当前位置:文档之家› 本特利速度传感器

本特利速度传感器

本特利速度传感器
本特利速度传感器

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

汽机TSI系统探头安装与调试方法

汽机TSI系统探头安装与调试方法: 测量与止推轴承法兰表面的间隙,防止止推轴承的损坏。 安装调整顺序是:先将汽机大轴推向机头方向靠死,再将大轴推向发电机方向靠死,测出两死点间的行程量,再将大轴调整到两行程中间距离安装探头,同时,检查探头间隙电压是否符合要求,使探头间隙恰为处于仪表的量程中点(示值为“0”)。 共安装了两个双通道轴向位移监视器,每一个双通道位移监视器由2个14mm涡流传感器、2个相应的前置器和2根延长电缆组成,二个通道组成或门报警,二个通道组成与门发出停机信号,从逻辑上防止了误动作。这两个通道中的一个如发生故障,可以把它切除转到单通道工作状态。两个通道轴向位监视器都可以单独工作,也可以同时工作,共同监视汽轮发电机的运行情况,这样提高了汽轮机安全运行的可靠性,每个通道都有相应的继电器接点输出。轴向位移的安装调整中情况如表1 相对膨胀 用来连续指示转子与机壳的轴向间隙,防止静摩擦,导致灾难性事故。 调整方法是:在确定好两探头之间的总间隙(包括靠背轮的厚度)这后,拉动拖板向机头方向(间隙4mm)和向发电机方向(间隙15mm)调整,以前置器的输出电压为基准。由于相对膨胀由两只探头信号叠加而成的,且受到靠背轮的材质、光洁度影响,所以,相对膨胀的调整要向汽机方向、发电机方向来回调整多次,找出最佳安装位置。间隙调整好后,可对显示仪表进行刻度校验。 热膨胀过程中,当被监测轴环移动超出第一个探头测量范围时,紧接着就进入第二个探头监测量程,由监测器内的微处理器选择从一个传感器线形范围转换到另一个传感器的线形范围。 安装调整如表2

数字转速表\ 数字转速表连续监测汽轮机得转速,转速输入为每转60个脉冲,它是通过安装在转轴上的齿轮(有60个齿)、涡流探头和前置器得到的: f=nz/60其中,z=齿轮齿数(60个) 转轴的转速在数字表的液晶显示屏幕上显示出来,而且有相应的——自流信号输出到DEH系统,,转速表系统设有独立的报警电路,报警的设定值预调到600rpm,当转轴速度超出设定值时,相应的报警继电器动作,常开接点闭合,接通后汽缸喷水,当转轴速度低于600rpm时,处于闭合状态的继电器接点打开,从而关闭后汽缸喷水,打开轴承顶轴油泵和回转设备喷油嘴。安装调整情况见表3。 零转速测量安装调整情况见表3 偏心/键相监视器安装调整情况见表3 复合振(轴的绝对振动) 它是由一种复合式探头监测器采完成的,复合式探头传感器系统是一个涡流探头和一个速度传感器的组合,安装在一个组件里。换句话说,是由一组涡流探头、前置器、延长电缆和一组速度探头及延长电缆组成,它即可以测转子的相对振动,轴承盖的绝对振动,也可以测量转子的绝对振动,它是由转子的相对振动和轴承盖的绝对振动矢量相加而获得的D对于油膜轴承的设备,由于这些轴承支撑结构的柔性相一致,有30%以上轴振动是一定要传递到轴承箱体上,到这种程度,仅测量轴振是不能够提供足够的保护或诊断信息。#2—5瓦各安装了一个复合探头。安装调整情况见表4。

汽车传感器的种类和作用

汽车传感器的种类和作用 汽车传感器把汽车运行中各种工况信息,如车速、各种介质的温度、发动机运转工况等,转化成电讯号输给计算机,以便发动机处于最佳工作状态。 车用传感器很多,判断传感器出现的故障时,不应只考虑传感器本身,而应考虑出现故障的整个电路。因此,在查找故障时,除了检查传感器之外,还要检查线束、插接件以及传感器与电控单元之间的有关电路。下面我们来认识一下汽车上的主要传感器。 空气流量传感器 空气流量传感器是将吸入的空气转换成电信号送至电控单元(ecu),作为决定喷油的基本信号之一。根据测量原理不同,可以分为旋转翼片式空气流量传感器(丰田previa旅行车)、卡门涡游式空气流量传感器(丰田凌志ls400轿车)、热线式空气流量传感器(日产千里马车用vg30e发动机和国产天津三峰客车tj6481aq4装用的沃尔沃b230f发动机)和热膜式空气流量传感器四种型式。前两者为体积流量型,后两者为质量流量型。目前主要采用热线式空气流量传感器和热膜式空气流量传感器两种。 进气压力传感器

进气压力传感器可以根据发动机的负荷状态测出进气歧管内的绝对压力,并转换成电信号和转速信号一起送入计算机,作为决定喷油器基本喷油量的依据。国产奥迪100型轿车(v6发动机)、桑塔纳2000型轿车、北京切诺基(25l发动机)、丰田皇冠3.0轿车等均采用这种压力传感器。目前广泛采用的是半导体压敏电阻式进气压力传感器。 节气门位置传感器 节气门位置传感器安装在节气门上,用来检测节气门的开度。它通过杠杆机构与节气门联动,进而反映发动机的不同工况。此传感器可把发动机的不同工况检测后输入电控单元(ecu),从而控制不同的喷油量。它有三种型式:开关触点式节气门位置传感器(桑塔纳2000型轿车和天津三峰客车)、线性可变电阻式节气门位置传感器(北京切诺基)、综合型节气门位置传感器(国产奥迪100型v6发动机)。 曲轴位置传感器 也称曲轴转角传感器,是计算机控制的点火系统中最重要的传感器,其作用是检测上止点信号、曲轴转角信号和发动机转速信号,并将其输入计算机,从而使计算机能按气缸的点火顺序发出最佳点火时刻指令。曲轴位置传感器有三种型式:电磁脉冲式曲轴位置传感器、霍尔效应式曲轴位置传感器(桑塔纳2000型轿车和北京切诺基)、光电效应式曲轴位置传感器。曲轴位置传感器型式不同,其控制方式

