当前位置:文档之家› 高压单芯电力电缆金属护套环流分析及限制

高压单芯电力电缆金属护套环流分析及限制

高压单芯电力电缆金属护套环流分析及限制
高压单芯电力电缆金属护套环流分析及限制

讨论高压电缆纵包铝护套和挤包铝护套工艺技术

讨论高压电缆纵包铝护套和挤包铝护套工艺技术 压电缆中的金属皱纹铝护套有着承受电缆短路电流、径向防水以及承受抗侧压力的作用,其生产工艺方式有纵包、氩弧焊和连续挤包两种形式。 一:氩弧焊焊接铝护套工艺技术 1:氩弧焊铝护套工艺是采用经过压延的厚度均匀的铝板,经清洗、精切、纵包、焊接、在线检测、轧纹过程来实现的;该氩弧焊工艺是在氩气和氦气的保护下,一铝板为负极,钨极为正极,通过低电压,大电流来完成焊接。钨极焊头只有2mm的直径, 并且由保护的气体连续吹向焊点处,迅速带走热量,使焊接部位均匀快速冷却,电缆结构不会受到任何不良影响,同时也避免铝护套的高温氧化。 2:采用先进的氩弧焊接技术,并装有超声波等在线检测装置,保证了焊接的密封性,为了检验是否还有漏焊,生产厂又加了一项中间检验装置,将整盘焊接后的电缆进行气密性试验,且进行百分之百的检验。通过几年来的生产、使用及运行,该生产工艺技术性能稳定可靠。 3.上海电缆研究所进行了焊接铝套的机械强度试验,发现焊缝的抗拉强度(78N/mm2)略高于焊缝周围金属铝的抗拉强度(76N/mm2),且又略高于铝套本身的抗拉强度 (75N/mm2),经和西安交大金相专家们研讨和座谈,这种现象是合理的,焊接材料的强度是比原来的材料要高,因为焊接件材料的金相组织起了变化。并采用空心铝套进行侧压力试验,分别在焊缝上,和焊缝相隔90度以及相隔180度进行侧压力试验,其负荷变形曲线基本一致。 4.皱纹焊接铝套电缆的温度分布试验也在上海电缆研究所进行,在焊缝处温度到达700℃时,用热电偶分别测量铝套内阻水层上分别相隔90度的三点温度为69、43、37℃,在阻水层下则分别为34、26、27℃,这是因为铝套是一点受热焊接,温度虽高,但能量不大,铝的散热又很快,所以电缆绝缘上的温度很低,同时,西安交大绝缘研究室又进行了电缆铝护套的焊接温度场的数值计算,在绝缘层附近的温度基本上是40℃左右。两个研究机构的试验结果基本是一致的。 5.由于皱纹焊接铝套电缆的温度很低,不存在炀伤绝缘或绝缘上的阻水层的可能,铝套和电缆之间缝隙非常小,故可实现电缆的阻水结构,同时电缆的阻水层又可用作电缆的缓冲层,不难通过设计和计算,国产220kV电缆的绝缘半径方向的膨胀量约1.5mm左右,完全可以为阻水层所吸收,这样电缆的结构就非常紧凑合理,万一铝套有些损伤,由于阻水层的作用,电缆也不会进水。 二:连续挤包铝护套工艺技术 连续挤包铝护套工艺是采用铝锭经压铝机生产设备,使铝在半熔融状态下连续挤包在电缆绝缘线芯上,挤出温度高达460℃,可能会对电缆内部结构造成不良影响而降低电缆使用寿命。

电力电缆金属护套或屏蔽的接地作用

电力电缆金属护套或屏蔽的接地作用 1.概述 接地用以:防止人身受到电击,确保电力系统正常运行,保护线路和设备免遭损坏,还可防止电气火灾,防止雷击和静电危害等。 电缆金属护套或屏蔽的接地的作用有: (1)电缆线芯双屏蔽和金属护套的电容电流有一回路流入大地; (2)当电缆对金属护套或屏蔽发生短路时,短路电流可流入地下; (3)电缆线芯绝缘损伤后发生相间短路发展至接地故障时,故障电流通过接地线流入地中; (4)电缆中的不平衡电流引起的感应电压、通过地线与大地形成短路,防止电缆对接地支架存在电位差而放电闪络。 现在大量使用的交联电缆,分相屏蔽,屏蔽层分金属(铜带)层和半导电层。半导电层中含有胶质碳,可起到均匀电场的作用;同时碳能吸收电缆本体细小间隙中因空气电离产生的败坏物,均匀电场,以保护电缆绝缘。 金属屏蔽层的作用: 第一:保持零电位,使缆芯之间没有电位差; 第二:在短路时承载短路电流,以免因短路引起电缆温升过高而损坏绝缘层,同时屏蔽层也可以防止周围外界强电场对电缆内传输电流的干扰; 第三:屏蔽层可以有效地将电缆产生的强电场限制在屏蔽层内,由于屏蔽层接地,外部便不存在电缆产生的强电场,不会对周围的弱电线路及仪表,产生强电干扰 或危及人身安全。 在配电系统中:电源电缆的起始端与发电厂的接地网接通,末端与变电所接地网连通;变电所馈出电缆接地与各用户连通;低压电缆的PEN线与电缆铠甲接地后可与高压电缆接地等电位;重要用户的电源电缆又来自独立的电源。这样,高低压电缆接地线的互相联结,又与接地网连在一起。因此,电缆接地成了接地系统总体的重要组成部分,对电网安全运行有重要作用。 3.2保证接地线截面和质量 交联电缆接头制作中,铜屏蔽层、铠甲层应分别连接不得中断,两者还应加以绝缘分隔,恢复铜屏蔽应采用软质铜编织线连接;确保与各相绝缘外屏蔽接触良好。两端与铜屏蔽层焊接,铠甲用镀锡地线恢复跨接,分别焊在两边的铠甲上。 电缆接地线的规格,严格要求应按电缆线路的接地电流大小而定。但在实际施工中,往往缺乏这方面的资料, 一般120㎜2以下电缆选用16 m㎡铜线; 150㎜2~240㎜2电缆选用25 m㎡铜线; 300 ㎜2以上电缆接地线不应小于35㎜2; 橡塑电缆的接地线必须采用镀锡软铜编织线。接地线与铜屏蔽层和金属护套焊接工艺、焊接面积均应符合要求。电缆接地线应直接接于接地网,不得串接,接地线必须压接的接线端子,以保证连接可靠及检测拆卸方便。 美国3M公司的游丝卡紧法和法国梅兰日兰公司的卡扣捆扎法,不仅能方便可靠地进行接地连接,而且还能避免烙铁灼伤电缆绝缘的危险,值得借鉴。

