当前位置:文档之家› GBT 528-1998 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定

GBT 528-1998 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定

GBT 528-1998 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定
GBT 528-1998 硫化橡胶或热塑性橡胶拉伸应力应变性能的测定

橡胶力学性能测试标准

序号标准号:发布年份标准名称(仅供参考) 1 GB 1683-1981 硫化橡胶恒定形变压缩永久变形的测定方法 2 GB 1686-1985 硫化橡胶伸张时的有效弹性和滞后损失试验方法 3 GB 1689-1982 硫化橡胶耐磨性能的测定(用阿克隆磨耗机) 4 GB 532-1989 硫化橡胶与织物粘合强度的测定 5 GB 5602-1985 硫化橡胶多次压缩试验方法 6 GB 6028-1985 硫化橡胶中聚合物的鉴定裂解气相色谱法 7 GB 7535-1987 硫化橡胶分类分类系统的说明 8 GB/T 11206-1989 硫化橡胶老化表面龟裂试验方法 9 GB/T 11208-1989 硫化橡胶滑动磨耗的测定 10 GB/T 11210-1989 硫化橡胶抗静电和导电制品电阻的测定 11 GB/T 11211-1989 硫化橡胶与金属粘合强度测定方法拉伸法 12 GB/T 1232.1-2000 未硫化橡胶用圆盘剪切粘度计进行测定第1部分:门尼粘度的测定 13 GB/T 12585-2001 硫化橡胶或热塑性橡胶橡胶片材和橡胶涂覆织物挥发性液体透过速率的测定(质量法) 14 GB/T 12829-2006 硫化橡胶或热塑性橡胶小试样(德尔夫特试样)撕裂强度的测定 15 GB/T 12830-1991 硫化橡胶与金属粘合剪切强度测定方法四板法 16 GB/T 12831-1991 硫化橡胶人工气候(氙灯)老化试验方法 17 GB/T 12834-2001 硫化橡胶性能优选等级 18 GB/T 13248-1991 硫化橡胶中锰含量的测定高碘酸钠光度法 19 GB/T 13249-1991 硫化橡胶中橡胶含量的测定管式炉热解法 20 GB/T 13250-1991 硫化橡胶中总硫量的测定过氧化钠熔融法 21 GB/T 13642-1992 硫化橡胶耐臭氧老化试验动态拉伸试验法 22 GB/T 13643-1992 硫化橡胶或热塑性橡胶压缩应力松弛的测定环状试样 23 GB/T 13644-1992 硫化橡胶中镁含量的测定CYDTA滴定法 24 GB/T 13645-1992 硫化橡胶中钙含量的测定EGTA滴定法 25 GB/T 13934-2006 硫化橡胶或热塑性橡胶屈挠龟裂和裂口增长的测定(德墨西亚型) 26 GB/T 13935-1992 硫化橡胶裂口增长的测定 27 GB/T 13936-1992 硫化橡胶与金属粘接拉伸剪切强度测定方法 28 GB/T 13937-1992 分级用硫化橡胶动态性能的测定强迫正弦剪切应变法 29 GB/T 13938-1992 硫化橡胶自然贮存老化试验方法 30 GB/T 13939-1992 硫化橡胶热氧老化试验方法管式仪法 31 GB/T 14834-1993 硫化橡胶与金属粘附性及对金属腐蚀作用的测定 32 GB/T 14835-1993 硫化橡胶在玻璃下耐阳光曝露试验方法 33 GB/T 14836-1993 硫化橡胶灰分的定性分析 34 GB/T 15254-1994 硫化橡胶与金属粘接180°剥离试验 35 GB/T 15255-1994 硫化橡胶人工气候老化(碳弧灯)试验方法 36 GB/T 15256-1994 硫化橡胶低温脆性的测定(多试样法) 37 GB/T 15584-1995 硫化橡胶在屈挠试验中温升和耐疲劳性能的测定第一部分:基本原理 38 GB/T 15905-1995 硫化橡胶湿热老化试验方法 39 GB/T 16585-1996 硫化橡胶人工气候老化(荧光紫外灯)试验方法 40 GB/T 16586-1996 硫化橡胶与钢丝帘线粘合强度的测定 41 GB/T 16589-1996 硫化橡胶分类橡胶材料

拉伸曲线分析

试验原理:拉伸曲线分析 拉伸试验的本质是对试样施加轴向拉力,测量试样在变形过程中直至断裂的各项力学性能。试验材料的全面性能反映在拉伸曲线上,因此为了对拉伸试验透彻了解,首先复习一下拉伸曲线,根据试验材料的特性,拉伸曲线可分为两种类型,典型的拉伸曲线(低碳钢)。 第1阶段:弹性变形阶段(oa) 两个特点: a 从宏观看,力与伸长成直线关系,弹性伸长与力的大小和试样标距长短成正比,与材料弹性模量及试样横截面积成反比。 b 变形是完全可逆的。 加力时产生变形,卸力后变形完全恢复。从微观上看,变形的可逆性与材料原子间作用力有直接关系,施加拉力时,在力的作用下,原子间的平衡力受到破坏,为达到新的平衡,原子的位置必须作新的调整即产生位移,使外力、斥力和引力三者平衡,外力去除后,原子依靠彼此间的作用力又回到平衡位置,使变形恢复,表现出弹性变形的可逆性,即在弹性范围保持力一段时间,卸力后仍沿原轨迹回复。Oa段变形机理与高温条件下变形机理不同,在高温保持力后会产生蠕变,卸力后表现出不可逆性。