本特利bently电涡流传感器工作原理

本特利bently电涡流传感器工作原理 本特利bently电涡流传感器工作原理 一、本特利bently电涡流传感器常用分类 我们常接触到的本特利bently涡流传感器有直径5mm涡流传感器、8mm涡流传感器、11mm涡流传感器、14mm涡流传感器、25mm涡流传感器、50mm差胀传感器、3300耐高温电涡流传感器几种,其中5mm探头和14mm探头不常用。每个传感器系统都由探头、延长线和前置器组成,本特利探头、延长线和前置器具有完全的可互换性,只要部件号一致,各部分可以互换。 二、本特利bently电涡流传感器工作原理 电涡流传感器是以高频电涡流效应为原理的非接触式位移、振动传感器,其基本原理是探头、延伸电缆、前置器以及被测体构成基本工作系统。 前置器中高频振荡电流通过延伸电缆流入探头线圈,在探头头部的线圈中产生交变的磁场。如果在这一交变磁场的有效范围内没有金属材料靠近,则这一磁场能量会全部损失;当有被测金属体靠近这一磁场,则在此金属表面产生感应电流,电磁学上称之为电涡流。与此同时该电涡流场也产生一个方向与头部线圈方向相反的交变磁场,由于其反作用,使头部线圈高频电流的幅度和相位得到改变(线圈的有效阻抗),这一变化与金属体磁导率、电导率、线圈的几何形状、几何尺寸、电流频率以及头部线圈到金属导体表面的距离等参数有关。 通常假定金属导体材质均匀且性能是线性和各项同性,则线圈和金属导体系统的物理性质可由金属导体的电导率б、磁导率ξ、尺寸因子τ、头部体线圈与金属导体表面的距离D、电流强度I和频率ω参数来描述。则线圈特征阻抗可用Z=F(τ, ξ, б, D, I, ω)函数来表示。通常我们能做到控制τ, ξ, б, I, ω这几个参数在一定范围内不变,则线圈的特征阻抗Z就成为距离D的单值函数,虽然它整个函数是一非线性的,其函数特征为S型曲线,但可以选取它近似为线性的一段。于此,通过前置器电子线路的处理,将线圈阻抗Z的变化,即头部

传感器原理与应用作业参考答案

《传感器原理与应用》作业参考答案 作业一 1.传感器有哪些组成部分在检测过程中各起什么作用 答:传感器通常由敏感元件、传感元件及测量转换电路三部分组成。 各部分在检测过程中所起作用是:敏感元件是在传感器中直接感受被测量,并输出与被测量成一定联系的另一物理量的元件,如电阻式传感器中的弹性敏感元件可将力转换为位移。传感元件是能将敏感元件的输出量转换为适于传输和测量的电参量的元件,如应变片可将应变转换为电阻量。测量转换电路可将传感元件输出的电参量转换成易于处理的电量信号。 2.传感器有哪些分类方法各有哪些传感器 答:按工作原理分有参量传感器、发电传感器、数字传感器和特殊传感器;按被测量性质分有机械量传感器、热工量传感器、成分量传感器、状态量传感器、探伤传感器等;按输出量形类分有模拟式、数字式和开关式;按传感器的结构分有直接式传感器、差分式传感器和补偿式传感器。 3.测量误差是如何分类的 答:按表示方法分有绝对误差和相对误差;按误差出现的规律分有系统误差、随机误差和粗大误差按误差来源分有工具误差和方法误差按被测量随时间变化的速度分有静态误差和动态误差按使用条件分有基本误差和附加误差按误差与被测量的关系分有定值误差和积累误差。 4.弹性敏感元件在传感器中起什么作用 答:弹性敏感元件在传感器技术中占有很重要的地位,是检测系统的基本元件,它能直接感受被测物理量(如力、位移、速度、压力等)的变化,进而将其转化为本身的应变或位移,然后再由各种不同形式的传感元件将这些量变换成电量。 5.弹性敏感元件有哪几种基本形式各有什么用途和特点 答:弹性敏感元件形式上基本分成两大类,即将力变换成应变或位移的变换力的弹性敏感元件和将压力变换成应变或位移的变换压力的弹性敏感元件。 变换力的弹性敏感元件通常有等截面轴、环状弹性敏感元件、悬臂梁和扭转轴等。实心等截面轴在力的作用下其位移很小,因此常用它的应变作为输出量。它的主要优点是结构简单、加工方便、测量范围宽、可承受极大的载荷、缺点是灵敏度低。空心圆柱体的灵敏度相对实心轴要高许多,在同样的截面积下,轴的直径可加大数倍,这样可提高轴的抗弯能力,但其过载能力相对弱,载荷较大时会产生较明显的桶形形变,使输出应变复杂而影响精度。环状敏感元件一般为等截面圆环结构,圆环受力后容易变形,所以它的灵敏度较高,多用于测量较小的力,缺点是圆环加工困难,环的各个部位的应变及应力都不相等。悬臂梁的特点是结构简单,易于加工,输出位移(或应变)大,灵敏度高,所以常用于较小力的测量。扭转轴式弹性敏感元件用于测量力矩和转矩。 变换压力的弹性敏感元件通常有弹簧管、波纹管、等截面薄板、波纹膜片和膜盒、薄壁圆筒和薄壁半球等。弹簧管可以把压力变换成位移,且弹簧管的自由端的位移量、中心角的变化量与压力p成正比,其刚度较大,灵敏度较小,但过载能力强,常用于测量较大压力。波纹管的线性特性易被破坏,因此它主要用于测量较小压力或压差测量中。 作业二 1.何谓电阻式传感器它主要分成哪几种 答:电阻式传感器是将被测量转换成电阻值,再经相应测量电路处理后,在显示器记录仪上显示或记