超高压交联电缆如何选用各种金属护套

超高压交联电缆如何选用各种金属护套 目前国内已有多条生产线能生产110kV及以上的超高压交联电缆,各厂的金属套结构不全类同。不同金属套各有其特征,用户首先必须对金属套的性能要有一个全面的认识和了解,按各自的条件进行选择。仁者见仁、智者见智,本文对各种类型金属套的性能和特征作个阐述。此文仅起一个抛砖引玉的作用,希各供电系统能介绍使用不同金属套电缆的经验,使制造部门了解用户观点与需求。 1.金属套的种类 金属套有二大功能:(1)隔水作用:防止XLPE绝缘接触到水分产生水树技,金属套是电缆的径向防水层;(2)能承受零序短路电流热稳定性好。按生产工艺可分为三大类:挤包无缝金属套、纵向焊缝金属套和综合护套等。采用的材料又有铅、铝、铜和不锈钢等。金属套的品种、制造、结构和特征如下:金属套品种制造和结构特征 无缝铅套由连续压铅机挤包无缝连续铅套铅的化学性能稳定,耐腐蚀。 无缝波纹铅套由连续或非连续压铝机挤包铝套及轧波纹电缆重量轻,铝的化学性能较活泼,外护套损坏后铝套易穿孔,外径较大。 焊缝波纹铝套铝板卷包用焊机焊接后再轧同上,但有纵向焊缝。 焊缝波纹铜套铜板卷包用焊机焊接后再轧纹有纵向焊缝,外径较大。 焊缝波纹不锈钢不锈钢板卷包用焊机焊接后再轧纹有纵向焊缝,热稳定容量比波纵铜套低,外径较大。 综合护套铝箔PE复合膜纵向搭盖卷包热风焊接电缆重量轻,铝箔作防水层,用铜丝屏蔽满足热稳定。 以上6种金属套都有良好的径向防水层,但内在质量、应用特性和制造成本各不相同。目前国内除波纹铜套和不锈钢套外都有生产,对国内生产的4类品种性能阐述如下。 2.铝套 目前国内能制造铅套交联电缆的大厂都有以连续压铅机生产铅套的能力。铅套交联电缆内部结构紧密,纵向防水性能好,铅的化学稳定性耐腐性好,缺点是重量重。 铅合金的熔化温度约300℃,压铅机的模座挤出温度260℃。在螺杆连续压铅机上制造的铅套是一个无夹灰、无缝、内壁光滑的连续铅管。铅的蠕变性能好,结构尺寸设计时无须在铅套与线芯之间留有间隙,交联绝缘膨胀时能撑大铅套而绝缘表面仍然平整光滑。由于交联绝缘的膨胀系数比金属大约一个数量级,因此各类波纹金属套内必须留有足够的膨胀间隙。如无间隙或间隙不够大,在绝缘膨胀后会在绝缘表面留下波纹的凹痕,这会影响电缆的电气性能。在型式试验中经过20个热循环后,如电缆芯表面呈波纹状,电缆的冲击裕度不高。由于铅套内

