当前位置:文档之家› 平面几何:有关三角形五心的经典试题及证明剖析

平面几何:有关三角形五心的经典试题及证明剖析

平面几何:有关三角形五心的经典试题及证明剖析
平面几何:有关三角形五心的经典试题及证明剖析

平面几何:有关三角形五心的经典试题

三角形的外心、重心、垂心、内心及旁心,统称为三角形的五心. 一、外心.

三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理.

例1.过等腰△ABC 底边BC 上一点P 引PM ∥CA 交AB 于M ;引PN ∥BA 交

AC 于N .作点P 关于MN 的对称点P ′.试证:P ′点在△ABC 外接圆上. (杭州大学《中学数学竞赛习题》

分析:由已知可得MP ′=MP =MB ,NP ′=NP

=NC ,故点M 是△P ′BP 的外心,点

N 是△P ′PC 的外心.有

∠BP ′P =21∠BMP =21∠BAC , ∠PP ′C =21∠PNC =2

1

∠BAC .

∴∠BP ′C =∠BP ′P +∠P ′PC =∠BAC .

从而,P ′点与A ,B ,C 共圆、即P ′在△ABC 外接圆上. 由于P ′P 平分∠BP ′C ,显然还有P ′B :P ′C =BP :PC .

例2.在△ABC 的边AB ,BC ,CA 上分别取点P ,Q ,S .证明以△APS ,△BQP ,

△CSQ 的外心为顶点的三角形与△ABC 相似. (B ·波拉索洛夫《中学数学奥林匹克》

分析:设O 1,O 2,O 3是△APS ,△BQP ,

△CSQ 的外心,作出六边形 O 1PO 2QO 3S 后再由外

心性质可知∠PO 1S =2∠A , ∠QO 2P =2∠B , ∠SO 3Q =2∠C .

∴∠PO 1S +∠QO 2P +∠SO 3Q =360°.从而又知∠O 1PO 2+

∠O 2QO 3+∠O 3SO 1=360°

将△O 2QO 3绕着O 3点旋转到△KSO 3,易判断△KSO 1≌△O 2PO 1,同时可得△O 1O 2O 3≌△O 1KO 3.

∴∠O 2O 1O 3=∠KO 1O 3=2

1

∠O 2O 1K

=21

(∠O 2O 1S +∠SO 1K

=21

(∠O 2O 1S +∠PO 1O 2

=2

1

∠PO 1S =∠A ;

同理有∠O 1O 2O 3=∠B .故△O 1O 2O 3∽△ABC .

A B C P P M

N 'A B C Q

K P O O O ....S 123

二、重心

三角形三条中线的交点,叫做三角形的重心.掌握重心将每条中线都分成定比2:1及中线长度公式,便于解题.

例3.AD ,BE ,CF 是△ABC 的三条中线,P 是任意一点.证明:在△PAD ,△

PBE ,△PCF 中,其中一个面积等于另外两个面积的和. (第26届莫斯科数学奥林匹克

分析:设G 为△ABC 重心,直线PG 与AB

,BC 相交.从A ,C ,D ,E ,F 分别作该直线的垂线,垂足为A ′,C ′, D ′,E ′,F ′. 易证AA ′=2DD ′,CC ′=2FF ′,2EE ′=AA ′+CC ′,

∴EE ′=DD ′+FF ′. 有S △PGE =S △PGD +S △PGF .

两边各扩大3倍,有S △PBE =S △PAD +S △PCF .

例4.如果三角形三边的平方成等差数列,那么该三角形和由它的三条中线围成

的新三角形相似.其逆亦真.

分析:将△ABC 简记为△,由三中线AD ,BE ,CF 围成的三角形简记为△′.G

为重心,连DE 到H ,使EH =DE ,连HC ,HF ,则△′就是△HCF . (1a 2,b 2,c 2成等差数列?△∽△′. 若△ABC 为正三角形,易证△∽△′. 不妨设a ≥b ≥c ,有

CF =2222221

c b a -+, BE =2222221

b a

c -+, AD =222222

1

a c

b -+. 将a 2+

c 2=2b 2,分别代入以上三式,得 CF =

a 23,BE =

b 23,AD =

c 2

3. ∴CF :BE :AD =

a 23:

b 23:

c 2

3

=a :b :c .

故有△∽△′.

(2△∽△′?a 2,b 2,c 2成等差数列. 当△中a ≥b ≥c 时, △′中CF ≥BE ≥AD . ∵△∽△′, ∴

?

?S S '=(a CF 2

.

A

A 'F F 'G

E E '

D 'C 'P C B D

据“三角形的三条中线围成的新三角形面积等于原三角形面积的

4

3

”,有??S S '=4

3

. ∴22a

CF =43

?3a 2=4CF 2=2a 2+b 2-c 2

?a 2+c 2=2b 2.

三、垂心

三角形三条高的交战,称为三角形的垂心.由三角形的垂心造成的四个等(外接圆三角形,给我们解题提供了极大的便利.

例5.设A 1A 2A 3A 4为⊙O 内接四边形,H 1,H 2,H 3,H 4依次为

△A 2A 3A 4,△A 3A 4A 1,△A 4A 1A 2,△A 1A 2A 3的垂心.求证:H 1,H 2,H 3,H 4四点共圆,并确定出该圆的圆心位置. (1992,全国高中联赛分析:连接A 2H 1,A 1H 2,H 1H 2,记圆半径

为R .由△A 2A 3A 4知

1

321

2sin H A A H A ∠=2R ?A 2H 1=2R cos ∠A 3A 2A 4;

由△A 1A 3A 4得

A 1H 2=2R cos ∠A 3A 1A 4.

但∠A 3A 2A 4=∠A 3A 1A 4,故A 2H 1=A 1H 2. 易证A 2H 1∥A 1A 2,于是,A 2H 1 A 1H 2

, 故得H 1H 2 A 2A 1

.设H 1A 1与H 2A 2的交点为M ,故H 1H 2与A 1A 2关于M 点

成中心对称. 同理,H 2H 3与A 2A 3,H 3H 4与A 3A 4,H 4H 1与A 4A 1都关于M 点成中心对称.

故四边形H 1H 2H 3H 4与四边形A 1A 2A 3A 4关于M 点成中心对称,两者是全等四边形,H 1,H 2,H 3,H 4在同一个圆上.后者的圆心设为Q ,Q 与O 也关于M 成中心对称.由O ,M 两点,Q 点就不难确定了.

例6.H 为△ABC 的垂心,D ,E ,F 分别是BC ,CA ,AB 的中心.一个以H 为圆

心的⊙H 交直线EF ,FD ,DE 于A 1,A 2,B 1,B 2,C 1,C 2. 求证:AA 1=AA 2=BB 1=BB 2=CC 1=CC 2. (1989,加拿大数学奥林匹克训练题分析:只须证明AA 1=BB 1=CC 1即可.设 BC =a , CA =b ,AB =c ,△ABC 外

接圆半径为R ,⊙H 的半径为r . 连HA 1,AH 交EF 于M . A 21A =AM 2+A 1M 2=AM 2+r 2-MH 2

=r 2+(AM 2-MH 2, ①

又AM 2-HM 2=(21AH 12-(AH -2 1

AH 12

=∥=.