由于在拉伸试验中无论在加力或卸力期间应力和应变都保持单值线性关系,因此试验材料的弹性模量是oa段的斜率,用公式求得: E=σ/ε oa线段的a点是应力-应变呈直线关系的最高点,这点的应力叫理论比例极限,超过a点,应力-应变则不再呈直线关系,即不再符合虎克定律。比例极限的定义在理论上很有意义,它是材料从弹性变形向塑性变形转变的,但很难准确地测定出来,因为从直线向曲线转变的分界点与变形测量仪器的分辨力直接相关,仪器的分辨力越高,对微小变形显示的能力越强,测出的分界点越低,这也是为什麽在最近两版国家标准中取消了这项性能的测定,而用规定塑性(非比例)延伸性能代替的原因。 第2阶段:滞弹性阶段(ab) 在此阶段,应力-应变出现了非直线关系,其特点是:当力加到b点时然后卸除力,应变仍可回到原点,但不是沿原曲线轨迹回到原点,在不同程度上滞后于应力回到原点,形成一个闭合环,加力和卸力所表现的特性仍为弹性行为,只不过有不同程度的滞后,因此称为滞弹性阶段,这个阶段的过程很短。这个阶段也称理论弹性阶段,当超过b点时,就会产生微塑性应变,可以用加力和卸力形成的闭合环确定此点,当加卸力环第1此形成开环时所对应的点为b点。 第3阶段:微塑性应变阶段(bc) 是材料在加力过程中屈服前的微塑性变形部分,从微观结构角度讲,就是多晶体材料中处于应力集中的晶粒内部,低能量易动位错的运动。塑性变形量很小,是不可回复的。大小仍与仪器分辨力有关。 第4阶段:屈服阶段(cde) 这个阶段是金属材料的不连续屈服的阶段,也称间断屈服阶段,其现象是当力加至c点时,突然产生塑性变形,由于试样变形速度非常快,以致试验机夹头的拉伸速度跟不上试样的变形速度,试验力不能完全有效的施加于试样上,在曲线这个阶段上表现出力不同程度的下降,而试样塑性变形急剧增加,直至达到e 点结束,当达到c点,在试样的外表面能观察到与试样轴线呈45度的明显的滑移带,这些带称为吕德斯带,开始是在局部位置产生,逐渐扩展至试样整个标距内,宏观上,一条吕德斯带包含大量滑移面,当作用在滑移面上的切应力达到临界值时,位错沿滑移方向运动。在此期间,应力相对稳定,试样不产生应变硬化。

橡胶制品十五种常见试验测试项目和标准

橡胶制品十五种常见试验测试项目和标准 1.胶料硫化特性 GB/T 9869—1997橡胶胶料硫化特性的测定(圆盘振荡硫化仪法) GB/T16584—1996橡胶用无转子硫化仪测定硫化特性 ISO 3417:1991橡胶—硫化特性的测定——用摆振式圆盘硫化计 ASTMD2084-2001用振动圆盘硫化计测定橡胶硫化特性的试验方法 ASTM D5289-1995(2001)橡胶性能—使用无转子流变仪测量硫化作用的试验方法 DIN53529-4:1991橡胶—硫化特性的测定——用带转子的硫化计测定交联特性。 2.橡胶拉伸性能 GB/T528—1998硫化橡胶或热塑性橡胶拉伸应力应变性能的测定 ISO37:2005硫化或热塑性橡胶——拉伸应力应变特性的测定 ASTMD412-1998(2002)硫化橡胶、热塑性弹性材料拉伸强度试验方法 JISK6251:1993硫化橡胶的拉伸试验方法 DIN 53504-1994硫化橡胶的拉伸试验方法。 3.未硫化橡胶门尼粘度 GB/T1232.1—2000未硫化橡胶用圆盘剪切粘度计进行测定—第1部分:门尼粘度的测定 GB/T1233—1992橡胶胶料初期硫化特性的测定—门尼粘度计法 ISO289-1:2005未硫化橡胶——用剪切圆盘型黏度计—第一部分:门尼黏度的测定 ISO289-2-1994未硫化橡胶——用剪切圆盘型黏度计测定—第二部分:预硫化特性的测定ASTMD1646-2004橡胶粘度应力松驰及硫化特性(门尼粘度计)的试验方法 JISK6300-1:2001未硫化橡胶-物理特性-第1部分:用门尼粘度计测定粘度及预硫化时间的方法。 4.压缩永久变形性能 GB/T 7759-1996硫化橡胶、热塑性橡胶在常温、高温和低温下压缩永久变形测定 ISO815:1991硫化橡胶、热塑性橡胶在常温、高温和低温下压缩永久变形测定 ASTM D395-2003橡胶性能的试验方法压缩永久变形 JIS K6262:1997硫化橡胶及热塑性橡胶压缩永久变形试验方法。

聚乙烯拉伸性能试验影响因素的分析

聚乙烯拉伸性能试验影响因素的分析

聚乙烯拉伸性能试验影响因素的分析 摘要:本文分析了影响聚乙烯塑料拉伸实验结果的因素,包括实验仪器、试样制备与处理、实验环境、操作过程、数据处理和人员因素等。通过实验和分析,指出了这些外部因素对试验结果的影响原因和影响方式,并据此给出了聚乙烯拉伸性能的最佳测试条件。 关键词:聚乙烯压片拉伸强度断裂伸长率 1 引言 聚乙烯塑料是一种性能优良的材料,广泛应用于生产、生活的各个方面。在塑料的各项性能中,力学性能是影响塑料实际应用的一个最重要方面,包括拉伸强度、弯曲模量、冲击强度等。其中塑料的拉伸强度和断裂伸长率是决定塑料产品在使用过程中受外力作用下能否保持原有形状的主要因素,因此它们的测试有着非常重要的意义。 实际测试过程中,由于影响拉伸性能试验的因素很多,导致测试结果波动较大,从而影响聚乙烯产品等级的判定。于是厂里成立了技术攻关小组对生产工艺和试验部分加以改进,本人主要负责测试方面的工作。通过对影响整个试验过程的因素的分析,在遵循国家标准的基础上确定了各参测量参数,制定了新的操作规程,为工艺生产及顾客提供真实准确的产品数据。 2 试验部分 2.1 主要仪器和设备 4465型万能试验机(美国INSRON公司) 螺旋测微计可读度0.01mm PL-15型.压片机(西班牙IQAPLAP公司) 2.2 测试方法依从标准 拉伸断裂强度:GB1040-92

压片试验:GB/T9053-88 环境状态调节:GB/T2918-1982 2.3 试验材料 我厂生产的聚乙烯(PE)LLDPE-F-20D008(国家牌号)9085(厂内牌号)200610033(批号) 2.4 PE9085优级品控制指标 熔融指数:0.75±0.2g/10min 密度:0.920±0.002g/cm3 拉伸强度:≥17Mpa 断裂伸长率≥700% 2.5 样条形状 采用GB/1040-1992Ⅱ型(哑铃型)样条 3 结果与讨论:。 3.1 试样的制备对测定结果的影响 标准试样的制备是塑料各项性能测定的基础,对试验结果有决定性的影响。我厂的拉伸性能测试中采用GB/1040-1992Ⅱ型(哑铃型)样条,压片试验方法参考GB/T9053-88。 3.1.1 压片温度对测定结果的影响 图1. 压片温度对断裂伸长率和拉伸强度的影响

