴在原子中,电子的运动只受1个原子核的作用,原子轨道是单核系统;而在分子中,电子则在所有原子核势场作用下运动,分子轨道是多核系统。 分子轨道理论⑵原子轨道的名称用s、p、d…符号表示,而分 子轨道的名称则相应地用c、n、A…符号表示。 2. 分子轨道可以由分子中原子轨道波函数的线性组合(linearcombinationofatomicorbitals , LCAO而得到。有几个原子轨道就可以可组合成几个分子轨道,其中有一部分分子轨道分别由对称性匹配的两个原子轨道叠加而成,两核间电子的概率密度增大,其能量较原来的原子轨道能量低,有利于成键,称为成键分子轨道(bondingmolecularorbital),女口c、n轨道(轴对称轨

分子轨道理论

分子轨道理论 通过原子的壳层结构和玻尔的氢原子理论可以很好的从微观角度认识化学规律,并能用电子因素和空间因素阐明化学物质的结构、性能和应用。原子的成键理论就是基于此而建立的,有助于了解物质的基本物理和化学性质。下面对分子轨道理论做一简要介绍。 由两个原子轨道形成的分子轨道,能级低于原子轨道的称为成键轨道;而能级高于原子轨道的称为反成键轨道。当两个符号相同的s轨道相互靠拢,正重叠可形成σ成键轨道;负 重叠时,则形成σ反键轨道。两个符号相同的p轨道肩并肩排列时,相互靠拢正重叠可形成π成键轨道;负重叠时,则形成π反键轨道。在形成分子的过程中,其他原子靠近某原 子时,该原子能级发生重新排列组合,以有利于形成稳定的分子,这一过程叫轨道杂化。如sp杂化是由一个s轨道与一个p轨道组合而成的两个sp杂化轨道。 不同原子有不同的电子结构,它们利用不同的原子轨道进行组合。例如,分子 原子的1s轨道能级低至-64.87eV,无法与氢原子的1s轨道(-13.6eV)成键,因此1σ基本还是原子的1s内层电子,的2s轨道与H的1s轨道能量相近,对称性匹配,可有效形 成σ键。两个原子间还可形成。 有机化合物的分子大部分是由其所含原子的s和p轨道的价电子结合而成。下图简单表示 图(H的成键和反成键轨道)为两个氢原子以s价电子结合,并以σ键组成氢分子,分子 轨道应有σ成键轨道和σ反键轨道。在基态时两个电子占据σ成键轨道,吸收能量后跃迁至激发态σ反键轨道。图(b),表示碳—碳的成键轨道和反键轨道。 下图为乙烯分子的成键轨道示意图。在该分子中每个C原子用sp轨道和其它三个原子相连,C原子和H原子结合成两个sp—s的σ键,C原子间由sp—sp结合成另一个

苯的发现和苯分子结构学说

科目化学 年级 文件 hxs0005.doc 标题苯的发现和苯分子结构学说 关键词苯/凯库勒/化学史 内容 苯是在1825年由英国科学家法拉第(Michael Faraday,1791- 1867)首先发现的。19世纪初,英国和其他欧洲国家一样,城市的照明已普遍使用煤气。从生产煤气的原料中制备出煤气之后,剩下一种油状的液体却长期无人问津。法拉第是第一位对这种油状液体感兴趣的科学家。他用蒸馏的方法将这种油状液体进行分离,得到另一种液体,实际上就是苯。当时法拉第将这种液体称为"氢的重碳化合物"。1834年,德国科学家米希尔里希(E.E.Mitscherlich,1794-863)通过蒸馏苯甲酸和石灰的混合物,得到了与法拉第所制液体相同的一种液体,并命名为苯。待有机化学中的正确的分子概念和原子价概念建立之后,法国化学家日拉尔(C.F.Gerhardt,1815-856)等人又确定了苯的相对分子质量为78,分子式为C6H6。苯分子中碳的相对含量如此之高,使化学家们感到惊讶。如何确定它的结构式呢?化学家们为难了:苯的碳、氢比值如此之大,表明是高度不饱和的化合物。但它又不具有典型的不饱和化合物应具有的易发生加成反应的性质。德国化学家是一位极富想象力的学者,他曾提出了碳四价和碳原子之间可以连接成链这一重要学说。对苯的结构,他在分析了大量的实验事实之后认为:这是一个很稳定的"核",6个碳原子之间的结合非常牢固,而且排列十分紧凑,它可以与其他碳原子相连形成芳香族化合物。于是,凯库勒集中精力研究这6个碳原子的"核"。在提出了多种开链式结构但又因其与实验结果不符而一一否定之后,1865年他终于悟出闭合链的形式是解决苯分子结构的关键,他先以(Ⅰ)表示苯结构。1866年他又提出了(Ⅱ)式,后简化为(Ⅲ)式,也就是我们现在所说的凯库勒式。 有人曾用6只小猴子形象地表示苯分子的结构.关于凯库勒悟出苯分子的环状结构的经过,一直是化学史上的一个趣闻。据他自己说这来自于一个梦。那是他在比利时的根特大学任教时,一天夜晚,他在书房中打起了瞌睡,眼前又出现了旋转的碳原子。碳原子的长链像蛇一样盘绕卷曲,忽见一蛇抓住了自己的尾巴,并旋转不停。他像触电般地猛醒过来,整理苯环结构的假说,又忙了一夜。对此,凯库勒说:"我们应该会做梦!……那么我们就可以发现真理,……但不要在清醒的理智检验之前,就宣布我们的梦。" 应该指出的是,凯库勒能够从梦中得到启发,成功地提出重要的结构学说,并不是偶然的。这是由于他善于独立思考,平时总是冥思苦想有关的原子、分子、结构等问题,才会梦其所思;更重要的是,他懂得化合价的真正意义,善于捕捉直觉形象;加之以事实为依据,以严肃的科学态度进行多方面的分析和探讨,这一切都为他取得成功奠定了基础。