O

A A A A 1

2

34

H H

1

2

H H H

M A B B

A A

B

C C

C F

1

2111

222

D E

=AH ·AH 1-AH 2=AH 2·AB -AH 2

=cos A ·bc -AH 2

, ②

而ABH AH

∠sin =2R ?AH 2=4R 2cos 2A ,

A

a

sin =2R ?a 2=4R 2sin 2A . ∴AH 2+a 2=4R 2,AH 2=4R 2-a 2. ③由①、②、③有A 21

A =r 2

+bc

a c

b 22

22-+·bc -(4R 2-a 2

=

2

1(a 2+b 2+c 2

-4R 2+r 2. 同理,21BB =21

(a 2+b 2+c 2-4R 2+r 2,

21CC =2

1

(a 2+b 2+c 2-4R 2+r 2.

故有AA 1=BB 1=CC 1. 四、内心

三角形内切圆的圆心,简称为内心.对于内心,要掌握张角公式,还要记住下面一个极为有用的等量关系:

设I 为△ABC 的内心,射线AI 交△ABC 外接圆于A ′,则有A ′I =A ′B =A ′C .换言之,点A ′必是△IBC 之外心(内心的等量关系之逆同样有用.

例7.ABCD 为圆内接凸四边形,取

△DAB ,△ABC ,△BCD , △CDA 的内心O 1, O 2,O 3, O 4.求证:O 1O 2O 3O 4为矩形.

(1986,中国数学奥林匹克集训题

证明见《中等数学》1992;4

例8.已知⊙O 内接△ABC ,⊙Q 切AB ,AC 于E ,F 且与⊙O 内切.试证:EF

中点P 是△ABC 之内心.

(B ·波拉索洛夫《中学数学奥林匹克》

分析:在第20届IMO 中,美国提供的一道题实际上是例8的一种特例,但它增加了条件AB =AC .当AB ≠AC ,怎样证明呢?

如图,显然EF 中点P 、圆心Q ,BC 中点K 都在∠BAC 平分线上.易知

AQ =αsin r .

∵QK ·AQ =MQ ·QN ,

∴QK =AQ

QN

MQ ?

sin /2(r r

r R ?-=2(sin r R -?α.

由Rt △EPQ 知PQ =r ?αsin .

A B C D O O O 234O

1

A ααM

B

C

K

N

E

R O

Q

F r

P

∴PK =PQ +QK =r ?αsin +2(sin r R -?α=R 2sin ?α. ∴PK =BK .α

利用内心等量关系之逆定理,即知P 是△ABC 这内心. 五、旁心

三角形的一条内角平分线与另两个内角的外角平分线相交于一点,是旁切圆的圆心,称为旁心.旁心常常与内心联系在一起, 旁心还与三角形的半周长关系密切.

例9.在直角三角形中,求证:r +r a +r b +r c =2p .

式中r ,r a ,r b ,r c 分别表示内切圆半径及与a ,b ,c 相切的旁切圆半径,

p 表示半周.

(杭州大学《中学数学竞赛习题》

分析:设Rt △ABC 中,c 为斜边,先来证明一个特性:

p (p -c =(p -a (p -b .

∵p (p -c =21(a +b +c ·21

(a +b -c =41[(a +b 2-c 2]

=21

ab ; (p -a (p -b =21(-a +b +c ·21

(a -b +c

=41[c 2-(a -b 2]=2

1

ab .

∴p (p -c =(p -a (p -b . ①观察图形,可得 r a =AF -AC =p -b , r b =BG -BC =p -a , r c =CK =p .

而r =2

1

(a +b -c

=p -c . ∴r +r a +r b +r c

=(p -c +(p -b +(p -a +p =4p -(a +b +c =2p . 由①及图形易证.

例10.M 是△ABC 边AB 上的任意一点.r 1,r 2,r 分别是△AMC ,△BMC ,△

ABC 内切圆的半径,q 1,q 2,q 分别是上述三角形在∠ACB 内部的旁切圆

半径.证明:

11q r ·22q r =q

r . (IMO -12

分析:对任意△A ′B ′C ′,由正弦定理可知

K

r r r r O O O 2

1

3A O

E C B a b c

OD=OA′· sin A' 2 C' O A ' .. E O' D . B ' B' A' 2 =A′B′· · sin sin ∠A' O' B ' 2 A' B' sin ? sin 2 2 ,=A′B′· A'+ B ' sin 2 A' B' cos cos 2 2 . O′E= A′B′· A'+ B ' sin 2 OD A' B ' = tg tg . ∴ O' E 2 2 亦即有 sin r1 r A ∠CMA ∠CNB B tg tg · 2 = tg tg q1 q2 2 2 2 2 = tg A B r tg = . 2 2 q 六、众心共圆这有两种情况:(1同一点却是不同三角形的不同的心;(2同一图形出现了同一三角形的几个心. 例 11.设在圆内接凸六边形ABCDFE 中, =BC, =DE, =FA.试证: AD, AB CD EF (1 BE,CF 三条对角线

交于一点;(2AB+BC+CD+DE+EF+FA≥AK+BE+CF. (1991,国家教委数学试验班

招生试题分析:连接 AC,CE,EA,由已知可证 AD,CF,EB 是△ACE 的三条

内角平分线,I 为△ACE 的内心.从而有 ID=CD=DE, IF=EF=FA, IB=AB=BC. 再由△BDF,易证 BP,,是它的三条高,是它的垂心, DQ FS I 利用不 .. 等式有:Erdos A BI+DI+FI≥2·(IP+IQ+IS. F 不难证明 IE=2IP,IA=2IQ,IC=2IS. B Q

∴BI+DI+FI≥IA+IE+IC. I P E ∴AB+BC+CD+DE+EF+FA S =2(BI+DI+FI C

≥(IA+IE+IC+(BI+DI+FI D =AD+BE+CF. I 就是一点两心. 例 12.△ABC 的外心为O,AB=AC,D 是 AB 中点,E 是△ACD 的重心.证明

OE 丄 CD. (加拿大数学奥林匹克训练题 A 分析:设 AM 为高亦为中线,取

AC 中点 F,E 必在 DF 上且 DE:EF=2:1.设 E F D CD 交 AM 于 G,G 必为△ABC

重心. G 连 GE,MF,MF 交 DC 于 K.易证:O K 1 1 1 B C DG:GK= DC:( ? DC=2:1.