1胶料硫化特性

1.胶料硫化特性 GB/T 9869—1997橡胶胶料硫化特性的测定(圆盘振荡硫化仪法) GB/T 16584—1996橡胶用无转子硫化仪测定硫化特性 ISO 3417:1991橡胶—硫化特性的测定——用摆振式圆盘硫化计 ASTM D2084-2001用振动圆盘硫化计测定橡胶硫化特性的试验方法 ASTM D5289-1995(2001)橡胶性能—使用无转子流变仪测量硫化作用的试验方法 DIN 53529-4:1991橡胶—硫化特性的测定——用带转子的硫化计测定交联特性 2.未硫化橡胶门尼粘度 GB/T 1232.1—2000未硫化橡胶用圆盘剪切粘度计进行测定—第1部分:门尼粘度的测定 GB/T 1233—1992橡胶胶料初期硫化特性的测定—门尼粘度计法 ISO 289-1:2005未硫化橡胶——用剪切圆盘型黏度计—第一部分:门尼黏度的测定 ISO 289-2-1994未硫化橡胶——用剪切圆盘型黏度计测定—第二部分:预硫化特性的测定 ASTM D1646-2004橡胶粘度应力松驰及硫化特性(门尼粘度计)的试验方法 JIS K6300-1:2001未硫化橡胶-物理特性-第1部分:用门尼粘度计测定粘度及预硫化时间的方法 3.橡胶拉伸性能 GB/T528—1998硫化橡胶或热塑性橡胶拉伸应力应变性能的测定 ISO37:2005硫化或热塑性橡胶——拉伸应力应变特性的测定 ASTMD412-1998(2002)硫化橡胶、热塑性弹性材料拉伸强度试验方法

JIS K6251:1993硫化橡胶的拉伸试验方法 DIN 53504-1994硫化橡胶的拉伸试验方法 4.橡胶撕裂性能 GB/T 529—1999硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样) ISO 34-1:2004硫化或热塑性橡胶—撕裂强度的测定-第一部分:裤形、直角形和新月形试片 ASTM D624-2000通用硫化橡胶及热塑性弹性体抗撕裂强度的试验方法 JIS K6252:2001硫化橡胶及热塑性橡胶撕裂强度的计算方法 5.橡胶硬度 GB/T 531—1999橡胶袖珍硬度计压入硬度试验方法GB/T6031—1998硫化橡胶或热塑性橡胶硬度的测定(10—100IRHD) ISO 7619-1:2004硫化或热塑性橡胶——压痕硬度的测定——第一部分:硬度计法(邵式硬度) ISO 7619-2:2004硫化或热塑性橡胶——压痕硬度的测定——第二部分:IRHD袖珍计法ASTM D2240-2004用硬度计测定橡胶硬度的试验方法 ASTM D1415-1988(2004)橡胶特性—国际硬度的试验方法 JIS K6253:1997硫化橡胶及热塑性橡胶的硬度试验方法 DIN 53505-2000橡胶试验邵式A和D的硬度试验 6.压缩永久变形性能 GB/T 7759—1996硫化橡胶、热塑性橡胶在常温、高温和低温下压缩永久变形测定

影响材料拉伸性能试验的几大技术因素

影响材料拉伸性能试验的几大技术因素 屈服强度σs、抗拉强度σb等参数是金属材料最富代表性的力学性能指标,是工程设计、机械制造的主要依据,这类力学性能指标的分析和研究对于从事基础理论研究和分析工程事故具有非常重要的意义。 一、影响材料拉伸试验强度的因素: 1.温度效应 随着试验温度的升高, 金属材料的σs (σ0.2)显著降低。例如低碳钢材料,随着试验温度升高,其屈服强度σs相应降低且屈服平台的长度逐渐缩短,直至某一温度屈服平台消失,σs不复存在;由于温度升高使材料的晶界由硬、脆转变为软、弱,使其抗力降低,因此,材料的σb在宏观上也随试验温度的变化而改变。 2. 加载速率效应 材料的屈服点随加载速率的增大而提高;室温条件下,拉伸速度对强度较高的金属材料的σb 无影响,而对强度较低的、塑性好的金属材料有微小的影响。拉伸时加载速率增大,σb有增高的趋势。在高温下,拉伸加载速率对σb有显著的影响。 3.试验条件及试样工艺效应 金属材料处于有害的介质环境时,试样的屈服点降低。试样的表面粗糙度对屈服点也有影响,特别是对塑性较差的金属材料有较大的影响,有使屈服点降低的趋势。 4. 偏心效应 由于试验机的加载轴线与试样的几何中心不一致,所以严格的轴向荷载(图1(a))是很难获得的,这就造成了试验机偏心加载、产生弯曲而引入测试误差。考虑同轴度的影响,试样受。如图1(b)所示。其中,几何同轴度为e、力的同轴度为α 图1 5.试验刚度效应 在创恒实验室的材料的拉伸试验中,试验系统可视为试验机机身、夹具-加载系统和试样三部分构成的“可变形的试验系统”。显然,试验机机身的刚度、夹具-加载系统的刚度和受拉试样的抗拉刚度共同构成了“试验系统”的刚度。所以,试验机的弹性变形、夹具-加载系统的工作状态和试样本身的变形都会对试验产生影响,即试验刚度在一定程度上会影响试样的试验强度指标。在实践中,不同刚度的试验机实测对比结果也反映了试验刚度对材料试验强度的影响。