电缆金属护套层的接地

电缆金属护套的接地 10 kV的电力电缆,一般是使用交联聚乙烯铠装三芯电缆,这种电缆金属护套一般只需直接接地即可。 而单芯电缆金属护套的接地和三芯电缆不同。现从单芯电缆使用过程中经常被忽略的金属护套的感应电动势,现分析一起变电所单芯电力电缆金属护套错误接地引起的故障,并介绍实用的接地措施。 1 单芯电缆金属护套过电压和环流的产生 单芯电力电缆的导体中通过交流电流时,其周围产生的磁场会与金属护套交链,在金属护套上会产生感应电动势。感应电动势的大小与导体中的电流大小、电缆的排列和电缆长度有关。对三相等边三角形排列的电缆,如果将金属护套两端直接接地,就会在金属护套中形成环流,环流的大小与电缆相应的长度,导体中电流大小有关。出于经济安全考虑,在一些电缆不长,导体中电流不大的场合,环流很小,对电缆载流量影响也不大,是可以将金属护套的两端直接接地的。 如果仅将电缆的金属护套一端直接接地,在正常运行时,电缆的金属护套另一端感应电压应不超过50 V(或有安全措施时不超过100 V),否则应划分适当的单元设置绝缘接头。在发生短路故障时,导体中有很大的电流,可能会在金属护套上产生很高的过电压,危及护层绝缘,因此在电缆线路单相接地时,在电缆的未接地端,应加装过电压保护器接地。 2 单芯电缆金属护套的连接与接地 为了解决电缆金属护套两端同时接地存在环流,和一端直接接地,在另一端会出现过电压矛盾的问题,电缆金属护套应针对电缆长度和导体中电流大小采取不同的接地形式。 电缆线路不长时,电缆金属护套应在线路一端直接接地,另一端经过电压保护器接地,如图1所示。电缆越长,电缆非直接接地端产生的感应电压越高,为保证人身安全,电缆在正常运行时,非直接接地端感应电压应限制在50 V以内,在短路等故障情况下,金属护套绝缘的冲击耐压和过电压保护器在冲击电流作用下的残压,配合系数不小于1.4。因此,一端直接接地的接线方式适用的电缆不能太长。

高压电缆应用常识

高压电缆应用常识 1. 高压电缆的型号 YJV、YJLV 交联聚乙烯绝缘聚氯乙烯护套电力电缆。 YJV22、YJLV22 交联聚乙烯绝缘钢带铠装聚氯乙烯护套电力缆。 YJV23、YJLV23 交联聚乙烯绝缘钢带铠装聚乙烯护套电力电缆。 YJV32、YJLV32 交联聚乙烯绝缘细钢丝铠装聚氯乙烯护套电缆。 YJV33、YJLV33 交联聚乙烯绝缘细钢丝铠装聚乙烯护套电力缆。 上述型号中有“L”是铝芯电缆,无“L”是铜芯电缆,型号中最后的“2”“3”是铠装工艺之分。 阻燃型电缆型号是在普通型电力电缆型号前加ZA、ZB、ZC、ZR,‘Z’示阻燃型,‘A、B、C、R’示阻燃等级,A级最高。 我们常用的三芯高压电缆型号是ZR—YJV22—3×50(70、95、1 20、150等)。常用的单芯高压电缆型号是ZR—YJV62—300(400),其中的‘62’表示铠装不是钢带而是防磁性材料,如铝皮、铝合金等,切记:使用单芯电缆一定要用防磁型,不可穿钢管敷设。否则容易造成电缆发热甚至烧毁,国网公司曾发过这类事故通报。 型号为ZC-YJHLV22的电缆是目前正在推广应用的新型铝合金电缆,即交联聚乙烯绝缘钢带铠装铝合金电力电缆。其导体釆用稀土高铁铝合金材料,是通过在纯铝加入铁、稀土等元素,经过特殊的工艺处理使导体具有良好的电气性能和机械性能。绝缘釆用阻燃硅烷交联聚乙烯,铠装釆用特殊的金属连锁铠装结构,护套釆用专利技术研发的低烟、无卤、阻燃环保材料。这种电缆反弹性好,重量轻。 2. 高压电缆使用特性 高压电缆的导体在运行中最高长期工作温度为90℃;短路时电缆导体瞬时最高温度不超过200℃(最长时间不超过5S),否则会伤害电

电线电缆绝缘护套不良的修复方法

https://www.doczj.com/doc/dd9588537.html, 电线电缆绝缘护套不良的修复方法 适用范围 电线电缆的PVC绝缘层和护套层出线局部缺陷时,允许进行进行修补,如断胶、塌坑、脱节、皱褶、凹凸、耳朵、包棱、击穿、接头等现象。 使用的材料和器械 原材料用相同塑料的塑料条、皮、块、管,原材料应平整光滑、干净,无其他缺陷。 使用的器械是细木锉、刀、剪、钳子、螺丝刀、铜片或平整光滑的电缆纸。塑料焊接用热风塑焊枪、电烙铁、焊枪功率在300W以上。 局部缺陷的修补方法 击穿点、孔眼、塌坑等修补方法 用刀修整缺陷,并剖割成45°角的坡形状大小一致的塑料块,放在修补区上,用钳子或螺丝刀固定好,然后用热风速焊枪连续焊好,用铜片压实、压紧、压平。焊接塑料时,注意焊枪热风温度不要太高,以免修补处塑料焦烧。修好后的缺陷处经火花机试验,不击穿为合格 用刀在塑料层缺陷部位割成45°角的坡形,去形状、颜色、厚度一致的塑料块或条,用钳子或螺丝刀固定好后,用热风速焊枪接好,然后用铜片压实、压紧、压平,最后经火花机试验,不击穿为合格。 把塑料缺陷用刀刮平,凹陷部分用相同的塑料条在热风塑焊枪的作用下填平,然后用铜片在缺陷修复处压平、压紧、压实,经火花机试验,不击穿为合格。 大接头的修补方法 1)一般大接头的修补:把断胶的两边用刀在塑料层上沿圆周割削成 45°角的坡形,取清洁干净、颜色和厚度一致,长度和外径与断胶处一致的塑料管,在管一侧沿轴线上割削成相互为45°角的开口套在断胶处,用细铜丝等距离扎紧,然后用相同的塑料条在热风塑焊枪的焊接下,粘接焊好,再用铜片压实、压紧、压平。经火花机试验不击穿为合格。 2)生产过程中大接头的修补:在生产过程中,由于其他原因在成暂时停车,护套断开,可以连续接头。其方法是,把塑料护套割削成45°角的圆周坡形,退到机头,伸入模芯嘴内 30mm长,然后跑胶,把胶跑好后,机组人员相互配合好,开车时用手把塑料层连接好,然后再整形修补。 3)对电缆护套离一端头较长的长度上出现质量缺陷,而另一断头大部分护套良好,电缆长度定尺,也可采用生产过程中大接头的修补方法。只是在扒去有质量缺陷的一端护套后,在挤塑机上选配较大模具,按工艺先挤包好扒去一端的护套,至大接头处逐步提高牵引速度使接口处护套逐渐减薄并包覆在割削成坡形的原护套上,待下机后再整形修补。