有机化学第7、8章习题答案

第7章芳烃及非苯芳烃 思考题答案 思考题7-1苯具有什么结构特征它与早期的有机化学理论有什么矛盾 答案:苯分子具有高度的不饱和性,其碳氢比相当于同分子量的炔烃,根据早期的有机化学理论,它应具有容易发生加成反应、氧化反应等特性。 但事实上,苯是一种高度不饱和却具异常稳定性的化合物。因此,要能够很好地解释这一矛盾是当时有机化学家所面临的重大挑战。[知识点:苯 的结构特征] 思考题7-2早期的有机化学家对苯的芳香性认识与现代有机化学家对苯的芳香性认识有什么不同 答案:早期的有机化学把那些高度不饱和的苯环类结构并具有芳香气味的化合物称为芳香化合物,这些化合物所具有的特性具称为芳香性。随着对事物认识的不断深入,人们已经意识到,除了苯环以外还有一些其他类型的分子结构也具有如苯一样的特别性质。现在仍然迫用芳香性概念,但其内涵已超出了原来的定义范围。现在对芳香性的定义为:化学结构上环状封闭的共轭大π键,不易被氧化,也不易发生加成反应,但是容易起亲电反应的性质。[知识点:苯的芳香性] 思考题7-3 关于苯分子的近代结构理论有哪些其中,由Pauling提出的共振结构理论是如何解释苯分子结构 答案:现代价键理论:苯分子中的六个碳原子都以sp2杂化轨道和相邻的碳和氢原子形成σ键,此sp2杂化轨道为平面其对称轴夹角为120°,此外每个碳原子还有一个和平面垂直的p轨道,六个p轨道相互平行重叠形成了一个闭合共轭体系。 分子轨道理论:基态时,苯分子的六个π电子都处在成建轨道上,具有闭壳层电子结构。离域的π电子使得所有的C-C键都相同,具有大π键的特殊性质因此相比孤立π键要稳定得多。

Pauling提出的共振结构理论:苯的每个1,3,5-环己三烯都是一种共振结构体,苯的真实结构是由这些共振结构式叠加而成的共振杂化体。【知识点:苯近代结构理论】 思考题7-4什么是休克尔规则如何利用休克尔规则判别有机分子的芳香性 答案:休克尔规则:单环化合物具有同平面的连续离域体系,且其π电子数为4n+2,n为大于等于0的整数,就具有芳香性; 如果π电子数为芳香性,符合4n,为反芳香性,非平面的环状共轭烯烃 则为非芳香性。【知识点:休克尔规则】 思考题7-5为什么有些有机分子的π电子数符合4n+2规则但却不具备芳香性 答案:有些有机分子如[10]轮烯,其π电子为10,满足4n+2规则,但无芳香性。 其原因在该分子内由于空间拥挤,整个分子不共平面影响共轭,故无芳香性。具有芳香性必须是共轭的平面分子。【知识点:休克尔规则应用条件】思考题7-6什么是亲电取代反应为什么苯环上容易发生亲电取代反应而不是亲核取代反应 答案:缺电子或带正电的亲电试剂进攻电子给予体(如苯)所发生的取代反应叫亲电取代反应。由于苯环具有高度离域的大π键,苯环上下都被离域的π电子所笼罩,因此,苯成为良好的电子给予体,极易与缺电子或带正电荷的原子或基团发生亲电取代反应。【知识点:苯环亲电取代反应】 思考题7-7 什么是傅-克反应傅-克烷基化反应和傅-克酰基化反应有什么区别 答案:傅克反应即在无水三氯化铝的催化下,芳环上的氢被烷基或酰基取代的反应。在烷基化反应中,易发生分子重排;在酰基化反应中,无分子重排,但由于其反应产物酮会与催化剂三氯化驴发生络合,因此酰基化反应的三氯化铝必须过量。【知识点:傅克反应】 思考题7-8发生在苯环上的亲电取代反应历程中有哪些过渡态如何通过共振结构式解释苯环上发生亲电取代反应时的定位效应 答案:苯环上的亲电取代反应要经历π络合物和σ络合物的中间态。苯环亲电取代中间体的共振式有三种,当含有邻对位定位基时,由共振式可看出只有