橡胶物理性能测试标准

1.未硫化橡胶门尼粘度 GB/T 1232.1—2000未硫化橡胶用圆盘剪切粘度计进行测定—第1部分:门尼粘度的测定 GB/T 1233—1992橡胶胶料初期硫化特性的测定—门尼粘度计法 ISO 289-1:2005未硫化橡胶——用剪切圆盘型黏度计—第一部分:门尼黏度的测定 ISO 289-2-1994未硫化橡胶——用剪切圆盘型黏度计测定—第二部分:预硫化特性的测定ASTM D1646-2004橡胶粘度应力松驰及硫化特性(门尼粘度计)的试验方法 JIS K6300-1:2001未硫化橡胶-物理特性-第1部分:用门尼粘度计测定粘度及预硫化时间的方法2.胶料硫化特性 GB/T 9869—1997橡胶胶料硫化特性的测定(圆盘振荡硫化仪法) GB/T 16584—1996橡胶用无转子硫化仪测定硫化特性 ISO 3417:1991橡胶—硫化特性的测定——用摆振式圆盘硫化计 ASTM D2084-2001用振动圆盘硫化计测定橡胶硫化特性的试验方法 ASTM D5289-1995(2001) 橡胶性能—使用无转子流变仪测量硫化作用的试验方法 DIN 53529-4:1991橡胶—硫化特性的测定——用带转子的硫化计测定交联特性 3.橡胶拉伸性能 GB/T528—1998硫化橡胶或热塑性橡胶拉伸应力应变性能的测定 ISO37:2005硫化或热塑性橡胶——拉伸应力应变特性的测定 ASTMD412-1998(2002)硫化橡胶、热塑性弹性材料拉伸强度试验方法 JIS K6251:1993硫化橡胶的拉伸试验方法 DIN 53504-1994硫化橡胶的拉伸试验方法 4.橡胶撕裂性能 GB/T 529—1999硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样)

如何分析拉伸曲线

如何分析拉伸曲线?拉伸曲线分析篇 时间:2012-11-16 15:19:29 来源:越联作者:越联点击数:核心提示:拉伸试验的本质是对试样施加轴向拉力,测量试样在变形过程中直至断裂的各项力学性能。试验材料的全面性能反映在拉伸曲线上。拉力曲线如此重要,如何根据拉伸曲线分析材料的各项性能呢?现在就给大家分析下拉伸曲线。 拉伸试验的本质是对试样施加轴向拉力,测量试样在变形过程中直至断裂的各项力学性能。试验材料的全面性能反映在拉伸曲线上。拉力曲线如此重要,如何根据拉伸曲线分析材料的各项性能呢?现在就给大家分析下拉伸曲线。 典型的拉伸曲线图(低碳钢) 第 1 阶段:弹性变形阶段(oa)两个特点 a 从宏观看,力与伸长成直线关系,弹性伸长与力的大小和试样标距长短成正比,与材料弹性模量及试样横截面积成反比。 b 变形是完全可逆的。 加力时产生变形,卸力后变形完全恢复。从微观上看,变形的可逆性与材料原子间作用力有直接关系,施加拉力时,在力的作用下,原子间的平衡力受到破坏,为达到新的平衡,原子的位置必须作新的调整即产生位移,使外力、斥力和引力三者平衡,外力去除后,原子依靠彼此间的作用力又回到平衡位置,使变形恢复,表现出弹性变形的可逆性,即在弹性范围保持力一段时间,卸力后仍沿原轨迹回复。Oa 段变形机理与高温条件下变形机理不同,在高温保持力后会产生蠕变,卸力后表现出不可逆性。 由于在拉伸试验中无论在加力或卸力期间应力和应变都保持单值线性关系,因此试验材料的弹性模量是 oa 段的斜率,用公式求得:

E=σ/ε oa 线段的 a 点是应力-应变呈直线关系的最高点,这点的应力叫理论比例极限,超过 a 点,应力-应变则不再呈直线关系,即不再符合虎克定律。比例极限的定义在理论上很有意义,它是材料从弹性变形向塑性变形转变的,但很难准确地测定出来,因为从直线向曲线转变的分界点与变形测量仪器的分辨力直接相关,仪器的分辨力越高,对微小变形显示的能力越强,测出的分界点越低,这也是为什麽在最近两版国家标准中取消了这项性能的测定,而用规定塑性(非比例)延伸性能代替的原因。 第 2 阶段:滞弹性阶段(ab) 在此阶段,应力-应变出现了非直线关系,其特点是:当力加到 b 点时然后卸除力,应变仍可回到原点,但不是沿原曲线轨迹回到原点,在不同程度上滞后于应力回到原点,形成一个闭合环,加力和卸力所表现的特性仍为弹性行为,只不过有不同程度的滞后,因此称为滞弹性阶段,这个阶段的过程很短。这个阶段也称理论弹性阶段,当超过 b 点时,就会产生微塑性应变,可以用加力和卸力形成的闭合环确定此点,当加卸力环第 1 此形成开环时所对应的点为 b 点。 第 3 阶段:微塑性应变阶段(bc) 是材料在加力过程中屈服前的微塑性变形部分,从微观结构角度讲,就是多晶体材料中处于应力集中的晶粒内部,低能量易动位错的运动。塑性变形量很小,是不可回复的。大小仍与仪器分辨力有关。 第 4 阶段:屈服阶段(cde)

橡胶硫化特性实验

橡胶硫化特性实验 一、实验目的: (1)理解橡胶硫化特性曲线测定的意义; (2)了解ZWL-Ⅱ型橡胶硫化仪的结构原理及操作方法; (3)掌握橡胶硫化特性曲线测定和正硫化时间确定的方法。 二、实验原理: 硫化是橡胶制品生产中最重要的工艺过程,在硫化过程中,橡胶经历了一系列的物理和化学变化,其物理机械性能和化学机械性能得到了改善,使橡胶材料成为有用的材料,因此硫化对橡胶及其制品是十分重要的。 硫化是在一定温度、压力和时间条件下使橡胶大分子链发生化学交联反应的过程。 橡胶在硫化过程中,其各种性能随硫化时间增加而变化。橡胶的硫化历程可分为焦烧、预硫、正硫化和过硫四个阶段。 焦烧阶段又称硫化诱导期,是指橡胶在硫化开始前的延迟作用时间,在此阶段胶料尚未开始交联,胶料在模腔内有良好的流动性。对于模型硫化制品,胶料的流动、充模必须在此阶段完成,否则就发生焦烧。 预硫化阶段是焦烧期以后橡胶开始交联的阶段。随着交联反应的进行,橡胶的交联程度逐渐增加,并形成网状结构,橡胶的物理机械性能逐渐上升,但尚未达到预期的水平。 正硫化阶段,橡胶的交联反应达到一定的程度,此时的各项物理机械性能均达到或接近最佳值,其综合性能最佳。 过硫化阶段是正硫化以后继续硫化,此时往往氧化及热断链反应占主导地位,胶料会出现物理机械性能下降的现象。 从硫化反应动力学原理来说,正硫化应是胶料达到最大交联密度时的硫化状态,正硫化时间应由胶料达到最大交联密度所需的时间来确定比较合理。在实际应用中是根据某些主要性能指标(与交联密度成正比)来选择最佳点,确定正硫化时间。 目前用转子旋转振荡式硫化仪来测定和选取正硫化点最为广泛。这类硫化仪能够连续地测定与加工性能和硫化性能有关的参数,包括初始粘度、最低粘度、焦烧时间、硫化速度、正硫化时间和活化能等。实际上硫化仪测定记录的是转矩值,以转矩的大小来反映胶料的硫化程度。其测定的基本原理根据弹性统计理论: G=ρRT 式中G——剪切模量,MPa;