3 2 3 ∴DG:GK=DE:EF ? GE∥MF. ∵OD 丄 AB,MF∥AB,∴OD 丄 MF ? OD

丄 GE.但 OG 丄 DE ? G 又是△ODE 之垂心. 易证 OE 丄 CD. 例 13.△ABC 中

∠C=30°,O 是外心,I 是内心,边 AC 上的 D 点与边 BC 上的 E 点使得

AD=BE=AB.求证:OI 丄 DE,OI=DE. (1988,中国数学奥林匹克集训题分析:辅助线如图所示,作∠DAO 平分线交 BC 于 K. 易证△AID≌△AIB≌△EIB,

∠AID=∠AIB=∠EIB. D A C 30°利用内心张角公式,有 O K I 1 F E ∠AIB=90°+

∠C=105°, 2 B ∴∠DIE=360°-105°×3=45°. 1 ∵∠AKB=30°+ ∠DAO 2 1 =30°+ (∠BAC-∠BAO 2 1 =30°+ (∠BAC-60° 2 1 = ∠BAC=∠BAI=∠BEI. 2 ∴AK∥IE. 由等腰△AOD 可知 DO 丄 AK,∴DO 丄 IE,即 DF 是△DIE 的一条高. 同理 EO 是△DIE 之垂心,OI 丄 DE. 由∠DIE=∠IDO,易知 OI=DE. 例 14.锐角△ABC 中,O,G,H 分别是外心、重心、垂心.设外心到三边距离和为 d 外,重心到三边距 A 离和为 d 重,垂心到三边距离和为 d 垂. H3 求证:1·d 垂+2·d 外=3·d 重. G3 O2 O3 G2 分析:这里用三角法.设△ABC 外接圆 H2 O G 半径为 1,三个内角记为 A,B, I B C. 易知 d 外=OO1+OO2+OO3 C O1 G 1 H 1 =cosA+cosB+cosC,①∴2d 外=2(cosA+cosB+cosC.

∵AH1=sinB·AB=sinB·(2sinC=2sinB·sinC,同样可得 BH2·CH3. ∴3d 重

=△ABC 三条高的和 =2·(sinB·sinC+sinC·sinA+sinA·sinB ② BH ∴ =2, sin ∠BCH ∴HH1=cosC·BH=2·cosB·cosC. 同样可得 HH2,HH3. ∴d 垂=HH1+HH2+HH3

=2(cosB·cosC+cosC·cosA+cosA·cosB ③欲证结论,观察①、②、③,须证(cosB · cosC+cosC · cosA+cosA · cosB+( cosA+ cosC=sinB·sinC+sinC·sinA+sinA·sinB.即可. cosB+ 练习题 1.I 为△ABC 之内心,射线 AI,BI,CI 交△ABC 外接圆于A′,B′,C ′.则AA′+BB′+CC′>△ABC 周长.(1982,澳大利亚数学奥林匹克 2.△T′的三边分别等于△T 的三条中线,且两个三角形有一组角相等.求证这两个三角形相似.(1989,捷克数学奥林匹克 3.I 为△ABC 的内心.取△IBC, ICA, IAB 的外心O1, 2, 3.求证: O1O2O3 △△ O O △与△ABC 有公共的外心.(1988,美国数学奥林匹克 4.AD 为△ABC 内角平分线.取△ABC,△ABD,△ADC 的外心 O,O1,O2.则△ OO1O2 是等腰三角形. 5.△ABC 中∠C<90°,从 AB 上 M 点作 CA,CB 的垂线 MP,MQ.H 是△CPQ 的垂心.当 M 是 AB 上动点时,求 H 的轨迹.(IMO-7 1 6.△ABC 的边 BC= (AB+AC,取 AB,AC 中点 M,N,G 为重心,I 为内心. 2 试证:过 A,M,N 三点的圆与直线 GI 相切.(第 27 届莫斯科数学奥林匹克 7.锐角

△ABC 的垂心关于三边的对称点分别是 H1,H2,H3.已知:H1,H2,H3,求作△ABC.(第 7 届莫斯科数学奥林匹克 8.已知△ABC 的三个旁心为 I1,I2,I3.求证:△I1I2I3 是锐角三角形. 9.AB,AC 切⊙O 于 B,C,过 OA 与 BC 的交点 M 任作

⊙O 的弦 EF.求证:(1 △AEF 与△ABC 有公共的内心;(2△AEF 与△ABC 有一个旁心重合.

三角形五心及其性质

三角形的三条高的交点叫做三角形的垂心。 三角形垂心的性质 设△ABC的三条高为AD、BE、CF,其中D、E、F为垂足,垂心为H,角A、B、 C的对边分别为a、b、c,p=(a+b+c)/2. 1、锐角三角形的垂心在三角形内;直角三角形的垂心在直角顶点上;钝角三角形的 垂心在三角形外. 2、三角形的垂心是它垂足三角形的内心;或者说,三角形的内心是它旁心三角形的 垂心; 3、垂心H关于三边的对称点,均在△ABC的外接圆上。 4、△ABC中,有六组四点共圆,有三组(每组四个)相似的直角三角形,且AH?HD=BH?HE=CH?HF。 5、 H、A、B、C四点中任一点是其余三点为顶点的三角形的垂心(并称这样的四点为一—垂心组)。 6、△ABC,△ABH,△BCH,△ACH的外接圆是等圆。 7、在非直角三角形中,过H的直线交AB、AC所在直线分别于P、Q,则 AB/AP?tanB+AC/AQ?tanC=tanA+tanB+tanC。 8、三角形任一顶点到垂心的距离,等于外心到对边的距离的2倍。

9、设O,H分别为△ABC的外心和垂心,则∠BAO=∠HAC,∠ABH=∠OBC,∠BCO=∠HCA。 10、锐角三角形的垂心到三顶点的距离之和等于其内切圆与外接圆半径之和的2倍。 11、锐角三角形的垂心是垂足三角形的内心;锐角三角形的内接三角形(顶点在原三角形的边上)中,以垂足三角形的周长最短。 12、西姆松定理(西姆松线):从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 13、设锐角△ABC内有一点T,那么T是垂心的充分必要条件是PB*PC*BC+PB*PA*AB+PA*PC*AC=AB*BC*CA。 垂心的向径 定义 设点H为锐角三角形ABC的垂心,向量OH=h,向量OA=a,向量OB=b,向量OC=c, 则h=(tanA a +tanB b +tanC c)/(tanA+tanB+tanC). 垂心坐标的解析解: 设三个顶点的坐标分别为(a1,b1)(a2,b2)(a3,b3),那么垂心坐标x=Δx/2/Δ,y=-Δy/2/Δ。 其中, Δ=det([x2-x1,x3-x2,y2-y1,y3-y2]); Δx=det([(x1+x2)*(x2-x1)+(y1+y2)*(y2-y1),y2-y1;(x2+x3)*(x3-x2)+(y2+y3)*(y3-y2),y3-y2]);

(word完整版)初中三角形总复习+中考几何题证明思路总结

初中三角形总复习 【知识精读】 1. 三角形的定义:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。 2. 三角形中的几条重要线段: (1)三角形的角平分线(三条角平分线的交点叫做内心) (2)三角形的中线(三条中线的交点叫重心) (3)三角形的高(三条高线的交点叫垂心) 3. 三角形的主要性质 (1)三角形的任何两边之和大于第三边,任何两边之差小于第三边; (2)三角形的内角之和等于180° (3)三角形的外角大于任何一个和它不相邻的内角,等于和它不相邻的两个内角的和; (4)三角形中,等角对等边,等边对等角,大角对大边,大边对大角; (5)三角形具有稳定性。 4. S S ABE ?? 基础。 5. 三角形边角关系、性质的应用 【分类解析】

例1. 锐角三角形ABC 中,∠C =2∠B ,则∠B 的范围是( ) A. 1020?<?∠∠B C 90 ∴>?390∠B ,即∠B >?30 ∴?<

初中几何经典培优题型(三角形)

全等三角形辅助线 找全等三角形的方法: (1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中; (2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等; (3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等; (4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。 三角形中常见辅助线的作法: ①延长中线构造全等三角形; ②利用翻折,构造全等三角形; ③引平行线构造全等三角形; ④作连线构造等腰三角形。 常见辅助线的作法有以下几种: 1)遇到等腰三角形,可作底边上的高,利用“三线合一”的性质解题,思维模式是全等变换中的“对折”. 2)遇到三角形的中线,倍长中线,使延长线段与原中线长相等,构造全等三角形,利用的思维模式是全等变换中的“旋转”.