(整理)分别列举10种接触、非接触传感器种类及原理

分别列举10种接触、非接触传感器种类及原理 接触式位移传感器: 1位移传感器及其原理:计量光栅是利用光栅的莫尔条纹现象来测量位移的。 “莫尔”原出于法文Moire,意思是水波纹。几百年前法国丝绸工人发现,当两层薄丝绸叠在一起时,将产生水波纹状花样;如果薄绸子相对运动,则花样也跟着移动,这种奇怪的花纹就是莫尔条纹。一般来说,只要是有一定周期的曲线簇重叠起来,便会产生莫尔条纹。计量光栅在实际应用上有透射光栅和反射光栅两种;按其作用原理又可分为辐射光栅和相位光栅;按其用途可分为直线光栅和圆光栅。下面以透射光栅为例加以讨论。透射光栅尺上均匀地刻有平行的刻线即栅线,a为刻线宽,b为两刻线之间缝宽,W=a+b称为光栅栅距。目前国内常用的光栅每毫米刻成10、25、50、100、250条等线条。光栅的横向莫尔条纹测位移,需要两块光栅。一块光栅称为主光栅,它的大小与测量范围相一致;另一块是很小的一块,称为指示光栅。为了测量位移,必须在主光栅侧加光源,在指示光栅侧加光电接收元件。当主光栅和指示光栅相对移动时,由于光栅的遮光作用而使莫尔条纹移动,固定在指示光栅侧的光电元件,将光强变化转换成电信号。由于光源的大小有限及光栅的衍射作用,使得信号为脉动信号。如图 1,此信号是一直流信号和近视正弦的周期信号的叠加,周期信号是位移x的函数。每当x变化一个光栅栅距W,信号就变化一个周期,信号由b点变化到b’点。由于bb’=W,故b’点的状态与b点状态完全一样,只是在相位上增加了2π。 (上海德测电子科技有限公司产品) 2螺杆式空压机压力传感器螺杆式空压机压力传感器:是工业实践中最为常用 的一种传感器,而我们通常使用的压力传感器主要是利用压电效应制造而成的,这样的传感器也称为压力传感器。 压电传感器中主要使用的压电材料包括有石英、酒石酸钾钠和磷酸二氢胺。其中石英(二氧化硅)是一种天然晶体,压电效应就是在这种晶体中发现的,在一定的温度范围之内,压电性质一直存在,但温度超过这个范围之后,压电性质完全消失(这个高温就是所谓的“居里点”)。由于随着应力的变化电场变化微小(也就说压电系数比较低),所以石

本特利3500系统介绍及探头安装、调试

本特利3500系统介绍及探头安装、调试 【摘要】本文介绍本特利3500系统软硬件结构,以及各传感器的测量原理,同事根据笔者多年工作经验对传感器探头的安装与调试进行说明,供大家参考与学习。 【关键词】本特利3500;轴振;轴向位移;电涡流传感器 随着机组容量的增大,汽轮机安全监视与保护,已成为汽轮机的重要组成部分;同时,对汽轮机的各种安全装置的动作的准确性和可靠性提出了更高的要求。汽轮机的安全检测系统是对汽机的转速、轴承振动、轴向位移、高低压缸差胀、盖振、偏心、绝对膨胀进行时实监测,并当某一参数越限时,监测系统及时的发出报警或跳机信号,保护汽轮机设备运行安全。耒阳电厂汽轮机安全监测系统使用了本特利3500型监测系统,其方便的软件组态形式和可靠硬件质量,将为电厂的安全运行提供了有力保障,本人根据多年工作经验跟大家分享一下本特利3500系统结构以及传感器的安装与调试。 一、系统结构 1.1仪表框架部分 仪表框架部分包括:电源输入模块1个,框架接口模块模块1个,两通道键相监测模块1个,四通道电涡流位移传感器或速度加速度传感器监测模块4个、四通道差胀或轴向位移监测模块2个,两通道的转速监测模块1个。四通道的继电器模块2个。 1.2现场传感器部分 传感器部分主要有:各种涡流监测探头和速度式探头、延长电缆和前置器及信号线。 1.3计算机及软件 3500软件包包括:框架配置软件;数据采集/服务器软件;操作员显示软件。各种监测模块的内部设置,可以通过连接装有框架组态软件的计算机的RS232接口和框架接口模块的组态专用接口,在计算机上设置好各模块的参数,下装到各模块,及完成对各监测器的量程、报警点、探头类型和继电器输出的设置。 1.4电涡流传感器监测原理 电涡流传感器是根据涡流效应原理工作的,涡流传感器的线圈L与一个电容C并联,构成一个并联谐振电路。由前置器内的晶体振荡器供给稳定的高频电流来激励,在线圈周围产生高频交变磁场俑,当被测主轴靠近次交流磁场φ用范围时,在被测主轴表面产生电涡流,而此电涡流又产生一个新交变磁场来阻碍主磁场的变化,这一过程将消耗能量,因而使线圈的Q值发生变化。在被测主轴与传感器之间的间隙d改变时,传感器线圈的Q值也随之变化。 在电路中线圈Q值与线圈是电感量之间的关系为: Q=XL/R 式中L——线圈是电感量;R——电路中的祸合电阻。 上式说明,线圈的电感量随Q值变化而变化,亦即随间隙d的变化而变化。而线圈电感量的变化,使线圈的输出电压U发生变化。这样涡流传感器便将间隙d的变化转变成电压的变化。信号经前置器放大以后为0—24VDC信号进仪表框架。 二、TSI探头的安装与调试