超分子结构化学_周公度

第17卷 第5期大学化学2002年10月今日化学 超分子结构化学 周公度 (北京大学化学学院 北京100871) 超分子(supramolecule)通常是指由两种或两种以上分子依靠分子间相互作用结合在一起,组装成复杂的、有组织的聚集体,并保持一定的完整性,使其具有明确的微观结构和宏观特性。由分子到超分子和分子间相互作用的关系,正如由原子到分子和共价键的关系一样。 1987年,诺贝尔化学奖授予C.Pedersen(佩德森)、J M.Lehn(莱恩)和D.Cram(克拉姆)等在超分子化学领域中的奠基工作:佩德森发现冠醚化合物,莱恩发现穴醚化合物并提出超分子概念,克拉姆是主客体化学的先驱者[1~3]。此后,作为化学的前沿领域,超分子化学引起了人们的广泛关注,近10多年来获得了很大的发展。研究超分子的形成、作用、结构和性能的超分子化学,已扩展到化学的各个分支,还扩展到生命科学和物理学等许多其他学科,并形成新的学科领域[4~11]。 超分子和超分子化学通常包括以下两个范围较广而部分交叠的领域。 (1)将超分子定义为由确定的少数组分(受体和底物)在分子识别原则基础上经过分子间缔合形成的分立的低聚分子物种。 (2)由大量不确定数目的组分按其性质自发缔合成超分子聚集体(supramolecular assem blies)。它又可分为两类: 薄膜、囊泡、胶束、介晶相等,它的组成和结合形式在不断变动,但具有或多或少确定的微小组织,按其性质,可以宏观表征的体系; 由分子组成的晶体,它组成确定,并且具有整齐排列的点阵结构,研究这种超分子的工作常称为晶体工程。 下面首先根据结构化学的原理和观点,探讨促使超分子体系稳定形成的因素;其次讨论各种分子间的相互作用,使分子相互识别和自组装;然后再讨论晶体工程的特点;最后讨论超分子结构化学原理的应用。在讨论中辅以实例,使内容丰富生动。 1 超分子稳定形成的因素 超分子体系和其他化学体系一样,由分子形成稳定超分子的因素,在不做有用功(如光、电 )时,可从热力学自由焓的降低( G<0)来理解: G= H-T S 式中 H是焓变,代表降低体系的能量因素; S是体系熵增的因素。 1.1 能量降低因素 分子聚集在一起,依靠分子间的相互作用使体系的能量降低。下面列出常见的降低体系能量的因素。 1.1.1 静电作用 静电作用包括盐键,即带电基团间的作用,如R NH+3-OOC R;离子 偶极子作用,

苯分子轨道和电子结构教学文案

苯分子轨道和电子结 构

西南大学化学化工学院物理化学实验报告 实验名称苯分子轨道和电子结构 2013 级化工班姓名学号 030同组人 指导老师实验日期2015 年 5 月11 日 实验环境室温℃大气压 mmHg 仪器型号 实验目的 ( 1)掌握休克尔分子轨道法的基本内容 ( 2)学会用休克尔分子轨道法分析和计算苯分子Π轨道分布 ( 3)学会用计算的化学方法研究简单分子的电子结构 实验原理 离域Π键:形成Π键的电子不局限于两个原子的区域,而是在参加成键的多个原子形成的分子骨架中运动,这种由多个原子形成的Π型化学键称为离域Π键. 共轭效应:形成离域Π键,增加了Π电子的活动范围,使分子具有特殊的物理化学性质,这种效应称为共轭效应. 分子轨道法:原子组合成分子时,原来专属于某一原子的电子将在整个分子范围内运动,其轨道也不再是原来的原子轨道,而成为整个分子所共有的分子轨道. 休克尔分子轨道法:为了讨论共轭体系的分子轨道,1 931年休克尔应用LCAO-MO(分子轨道的原子线性组合)法,采用简化处理,解释了大量有机共轭分子性质,该方法称为休克尔分子轨道法,简称HMO 法. 休克尔分子轨道法主要运用了下列基本假设 :σ-Π分离体系, 独 立π电子近似, LCAO-MO近似,huckel近似. 休克尔分子轨道法基本内容:在分子中把原子核、内层电子、非 键电子连同σ电子一起冻结为“分子实”,构成了由σ键相连的分子骨架,π电子在分子骨架的势场中运动。由此,可写出一个Π电子的Hamilton算符及轨道方程Hψ=Eψ( 1-1). 采用变分法,π电子分子轨道表示为所有碳原子的对称性匹配的p原子轨道的线性组合:

有机化学理论课 第十八章 分子轨道理论简介

第十八章分子轨道理论简介 一、教学目的和要求 (1)了解分子轨道理论的原理。 (1)了解周环反应的一般规律。 (2)了解分子轨道对称守恒原理在有机合成中的作用。 二、教学重点与难点 分子轨道理论的原理,周环反应的理论。 三、教学方法和教学学时 1、教学方法:以课堂讲授为主,结合必要的课堂讨论。教学手段以板书和多媒体相结合。 2、教学学时:2学时 四、教学内容 第一节电环化反应 第二节环加成反应 第三节σ迁移反应 第四节周环反应的理论 一、电环化反应机理 二、环加成反应机理 三、σ键迁移反应机理 五、课后作业、思考题 习题:1、2、4、6、11。 §18-1 周环反应的理论 一、周环反应 前面各章讨论的有机化学反应从机理上看主要有两种,一种是离子型反应,另一种是自由基型反应,它们都生成稳定的或不稳定的中间体。还有另一种机理,在反应中不形成离子或自由基中间体,而是由电子重新组织经过四或六中心环的过渡态而进行的。这类反应表明化学键的断裂和生成是同时发生的,它们都对过渡态作出贡献。这种一步完成的多中心反应称为周环反应。 周环反应:反应中无中间体生成,而是通过形成过渡态一步完成的多中心反应。 反应物——→产物

周环反应的特征: (1) 多中心的一步反应,反应进行时键的断裂和生成是同时进行的(协同反 应)。 例如: (2) 反应进行的动力是加热或光照。不受溶剂极性影响,不被酸碱所催化,不受任何引发剂的引发。 (3) 反应有突出的立体选择性,生成空间定向产物。 例如: 二、周环反应的理论 (一) 轨道和成键 周环反应的过程,广泛的应用轨道来描述,这些轨道往往是用图形来表示。有机化学中涉及最多的原子轨道为1p 轨道和2s 轨道。 原子轨道线形组合成分子轨道。当两个等价原子轨道组合时,总是形成两个新的分子轨道,一个是能量比原子轨道低的成键轨道,另一个是能量比原子轨道高的反键轨道。 (二)分子轨道对称守恒原理 原子轨道组合成分子轨道时,遵守轨道对称守恒原理。即当两个原子轨道的对称性相同(位相相同)的则给出成键轨道,两个原子轨道的对称性不同(位相不同)的则给出反键轨道。 CHO + CHO R h υ R = -COOCH 3 成键轨道 原子轨道 X 1 2

1 超分子化学基础

应用有机化学
超分子化学
研究由两种以上的化学物质(分子、离子等)借分
第一章 超 分 子 化 学 基 础
子间力相结合而形成的超分子实体,这种有一定组 织构造的实体具有很好设定的性能。
分子化学:共价键的化学
W?hler合成尿素;Robert B. Woodward 和Albert Eschenmoser 在上百位合作者的参与下合成维他命B12
超分子化学: 分子间键的化学,其目标是控制分子 间价键。
从分子化学到超分子化学:分子、超分子、分子和超分子器件
三位超分子化学研究方面的科学家 获得1987年的 年的Nobel化学奖 获得 年的 化学奖
美国的C. 美国的 J. Pederson、D. J. Cram教授 、 教授 法国的J. 教授。 法国的 M. Lehn教授。 教授
1