3)遇到角平分线,可以自角平分线上的某一点向角的两边作垂线,利用的 思维模式是三角形全等变换中的“对折”,所考知识点常常是角平分线的性质定理或逆定理. 4)过图形上某一点作特定的平分线,构造全等三角形,利用的思维模式是 全等变换中的“平移”或“翻转折叠” 5)截长法与补短法,具体做法是在某条线段上截取一条线段与特定线段相 等,或是将某条线段延长,是之与特定线段相等,再利用三角形全等的有关性质加以说明.这种作法,适合于证明线段的和、差、倍、分等类的题目.特殊方法:在求有关三角形的定值一类的问题时,常把某点到原三角形各顶点的线段连接起来,利用三角形面积的知识解答. 常见辅助线写法: ⑴过点A作BC的平行线AF交DE于F ⑵过点A作BC的垂线,垂足为D ⑶延长AB至C,使BC=AC ⑷在AB上截取AC,使AC=DE ⑸作∠ABC的平分线,交AC于D ⑹取AB中点C,连接CD交EF于G点

三角形五心性质概念整理(超全)

重心 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离平方的和最小。 证明方法: 设三角形三个顶点为(x 1,y 1 ),(x 2 ,y 2 ),(x 3 ,y 3 ) 平面上任意一点为(x,y)则该点到三顶点距离平 方和为: (x 1-x)2+(y 1 -y)2+(x 2 -x)2+(y 2 -y)2+(x 3 -x)2+(y 3 -y)2 =3x2-2x(x 1+x 2 +x 3 )+3y2-2y(y 1 +y 2 +y 3 )+x 1 2+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2 =3[x-1/3*(x 1+x 2 +x 3 )]2+3[y-1/3*(y 1 +y 2 +y 3 )]2+x 1 2+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2-1/3(x 1 +x 2 +x 3 )2-1/3(y 1 +y 2 +y 3 )2 显然当x=(x 1+x 2 +x 3 )/3,y=(y 1 +y 2 +y 3 )/3(重心坐标)时 上式取得最小值x 12+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2-1/3(x 1 +x 2 +x 3 )2-1/3(y 1 +y 2 +y 3 )2 。 最终得出结论。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数, 即其坐标为[(X1+X2+X3)/3,(Y1+Y2+Y3)/3]; 空间直角坐标系——横坐标:(X1+X2+X3)/3,纵坐标:(Y1+Y2+Y3)/3,纵坐标:(Z1+Z2+Z3)/3 5、三角形内到三边距离之积最大的点。 6、在△ABC中,若MA向量+MB向量+MC向量=0(向量),则M点为△ABC的重心,反之也成立。 7、设△ABC重心为G点,所在平面有一点O,则向量OG=1/3(向量OA+向量OB+ 向量OC) —

2020年全国各地中考数学压轴题按题型(几何综合)汇编(一)三角形中的计算和证明综合(原卷版)

2020全国各地中考数学压轴题按题型(几何综合)汇编 一、三角形中的计算和证明综合题 1.(2020贵州黔东南州)如图1,△ABC和△DCE都是等边三角形. 探究发现 (1)△BCD与△ACE是否全等?若全等,加以证明;若不全等,请说明理由. 拓展运用 (2)若B、C、E三点不在一条直线上,∠ADC=30°,AD=3,CD=2,求BD的长. (3)若B、C、E三点在一条直线上(如图2),且△ABC和△DCE的边长分别为1和2,求△ACD的面积及AD的长. 2.(2020黑龙江牡丹江)在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF∥BC, 交射线CA于点F.请解答下列问题:

(1)当点E 在线段AB 上,CD 是△ACB 的角平分线时,如图①,求证:AE +BC =CF ;(提示:延长CD ,FE 交于点M .) (2)当点E 在线段BA 的延长线上,CD 是△ACB 的角平分线时,如图②;当点E 在线段BA 的延长线上,CD 是△ACB 的外角平分线时,如图③,请直接写出线段AE ,BC ,CF 之间的数量关系,不需要证明; (3)在(1)、(2)的条件下,若DE =2AE =6,则CF = . 3.(2020武汉)问题背景:如图(1),已知△ABC ∽△ADE ,求证:△ABD ∽△ACE ; 尝试应用:如图(2),在△ABC 和△ADE 中,∠BAC =∠DAE =90°,∠ABC =∠ADE =30°,AC 与DE 相交于点F ,点D 在BC 边上, AD BD = √3,求 DF CF 的值; 拓展创新 如图(3),D 是△ABC 内一点,∠BAD =∠CBD =30°,∠BDC =90°,AB =4,AC =2√3,直接写出AD 的长. 4.(2020湖南常德)已知D 是Rt △ABC 斜边AB 的中点,∠ACB =90°,∠ABC =30°,过点D 作Rt △DEF 使∠DEF =90°,∠DFE =30°,连接CE 并延长CE 到P ,使EP =CE ,连接BE ,FP ,BP ,设BC 与DE 交于M ,PB 与EF 交于N . (1)如图1,当D ,B ,F 共线时,求证: ①EB =EP ; ②∠EFP =30°; (2)如图2,当D ,B ,F 不共线时,连接BF ,求证:∠BFD +∠EFP =30°.

上海初二数学几何证明练习之全等三角形

上海初中数学几何证明练习之全等三角形 一、填空题(每小题2分,共20分) 1.如图,△ABC ≌△DEB ,AB =DE ,∠E =∠ABC ,则∠C 的对应角为 ,BD 的对应边为 . 2.如图,AD =AE ,∠1=∠2,BD =CE ,则有△ABD ≌△ ,理由是 ,△ABE ≌ (第1题) (第 2题) (第4题) 3.已知△ABC ≌△DEF ,BC =EF =6cm ,△ABC 的面积为18平方厘米,则EF 边上的高是 cm. 4.如图,AD 、A′D′分别是锐角△ABC 和△A′B′C′中BC 与B′C′边上的高,且AB = A′B′,AD = A′D′,若使△ABC ≌△A′B′C′,请你补充条件 (只需填写一个你认为适当的条件) 5. 若两个图形全等,则其中一个图形可通过平移、 或 与另一个三角形 完全重合. 6. 如图,有两个长度相同的滑梯(即BC =EF ),左边滑梯的高度AC 与右边滑梯水平方向 的长度DF 相等,则∠ABC +∠DFE =___________度 (第6题) (第7题) (第8题) 7.已知:如图,正方形ABCD 的边长为8,M 在DC 上,且DM =2,N 是AC 上的一动点, 则DN +MN 的最小值为__________. 8.如图,在△ABC 中,∠B =90o ,D 是斜边AC 的垂直平分线与BC 的交点,连结AD ,若 ∠DAC :∠DAB =2:5,则∠DAC =___________. 9.等腰直角三角形ABC 中,∠BAC =90o ,BD 平分∠ABC 交AC 于点D ,若AB +AD =8cm , M N D C B A E D C B A