本特利3500型TSI系统安装与调试

1 传感器的安装与调试 1.1轴承振动传感器探头的安装 6个φ8 mm灵敏度为7.87 V/rnm 的涡流探头分别装于1号、2号、3号轴承处。每个轴承处安装两只互成90° ,垂直于轴承,探头与水平方向的夹角为45°,分别测量X、Y方向上的振动。一般涡流传感器,涡流影响范围约为传感器线圈直径的三倍,因此传感器对应的测量宽度应为传感器直径的三倍,而且在传感器空间24mm范围内不应有其它金属物存在,否则会带来误差。安装间隙电压应为传感器输出特性曲线确定的线形中点位而定,φ8 mm灵敏度为7.87 V/mm的探头,安装间隙电压为- 9.75 V或1.2 mm左右。由于传感器线形电压范围大大超过测量范围,所以安装间隙允许有较大的偏差,只要保证测量范围在线形段内即可,但为了满足故障诊断和可靠性的需要,一般要求安装电压9.75土0.2 V。 1.2轴向位移、高低压差胀传感器的安装 轴向位移测的是推力轴承相对汽缸的轴向位移,在机组运行过程中,使动静部件之间保持一定的轴向间隙,避免汽轮机内部转动部件和静止部件之间发生摩擦和碰撞。两只轴向位移传感器探头安装在2号轴承处,分别装于甲乙两侧,探头朝向低压缸方向安装探头型号为7200型φ14 mm探头,灵敏度为3.937 V/mm,前臵器供电电压为-24V。大轴相对于汽缸的设计零点为止推轴承靠在工作瓦面为大轴零位。在安装轴向位移和低压差胀传感器前,首先要把大轴推到零位,然后按要求安装。轴向位移的量程范围为-2 mm一+ 2 mm,安装电压- 9.75

土0.2 V 沾化电厂汽轮机膨胀相对死点在2号轴承处,高压缸转子膨胀在以2号轴承处为相对死点向前箱方向膨胀,低压缸转子膨胀在以2轴承处为相对死点向发电机方向膨胀。高低压差胀探头为不带前臵器φ25 mm涡流探头,灵敏度为0.8 V/ mm,因为高低压差胀都是朝着发电机方向安装,要使高低缸差胀测量范围均在线形范围之内,按照探头线性中点及量程范围- 2--10 mm定位。探头零位的安装电压可按下式计算: 高压差胀探头零位安装电压:探头线性中点电压(-6.95 V)-探头灵敏度(0.8 V/mm)*4 低压差胀探头零位安装电压:探头线性中点电压(-6.95 V) +探头灵敏度(0.8 V/mm)*4 所以,高压差胀探头零位安装电压为-11.10 V;低压差胀探头零位安装电压为-3.8V。 1.3大轴偏心传感器的安装 偏心度的测量是监视大轴的弯曲程度。直接偏心指瞬时偏心值,峰一峰值偏心表示的是轴弯曲正方向的极值与负方向的极值之差。偏心的测量是通过偏心探头和键向探头共同完成的,均为φ8 m灵敏度为7.874 V/mm的涡流探头,键相器探头监测轴上一个凹槽,当轴每转一周,在探头上产生一个脉冲电压,提供计算偏心峰一峰值的频率。探头的安装间隙电压都为一10 V,注意键相探头的安装,不要正对着槽位安装。键相器也为振动提供相位信号,以便对振动进行分析研究。 1.4转速探头的安装

传感器原理及应用试题库

一:填空题(每空1分) 1.依据传感器的工作原理,传感器分敏感元件,转换元件, 测量电路三个部分组成。 2.半导体应变计应用较普遍的有体型、薄膜型、扩散型、外延型等。 3.光电式传感器是将光信号转换为电信号的光敏元件,根据光电效应可以分为 外光电效应,光电效应,热释电效应三种。 4.亮电流与暗电流之差称为光电流。 5.光电管的工作点应选在光电流与阳极电压无关的饱和区域。 6.金属丝应变传感器设计过程中为了减少横向效应,可采用直线栅式应变计 和箔式应变计结构。 7.反射式光纤位移传感器在位移-输出曲线的前坡区呈线性关系,在后坡区与 距离的平方成反比关系。 8.根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感 器。 9.画出达林顿光电三极管部接线方式: U CE 10.灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定义为:传 感器输出量的变化值与相应的被测量的变化值之比,用公式表示k(x)=Δy/Δx 。 11.线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一 种度量。按照所依据的基准之线的不同,线性度分为理论线性度、端基线性度、独立线性度、最小二乘法线性度等。最常用的是最

小二乘法线性度。 12.根据敏感元件材料的不同,将应变计分为金属式和半导体式两大 类。 13.利用热效应的光电传感器包含光---热、热---电两个阶段的信息变换过程。 14.应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿 法、计算机补偿法、应变计补偿法、热敏电阻补偿法。 15.应变式传感器一般是由电阻应变片和测量电路两部分组成。 16.传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳定性。 17.在光照射下,电子逸出物体表面向外发射的现象称为外光电效应,入 射光强改变物质导电率的物理现象称为光电效应。 18.光电管是一个装有光电阴极和阳极的真空玻璃管。 19.光电管的频率响应是指一定频率的调制光照射时光电输出的电流随频率变 化的关系,与其物理结构、工作状态、负载以及入射光波长等因素有关。多数光电器件灵敏度与调制频率的关系为Sr(f)=Sr。/(1+4π2f2τ2) 20.光电效应可分为光电导效应和光生伏特效应。 21.国家标准GB 7665--87对传感器下的定义是:能够感受规定的被测量并按照 一定的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。 22.传感器按输出量是模拟量还是数字量,可分为模拟量传感器和数字量传感器 23.传感器静态特性的灵敏度用公式表示为:k(x)=输出量的变化值/输入量的变 化值=△y/△x 24.应变计的粘贴对粘贴剂的要求主要有:有一定的粘贴强度;能准确传递应变;

本特利振动探头的动态校验(线性度)