1967 年Pederson 等第一次发现了冠醚。
原先想合成的是一个非环聚醚(多元醚),但在纯化过程中分离出极少 量产率仅0.4%的丝状有纤维结构并不溶于羟基溶剂的白色晶体。受好奇心 驱使,他进行了深入研究,发现它是一种大环聚醚,即命名为冠醚,它是 由于非环聚醚前体与碱金属离子配位结合,阳离子使配体预组织后更有利 于环化而形成的。这可以说是第一个在人工合成中的自组装作用。 Pederson 诺贝尔演说的题目就是“冠醚的发现”,他提到要是当年忽略了这 种并非期待的杂质,他可能就与冠醚失之交臂。
O O O O O O
杯芳烃
杯芳烃:苯酚衍生物与甲醛反应得到的一类环状缩合物。 杯芳烃:苯酚衍生物与甲醛反应得到的一类环状缩合物。 分子形状与希腊圣杯( 分子形状与希腊圣杯(Calixcrater)相似 )
IUPAC: 含-O(CH2CH2O)n-结构的环状聚醚化合物 简称为(王)冠醚化合物(Crown ether)
Cram 诺贝尔演说的题目是“分子主客体以及它们的配 合物的设计”。
受到酶和核酸的晶体结构以及免疫系统专一性的启发,从1950 年代起就想设计和合成较简单的有机化合物,来模仿自然界存在的一 些化合物的功能,他认识到高度结构化的配合物是中心,Pederson 的 工作一发表,他就意识到这是一个入口,由此开展了系列的主客体化 学的研究。主客体也就是生物学中常采用的受体与基质,它们间的作 用是典型的自组装作用。
Lehn 诺贝尔演说的题目则是“超分子化学——范围与展 望、分子、超分子和分子器件”
直接地提出了超分子化学的命题,他建议将超分子化学定义为 “超出分子的化学”(Chemistry beyond the molecule)。早在1966 年, 对于神经系统中的过程的兴趣,促使他想到一个化学家如何为这 种最高生物功能的研究作出贡献,由于神经细胞运作与跨越细胞 膜的Na+ 和K+ 的分布变化有关,因而想设计合成环肽来监控膜间 K+ 的传递。Pederson 工作发表后,Lehn 意识到这种物质可以将大 环抗菌素的配价能力与醚的化学稳定性结合起来,进一步考虑到 具有三维球形空腔的物质,能够整体包围离子,将形成比平面大 环更强的配合物,由此设计了大双环配体、多重识别配体等,研 究了它们的结构、催化性能、传递性能,并进一步进行分子器件 的设计。
新型超分子化合物
超分子有三个重要特征:自组装、自组织和自复制 自组装、 自组装
超分子化学作为化学的一个独立的分支,是一个交叉学 科,涉及无机与配位化学、有机化学、高分子化学、生物化 学和物理化学,由于能够模仿自然界已存在物质的许多特殊 功能,形成器件,因此它也构成了纳米技术、材料科学和生 命科学的重要组成部分。
多年前提出的许多拓扑结构: 多年前提出的许多拓扑结构: 轮烷( 轮烷(Roxtaxane) ) 索烃( 索烃(Catenane) ) 绳结( 绳结(Knot) ) 双螺旋( 双螺旋(Helix) ) 奥林匹克环( 奥林匹克环(Olympic Ring) ) 等新颖的超分子结构 已利用模板反应 模板反应有效地合成出来 已利用模板反应有效地合成出来
2

分子轨道理论

我们把原子通过共用电子对结合的化学键成为共价键(covalent bond)。路易斯(G.N.Lewis)曾经提出原子共用电子对成键的概念,也就是俗称的“八隅律”(高中阶段也只是停留于此) 然而,我们知道很多现实情况都无法用八隅率解释,包括:PCl5,SCl6分子。更重要的是,八隅率从来没有本质上说明共价键的成因:为什么带负电荷的两个分子不会排斥反而是互相配对? 随着近代的量子力学(quantum mechanics)的建立,近代形成了两种现代共价键理论,即是:现代价键理(valence bond theory)简称VB(又叫作电子配对法)以及分子轨道理论(molecular orbital theory)简称MO。价键理论强调了电子对键和成键电子的离域,有了明确的键的概念。也成功的给出了一些键的性质以及分子结构的直观图像。但是在解释H2+氢分子离子的单电子键的存在以及氧分子等有顺磁性或者大Π键的某些分子结构时感到困难。而分子轨道理论可以完美的进行解释,这里我就主要阐述MO法的相关理论。 洪特(Hund)和密里肯(R.S Mulliken)等人提出了新的化学键理论,即是分子轨道理论。这是人们利用量子力学处理氢分子离子而发展起来的。 (一)氢分子离子的成键理论氢分子离子(H2+)是由两个核以及一个电子组成的最简单分子,虽然不稳定,但是确实存在。如何从理论上说明氢分子离子的形成呢?分子轨道理论把氢分子离子作为一个整体处理,认为电子是在两个氢核a和b组成的势场当中运动。电子运动的轨道既不局限在氢核a的周围,也不会局限于氢核b 的周围,而是遍及氢核a和b。这种遍及分子所有核的周围的电子轨道,成为“分子轨道”。 如何形成这样的分子轨道呢?我们必须通过波函数来描述原子当中的运动状态,而波函数是薛定谔方程的解。因为得到精确的薛定谔方程的解很困难,因此我们才取了近似方法,假设分子轨道是各个原子轨道的组成。仍然以氢分子离子为例:当这个单电子出现了一个氢原子核a附近时候,分子轨道Ψ很近似于一个院子轨道Ψa。同样,这个电子出现在另外一个氢原子b附近时候,分子轨道Ψ也很像原子轨道Ψb。不过这个只是两种极端情况,合理的应该是两种极端情况的组合即是Ψa与Ψb的组合。分子轨道理论假定了分子轨道是所属原子轨道的线性组合(linear combination of atomic orbital,简称LCAO),即是相加相减而得得。例如氢分子离子当中就有: ΨI=Ψa+Ψb ΨII=Ψa-Ψb 其中Ψa和Ψb分别是氢原子a以及氢原子b的1s原子轨道。它们的相加相减分别可以得到ΨI以及ΨII。相加可以看出处在相同相位的两个电子波组合时候波峰叠加,这样可以使得波增强。如果两个波函数相减,等于加上一个负的波函