铸造A356铝合金的拉伸性能及其断口分析

摘要:研究了铸造A356-T6铝合金板不同位置处的拉伸性能。采用扫描电子显微镜和光学显微镜对拉伸断口及断口纵剖面的组织形貌进行了观察分析。试验结果表明,铸造A356一T6铝合金的拉伸屈服强度随离浇道口平面距离的增加而减小,断裂强度则是先减小然后再增大,而延伸率随高度变化不明显。铸造A356-T6铝合金的平均屈服强度、断裂强度、延伸率和断面收缩率分别为2l6.64 MPa,224 MPa,1.086%和0.194%。断口分析表明拉伸断口的表面分布着杂质、孔洞、铸造缩孔和氧化膜等缺陷,断口表面也存在开裂的由碳、氧、铁、镁、铝和硅元素形成的复合粒子。铸造A356-T6铝合金在拉伸过程中,裂纹萌生于共晶硅粒子与基体结合处,并沿枝晶胞之间的共晶区域进行扩展,当前进的裂纹遇到取向不一致的共晶硅粒子时,裂纹将截断共晶硅粒子。铸造A356-T6铝合金拉伸断裂方式为沿胞(即穿晶)断裂的准解理断。 关键词:铸造A356铝合金:A1-7%Si-0.4Mg;拉伸性能;断裂机制:断口形貌 1 前言 铸造铝合金由于具有优异的铸造性能,良好的耐腐蚀性,高的强重比和铸件制造成本低,能够近终成型等特点,在汽车和航空工业上得到了日益广泛的应用[1-4],其中 A1.Si7.Mg(A356)铸造铝合金通常用来制备汽车气缸盖及发动机滑块构件[5]。铸造铝合金构件的主要问题是存在孔隙、氧化物和非金属夹杂物等缺陷[4],这些缺陷强烈影响构件的服役性能。铸造A356铝合金的力学性能取决于构件中相的特性及其分布,缺陷的性质、数量和尺寸。尽管铸造A356铝合金的力学性能及其疲劳性能得到了广泛的研究[4-9],但仍然有一些问题有待于进一步研究予以澄清,比如,铸造铝合金在拉伸过程中裂纹的萌生及其扩展的定量分析有待进一步的建立。在疲劳载荷加载中,短裂纹扩展行为取决于应力状态和组织结构特征,比如,硅粒子和α-Al形态、分布及其大小,缺陷的性质、分布、数量及其大小。因此,充分研究铸造铝合金的拉伸性能及其微观组织特征是定量分析和描述短裂纹扩展的前提,为定量模拟和建立疲劳短裂纹行为提供基本的信息,也为铸造A356铝合金的工程应用奠定基础。没有经过Sr改性和热等静压处理的铸造A356合金,其具有优异的加工性能和制备成本低等特点,但关于其拉伸性能,疲劳特征及其机制研究较少。因此,研究该类合金的力学性能及其疲劳机制在工业生产上具有重要的意义。本试验主要研究铸造 A356(A1.Si7.Mg)的拉伸性能和分析拉伸断口及其断口纵剖面的微观组织特征。 2 试验 2.1 合金及热处理条件

橡胶实验7 硫化特性

实验7 硫化特性试验 一.实验目的 1.深刻理解橡胶的硫化特性及其意义。 2.熟悉橡胶硫化仪的结构及工作原理。 3.熟练操作硫化仪和准确处理硫化曲线。 二.实验设备 硫化是橡胶加工中最重要的工艺过程之一。硫化胶性能随硫化时间的长短有很大变化,正硫化时间的选取,决定了硫化胶性能的好坏。测定正硫化程度的方法有3类:物理-化学法、物理性能测定法和专用仪器法。专用仪器法可用门尼粘度计和各种硫化仪等进行测试,由于门尼粘度计不能直接读出正硫化时间,因此大多采用硫化仪来测定正硫化时间。 硫化仪是近年出现的专用于测试橡胶硫化特性的实验仪器,类型有多种,按作用原理可分为流变仪和硫化仪两大类,本实验所用设备是MM4130C2型无转子硫化实验机。 三.实验原理 实验时,下模腔作一定角度的摆动,在温度和压力作用下,胶料逐渐硫化,其模量逐渐增加,模腔摆动所需要的转矩也成比例增加,这个增加的转矩值由传感器感受后,变成电信号再送到纪录仪上放大并记录。因此硫化仪测定记录的是转矩值,由转矩值的大小来反映胶料的硫化程度,其原理归纳如下: 1.由于橡胶的硫化过程实际上是线性高分子材料进行交联的过程,因此用交联点密度的大小(单位体积内交联点的数目)可以检测出橡胶的交联程度。根据弹性统计理论可知: G=νRT (4-1) 式中:G为剪切模量;ν为交联密度;R为气体常数;T为绝对温度。 上式中R、T是常数,故G与ν成正比,只要求出G就能反映交联程度。 2.G与转矩M也存在一定的线性关系,因为从胶料在模腔中受力分析中可知,转子由于作一定角度的摆动,对胶料施加一定的力使之形变,与此同时胶料将产生剪切力、拉伸力、扭力等。这些力的合力F对转子将产生转矩M,阻碍转子的运动,而且随胶料逐渐硫化,其G也逐渐增加,转子的摆动在定应变的情况下所需的转矩也成比例增加。 因此,由于M与F、F与G、G与V都存在着线性关系,故M与V也存在线性关系,因此测定橡胶转矩的大小就可反映胶料的交联密度。 四.试样准备 1.未硫化胶片在室温下停放2小时即可进行实验(不准超过10天)。 2.从无气泡的胶片上裁取直径约30毫米、厚度约2毫米的圆片。 3.试样不应有杂质、灰尘等。 五.操作步骤