甲醇合成器压缩机振动探头校验记录表1、确认探头、前置器编号: 探头S/N: 前置器S/N: 注:探头和前置器是相互匹配的,若与其他的探头和前置器相互更换,需重新拉线性。 校验装置:TK-3e 2、万用表接线: (-24)、(Com---万用表笔的负)、(Out ---万用表笔的正) 3、参数记录(手操校验台就地做): 1)校验装置(TK-3e)通电,固定探头,安装间隙电压在-8VDC至-12VDC之间。 2)万用表打至交流电压档测前置器Com、Out信号电压,测得对应振动的电压变化数值(万用表测得为有效值)。 3)校验装置(TK-3e)按下开关按钮至i位,通电,转盘旋转,通过调节探头固定支架的前后左右位置,使振动示值变化。探头针对转盘中心振动值最小,向转盘外缘移动,振动值逐渐增大,向中心移动逐渐减小。

甲醇合成器压缩机5103X 振动探头校验记录表 安装间隙电压: -9.71VDC,灵敏度:7.87V/mm DCS 画面示值μm 24 49 76 102 测量电压mv(AC) 60 129 203 272 验证电压mv(AC) 67 128 212 284 甲醇合成器压缩机5103X振动探头校验记录表 50 100 150 200 250 300 24 49 76 102 画面示值(μm) 电压(m V ) 测量电压验证电压

甲醇合成器压缩机5103Y 振动探头校验记录表 安装间隙电压: -10.58VDC, 灵敏度:7.87V/mm DCS 画面示值μm 24 49 74 101 测量电压mv(AC) 59 128 199 271 验证电压mv(AC) 67 128 206 281 甲醇合成器压缩机5103Y振动探头校验记录表 50 100 150 200 250 300 24 4974101 画面示值(μm) 电压(m V ) 测量电压验证电压

本特利探头的安装调试

本特利探头的安装调试 摘要:简明的介绍了大型转动设备轴系监测的3500系统的原理,详细说明了其在实际应用中的注意事项及调试方法。 关键词:电涡流传感器轴系监测安装调试 概述:当今化工领域,工艺过程的长周期运行依赖于大型旋转设备不停息的运转,其一旦发生故障不仅影响生产效益,更有可能造成灾难性后果。为确保这些大型旋转设备安全平稳运行,必须对其状态进行实时监测,本特利3500系统是监测其运行参数的有效工具,而探头的安装质量直接影响其长周期运行,是其最基本也最关键一环。 1基本原理:本特利3500系统由电涡流传感器探头、延伸电缆、前置器所组成的传感器系统以及3500检测模块组成。探头安装于现场,检测轴承的振动、位移、转速等;延伸电缆用来连接探头与前置器,传输探头检测到的信号;前置器接收由探头和延伸电缆传输的信号,并将其转换为3500检测模块接收的电压信号。至此,电涡流传感器系统,将被测轴承表面与探头顶端的距离转变为容易采集识别的直流或者交流电压信号分别用以分析轴承的位移或者震动。 2探头的安装 探头安装之前务必确保所用探头选型正确且检验合格,探头的线性范围与其探头直径有着确定的关系,且探头直径越大其线性范围越宽,所以根据设备的极限动距离即可选定探头直径。为了直观简洁,下面均已8mm系统为例说明。8mm 探头的线性范围约从0.25到 2.3mm处对应电压-1到-17vdc,对应关系为7.87v/mm。根据现场安装条件选定合适的延伸电缆长度以及与之匹配的前置器型号,现场安装时切记混搭以免影响传感器系统线性造成测量失真。 2.1探头安装应注意以下问题:①安装面的大小以及探头与安装面之间的距离;②安装支架的选择;③探头与探头之间的距离;④探头锥孔的清洁以及安装间隙的确定;⑤探头电缆外观检查以及走线固定;⑥探头转接头的密封与绝缘。其中①②③应有设备供应商完成,且在设备第一次空负荷试车时检验,仪表工作人员通常只需做好④⑤⑥。在探头安装前应检查探头外观是否完好,线缆有无破损,探头阻值是否在正常范围内,如无异常则可以安装调试。在安装或存储过程中应对探头及接头做好防护,防止探头受损接头受污染等情况出现,接头可先用四氟带缠绕后加自黏胶带包裹的方法防污染,切记用电工胶带直接包裹,否则很容易污染接头。 探头间隙的确定以位移最为复杂,重点以其为例加以说明。首先本特利厂商对位移零点电压缺省设置为-9.75V,那么在位移安装时相应可以采用现场测电压或者室内看位移两种方法来安装位移探头。机组的轴窜量应由钳工予以确定,在钳工拨轴之前可以初步紧固一个探头至间隙电压-10v左右,假如钳工确定窜量0.4mm,间隙电压变化3.15v左右,因为将轴拨至中点较为困难,可在两端调整

(完整版)传感器原理及应用试题库(已做)