三角形五心定律

垂心 三角形的三条高的交点叫做三角形的垂心。 锐角三角形垂心在三角形内部。 直角三角形垂心在三角形直角顶点。 钝角三角形垂心在三角形外部。 垂心是高线的交点 垂心是从三角形的各顶点向其对边所作的三条垂线的交点。 三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。 三角形上作三高,三高必于垂心交。 高线分割三角形,出现直角三对整, 直角三角有十二,构成六对相似形, 四点共圆图中有,细心分析可找清, 重心 重心是三角形三边中线的交点,三线交一可用燕尾定理证明,十分简单。证明过程又是塞瓦定理的特例。 重心的几条性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离的平方和最小。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均,即其坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3);空间直角坐标系——横坐标:(X1+X2+X3)/3 纵坐标:(Y1+Y2+Y3)/3 竖坐标:(z1+z2+z3)/3 5、三角形内到三边距离之积最大的点 内心 内心是三角形三条内角平分线的交点,即内切圆的圆心。 内心是三角形角平分线交点的原理:经圆外一点作圆的两条切线,这一点与圆心的连线平分两条切线的夹角(原理:角平分线上点到角两边距离相等)。 内心定理:三角形的三个内角的角平分线交于一点。该点叫做三角形的内心。 注意到内心到三边距离相等(为内切圆半径),内心定理其实极易证。 若三边分别为l1,l2,l3,周长为p,则内心的重心坐标为(l1/p,l2/p,l3/p)。 直角三角形的内心到边的距离等于两直角边的和减去斜边的差的二分之一。 双曲线上任一支上一点与两焦点组成的三角形的内心在实轴的射影为对应支的顶点。 希望对你有帮助!三角形五心定律 三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。三角形五心定律指是三角形重心定律,外心定律,垂心定律,内心定律,旁心定律的总称。 一、三角形重心定律 三角形的三条边的中线交于一点。该点叫做作三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名) 重心的性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2∶1。 2、重心和三角形3个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的

八年级下册三角形几何证明

八年级下册三角形几何证明 1.三角形的一个外角等于_________的两个内角的和. 2.在△ABC中,若∠A:∠B:∠C=1:2:3,则∠C=________. 3.在△ABC中,∠B=45°,∠C=72°,那么与∠A相邻的一个外角等于_______. 4.如图1所示,△ABC中,D,E分别是AC,BD上的点, 且∠A=65°,∠ABD=∠DCE=30?°,则∠BEC的度数是_________. (1) (2) (3) (4) 5.按第4题图所示,请你直接写出∠A,∠BEC,∠EDC之间的大小关系,用“55°或70°D.以上答案都不对 9.若三角形的三个外角的度数之比为2:3:4,则与之对应的三个内角的度数之比为()A.4:3:2 B.3:2:4 C.5:3:1 D.3:1:5 10.满足下列条件的△ABC中,不是直角三角形的是() A.∠B+∠A=∠C B.∠A:∠B:∠C=2:3:5 C.∠A=2∠B=3∠C D.一个外角等于和它相邻的一个内角 11.如图3所示,在△ABC中,∠ABC与∠BAC的平分线相交于点O,若∠BOC=120°,则∠A为() A.30°B.60°C.80°D.100° 12.如图所示,在锐角△ABC中,CD和BE分别是AB和AC边上的高,且CD和BE?交于点P,若∠A=50°,则∠BPC的度数是() A.150°B.130°C.120°D.100°

专题十一 几何证明之三角形中作辅助线造全等 2020年中考数学冲刺难点突破 几何证明问题(原卷版)

2020年中考数学冲刺难点突破几何证明问题 专题十一几何证明之三角形中作辅助线造全等 1、如图1,OA=2,OB=4,以点A为顶点,AB为腰在第三象限作等腰直角△ABC. (Ⅰ)求C点的坐标; (Ⅱ)如图2,OA=2,P为y轴负半轴上的一个动点,若以P为直角顶点,PA为腰等腰直角△APD,过D作DE⊥x轴于E点,求OP﹣DE的值; (Ⅲ)如图3,点F坐标为(﹣4,﹣4),点G(0,m)在y轴负半轴,点H(n,0)x轴的正半轴,且FH⊥FG,求m+n的值. 2、如图,在△ABC中,AB=AC,点M在△ABC内,AM平分∠BAC.点D与点M在AC所在直线的两侧, AD⊥AB,AD=BC,点E在AC边上,CE=AM,连接MD、BE. (1)补全图形; (2)请判断MD与BE的数量关系,并进行证明; (3)点M在何处时,BM+BE会有最小值,画出图形确定点M的位置;如果AB=5,BC=6,求出BM+BE 的最小值.

3、如图1,∠AOB=90°,OC平分∠AOB,以C为顶点作∠DCE=90°,交OA于点D,OB于点E. (1)求证:CD=CE; (2)图1中,若OC=3,求OD+OE的长; (3)如图2,∠AOB=120°,OC平分∠AOB,以C为顶点作∠DCE=60°,交OA于点D,OB于点E.若OC=3,求四边形OECD的面积. 4、在△ABC中,AB=AC,CD是AB边上的高,若AB=10,BC=. (1)求CD的长. (2)动点P在边AB上从点A出发向点B运动,速度为1个单位/秒;动点Q在边AC上,从点A出发向点C运动,速度为v个单位/秒(v>1).设运动的时间为t(t>0),当点Q到点C时,两个点都停止运动. ①若当v=2时,CP=BQ,求t的值. ②若在运动过程中存在某一时刻,使CP=BQ成立,求v关于t的函数表达式,并写出自变量t的取值 范围.

初中几何三角形五心及定理性质讲解学习

初中几何三角形五心定律及性质 三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。 三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称 重心定理 三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名)重心的性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。 2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。 3、重心到三角形3个顶点距离的平方和最小。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。 5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。 外心定理

三角形外接圆的圆心,叫做三角形的外心。 外心的性质: 1、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。 2、若O是△ABC的外心,则∠BOC=2∠A(∠A为锐角或直角)或 ∠BOC=360°-2∠A(∠A为钝角)。 3、当三角形为锐角三角形时,外心在三角形内部;当三角形为钝角三角形时,外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。 5、外心到三顶点的距离相等 垂心定理 图1 图2 三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。

垂心的性质: 1、三角形三个顶点,三个垂足,垂心这7个点可以得到6个四点圆。 2、三角形外心O、重心G和垂心H三点共线,且OG︰GH=1︰2。(此直线称为三角形的欧拉线(Euler line)) 3、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的2倍。 4、垂心分每条高线的两部分乘积相等。 推论: 1. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。(图1) 2. 三角形的垂心是其垂足三角形的内心。(图1) 3. 若D 、E 、F 分别是△ABC 三边的高的垂足,则∠1 = ∠2 。(图2) 定理证明 已知:ΔABC中,AD、BE是两条高,AD、BE相交于点O,连接CO并延长交AB于点F ,求证:CF⊥AB 证明: 连接DE ∵∠ADB=∠AEB=90度 ∴A、B、D、E四点共圆 ∴∠ADE=∠ABE