一起110kV电缆金属护套环流严重异常原因分析

一起110kV电缆金属护套环流严重异常原因分析 【摘要】高压单芯电缆金属护套环流的大小能客观的反映电缆线路外护套的健康状况,影响电缆线路运行的额定载流量,进而影响高压电缆的绝缘寿命和安全运行,所以高压电缆金属护套环流的大小成为高压电缆运行中的重要问题之一。本文根据几种单芯高压电缆的接地的特点对一起实际的接地方式引起的电缆故障进行了分析,并分析计算了高压电缆故障运行中出现护套环流过大的主要原因,同时提出了避免护套环流过大应采取的措施和注意事项。 【关键词】电缆;金属护套;接地方式;感应电压;环流 高压和超高压电缆均采用单芯结构,金属护套一方面起径向阻水和抗机械损伤作用,另一方面在系统发生短路故障时为故障电流提供了回流通路。当单芯电缆线芯流过交变的电流时,在线芯的周围必然产生交变的磁场,该交变磁场与金属护套相交联,在金属护套上将产生感应电动势。感应电动势会在护套中产生环流,较大的环流会影响电缆的载流量,同时会产生附加损耗并可能引起电缆发热现象。2011年4月20日,在110KV电缆护套环流的测量中发现,护套环流最大值高达480A,已接近电缆负荷电流,本文结合此次事故的情况,对护套环流异常的原因进行了分析和计算,并提出了解决的对策。 1.设备情况与事件经过 1.1设备概述 1#主变压器110kV规格为YJLW03-63/110kV 1×800mm2,均压线为硬铜绞线型号为TJ-150、截面150mm2,电缆长度230m平行敷设。电缆接线如图1所示. 图1 1#主变110kV电缆接线 1.2事件经过 2011年4月20日检修人员巡检测试1#主变高压侧110KV电缆外护套电流时发现A相电流0.3A,B相450A,C相480A,护套均压线电流120A。随即打开电缆沟盖板发现电缆沟内有焦糊味,检查B相电缆外绝缘熔化近一米,B、C 相外护套接地使下线发热严重,最高温度117℃。故障时主变压器高压侧电流660A。检查发现主变压器侧B、C相外护套引下线在接入护层保护箱前短路,运行中B、C相外护套形成很大的环流,如图2所示。 图2 110KV电缆故障接线图 2.事故原因分析

电缆的屏蔽方法

电缆的屏蔽方法 电缆导体通过电流时周围就有电场,磁场。当电磁场达到一定强度时就可能对周围的金属构件或电子设备造成不利影响。为消除影响,人们采取了各种措施将电磁场屏蔽。屏蔽构件的屏蔽效应源于对于电磁波的吸收衰减和反射衰减。对低频电磁波的屏蔽以吸收衰减为主,对高频电磁波的屏蔽以反射衰减为主。 屏蔽效应用屏蔽系数S表征。屏蔽系数S用场中某处屏蔽后的电场强度EP或磁场强度HP与该处屏蔽前的电场强度E或磁场强度H之比测算,屏蔽系数越小则屏蔽效果越好S=EP/E=HP/H=0~1。 电缆屏蔽结构有多种,如铜丝或钢丝编织,铜带绕包或纵包,铝塑复合带纵包,铅套或铝套,钢带或钢丝铠装等。一般来说,屏蔽体半径小,厚度大,层数多,材质复合交错,则屏蔽效果好。不同材质的屏蔽效应不同,如铜带屏蔽的反射衰减效应好,而钢带屏蔽的吸收衰减效应好。 电力电缆6KV及以上绝缘外均有金属屏蔽,其功能除屏蔽电场外,还有一个重要功能,就是泄露短路电流。由于电缆接地方式不同,金属屏蔽结构也不同。电缆采用消弧线圈接地时,金属屏蔽采用铜带绕包。电缆若采用小电阻接地,金属屏蔽多采用铜丝疏绕结构或金属套。 另外,10KV及以上电力电缆绝缘内外均有半导体屏蔽,其功能不再是屏蔽电场,而是均化电场,即使绝缘内的电场尽量趋于均匀,从而改善和提供绝缘效能,延长电缆使用寿命。半导体电屏蔽料多为加有炭黑的聚烯烃,有交联型和非交联型,采用三层共挤工艺紧密均匀的附着在绝缘内外,其厚度标准规定。 就屏蔽效果而言,导体屏蔽厚一点好,绝缘屏蔽薄一点,均匀一点好。 使用半导体电屏蔽材料有严格的技术条件,这里仅谈三点,即含水量,电阻率及杂质颗粒的规定数据,一般半导体电屏蔽材料的含水量应不大于1000PPM,超光滑材料应不大于250PPM。导体屏蔽材料的体积电阻率应不大于10000,绝缘屏蔽料的体积电阻率应不大于500。超光滑屏蔽料的杂质颗粒有严格要求,大于200的颗粒应不多于15个/M2,大于500的颗粒应不多于1个/M2。额定电压100KV及以上的电缆应采用光滑屏蔽料。