:填空题(每空1分) 1.依据传感器的工作原理,传感器分敏感元件,转换元件 测量电路三个部分组成。 2.金属丝应变传感器设计过程中为了减少横向效应,可米用直线栅式应变计 和箔式应变计结构。 3. 根据热敏电阻的三种类型,其中临界温度系数型最适合开关型温度传感器 4. 灵敏度是描述传感器的输出量对输入量敏感程度的特性参数。其定义为:传 感器输出量的变化值与相应的被测量的变化值之比,用公式表示 k (x)=△ y△ x。 5. 线性度是指传感器的输出量与输入量之间是否保持理想线性特性的一 种度量。按照所依据的基准之线的不同,线性度分为理论线性度、端 基线性度、独立线性度、最小二乘法线性度等。最常用的是最小二乘法线性 度。 6. 根据敏感元件材料的不同,将应变计分为金属式和半导体式两大类。 7. 应变传感器设计过程中,通常需要考虑温度补偿,温度补偿的方法电桥补偿法、 计算机补偿法、应变计补偿法、热敏电阻补偿法。 8. 应变式传感器一般是由电阻应变片和测量电路两部分组成。 9. 传感器的静态特性有灵敏度、线性度、灵敏度界限、迟滞差和稳定性。 10. 国家标准GB7665--87对传感器下的定义是:能够感受规定的被测量并按照一定 的规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。11. 传感器按输出量是模拟量还是数字量, 可分为模拟量传感器和数字量传感器12. 传感器静态特性的灵敏度用公式表示为:心)=输出量的变化值/输入量的变化 值=△ y/ △ x 13. 应变计的粘贴对粘贴剂的要求主要有:有一定的粘贴强度;能准确传递应变;蠕 变小;机械滞后小;耐疲劳性好;具有足够的稳定性能:对弹性元件和应变计不产生化学腐蚀作用;有适当的储存期;应有较大的温度适用范围。 14. 根据传感器感知外界信息所依据的基本校园,可以将传感器分成三大类:物理传 感器,化学传感器,生物传感器。

本特利3500安装与调试

1传感器的安装与调试 1.1轴承振动传感器探头的安装 6个φ8 mm灵敏度为 7.87 V/rnm的涡流探头分别装于1号、2号、3号轴承处。每个轴承处安装两只互成90°,垂直于轴承,探头与水平方向的夹角为45°,分别测量X、Y方向上的振动。一般涡流传感器,涡流影响范围约为传感器线圈直径的三倍,因此传感器对应的测量宽度应为传感器直径的三倍,而且在传感器空间24mm范围内不应有其它金属物存在,否则会带来误差。安装间隙电压应为传感器输出特性曲线确定的线形中点位而定,φ8 mm灵敏度为 7.87 V/mm的探头,安装间隙电压为- 9.75 V或 1.2 mm左右。由于传感器线形电压范围大大超过测量范围,所以安装间隙允许有较大的偏差,只要保证测量范围在线形段内即可,但为了满足故障诊断和可靠性的需要,一般要求安装电压 9.75土 0.2 V。 1.2轴向位移、高低压差胀传感器的安装 轴向位移测的是推力轴承相对汽缸的轴向位移,在机组运行过程中,使动静部件之间保持一定的轴向间隙,避免汽轮机内部转动部件和静止部件之间发生摩擦和碰撞。两只轴向位移传感器探头安装在2号轴承处,分别装于甲乙两侧,探头朝向低压缸方向安装探头型号为7200型φ14mm探头,灵敏度为 3.937V/mm,前臵器供电电压为-24V。 大轴相对于汽缸的设计零点为止推轴承靠在工作瓦面为大轴零位。在安装轴向位移和低压差胀传感器前,首先要把大轴推到零位,然后按要求安装。轴向位移的量程范围为-2 mm一+ 2 mm,安装电压-

9.75土 0.2 V沾化电厂汽轮机膨胀相对死点在2号轴承处,高压缸转子膨胀在以2号轴承处为相对死点向前箱方向膨胀,低压缸转子膨胀在以2轴承处为相对死点向发电机方向膨胀。高低压差胀探头为不带前臵器φ25 mm涡流探头,灵敏度为 0.8 V/ mm,因为高低压差胀都是朝着发电机方向安装,要使高低缸差胀测量范围均在线形范围之内,按照探头线性中点及量程范围- 2--10 mm定位。探头零位的安装电压可按下式计算: 高压差胀探头零位安装电压: 探头线性中点电压(- 6.95 V)-探头灵敏度( 0.8 V/mm)*4 低压差胀探头零位安装电压: 探头线性中点电压(- 6.95V)+探头灵敏度( 0.8 V/mm)*4 所以,高压差胀探头零位安装电压为- 11.10 V;低压差胀探头零位安装电压为- 3.8V。 1.3大轴偏心传感器的安装 偏心度的测量是监视大轴的弯曲程度。直接偏心指瞬时偏心值,峰一峰值偏心表示的是轴弯曲正方向的极值与负方向的极值之差。偏心的测量是通过偏心探头和键向探头共同完成的,均为φ8 m灵敏度为

传感器分类及常见传感器的应用

机电一体化技术常用传感器及其原理 班级:机械设计制造及其自动化姓名: 学号:

一、传感器的分类 传感器有许多分类方法,但常用的分类方法有两种,一种是按被测物理量来分;另一种是按传感器的工作原理来分。按被测物理量划分的传感器,常见的有:温度传感器、湿度传感器、压力传感器、位移传感器、流量传感器、液位传感器、力传感器、加速度传感器、转矩传感器等。 按工作原理可划分为: 1.电学式传感器 电学式传感器是非电量电测技术中应用范围较广的一种传感器,常用的有电阻式传感器、电容式传感器、电感式传感器、磁电式传感器及电涡流式传感器等。 电阻式传感器是利用变阻器将被测非电量转换为电阻信号的原理制成。电阻式传感器一般有电位器式、触点变阻式、电阻应变片式及压阻式传感器等。电阻式传感器主要用于位移、压力、力、应变、力矩、气流流速、液位和液体流量等参数的测量。 电容式传感器是利用改变电容的几何尺寸或改变介质的性质和含量,从而使电容量发生变化的原理制成。主要用于压力、位移、液位、厚度、水分含量等参数的测量。 电感式传感器是利用改变磁路几何尺寸、磁体位置来改变电感或互感的电感量或压磁效应原理制成的。主要用于位移、压力、力、振动、加速度等参数的测量。 磁电式传感器是利用电磁感应原理,把被测非电量转换成电量制成。主要用于流量、转速和位移等参数的测量。 电涡流式传感器是利用金屑在磁场中运动切割磁力线,在金属内形成涡流的原理制成。主要用于位移及厚度等参数的测量。 2.磁学式传感器 磁学式传感器是利用铁磁物质的一些物理效应而制成的,主要用于位移、转矩等参