苯及其同系物的结构和性质

苯及其同系物的结构和性质 一、苯 1.苯分子的结构 苯的分子式,结构简式:,凯库勒式:,空间构型:,键角。 具有的键。 思考、哪些事实可证明苯分子中不存在单双键交替的结构? ① ② ③ ④ 2.苯的物理性质 3.苯的化学性质:易取代,能加成,难氧化。 (1)取代反应: ①卤化反应:

②硝化反应: ③磺化反应: (2)加成反应: (3)氧化反应: 燃烧现象: 4.苯的提取和用途 将煤焦油在低温(170℃)条件下蒸馏可得苯,大量的苯可从石油工业中获得;常用于合成纤维、合成橡胶、塑料、农药、医药、染料、香料等。苯也常用作有机溶剂。 二、苯的同系物 1.定义 芳香族化合物是分子里含有一个或多个苯环的化合物。 芳香烃:分子里含有一个或多个苯环的碳氢化合物属于芳香烃。 苯的同系物:凡分子里只含有一个苯环结构,且符合通式的所有芳香烃都是苯的同系物。如甲苯、二甲苯等。 2.写出C8H10 含苯环的同分异构体并命名

3.苯的同系物化学性质与苯类似。 (1)取代反应 ①卤化反应: 与溴蒸汽,光照 与液溴,铁 ②硝化反应: (2)加成反应 (3)氧化反应 ①可燃性 ②苯的同系物能使酸性KMnO4溶液褪色。苯环的侧链不论长短,有几个侧链,就被氧化为几个羧基而成为羧酸。(苯环所连的侧链的碳原子上必须有氢)

CH COOH 如: 三、烃的结构特点和鉴别方法 四、烃的分类 烃

烃的风雷6.取代反应断键规律 (1)卤代反应断键规律:断C-H键 (A)烷烃的卤代反应条件:光照、溴蒸汽(纯态)方程式: (B)苯的卤代反应条件:催化剂(Fe3+)、液溴方程式: (C)苯的同系物的卤代反应条件:催化剂、液溴方程式: 原因:苯环上的邻、对位上的氢原子受侧链的影响而变得活泼。 (2) 硝化反应断键规律:断C-H键 (A)苯的硝化反应条件:浓硫酸作催化剂,吸水剂,水浴加热到55℃-60℃。 方程式: (B)苯的同系物的硝化反应条件:浓硫酸作催化剂,吸水剂。加热。 方程式: 原因:苯环上的邻、对位上的氢原子受侧链的影响而变得活泼。 (3)磺化反应 断键规律:断C-H键 反应条件:水浴加热到70℃-80℃ 方程式: 7.以苯的实验为基础的有机实验网络 (1)溴苯制取实验——长导管的作用——带有长导管的实验: (2)硝基苯的制取实验——水浴加热——需水浴加热的实验: 等。 (3)硝基苯的制取实验——温度计的使用——需要使用温度计的实验:

苯分子结构新的表示方法

苯的分子结构新的表示方法 代 涛 (利辛一中 生化组,安徽 利辛236700) 摘要:详细地评论了常见的苯的结构式的优点和缺点;介绍了X 射线衍射测定的苯的分子结构,并给出了杂化轨道理论的解释;提出了苯的价键结构式(简称价键式),并全面地分析了它的特点。分析结果表明:价键式可以表达苯分子的正六边形结构和苯分子中的大π键,能够反映苯分子中六个氢原子等同的特点,而且还能够很好地表达稠环芳烃的分子结构。这说明价键式能够圆满地表达苯的分子结构。 关键词:苯;分子结构;凯库勒式;价键结构式;大π键 中图分类号:O625.1 自从1825年法拉第(M.Faraday )发现苯[1]、1833年米切尔里奇(E.Mitscherlich )确定苯的分子式为C 6H 6[2]以来,人们一直在探索表达苯的分子结构,虽然提出了各种苯的结构式,但还没有得到满意的结果[3]。为了圆满地表达苯的分子结构,本文提出了苯的价键式。它的提出,有利于人们正确地认识苯的分子结构,并为人们合理地解释苯的性质提供了极大的方便。 1 苯的分子结构表示方法 关于苯的分子结构,目前有两种常见的表示方法:其一是用凯库勒式[图1(a )]表示;其二是用图1(b )所示的结构式表示。由于后一结构式是由阿密特(J.W.Armit )和罗宾森(R.Robinson )提出使用的[4],所以,为方便起见,笔者称之为阿密特-罗宾森式,简称阿-罗式。 或简写为 或简写为 (a )凯库勒式 (b )阿-罗式 图1 苯的结构式 凯库勒式创造性地表达了苯分子的环状结构;反映了苯分子中六个氢原子等同的特点,可以解释苯的一元取代物只有一种的事实[5]。 但是,凯库勒式也有缺点。首先,从凯库勒式来看,苯分子中含有碳碳双键,苯应该具有类似乙烯的化学性质,能使酸性KMnO 4溶液和溴的四氯化碳溶液退色,但实验事实并非如此[6]。由此逆推,苯分子中不存在一般的碳碳双键。其次,根据凯库勒式,如果苯环上两个相邻碳原子上的氢原子被取代,应该生成两种邻二元取代物,其差别在于这两个碳原子之间分别以单键或双键相连,但实际上只有一种[7]。这说明苯分子中的六个碳碳键完全相同,苯环不是碳碳单键与碳碳双键交替组成的结构。 可见,凯库勒式不能正确地表达苯的分子结构。 H C C C C C H H H H