高压电缆金属护套分段、接地方式及应用

高压电缆金属护套分段、接地方式及应用 [摘要]包有金属护套的单芯或每根芯线包有金属护套的三芯高压电缆,其金属护套上都会产生感应电压,当电压超过一定限值时,将会影响电缆的安全运行。一般设计会根据电缆长度选择适当的接地方式,或者将电缆金属护套在电气上进行分段,以此降低护套感应电压。本文通过汇集各文献所述观点和作者多年电缆设计的经验,并结合电缆实际运行情况,分析各种金属护套接地方式和不同护套分段形式对于降低护套感应电压的作用,以及在实际工程中的应用,以期能够为高压电缆线路设计提供有用的参考和经验。 【关键词】电缆;金属护套;感应电压;分段;接地;应用 当高压电缆为单芯并包有金属护套或者是每根芯线上有金属护套的三芯电缆时,这种结构的电缆可以被看作是延长的变压器,导线作为一次绕组,金属护套作为二次绕组,一般高压电缆均为这种结构。这样在以交变电流或三相电流运行时产生交变磁场,在金属护套上产生感应电势,该电势值与导线电流、频率、导线和金属护套间的互感量、电缆长度,直接成正比。当金属护套上的感应电压达到一定值时将危及人身安全。电力生产安全规程规定:电气设备非带电部分的金属外壳都要接地。因此金属护套要采取适当的接地措施。本文以下将介绍各种护套分段及接地形式和应用条件。 一、两端直接接地 此接地方式也叫做全接地,就是将电缆金属护套在两端终端头处分别并联接地,这样护套内就产生环流。在35kV以上高压电缆中若采用此种接地形式后,产生的环流可占到电缆工作电流的50%左右,甚至更高至80%以上。从而由于环流的存在造成附加损耗,使护套发热,降低电缆的输送容量。因此110kV及以上高压电缆金属护套较少采用这种接地方式,一般应用在电缆利用小时低,裕度大,长度仅几十米的短35kV以上高压电缆或者是35kV及以下电缆线路,由于其阻抗值不像35kV以上电缆那么小,环流尚不过分显著,只占工作电流的10%以下,尚可以接受。 在电缆采用了此种接地方式后一般以接触式三角形敷设,这样可以避免过分的护套损耗,因为这种排列是电气上平衡的方式,该方式下护套的阻抗及损耗在所有三相中是相等的。另外其要求接地电阻应不大于2Ω。 二、单点直接接地 1、首端接地 首端接地是单点接地方式的一种,就是将电缆线路一端的金属护套互联后直接接地,另一端经互层保护器后互联接地。这样在正常运行条件下金属护套和大地之间形不成回路,不会形成环流,但是对于相同长度的电缆线路来说,首端接

电线电缆常见问题及处理方法

电线电缆常见问题及处理方法() 《电线电缆常见问题及处理方法》 一.押出机生产电子线 1.表面粗糙 A.温度太低:温度作适当上调 B.PVC烘烤不足:依作业标准烘烤胶料(时间/温度) C.机头压力太小:更换廊段较长的外模,增加网膜枚数 2.死胶焦料: A.PVC在机头中停留时间较长:押出时将停留时间较长的料排尽 B.押出温度太高,高温度押出时停机时及时降温 3.发麻: A.温度太高:对机头/眼模温度作适当调整,增大外眼孔径(呈现亮面发麻)B.外模太大:更换孔径略小的外模,提升押出温度(呈雾面发麻) C PVC潮湿,开机前及时干燥PVC 4.押出表面有气泡: A.押出温度太高:降低押出温度 B.PVC烘烤不足:增加烘烤时间 5.表面凹凸不平: A.导体表面有脏污:过少量的油,并作适当的预热 B.押出温度太高呈气泡状:降低押出温度,减水槽与机头的距离 6.PVC收缩/熔损:

A.导体未预热:预热器温度作适当调整(铜线不氧化,但要烫手) B.机头压力小/温度太低:使用加压外模,机头眼模温度略作升高 C.水槽未过热水,储线架张力偏大:押出时过热水,储线架张力尽量减小 7.绝缘高温易碎化: A.PVC烘烤不足:换规格及时烘烤PVC B.押出时急速冷却:水槽过热水 8.偏芯: A.模具孔径太大:更换模具(内模偏小/外模偏大) B.模具未装正:重新将模具装正 C.内外模距离不当:以先近后远的原则调整内外模的距离 9.其它 A.跳股引起的外观不良:内外模更换为孔径稍大的 B.PVC混炼不足引起外眼有积渣:升高押出温度,减小外模孔径和内外眼的距离 C.刮伤:外模引起的刮伤,更换外眼.内外眼模中间堵铜丝:折模清理内外模水槽导轮储线架刮伤:将线材放致导轮,储线架合适的位置,有破损时及时更换。 二.押出机生产外被线 1.外观显示成品纹路 缠绕纹:A压大太大(内外模距离离太远):生产中内外模距离2M/M左右。外模太小:生产中外模宜选用比OD大0.1-0.3M/M的外模 编织纹:A外模太小:太小的眼模因压力大造成外观不良,生产中宜选用孔径稍大的外模(具体孔径尺寸依实际生产中更换为准).B内外模距太远:生产中因内外模距离离太远造成压力偏大从而导致显编织纹/生产中尽量押空一点. 编织线一般要求好脱皮,故无特殊要求时一般采用半空管押出.针对需要充实型押出的编织线机头压力太大和太小时都会造成押出外观不良.生产中针对实际情况对内外模距离及外模孔径进行调整,来解决外观问题. 2.过粉线,铝箔线的外观不良 滑石粉的好坏直接影响线