橡胶硫化三要素之压力

橡胶硫化三要素之压力 橡胶件硫化的三大工艺参数是:温度、时间和压力。其中硫化温度是对制品性能影响最大的参数,硫化温度对橡胶制品的影响的研究也比比皆是。但对硫化压力比较少进行试验。 硫化压力是指,橡胶混炼胶在硫化过程中,其单位面积上所承受的压力。一般情况下,除了一些夹布件和海绵橡胶外,其他橡胶制品在硫化时均需施加一定的压力。 橡胶硫化压力,是保证橡胶零件几何尺寸、结构密度、物理机械的重要因素,同时也能保证零件表面光滑无缺陷,达到橡胶制品的密封要求。作用主要有以下几点: 1)防止混炼胶在硫化成型过程中产生气泡,提高制品的致密性; 2)提供胶料的充模流动的动力,使胶料在规定时间内能够充满整个模腔; 3)提高橡胶与夹件(帘布等)附着力及橡胶制品的耐曲绕性能; 4)提高橡胶制品的物理力学性能。 硫化压力的选取需要考虑如下几个方面的因素: 1)胶料的配方; 2)胶料可塑性的大小; 3)成型模具的结构形式(模压,注压,射出等); 4)硫化设备的类型(平板硫化机,注压硫化机,射出硫化机,真空硫化机等; 5)制品的结构特点。 硫化压力选取的一般原则: 1)胶料硬度低的(50-Shore A以下或更低),压力宜选择小,硬度高的选择大; 2)薄制品选择小,厚制品选择大; 3)制品结构简单选择小,结构复杂选择大; 4)力学性能要求高选择大,要求低选择小;

5)硫化温度较高时,压力可以小一些,温度较低时,压力宜高点。 对硫化压力,国内外一些橡胶厂家有如下一些经验值供参考: 1)模压及移模注压的硫化方式,其模腔内的硫化压力为:10~20Mpa; 2)注压硫化方式其模腔内的硫化压力为:0~150Mpa; 3)硫化压力增大,产品的静态刚度也随之增大,而收缩率随之逐渐减小;(在国内的减振橡胶行业内,对于调整产品的刚度,普遍采用的依然是增加或者降低产品所使用的胶料硬度,而在国外,已经普遍采用了提高或者降低产品硫化时的胶料硫化压力来调整产品的静态刚度。) 4)随着硫化压力的不断提高,产品胶料的收缩率会出现一个反常的现象,即当产品胶料的硫化压力达到83Mpa时,产品胶料的收缩率为0,若产品胶料的硫化压力继续不断上升,产品胶料的收缩率会出现负值,也就是说,在这种超高的产品胶料硫化压力下,产品硫化出来经停放后,其橡胶部分的尺寸比模具设计的尺寸还要大; 5)在模压和注压方式下,模腔内胶料的硫化压力随着时间的延长,总是先增高后减少,并最终处于平坦状态; 6)随着胶料硫化压力的提高,其胶料的300%定伸和拉伸强度均随之提高,其胶料的扯断伸长率、撕裂强度和压缩永久变形却随之下降; 7)在减震橡胶制品硫化过程中,注压硫化方式中模腔内胶料的压强比模压硫化方式的压强高一倍以上。产品达到相同的静刚度所需的胶料硬度有较大差别。随产品硫化时的硫化压力提高,产品在压缩永久变形性能方面有明显的提高。 橡胶硫化三要素之时间 1. 橡胶制品硫化时间 在一定的温度、模压下,为了使胶料从塑性变成弹性,且达到交联密度最大化,物理机械性能最

板料拉伸实验及其冲压性能分析实验报告_200

实验5 板料拉伸实验及其冲压性能分析 一、实验目的 1.了解金属板料的冲压性能指标。 2.掌握用电子拉伸机测定金属板料抗拉强度、屈服强度、硬化指数、板厚方向 性系数的方法。 二、实验原理 板料的冲压性能是指板料对各种冲压加工方法的适应能力,板料冲压性能可以通过间接实验和直接实验方法获得。 拉伸实验可以获取板料冲压性能参数包括: 1.均匀延伸率δu 是在拉伸实验中开始产生局部集中变性(细颈时)的延伸率。 δ u σσ 2.屈强比/s b 屈强比是材料的屈服极限与强度极限的比值。较小的屈强比几乎对所有的冲压成型都是有利的。 3.硬化指数n 硬化指数表示在塑性变性中材料硬化的强度。由应力-应变关系 n = s e k 则有 =+ s e ln ln ln k n

4.板厚方向性系数r 板厚方向性系数是板料试样拉伸实验中宽度应变w ε与厚度应变t ε之比,即 00 n ln = l t w r b b Lb L b εε= 上式中B 0,B ,t 0,t 分别是变性前后试样的宽度与厚度。 5.板平面方向性系数 当在板料平面内不同方向上裁取拉伸试样时,拉伸实验中所测得的各种机械性能、物理性能等也不一样,这说明在板材平面内的机械性能与方向有关,所以称为板平面方向性。其程度可用差值r ?表示 ()090451 2 r r r r ?= +- 常用板厚方向性系数的平均值作为代表板材冲压性能的一项重要指标。 09045 24 r r r r ++= 式中,r 0,r 45与r 90分别是板材的纵向、45°方向和横向上的板厚方向性系数。 三、实验内容 1. 了解电子拉伸实验机的基本结构和功能 2. 学习电子拉伸实验机的简单操作,拉伸实验数据采集和处理软件的使用 3. 对试件进行标距,进行拉伸实验,获取拉伸曲线 4. 根据实验数据,评定各种冲压性能参数 四、实验数据处理及分析 45°试样1 试样的初始宽度B 0= 12.42 mm ,初始厚度t 0= 1.28 mm 则有初始时刻横截面积S 0: 200012.42 1.2815.90B t mm S =?==