超分子结构奇异性

嘧啶并[4,5-d]嘧啶核苷的复杂的自组装超分子结构 1.内容介绍 超分子自组装是不仅是生物结构的化学根源之一,但也引起不同的工业领域的注意。本文通过动态光散射,扫描电显微镜,差示扫描量热法,核磁共振和X-射线分析,研究嘧啶并[4,5-d]嘧啶核苷的复杂的花形的超分子结构的形成的机理。一旦除去糖类的羟基,不同的花形上层结构可形成。这些工作表明复杂的自组装确实可以通过单个分子的分层的非共价相互作用达到。如果与其他化学物质结合,通过单体的分子识别构建的奇异结构,表明在其他领域的潜能。我们设计并合成了一系列Janus-型嘧啶并[4,5-d]嘧啶核苷,它结合遗传密码字母-胞嘧啶、双齿腺嘌呤、胸腺嘧啶核苷、尿嘧啶核苷。 讨论:一些Janus-型核苷类似物的抗病毒和抗肿瘤活性研究过程中,我们发现化合物1在不同溶液可以形成一个美丽的花形结构。本文研究了花形核苷的超结构,包括在原子水平上的内相互作用、修改后的结构和它的分子识别性能如何影响超结构。从DLS, NMR 和SEM 的实验结果表明一个两阶段的机制(从微球到一个完整的花形状态)花形超分子结构的各向异性生长。DSC提供热力学参数,如双相过程。因此,为形成这样复杂的形态,第一非特异性氢键一起抱紧单个分子形成核,成长为一个微球,一旦它们相互接近就开始识别过程。为了形成特定的碱基对,糖基键周围的正确构象被要求,进一步影响糖的褶皱。因此,所有羟基再次被重新排列在一个固定的空间方向,以形成能量有利复杂氢键网络,而使整个系统的微调形成支化花形超分子

结构。X-ray证明单晶的原子级别的相互作用包括复杂氢键介导的网络。这些信息对理解所有的力和这种复杂的超分子结构的连通性是至关重要的。这种结构是在含水环境中的氢键系统的一个很好的例子,由于水分子的竞争很难形成。我们还进行了XRPD实验,这把在从花形的溶液状态中制备的粉末和单晶状态结构测出的实验图案与所计算出的图案相比较。结果表明在快速冷却的花形溶液总采用相同的药物相互作用的单晶状态。相关的化合物3和4类似的花形形态通过修改羟基再生证明使用这种新型化合物的构建复杂超分子结构拥有独特的内部工作,同时证实了有关单个分子之间的关系的疑虑结构参数和最终超分子组装的形状,同时证实了我们对单分子的结构参数和最终超分子组装的形状之间的关系的疑问。这个信息也非常有助于我们构建或将来功能化这样复杂形状的结构。核苷的最强大的特性是其独特的碱基对识别,这是DNA / RNA的复制和转录的基础。这些识别性能也应用于当前的情况下建立相当有趣的混合形态,这可能会极大地扩大其用途。总之,一个复杂的花形的超分子结构的两阶段形成过程通过各种技术得到证明。X-ray揭示了精密氢键网络。这样复杂形状的上部结构可以通过修改某些官能团能够构造和扩大成相关的化学物质。核苷也可发挥重要的作用,,与杂环和糖及其三维构象灵活性的富化学的结合,以制造在超分子自组装面积更复杂的化学结构。

苯的结构与性质

第二节芳香烃 第1课时苯的结构与性质??见学生用书P030 1.下列关于苯的性质的叙述中,不正确的是() A.苯是无色带有特殊气味的液体 B.常温下苯是一种不溶于水但密度比水小的液体 C.苯在一定条件下与溴发生取代反应 D.苯不具有典型双键所具有的加成反应的性质,故不能发生加成反应 答案 D 解析苯能与氢气在一定条件下发生加成反应。 2.苯中加入溴水后溴水层颜色变浅,这是由于() A.溴挥发了B.发生了取代反应 C.发生了萃取作用D.发生了加成反应 答案 C 解析根据相似相溶原理,溴单质易溶于苯。 3.下列各组液体混合物,能用分液漏斗分离的是() A.溴苯和溴B.正己烷和水 C.苯和硝基苯D.乙醇和水 答案 B 解析能用分液漏斗分离的液体混合物一定是不相混溶的液体物质,A、C、D三组物质均是相互混溶的物质,所以,不能用分液漏斗分离。