金属电缆屏蔽

金属屏蔽应由一根或多跟金属带,金属编制,金属丝的同心层或金属丝与金属带的组合结构组成。 金属屏蔽也可以是金属套或符合要求的金属铠装层。 选择金属屏蔽材料时,应也别考虑存在腐蚀的可能性,着不仅为了机械安全,而且也为了电气安全。 金属屏蔽饶宝的搭盖和间隙应符合下列要求: 金属屏蔽中铜丝的电阻,适用时应符合国标要求。铜丝屏蔽的标称截面积应根据故障电流容量确定。 铜丝屏蔽应由一层重叠饶包的软铜线组成,其表面采用反向饶包的铜丝或铜带扎紧。相邻铜丝的平均间隙应不大于4mm 铜带屏蔽应由一层重叠绕包的软铜带组成,也可采用双层铜带间隙绕包,铜带间的搭盖率为铜带宽度的15%(标称值),最小搭盖率应不小于5%。 铜带标称厚度为; 单芯电缆≥0.12mm 多芯电缆≥0.10mm 铜带的最小厚度应不小于标称值的90% 金属网和金属箔都能起来屏蔽作用,有些电缆中仍金属网,也是屏蔽网. 没有屏蔽的电缆在传输中不一定会产生信号丢失,这要看周围的环境是不是有很多干扰,如果有变频器等干扰源,非屏蔽电缆可能会丢失数据.但有了屏蔽层,也不等于说就完全不会丢失数据. 干扰和屏蔽都是相对的. 屏蔽层为了均匀导电线芯和绝缘电场,6kV及以上的中高压电力电缆一般都有导体屏蔽层和绝缘屏蔽层,部分低压电缆不设置屏蔽层。屏蔽层有半导电屏蔽和金属屏蔽两种。 (1)半导电屏蔽 半导电屏蔽层通常设置在导电线芯的外表面和绝缘层的外表面,分别称为内半导电屏蔽层和外半导电屏蔽层。半导电屏蔽层是由电阻率很低且厚度较薄的半导电材料构成。内半导电屏蔽层是为了均匀线芯外表面电场,避免因导体表面不光滑以及线芯绞合产生的气隙而造成导体和绝缘发生局部放电。外半导电屏蔽层与绝缘层外表面接触很好,且与金属护套等电位,避免因电缆绝缘表面裂纹等缺陷而与金属护套发生局部放电。 (2)金属屏蔽 对于没有金属护套的中低压电力电缆,除了设置有半导电屏蔽层外,还要增加金属屏蔽层。金属屏蔽层通常由铜带或铜丝绕包而成,主要起到屏蔽电场的作用。

浅谈电缆金属护套的接地方法和措施

浅谈电缆金属护套的接地方法和措施 随着我国电网改造的深入,大量的架空线被电力电缆取代。电力电缆跟架空线不同,它被埋在地下,运行维护较困难,正确使用电缆,是降低工程投资,保证安全可靠供电的重要条件。在城市配电网络中,应用最广的是10 kV的电力电缆,一般是使用交联聚乙烯铠装三芯电缆,这种电缆金属护套一般只需直接接地即可。而单芯电缆金属护套的接地和三芯电缆不同。现从单芯电缆使用过程中经常被忽略的金属护套的感应电动势,现分析一起变电所单芯电力电缆金属护套错误接地引起的故障,并介绍实用的接地措施。 1 单芯电缆金属护套过电压和环流的产生 单芯电力电缆的导体中通过交流电流时,其周围产生的磁场会与金属护套交链,在金属护套上会产生感应电动势。感应电动势的大小与导体中的电流大小、电缆的排列和电缆长度有关。对三相等边三角形排列的电缆,如果将金属护套两端直接接地,就会在金属护套中形成环流,环流的大小与电缆相应的长度,导体中电流大小有关。出于经济安全考虑,在一些电缆不长,导体中电流不大的场合,环流很小,对电缆载流量影响也不大,是可以将金属护套的两端直接接地的。 如果仅将电缆的金属护套一端直接接地,在正常运行时,电缆的金属护套另一端感应电压应不超过50 V(或有安全措施时不超过100 V),否则应划分适当的单元设置绝缘接头。在发生短路故障时,导体中有很大的电流,可能会在金属护套上产生很高的过电压,危及护层绝缘,因此在电缆线路单相接地时,在电缆的未接地端,应加装过电压保护器接地。 2 单芯电缆金属护套的连接与接地 为了解决电缆金属护套两端同时接地存在环流,和一端直接接地,在另一端会出现过电压矛盾的问题,电缆金属护套应针对电缆长度和导体中电流大小采取不同的接地形式。 电缆线路不长时,电缆金属护套应在线路一端直接接地,另一端经过电压保护器接地,如图1所示。电缆越长,电缆非直接接地端产生的感应电压越高,为保证人身安全,电缆在正常运行时,非直接接地端感应电压应限制在50 V以内,在短路等故障情况下,金属护套绝缘的冲击耐压和过电压保护器在冲击电流作用下的残压,配合系数不小于1.4。因此,一端直接接地的接线方式适用的电缆不能太长。 电缆金属护套中间直接接地、两端经过电压保护器接地,是一端直接接地的引伸,可以把一端直接接地电缆的最大长度增加一倍,接线方式和原理与一端直接接地一样。电缆线路很长时,即使采用金属护套中间接地,也会有很高的感应电压。这时,可以采用金