橡胶制品常用测试办法及标准

精心整理1.胶料硫化特性 GB/T9869—1997橡胶胶料硫化特性的测定(圆盘振荡硫化仪法) GB/T16584—1996橡胶用无转子硫化仪测定硫化特性 ISO3417:1991橡胶—硫化特性的测定——用摆振式圆盘硫化计 ASTMD2084-2001用振动圆盘硫化计测定橡胶硫化特性的试验方法 2 法 3. GB/T528—1998硫化橡胶或热塑性橡胶拉伸应力应变性能的测定 ISO37:2005硫化或热塑性橡胶——拉伸应力应变特性的测定 ASTMD412-1998(2002)硫化橡胶、热塑性弹性材料拉伸强度试验方法 JISK6251:1993硫化橡胶的拉伸试验方法

DIN53504-1994硫化橡胶的拉伸试验方法 4.橡胶撕裂性能 GB/T529—1999硫化橡胶或热塑性橡胶撕裂强度的测定(裤形、直角形和新月形试样)ISO34-1:2004硫化或热塑性橡胶—撕裂强度的测定-第一部分:裤形、直角形和新月形试片 5. DIN53505-2000橡胶试验邵式A和D的硬度试验 6.压缩永久变形性能 GB/T7759—1996硫化橡胶、热塑性橡胶在常温、高温和低温下压缩永久变形测定 ISO815:1991硫化橡胶、热塑性橡胶在常温、高温和低温下压缩永久变形测定

ASTMD395-2003橡胶性能的试验方法压缩永久变形 JISK6262:1997硫化橡胶及热塑性橡胶压缩永久变形试验方法 7.橡胶的回弹性 GB/T1681—1991硫化橡胶回弹性的测定 8. ASTMD746-2004用冲击法测定塑料及弹性材料的脆化温度的试验方法ASTMD2137-2005弹性材料脆化温度的试验方法 JISK6261-1997硫化橡胶及热塑性橡胶的低温试验方法

1 材料的拉伸性能的检测

实验1 材料的拉伸性能的检测 一、实验目的 1.观察分析低碳钢拉伸过程及实验现象; 2.掌握材料力学性能测试的基本实验方法; 3.测定低碳钢拉伸时的弹性模量、屈服极限σs ,强度极限σb ,延伸率δ和截面收缩率ψ; 4.掌握万能材料试验机的基本操作; 二、实验设备及原理 1.概述 材料的拉伸试验指材料的单向静拉伸试验,该试验通常是在室温下按照常规的试验标准,采用光滑圆柱试样在缓慢加载和低的变形速率下进行的,其试样方法和试样尺寸都有相应的明确规定。在材料的常规力学性能试验中,拉伸试验虽然简单,但却是工业生产和材料研究中最重要和应用最为广泛的试验方法。通过拉伸试验可以揭示材料在静载荷作用下的应力和应变关系以及过量弹性变形、塑性变形、断裂三种失效形式的特点和基本规律,检测材料的弹性、强度、塑性、应变硬化、韧性等重要的力学性能指标:弹性模量、屈服强度、抗拉强度、断面收缩率、伸长率等。通过拉伸试验得到的拉伸性能可以预测材料的其他力学性能如抗疲劳、断裂性能等。因此,研究新材料或者合理使用现有的材料改善其力学性能都需要测定材料的拉伸性能。 2.拉伸试验原理 常温下的拉伸试验是测定材料力学性能的基本试验。可用以测定弹性常数E ,比例极限σp ,屈服极限σs (或非比例伸长应力σP 0.2),强度极限σb ,延伸率δ和截面收缩率ψ等。这些指标都是工程设计的主要依据。 (1)弹性模量的测定 由材料力学可知,弹性模量是材料在弹性变形范围内应力与应变的比值,即 εσ =E (1) 因为A P = σ,0 L L ?=ε,所以弹性模量E 又可以表示为

L A PL E ?= (2) 以上公式中: E —材料的弹性模量;-应变应力,εσ-, P —实验时所施加的荷载,A -以试件直径的平均值计算的横截面面积, L 0——引伸仪标距,-?L 试件在载荷P 作用下,标距L 0段的伸长量。 可见,在弹性变形范围内,对试件作用拉力P ,并量出拉力P 引起的标距内伸长L ?,即可求得弹性模量E ,实验时,拉力P 值由试验机读数盘示出,标距L 0=50㎜(不同的引伸仪标距不同),试件横截面面积A 可算出,只要测出标距段的伸长量L ?,就可得到弹性模量E 。 在弹性变形阶段内试件的变形很小,标距段的变形(伸长量L ?)需用放大倍数为200倍的球铰式引伸仪来测量。为检验荷载与变形之间的关系是否符合胡克定律,并减少测量误差,实验时一般用等增量法加载,每次递加同样大小的载荷增量F ?(可选kN 2=?F ),在引伸仪上读取相应的变形量。若每次的变形增量大致相等,则说明载荷与变形成正比关系,即验证了胡克定律。弹性模量E 可按下式算出, () L A L P E ?????? =- 0200 (3) 其中:()()∑=- ??=??n i i L n L 1 1为变形增量的平均值;200为测量变形时的放大系数。 (2)强度性能指标 屈服强度(屈服点)σs :试样在拉伸过程中载荷不增加而试样仍能继续产生变形时的载荷(即屈服载荷)F s 除以原始横截面面积A 所得的应力值,即 A F s s = σ 抗拉强度σb :试样在拉断前所承受的最大载荷F b 除以原始横截面面积A 所得的应力值,即 A F b b = σ 低碳钢是具有明显屈服现象的塑性材料,在均匀缓慢的加载过程中,当万能试验机测力盘上的主动指针发生回转时所指示的最小载荷(下屈服载荷)即为屈