4.下列反应中,属于取代反应的是() A.苯在氯化铁存在时与氯气的反应 B.苯在镍作催化剂时与氢气的反应 C.苯在空气中燃烧 D.苯与溴水混合振荡溴水分层 答案 A 解析A是取代反应,以苯跟溴反应推出;B是加成反应;C是氧化反应;D是物理过程萃取。 5.将等体积的苯、汽油和水在试管中充分混合后静置。下列图示正确的是() 答案 D 解析苯、汽油均不溶于水,且密度比水的小,浮在水面上,但苯、汽油互溶不分层。 6.与链烃相比,苯的化学性质的主要特征是() A.难氧化、难取代、难加成 B.易氧化、易取代、易加成 C.难氧化、可加成、易取代 D.易氧化、易加成、难取代 答案 C 解析由于苯分子结构的特殊性,碳碳原子之间的键完全相同,是一种介于碳碳单键和碳碳双键之间的独特的化学键,其与KMnO4酸性溶液不能发生反应(即难氧化);但可与液溴、浓H2SO4等发生取代反应(即易取代);不能与溴水发生加成反应,但在特定条件下可以与氢气等发生加成反应(即可加成)。综上所述,只有C选项符合题意。 7.下列关于苯的说法中,正确的是() A.苯的分子式为C6H6,它不能使KMnO4酸性溶液褪色,属于饱和烃 B.从苯的凯库勒式()看,苯分子中含有碳碳双键,应属

《苯分子结构》教学设计

《苯分子结构》教学设计 一、教学内容及地位分析 本次课的教学内容为:高中化学必修2(人教版)第三章有机化合物,第二节来自石油和煤的两种基本化工原料,介绍的第二种有机物——苯。包括苯的结构、物理性质、化学性质和取代、加成反应,这节课主要介绍苯的分子结构及其物理、化学性质。下节课将介绍取代和加成反应。 苯是重要的化工原料,它是饱和烷烃、不饱和烯烃和炔烃等烃类物质性质的应用,也是新的一类烃——芳香烃的代表,它起到了一个承上启下的桥梁作用,使得烃的知识得到完善和升华,所以掌握苯分子的结构及其性质和反应是至关重要的。 二、课时数:一课时。 三、教学目标 1.知识与技能目标 ●记住苯分子的结构,能解释其结构形成的原因; ●了解芳香烃的概念;能动手制作一个苯分子的模型。 2.过程与方法目标 ●通过身边实际例子的展示,激发学习兴趣; ●通过实验探究及现象分析,尝试利用实验发现问题、探究问题和解决问 题的方法; ●通过倾听科学故事,了解科学探究的过程。 3.情感态度与价值观目标 ●由生活实例展开,激发好奇心和学习兴趣; ●通过实验探究,尝试勤于思考,勇于探索、实践的科学精神; ●以化学史为镜,感受科学家严谨治学、执着追求、勤奋钻研和开拓创新 的精神。

四、教学重点、难点 教学重点:苯的分子结构。 教学难点:苯的分子结构与其化学性质的关系。 五、学情与学法分析 本节课的教学对象是普通高二学生,他们已经具备了一定的化学基础知识,在对前面学习的饱和烷烃、不饱和烯烃和炔烃,有了一定的认识和了解之后,已经形成了一套系统地学习有机物的知识体系,为这节课的学习做好了铺垫,通过这节课苯分子结构的学习,又为接下来学习取代、加成反应和芳香烃打下了基础。但苯分子的结构毕竟和前面学习的烃类物质不同,有一个非常明显的反差,所以为了让学生从另一个角度来认识苯,本节课设计了以实验探究为主的教学,引导学生积极思考,并动手验证,得出结论,从而加深认识,降低学习难度。 六、设计理念 本节课通过药品展示和学生实验,使学生对苯的物理性质有直观的印象。在已有知识的基础之上让学生初步推测苯的可能结构,这样既复习了旧知识,又对新知识进行了探索。在初步推测出苯的可能结构之后,学生通过实验进一步验证结构是否正确,这样既提高了动手能力,有学到了新知识,从而突破难点。在探索出苯的分子结构之后,再由学生总结归纳出苯分子的结构特点,从而使学生对苯分子结构的真正理解和苯化学性质的学习打下了坚实的基础,并培养了科学的探索精神。 七、教学准备 教师准备:苯、蒸馏水、试管、冰、溴水、酸性高锰酸钾溶液、教具、教学媒体设备、教案。 学生准备:纸、笔;复习烃类的性质、预习苯的结构及结构解释的问题。 八、教学流程图

相关主题
文本预览
相关文档 最新文档