几何证明三角形

1.在△ABC、△AED中,AB=AC,AD=AE,且∠CAB=∠DAE,若将△AED绕点A沿逆时针方向旋转,使D、E、B 在一条直线上,CE=BD成立吗?若成立,请说明理由 1.已知点E、F在正方形ABCD的边BC、CD上,若E、F分别是BC、CD的中点,G在AE、BF的交点上 求证:GD=AD 2.已知BD、CE是△ABC的两条高,M、N分别是BC、DE的中点,求证:(1)EM=DM(2)MN⊥DE 3.正方形ABCD,E、F分别为BC、CD边上一点。(1)若∠EAF=45·。求证:EF=BE+DF(2)若△AEF绕A点旋转,保持∠EAF=45·,问△CEF的周长是否随△AEF的位置的变化而变化? 4.已知正方形ABCD的边长为1,BC、CD上各有一点E、F,如果△CEF的周长为2,求∠EAF的度数 5.已知正方形ABCD,F为BC中点E为CD边上一点,且满足∠BAF=∠FAE求证:AF=BC+CE 6.已知P为正方形ABCD的对角线AC上一点(不与A、C重合),PE⊥BC,PF⊥CD于点F,(1)若四边形PECF 绕点C旋转,在旋转过程中是否总有BP=DP?若是,请证明之;若不是,请举出反例(2)试选取正方形ABCD 的两个顶点,分别与四边形PECF的两个顶点连结,使得到的两条线段在旋转的过程中长度始终相等,并证明之 求任意三角形面积公式的方法? 7.某人在上午6点至7点之间去长跑,开始时看表,分针与时针成110度,跑完后再看,有、又成110度,问此人跑了多久?(表没停) 8.已知三角形ABC是等腰三角形,角C=90度, 1,操作并观察,如图将三角板的45度角的顶点于点C重合,使这个角落在角ACB的内部,两边分别与斜边AB交于E,F两点,(E, F不与AB重合)然后将这个角绕点C在角ACB的内部旋转,观察并指出在点E,F的位置发生什么变化时,AE , EF , FB中最长的线段 2探索AE , EF , FB这三条线段能否组成直角三角形?如果能加以证明!!! 9.有浓度为百分之五十五的酒精溶液若干升,加入一升浓度为百分之八十的酒精溶液后,酒精溶液浓度变为百分之六十。如果要得到百分之七十的酒精溶液需要再加入多少升浓度为百分之八十的酒精溶液? 10. 22÷33333=() 11. 1/2 , 1/3 , 2/3 , 1/4 , 2/4 , 3/4 , 1/5 , 2/5 , 3/5 , 4/5...... 问:第一百个分数是!? 12..若方程组:kx-y=1和4x+my=2无解,则k与m的值分别为K= ,M= . 13.一个数的平方根是a +b 和4a-6b+13,那么这个数是 1

中考几何证明题知识点分析

目录 1、考点总分析 2、知识点讲解 3、出题的类型 4、解题思路 5、相关练习题

几何证明题专题 本题的主要知识点(中考中第3道,分值为8分) 七年级上第4章几何图形初步七年级下第5章相交线与平行线 八年级上第11章三角形第12章全等三角形第13章轴对称 八年级下第17章勾股定理第18章平行四边形 九年级上第23章旋转第24章圆 九年级下第27章相似第28章投影与视图 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。 几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。 这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 几何证明题重点考察的是学生的逻辑思维能力,能通过严密的"因为"、"所以"逻辑将条件一步步转化为所要证明的结论。这类题目出法相当灵活,不像代数计算类题目容易总结出固定题型的固定解法,而更看重的是对重要模型的总结、常见思路的总结。所以本文对中考中最常出现的若干结论做了一个较为全面的思路总结。 知识结构图

三角形全等证明题(含答案)

如何做几何证明题 【知识精读】 1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。 2. 掌握分析、证明几何问题的常用方法: (1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决; (2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止; (3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。 3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。 【分类解析】 1、证明线段相等或角相等 两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。很多其它问题最后都可化归为此类问题来证。证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。 例1. 已知:如图1所示,?ABC 中,∠=?===C AC BC AD DB AE CF 90,,,。 求证:DE =DF

分析:由?ABC 是等腰直角三角形可知,∠=∠=?A B 45,由D 是AB 中点,可考虑连结CD ,易得CD AD =,∠=?DCF 45。从而不难发现??DCF DAE ? 证明:连结CD ΘΘΘAC BC A B ACB AD DB CD BD AD DCB B A AE CF A DCB AD CD =∴∠=∠∠=?=∴==∠=∠=∠=∠=∠=90,,,, ∴?∴=??ADE CDF DE DF 说明:在直角三角形中,作斜边上的中线是常用的辅助线;在等腰三角形中,作顶角的平分线或底边上的中线或高是常用的辅助线。显然,在等腰直角三角形中,更应该连结CD ,因为CD 既是斜边上的中线,又是底边上的中线。本题亦可延长ED 到G ,使DG =DE ,连结BG ,证?EFG 是等腰直角三角形。有兴趣的同学不妨一试。 例2. 已知:如图2所示,AB =CD ,AD =BC ,AE =CF 。 求证:∠E =∠F

初一几何三角形练习题及答案

初一几何---三角形 一.选择题 (本大题共 24 分) 1.以下列各组数为三角形的三条边,其中能构成直角三角形的是() (A)17,15,8 (B)1/3,1/4,1/5 (C) 4,5,6 (D) 3,7,11 2.如果三角形的一个角的度数等于另两个角的度数之和,那么这个三角形一定是() (A)锐角三角形(B)直角三角形(C)钝角三角形(D)等腰三角形 3.下列给出的各组线段中,能构成三角形的是() (A)5,12,13 (B)5,12,7 (C)8,18,7 (D)3,4,8 4.如图已知:Rt△ABC中,∠C=90°,AD平分∠BAC,AE=AC,连接DE,则下列结论中,不正确的是() (A) DC=DE (B) ∠ADC=∠ADE (C) ∠DEB=90°(D) ∠BDE=∠DAE 5.一个三角形的三边长分别是15,20和25,则它的最大边上的高为() (A)12 (B)10 (C) 8 (D) 5 6.下列说法不正确的是() (A)全等三角形的对应角相等 (B)全等三角形的对应角的平分线相等 (C)角平分线相等的三角形一定全等 (D)角平分线是到角的两边距离相等的所有点的集合 7.两条边长分别为2和8,第三边长是整数的三角形一共有() (A)3个(B)4个(C)5个(D)无数个 8.下列图形中,不是轴对称图形的是() (A)线段MN (B)等边三角形(C) 直角三角形(D) 钝角∠AOB 9.如图已知:△ABC中,AB=AC,BE=CF,AD⊥BC于D,此图中全等的三角形共有() (A)2对(B)3对(C)4对(D)5对 10.直角三角形两锐角的平分线相交所夹的钝角为() (A)125°(B)135°(C)145°(D)150°