浅谈电缆护套破损修补方法

浅谈电缆护套破损修补方法 电缆在现场敷设过程中,普遍存在着电缆护套表面刮伤、破损现象。在破损不太严重的情况下,如何在最短的时间内进行修补,同时又保证电缆质量不受影响,日益成为电缆用户普遍关心的问题。尤其是在投入资金少,现场作业环境恶劣的条件下,电缆护套修补技术及质量更为关键。 一般而言,电缆的现场施工条件比较恶劣,可能位于初步建设的发电厂,正在初步建设的野外新建铁路或者桥架上,也可能在电缆隧道内。由于野外电缆护套的修补需要采用塑焊枪进行,并且塑焊枪的加热需要220V的交流电,但处于新兴建设的野外工程的现场一般都缺乏电源,或者有电源可能由于现场电缆敷设位置的随即性,给电源的提供带来了一定的困难,因此实现电缆护套的修补,一方面人员要到位,另一方面要满足电源供应。只有做好上述两项基础准备工作,才能确保电缆护套修补工作的正常开展。 为了便于电缆修补工作的顺利进行,施工单位要配备野外小型发电机,同时处于现场修补提供的塑料焊枪质量要过硬。此外,喷头加热面积要大,加热速度要快。 电缆在敷设过程中的破损部位具有随机性,在一般的城市和平原地区,此项工作比较容易开展,但是在一些山区地带,由于受到复杂地形的影响,电缆的修补工作非常艰难。因此要减少相应方面的投入,快速解决问题,关键是要保证电缆敷设过程人员的配备数量必须足够,并且采用正规的电缆专业敷设设备进行正规放线,避免和减少电缆放线过程中出现护套破损的现象。 虽然所需的电缆修补技术不是很高,但电缆敷设施工单位也应在电缆发生破损后,在确定电缆内部没有受到损伤的前提下,再对电缆进行修补,否则电缆护套修补的实际意义不大。需要注意的是,电缆的修补一定要及时,因为长时间过后,外部的水分和潮气进入电缆将会影响到电缆的正常使用寿命。在南方梅雨天气下,电缆端部敷设完毕后,如果对电缆端头没有及时进行密封处理,会导致流入电缆沟内的水分进入电缆端头10-20米,端头内部导体发黑,从而造成敷设后电缆的浪费。因此对敷设完毕的电缆要加强相应方面的检查、维护和保管,防止电缆在通电使用前因现场各种外部因素造成电缆寿命的缩短和终结。 同时,电缆护套现场修补所用的一些工具和材料也应准备充分,比如塑料焊枪、高压绝缘胶带、防水胶带、塑料绝缘、护套剥切下来的皮子等密封材料。因为电缆绝缘护套材料主要分为交联聚乙烯、聚乙烯、聚氯乙烯。有些材料属于热固性材料,如交联聚乙烯绝缘无法重复熔融再次利用,在现场用原材料进行修补,只能用高压绝缘胶带和美国3M公司提供的修补胶带系列进行修补。而有些材料属于热塑性材料,完全可以再次用高温使其熔融利用,如聚乙烯,聚氯乙烯等材料,现场取材,将电缆端部剥切下来的边角护套料切成细条,就可以实现对低压电缆绝缘和护套方面的修补,其修补质量完全可以达到电缆正常使用性能方面的要求。 此外,对中压电缆现场敷设过程中出现的护套破损现象的处理,不能过于粗糙,一是因为电缆的敷设过程必须轻拿轻放,二是电缆出现外部破损后,有时候其内部绝缘的破坏情况不能确定。笔者曾经对现场敷设过程中不小心施工造成的多处破损的电缆外护套进行返厂试验,发现电缆的破损部位出现了局部放电超标和击穿现象,因此当中压电力电缆在现场敷设过程中出现外护套破损后,最好是截