试验10硫化特性试验

实验10 硫化特性实验 一、实验目的 1.深刻理解橡胶的硫化特性及其意义。 2.熟悉橡胶硫化仪的结构和工作原理。 3.熟练操作硫化仪和准确处理硫化曲线。 二、实验原理 橡胶硫化是橡胶加工中最重要的工艺过程之一。硫化是橡胶的物理化学变化的过程,其中主要是化学反应,经历着一系列复杂的化学交联过程。硫化结果,使未硫化胶变成硫化胶,导致橡胶由塑性物质变成弹性物质,具有良好的物理机械性能和化学性能,成为工业上有使用价值的材料。 硫化胶性能随硫化时间的长短有很大变化,一般规律是:抗张强度、抗撕裂强度首先随硫化时间增加而上升,当增至一定值后逐渐下降,伸长率、生热、变形随硫化时间增加而减少;硬度、弹性、定伸随硫化时间增加而增至某一定值。由此可见,硫化时间是表征橡胶硫化程度的标志,硫化时间的选取,决定了硫化胶性能的好坏。 图1 典型的硫化曲线 典型的硫化曲线见图1。图中C点以前的转矩变化是由硫化和老化综合作用的结果。C 点以后的变化仅是老化过程引起的,老化过程是断裂和交联的竞争过程,当断裂占优势时,转矩达到最大值后,又开始沿CH下降,产生所谓的范原现象;当交联占优势时,则转矩沿CD上升;如果断裂和交联相当,则曲线沿CG延伸。 正硫化,通常是指橡胶制品的各种物理机械性能达到最佳值的硫化状态。(即综合了各项性能选定的)理论正硫化时间,则是达到正硫化状态所需的时间。欠硫或过硫,橡胶物理机械性能都显得较差。在实际应用上,由于橡胶各项性能往往不会在同一时间都达到最佳值,而且对制品的要求往往侧重于某一、二个方面,因此常常侧重于某些性能来选择和确定最佳正硫化时间,显然与上述正硫化时间概念是不同的,我们称之为工艺正硫化时间或技术正硫化时间,测定正硫化程度的方法有三类,有化学法、物理法和仪器法。前两种方法,虽然都能在一定程度上测定胶料的硫化程度,但存在不少缺点,一是麻烦;二是不经济;三是精度低,重现性差,尤其不能连续测定硫化全过程。随着科学技术的发展,用仪器法测定橡胶的硫化特性,即硫化焦烧时间、正硫化时间等,经过不断的改进,技术日趋完善,显示硫化仪的诸多优点,如测定快速、准确、方便、试样用料少,能连续测定硫化全过程,因此在国内外得到广泛的使用。 硫化仪测定记录的是转矩值,用于反映胶料的硫化程度: 1.由于橡胶的硫化过程实际上是线性高分子材料进行交联的过程,因此用交联点密度的大小(单位体积内交联点的数目)可以检测出交联程度。根据弹性统计理论可知: G∝ρRT 式中G——剪切模量,MPa;

如何分析拉伸曲线

:

a 从宏观看,力与伸长成直线关系,弹性伸长与力的大小和试样标距长短成正比,与材料弹性模量及试样横截面积成反比。 b 变形是完全可逆的。 加力时产生变形,卸力后变形完全恢复。从微观上看,变形的可逆性与材料原子间作用力有直接关系,施加拉力时,在力的作用下,原子间的平衡力受到破坏,为达到新的平衡,原子的位置必须作新的调整即产生位移,使外力、斥力和引力三者平衡,外力去除后,原子依靠彼此间的作用力又回到平衡位置,使变形恢复,表现出弹性变形的可逆性,即在弹性范围保持力一段时间,卸力后仍沿原轨迹回复。Oa 段变形机理与高温条件下变形机理不同,在高温保持力后会产生蠕变,卸力后表现出不可逆性。 由于在拉伸试验中无论在加力或卸力期间应力和应变都保持单值线性关系,因此试验材料的弹性模量是 oa 段的斜率,用公式求得: E=σ/ε oa 线段的 a 点是应力-应变呈直线关系的最高点,这点的应力叫理论比例极限,超过 a 点,应力-应变则不再呈直线关系,即不再符合虎克定律。比例极限的定义在理论上很有意义,它是材料从弹性变形向塑性变形转变的,但很难准确地测定出来,因为从直线向曲线转变的分界点与变形测量仪器的分辨力直接相关,仪器的分辨力越高,对微小变形显示的能力越强,测出的分界点越低,这也是为什麽在最近两版国家标准中取消了这项性能的测定,而用规定塑性(非比例)延伸性能代替的原因。 第 2 阶段:滞弹性阶段(ab)

在此阶段,应力-应变出现了非直线关系,其特点是:当力加到 b 点时然后卸除力,应变仍可回到原点,但不是沿原曲线轨迹回到原点,在不同程度上滞后于应力回到原点,形成一个闭合环,加力和卸力所表现的特性仍为弹性行为,只不过有不同程度的滞后,因此称为滞弹性阶段,这个阶段的过程很短。这个阶段也称理论弹性阶段,当超过 b 点时,就会产生微塑性应变,可以用加力和卸力形成的闭合环确定此点,当加卸力环第 1 此形成开环时所对应的点为 b 点。 第 3 阶段:微塑性应变阶段(bc) 是材料在加力过程中屈服前的微塑性变形部分,从微观结构角度讲,就是多晶体材料中处于应力集中的晶粒内部,低能量易动位错的运动。塑性变形量很小,是不可回复的。大小仍与仪器分辨力有关。 第 4 阶段:屈服阶段(cde) 这个阶段是金属材料的不连续屈服的阶段,也称间断屈服阶段,其现象是当力加至 c 点时,突然产生塑性变形,由于试样变形速度非常快,以致试验机夹头的拉伸速度跟不上试样的变形速度,试验力不能完全有效的施加于试样上,在曲线这个阶段上表现出力不同程度的下降,而试样塑性变形急剧增加,直至达到 e 点结束,当达到 c 点,在试样的外表面能观察到与试样轴线呈 45 度的明显的滑移带,这些带称为吕德斯带,开始是在局部位置产生,逐渐扩展至试样整个标距内,宏观上,一条吕德斯带包含大量滑移面,当作用在滑移面上的切应力达到临界值时,位错沿滑移方向运动。在此期间,应力相对稳定,试样不产生应变硬化。 C 点是拉伸试验的一个重要的性能判据点,范围内的最低点也是重要

相关主题
文本预览
相关文档 最新文档