数的测量。

3.光电式传感器 光电式传感器在非电量电测及自动控制技术中占有重要的地位。它是利用光电器件的光电效应和光学原理制成的,主要用于光强、光通量、位移、浓度等参数的测量。 4.电势型传感器 电势型传感器是利用热电效应、光电效应、霍尔效应等原理制成,主要用于温度、磁通、电流、速度、光强、热辐射等参数的测量。 5.电荷传感器 电荷传感器是利用压电效应原理制成的,主要用于力及加速度的测量。 6.半导体传感器 半导体传感器是利用半导体的压阻效应、内光电效应、磁电效应、半导体与气体接触产生物质变化等原理制成,主要用于温度、湿度、压力、加速度、磁场和有害气体的测量。 7.谐振式传感器 谐振式传感器是利用改变电或机械的固有参数来改变谐振频率的原理制成,主要用来测量压力。 8.电化学式传感器 电化学式传感器是以离子导电为基础制成,根据其电特性的形成不同,电化学传感器可分为电位式传感器、电导式传感器、电量式传感器、极谱式传感器和电解式传感器等。电化学式传感器主要用于分析气体、液体或溶于液体的固体成分、液体的酸碱度、电导率及氧化还原电位等参数的测量。 另外,根据传感器对信号的检测转换过程,传感器可划分为直接转换型传感器和间接转换型传感器两大类。前者是把输入给传感器的非电量一次性的变换为电信号输出,如光

传感器原理设计与应用重点总结

本文档根据老师最后一次课上课时所说的相关内容并根据我自己的个人情况简要整理,相对简洁,和大家分享一下。考虑到老师说的内容和考试内容相比,可能不够完整;而且个人水平有限,不可能把握的很准确,所以只是参考而已。。。建议大家根据自己的理解补充完善~ 第一章:传感器概论 1、传感器的定义:传感器(或敏感元件)基于一定的变换原理/规律将被测量(主要是非电量的测量,可采用非电量电测技术)转换成电量信号。变换原理/规律涉及到物理、化学、生物学、材料学等学科。 2、传感器的组成:传感器一般由敏感元件(将非电量变成某一中间量)、转换元件(将中间量转换成电量)、测量电路(将转换元件输出的电量变换成可直接利用的电信号)三部分组成,有的传感器还需加上辅助电源。 3、传感器的分类 按变换原理分类——>利用不同的效应构成物理型、化学型、生物型等传感器。 按构成原理分类: 结构型:依靠机械结构参数变化来实现变换。 物性型:利用材料本身的物理性质来实现变换。 按输入量的不同分类——>温度、压力、位移、流量、速度等传感器 按变换工作原理分类: 电路参数型:电阻型、电容型、电感型传感器 按参电量如:Q(电量)、I、U、E 等分类:磁电型、热电型、压电型、霍尔型、光电式传感器 4、传感器技术的发展动向: 教材表述:发现新现象、开发新材料、采用微细加工技术、研制多功能集成传感器、智能化传感器、新一代航天传感器、仿生传感器 老师表述:微型化、集成化、廉价。 第二章:传感器的一般特性 1、静态特性 检测系统的四种典型静态特性 线性度:传感器的输出与输入之间的线性程度。传感器的理想输出-输入特性是线性的。 灵敏度:系统在静态工作的条件下,其单位输入所产生的输出,实为拟合曲线上某点的斜率。 即S N=输入量的变化/输出量的变化=dy/dx 迟滞性:特性表明传感器在正(输入量增大)反(输入量减小)行程期间输出-输入特性曲线不重合的程度。 (产生的原因:传感器机械部分存在的不可避免的缺陷。) 重复性:重复性表示传感器在输入量按同一方向作全量程多次测量时所得特性曲线不一致程度。曲线的重复性好,误差也小。产生的原因与迟滞性类似。 精确度. 测量范围和量程. 零漂和温漂. 2、动态特性:(传感器对激励(输入)的响应(输出)特性) 动态误差:输出信号不与输入信号具有完全相同的时间函数,它们之间的差异。包括:稳态动态误差、暂态动态误差

本特利探头检查安装作业指导

本特利探头检测及安装作业指导说明 编号: 目录 1. 目的 (2) 2. 范围 (2) 3. 定义 (2) 4. 参考文献 (2) 5. 说明指导 (3) 5.1 探头检查及更换. (3) 5.2 探头安装 (6) 6. 注意事项 (6)

1. 目的 此作业指导的目的是提供操作步骤对于本特利探头的检查、安装、更换在旋转设备上。 2.适用范围 此作业指导适用范围包含所有本特利探头应用于旋转设备上状态监视及仪表连锁系统含振动、位移、键相、转速 3. 定义 本特利探头: 本特利公司制造的电涡流传感器应用于检测振动、位移、键相、速度 延长电缆: 一根同轴电缆连接在传感器和前置器之间 前置器: 一个转换设备把从探头来的信号传送到3500监测系统 TK3: 一种校验本特利探头静态及动态特征曲线的专用工具 4. 参考文献 本特利说明书: 1, 3300XL 8mm 电涡流传感器 2, 3300 5mm, 8mm 电涡流传感器 3, 3500/25 键相卡 4, 3500/40 振动卡 5, 3500/42 振动及位移卡 6, 3500/50 转速卡

5. 说明指导 5.1探头检查及更换. 5.1.1 所有探头安装前都需要做检查. 5.1.2 Beside linearity verification, dynamic verification should be done for the probes used in vibration. 5.1.3 在做检查前确保探头、延长电缆、前置器相互匹配(5M系统、9M系统) 5.1.4 被测量探头电阻值应在本特利探头说明书规定范围内,列表如下: 8mm 探头 11mm 探头 6 5.1.5被测量延长电缆电阻值应在本特利延长电缆说明书规定范围内,列表如下: 8mm 延长电缆