三角形的五心性质以及典型问题--初中数学竞赛

三角形的五心 三角形的“五心”指的是三角形的外心,内心,重心,垂心和旁心. 一.三角形的外心 定理1:三角形的三条边的垂直平分线交于一点,这点称为三角形的外心(外接圆圆心). 定理2:三角形的外心到三角形的三个顶点距离相等. 都等于三角形的外接圆半径. 定理3:锐角三角形的外心在三角形内; 直角三角形的外心在斜边中点; 钝角三角形的外心在三角形外. 定理4:AOB C AOC B BOC A ∠=∠∠=∠∠= ∠2 1 ,21,21 1.如图所示,在锐角ABC ?中,BC AD ⊥于D ,AC DE ⊥于E ,AB DF ⊥于F ,O 为ABC ?的外心. 求证:(1)AEF ?∽ABC ? (2)EF AO ⊥ O F E D C B A 2.设O 为锐角ABC ?的外心,连接CO BO AO ,,并延长分别交对边于N M L ,,,则 CN BM AL 1 11++的值是_______________.(设R 为ABC ?外接圆半径) 二.三角形的内心 定理1:三角形的三条内角平分线交于一点,这点称为三角形的内心(内切圆圆心). 定理2:三角形的内心到三边的距离相等,都等于三角形内切圆半径. 定理3:内切圆半径r 的计算: 设三角形面积为S ,并记p =12(a +b +c ),则r =S p . 特别的,在直角三角形中,有 r =1 2 (a +b -c ). A B C O I K H E F A B C M

B C D A I B C E D A 定理4:I 为三角形的内心,A 、B 、C 分别为三角形的三个顶点,延长AO 交BC 边于N ,则有AI: IN=AB:BN=AC:CN=(AB+AC):BC 定理5:,2 1 90A BIC ∠+ =∠ B CIA ∠+=∠2190 , C AIB ∠+=∠2190 。 3.如图所示,⊙1O 与⊙2O 相交于B A ,两点,且2O 在⊙1O 的圆周上,弦C O 2交⊙2O 于D 。证明:D 是ABC ?的内心. 4.如图,在ABC ?中,点D 、E 是ABC ∠,ACB ∠的三等分线的交点,当?=∠60A 时,求BDE ∠度数 5.如图,I 是ABC ?的内心,AI 的延长线交ABC ?的外接圆于D ,则,DC DB DI ==

三角形几何证明每日一题(六)及答案

几何证明每日一题(六) 1.已知:如图,在△ABC 中,点D,E 分别在边AB,AC 上, 且DE∥BC,∠1+∠2=180°. 求证:∠3=∠B. 2.如图,在△ABC 中,AD⊥BC 于D,DG∥AB 交AC 于点G, 点E,F 分别在边AB,BC 上,且∠1=∠2. 求证:EF⊥BC.

3.已知:如图, ∠AED=∠A+∠B.求证: DE∥CB.

2

4.如图,在△ABC 中,点D,E 在边BC 上,AD 平分∠BAC, F 为DA 延长线上一点,FE⊥BC 于E,∠B=35°,∠C=65°, 求∠F 的度数.

5.已知:如图,在△ABC 中,D 为BC 边上一点,DF⊥AB 于 F,DE∥AC 交AB 边于点E, ∠A=∠B.求证:∠1=∠2.

【参考答案】 1.证明:如图, ∵∠1+∠2=180°(已知) ∠1+∠DFE=180°(平角的定义) ∴∠2=∠DFE(同角的补角相等) ∴ AB∥EF(内错角相等,两直线平行) ∴∠3=∠ADE(两直线平行,内错角相等) ∵DE∥BC(已知) ∴∠ADE=∠B(两直线平行,同位角相等) ∴∠3=∠B(等量代换) 2.证明:如图, ∵DG∥AB(已知) ∴∠2=∠BAD(两直线平行,内错角相等) ∵∠1=∠2(已知) ∴∠1=∠BAD(等量代换) ∴EF∥AD(同位角相等,两直线平行) ∴∠ADB=∠EFB(两直线平行,同位角相等) ∵AD⊥BC(已知) ∴∠ADB=90°(垂直的定义) ∴∠EFB=90°(等量代换) ∴EF⊥BC(垂直的定义) 3.证明:如图,延长DE 交AB 于点F ∵∠AED 是△AEF 的一个外角(外角的定义) ∴∠AED=∠A+∠AFE(三角形的一个外角等于和它不相邻 的两个内角的和) ∵∠AED=∠A+∠B(已知) ∴∠AFE=∠B(等式的性质) ∴DE∥BC(同位角相等,两直线平行) 4.解:如图, 在△ABC 中,∠B=35°,∠C=65°(已知) ∴∠BAC=180°-∠B-∠C =180°-35°-65° =80°(三角形的内角和等于180°) ∵AD 是∠BAC 的平分线(已知)

完整版初中几何三角形五心及定理性质

初中几何三角形五心定律及性质三角形的重心,外心,垂心,内心和旁心称之为三角形的五心。三角形五心定理是指三角形重心定理,外心定理,垂心定理,内心定理,旁心定理的总称 重心定理 三角形的三条边的中线交于一点。该点叫做三角形的重心。三中线交于一点可用燕尾定理证明,十分简单。(重心原是一个物理概念,对于等厚度的质量均匀的三角形薄片,其重心恰为此三角形三条中线的交点,重心因而得名) 重心的性质: 1、重心到顶点的距离与重心到对边中点的距离之比为2︰1。 2、重心和三角形任意两个顶点组成的3个三角形面积相等。即重心到三条边的距离与三条边的长成反比。 3、重心到三角形3个顶点距离的平方和最小。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数,即其重心坐标为((X1+X2+X3)/3,(Y1+Y2+Y3)/3)。 5. 以重心为起点,以三角形三顶点为终点的三条向量之和等于零向量。

外心定理 页6 共页1 第 三角形外接圆的圆心,叫做三角形的外心。外心的性质:、三角形的三条边的垂直平分线交于一点,该点即为该三角形的外心。1为锐角或直角)或A是△ABC的外心,则∠BOC=2∠(∠A2、若O ∠为钝角)。A(∠A∠BOC=360°-2当三角形为钝角三角形时,外心在三角形内部;、当三角形为锐角三角形时,3外心在三角形外部;当三角形为直角三角形时,外心在斜边上,与斜边的中点重合。、外心到三顶点的距离相等5 垂心定理

2 图图1 三角形的三条高(所在直线)交于一点,该点叫做三角形的垂心。页6 共页2 第 垂心的性质:6个四点圆。1、三角形三个顶点,三个垂足,垂心这7个点可以得到。(此直︰2三点共线,且OG︰GH=1、重心2、三角形外心OG和垂心H Euler line))线称为三角形的欧拉线(倍。、垂心到三角形一顶点距离为此三角形外心到此顶点对边距离的32 、垂心分每条高线的两部分乘积相等。4推论:)。(图1ABC 三边的高的垂足,则∠1 = ∠2 、1. 若 D 、 E F 分别是△(图1)2. 三角形的垂心是其垂足三角形的内心。2)∠2 。(图∠E 、F 分别是△ABC 三边的高的垂足,则1 = 、3. 若 D 定理证明并延长,连接相交于点OCO、中,ADBE是两条高,AD、