关于Bently位移探头安装及调试

首先要知道Bently探头的工作原理: 第一,要给探头前置器提供-24V直流电压,前置放大器会把-24V直流信号转换成高频交流电流提供给探头;另一方面,前置放大器会感受由于探头和被测靶面距离变化而引起的探头线圈感抗的变化,经前置放大器处理产生与参数变化相对应的电压值作为输出。下图为探头测量电压及前置放大器输出电压的过程:

如上面两幅图所示,前置放大器会把探头测量到的电压调制成一个正玄波,波上的每一点表示探头当时测量到的电压值。 通过前置器内部的解调电路(原理是傅里叶级数)将测量到的电压分解成一个直流量和不同振幅的交流量,当被测量为位移时,取直流量,当被测量为振动时,取交流量的前几级分量。第二,探头测量原理 结合本厂位移探头调试说一下位移探头的调试方法: 首先要明白串量的概念:串量既转动轴轴向串动的最大量,一般以“道”作为其单位。(我厂串量为41道) 调试方法有两种(大师讲解的) 第一种:把轴打到远离探头一侧,打到最大串量(既41道),手拧位移探头直至拧不动,然后倒悬一个丝扣多一点(大约为1.2mm,一个丝扣为1mm)然后测量前置放大器输出电压,为9.75V时固定探头。(1.2mm为经验值,因为探头的测量精度为7.87V/mm,1.2mm大致为9.75V,标准1.24mm,正好等于9.75V,有人会问为什么选择9.75V,而不选择其他电压值,这是有探头线性曲线决定的,9.75V正好处于探头线性曲线的中间部位,这样的话轴承串动时,可以保证测量电压都处于探头线性区域内,且的线性最好的区域)以本厂为例,报警值为0.56mm当轴串动到离探头最近时,电压值为: 9.75+0.41*7.87=12.98V 当轴继续向探头方向串动0.15mm时,将会报警,此时,巴氏合金已经磨损0.15mm.此时电压值为: 9.75+0.41*7.87+0.15*7.87=14.16V 当轴向远离探头方向串动0.56mm时报警,此时电压值为: 9.75-0.41*7.87-0.15*7.87=5.34V 此时巴氏合金已经磨损0.56mm。 这种方法就是把轴离探头最远串量时作为零点(这种方法的理由是当机组正常运转时,由于机组高压侧与低压侧的压差,会驱使轴承向低压侧运动,所以机组正常运转时,轴承一直处于远离探头最远串量位置)。 第二种:把轴打到远离探头一侧,打到最大串量(既41道),调整探头直至前置放大器输出为11.36V 9.75+0.205*7.87=11.36V 当达到报警值时,电压值为

转速传感器种类、原理及发展趋势

转速传感器种类、原理及发展趋势 将旋转物体的转速转换为电量输出的传感器。转速传感器属于间接式测量装置,可用机械、电气、磁、光和混合式等方法制造。按信号形式的不同,转速传感器可分为模拟式和数字式两种。前者的输出信号值是转速的线性函数,后者的输出信号频率与转速成正比,或其信号峰值间隔与转速成反比。转速传感器的种类繁多、应用极广,其原因是在自动控制系统和自动化仪表中大量使用各种电机,在不少场合下对低速(如每小时一转以下)、高速(如每分钟数十万转)、稳速(如误差仅为万分之几)和瞬时速度的精确测量有严格的要求。常用的转速传感器有光电式、电容式、变磁阻式以及测速发电机。下面浅析这几种传感器。 一.光电式转速传感器 光电式转速传感器对转速的测量,主要是通过将光线的发射与被测物体的转动相关联,再以光敏元件对光线的进行感应来完成的。光电式转速传感器从工作方式角度划分,分为透射式光电转速传感器和反射式光电转速传感器两种。 1、投射式光电转速传感器 投射式光电转速传感器设有读数盘和测量盘,两者之间存在间隔相同的缝隙。投射式光电转速传感器在测量物体转速时,测量盘会随着被测物体转动,光线则随测量盘转动不断经过各条缝隙,并透过缝隙投射到光敏元件上。 投射式光电转速传感器的光敏元件在接收光线并感知其明暗变化后,即输出电流脉冲信号。投射式光电转速传感器的脉冲信号,通过在一段时间内的计数和计算,就可以获得被测量对象的转速状态。 2、反射式光电转速传感器 反射式光电转速传感器是通过在被测量转轴上设定反射记号,而后获得

光线反射信号来完成物体转速测量的。反射式光电转速传感器的光源会对被测转轴发出光线,光线透过透镜和半透膜入射到被测转轴上,而当被测转轴转动时,反射记号对光线的反射率就会发生变化。 反射式光电转速传感器内装有光敏元件,当转轴转动反射率增大时,反射光线会通过透镜投射到光敏元件上,反射式光电转速传感器即可发出一个脉冲信号,而当反射光线随转轴转动到另一位置时,反射率变小光线变弱,光敏元件无法感应,即不会发出脉冲信号。 二、变磁阻式转速传感器 它属于变磁阻式传感器。变磁阻式传感器的三种基本类型,电感式传感器、变压器式传感器和电涡流式传感器都可制成转速传感器。电感式转速传感器应用较广,它利用磁通变化而产生感应电势,其电势大小取决于磁通变化的速率。这类传感器按结构不同又分为开磁路式和闭磁路式两种。开磁路式转速传感器(图4a)结构比较简单,输出信号较小,不宜在振动剧烈的场合使用。闭磁路式转速传感器由装在转轴上的外齿轮、内齿轮、线圈和永久磁铁构成(图4b)。内、外齿轮有相同的齿数。当转轴连接到被测轴上一起转动时,由于内、外齿轮的相对运动,产生磁阻变化,在线圈中产生交流感应电势。测出电势的大小便可测出相应转速值。 三.电容式转速传感器

相关主题
文本预览
相关文档 最新文档