(完整版)三角形五心的证明

三角形五心 内心:内切圆的圆心,即三条角平分线的交点。 外心:外切圆的圆心,即三条中垂线的交点。 旁心:旁切圆的圆心,即三条角平分线的交点。(类似、但不同于内心)垂心:三条高的交点。 重心:三条中线的交点。 注:红线为所要证明的线,绿线为辅助线。 内心:三条角平分线的交点 证:过点O作三边的垂线,垂足分别为D、E、F。 由角平分线定理(角平分线上一点到两边的 距离相等)得: OD=OF,OF=OE ∴ OD=OE ∴AO为角BAC的平分线 外心:三条中垂线的交点 证:连结OA、OB、OC,并过O点作OF⊥BC于点F。 由线段中垂线定理(线段中垂线上一点到 两端点的距离相等),得: OA=OB,OA=OC. ∴OB=OC ∴点O在线段BC的中垂线上 ∴OF为线段BC的中垂线 旁心: 证:过点O作三边的垂线,垂足分别为D、E、F。 由角平分线定理(角平分线上一点到两边的 距离相等)得: OD=OF,OD=OE ∴ OF=OE ∴BO为角ABC的平分线

垂心:三条高的交点 证:连结DE,连结AO交BC于F点。 ∵角BDC=角BEC=90° ∴B、D、E、C四点共圆(以BC为直径的圆)。 ∴角FBO=角CDE ······① (同弦(弧)所对圆周角相等) 又∵角ODA=角AEO=90° ∴O、D、A、E四点共圆(以AO为直径的圆)。 ∴角AOE=角ADE (同弦(弧)所对圆周角相等) 且角AOE=角BOF ∴角ADE=角BOF ······② 由①②可知,角OFB=角ODA=90° ∴AF为BC边上的高。 重心:三条中线的交点 方法一: 证:连结AO交BC于点F。 ∵D为AB的中点 ∴S△ACD=S△BCD (S△表示三角形的面积) (底相等(AD=BD),高相同(都为点C到AB的距离)) S△AOD=S△BOD ∴S△AOC=S△BOC ······① 同理可得: S△BOC=S△AOB ······② 由①②得,S△AOC=S△AOB 又∵△AOC与△AOB底都为AO ∴它们高相等,即:点B和点C到AF的距离相等。 对于△AFB和△AFC,底相同(为AF),高相等(分别为点B和点C到AF的距离)。 ∴S△AFB=S△AFC 又对于△AFB和△AFC,高相同(为点A到BC的距离)。 ∴它们底相等,即:BF=CF ∴AF为三角形的中线。 方法二: 证:连AO交BC于点F,连DE交AF于点N, G,H分别为OB、OC的中点,连DG,EH。 连GH交AF于点M。 ∵DE为△ABC的中位线 ∴DE#1/2BC (#表示平行且等于) 同理,可得:GH#1/2BC ∴DE#GH 即:四边形DEHG为平行四边形。 易证,△ODN≌△OHM,得HM=DN ∵DG为△ABO的中位线 ∴DG∥NM,即四边形DGMN为平行四边形

人教版八年级数学上册第11章三角形几何证明专题练习题(无答案)

八年级数学(上)几何证明专题练习题 1、已知:在"ABC 中,/ A=900, AB=AC 在BC 上任取一点 P ,作PQ// AB 交AC 于Q 作PR // CA 交BA 于R, D 是BC 的中点,求证:" RDQ 是等腰直角三角形。 已知:在"ABC 中,/ A=900, AB=AC D 是AC 的中点,AE ± BD, AE 延长线交 BC 于F ,求 证:/ ADB=/ FDC 已知:在"ABC 中BD CE 是高,在BD CE 或其延长线上分别截取 BM=AC CN=AB 求证: MAL NA 已知:如图(1),在△ ABC 中,BP 、CP 分别平分/ ABC 和/ ACB DE 过点P 交AB 于D,交 AC 于 E , 且 DE// BC 求证:DE - DB=EC 2、 3、 4、 C

5、在Rt A ABC 中,AB = AC, / BAC=90 ° , O 为BC 的中点。 (1) 写出点O到厶ABC的三个顶点A、B、C的距离的大小关系(不要求证明); (2) 如果点M、N分别在线段AB、AC上移动,在移动中保持AN= BM,请判断厶OMN 的形状,并证明你的结论。 7、如图,等腰三角形ABC中,AB = AC , / A = 90°, BD平分/ ABC , DE丄BC且BC = 10,求厶DCE的周长。 8 ?如图所示,已知AD是/ BAC的平分线,EF垂直平分AD交BC的延长线于点F,交AD于点E,连接AF ,求证:/ B= / CAF。 6、如图,△ ABC为等边三角形,延长 连结EC、ED,求证:CE=DE BC 到D,延长BA 到E, AE=BD ,

三角形五心性质概念整理(超全)

1、重心到顶点的距离与重心到对边中点的距离之比为2:1。 2、重心和三角形3个顶点组成的3个三角形面积相等。 3、重心到三角形3个顶点距离平方的和最小。 证明方法: 设三角形三个顶点为(x 1,y 1 ),(x 2 ,y 2 ),(x 3 ,y 3 ) 平面上任意一点为(x,y)则该点到三顶点距离平 方和为: (x 1-x)2+(y 1 -y)2+(x 2 -x)2+(y 2 -y)2+(x 3 -x)2+(y 3 -y)2 =3x2-2x(x 1+x 2 +x 3 )+3y2-2y(y 1 +y 2 +y 3 )+x 1 2+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2 =3[x-1/3*(x 1+x 2 +x 3 )]2+3[y-1/3*(y 1 +y 2 +y 3 )]2+x 1 2+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2-1/3(x 1 +x 2 +x 3 )2-1/3(y 1 +y 2 +y 3 )2 显然当x=(x 1+x 2 +x 3 )/3,y=(y 1 +y 2 +y 3 )/3(重心坐标)时 上式取得最小值x 12+x 2 2+x 3 2+y 1 2+y 2 2+y 3 2-1/3(x 1 +x 2 +x 3 )2-1/3(y 1 +y 2 +y 3 )2 最终得出结论。 4、在平面直角坐标系中,重心的坐标是顶点坐标的算术平均数, 即其坐标为[(X1+X2+X3)/3,(Y1+Y2+Y3)/3]; 空间直角坐标系——横坐标:(X1+X2+X3)/3,纵坐标:(Y1+Y2+Y3)/3,纵坐标:(Z1+Z2+Z3)/3 5、三角形内到三边距离之积最大的点。 6、在△ABC中,若MA向量+MB向量+MC向量=0(向量),则M点为△ABC的重心,反之也成立。 7、设△ABC重心为G点,所在平面有一点O,则向量OG=1/3(向量OA+向量OB+ 向量OC)

相关主题
文本预览
相关文档 最新文档