电缆的屏蔽

电缆的屏蔽 1.引言 电缆屏蔽有非金属屏蔽和金属屏蔽两种形式。采用哪一种屏蔽形式取决于电缆的种类,如电力电缆主要是为了屏蔽和均化电场,承载短路电流,而通讯电缆则要屏蔽电磁场,以消除线芯间和外部对电缆的干扰。电力电缆的屏蔽同时具有非金属屏蔽和金属屏蔽形式,具体取决于电缆的电压等级和短路电流的大小等,对于金属屏蔽部分还取决于以及金属材料的导电性、热性能、结构和加工方式等,通讯电缆则多为金属屏蔽。这里就电缆的屏蔽作用、结构和材料进行了简单介绍。 2.屏蔽的作用 2.1 均化电场 实心的导体相对表面比较光滑,电场的分布比较均匀。绞合的导电线芯由于是有多根单线组成,线芯表面各点电场分布不均匀,单线半径的大小和其表面场强的大小成反比关系,这就产生多导丝效应。导体因加工产生的毛刺、粉屑,造成尖端放电,也需要导体屏蔽。为了使导体表面的电场分布相对比较均匀,只有绕包带屏蔽和挤出屏蔽层,才能均化电场消除这些效应。 导电线芯电场分垂直和相切两个方向的分量。如没有半导电层,对于绕包类型的绝缘来说易产生移滑放电;另外切向方向的场强使绝缘的耐压降低10~15倍,降低了绝缘强度和绝缘的效果。 多芯电缆填充处有电场,由于填充处绝缘材料的本身耐电强度较低,因此使电缆的整体绝缘水平下降。半导电材料主要是由部分碳黑组成,碳黑除有半导电的作用外也可以吸附气体杂质,使相应面的绝缘的长期电场强度降低,避免电缆绝缘外表面发生游离,提高电缆的使用寿命。 为了避免电场过于集中,常采用半导电层结构改变电场的方向,避免绕包绝缘产生移滑放电,使多芯电缆的填充处于无电场状态;半导电层中的炭黑可以吸附气体杂质,屏蔽气泡不受电场作用,对于绞合的导体,由于是由多根单线胶合而成,表面单线突出的电场强度和凹进部分相比可提高30%。 2.2 减少干扰 电场和磁场是交互变化而存在的统一体,变化的电场产生变化的磁场影响周围媒质,从而产生对其他载流回路产生干扰,电磁场的作用是电场和磁场产生干扰作用的总和。 在电场和磁场的作用下,电流对回路之间的不平衡而引起的电干扰和磁干扰。干扰的产生可分为电感、电容、电阻在回路产生相应的感抗、容抗和阻抗,而产生相应的损耗。 通信电缆的频率较高,比较容易产生干扰,电力电缆的频率较低,而比较容易产生损耗。采用合理的屏蔽结构和有效的接地方式,就能够较少干和损耗。 2.3 热屏蔽 由于导体的导电性能比较好,对流过其本身的电流有较小的电阻,因此导电率较高。绝缘体的绝缘性能较高,对电流又较大的电阻,电流几乎不可能穿透绝缘体,因此绝缘电阻率较高。导电性能高的材料也相对有较高的导热性能,绝缘性能较高的材料必然有较高的热阻,导电性能的不同对热导的性能也有所不同,半导电材料的导电性能和导热性能介于导体和绝缘体之间。 如果电力电缆发生短路,导体流过大的电流使其温度突然升高,由于采用了内半导电屏蔽层,就防止了过高的温度直接作用到绝缘层上,不致因热冲击而损伤绝缘层,在这种情况下,内屏蔽层就起到了热屏蔽作用,也可以称为热缓冲层。 在绝缘或半导电屏蔽表面上绕包或挤出一层金属屏蔽,不但使圆形导体电缆填充处无电场,而且因为金属屏蔽散热效果好,在意外短路的情况下,可以承受一定的短路电流,避免绝缘过热产生热击穿。 2.4 防护作用 对高分子材料,因其内部和形成整个混合体的结构不同,在一定条件下水对材料都有一定的渗透率。在不同敷设条件和特殊环境下,为了使电缆在设计的使用寿命下安全运行,就要采用相应的防护结构。金属带或丝屏蔽主要是在发生短路的情况下,在一定时间内承受一部分短路电流,避免绝缘在过高的电流影响下产生热击穿。前提是金属屏蔽必须有牢靠的接地措施,电压电流的大小应满足设计的要求,总之不应产生过大的损耗。电力电缆的金属屏蔽的截面大小是根据电压的大小来确定的,屏蔽的面积不能小于有关标准的规定,线路电压和屏蔽截面的关系见表1。金属屏蔽的截面应尽量满足表1的要求,避免产生不必要的经济损失。

110kV及以上交联聚乙烯电缆金属护套接地浅析

龙源期刊网 https://www.doczj.com/doc/dd9588537.html, 110kV及以上交联聚乙烯电缆金属护套接地浅析 作者:张育卫 来源:《科技传播》2011年第16期 摘要高压电缆金属护套接地质量的优劣已经成为电网安全可靠运行不可忽视的因素,从 金属护套接地方式的选取及施工等方面,对施工中常见的110kV以上电缆金属护套接地进行 综合分析。 关键词交联聚乙烯;电缆;金属护套;接地 中图分类号TM8 文献标识码A 文章编号 1674-6708(2011)49-0183-02 目前交联聚乙烯电缆巳成为电网的重要组成部分。而由于高压电缆金属护套接地造成的线路故障时有发生,所以高压电缆金属护套正确、可靠的接地,是高压电缆安全、稳定运行的有力保障。本文将从接地方式的选取及施工等方面,对常见的110kV及以上电缆金属护套接地 进行综合分析。 1 高压电缆金属护套应正确可靠接地 110kV及以上高压电缆均为单芯,其线芯与金属护套可看作一个变压器,当线芯通过电流时就会有磁力线交链金属护套,在磁力线的作用下,金属护套上会感应电压,感应电压与电缆长度和流过导线的电流成正比。电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,为保障人身安全,金属护套上的感应电压不得超过50V;而当不接地端的电缆金属护套已用绝缘材料包裹时,该感应电压可提高到100V。另外,在发生不对称短路故障、遭受操作过电压或雷电冲击时,金属护套上会形成很高的感应电压,将使护套绝缘发生击穿。因此,电缆金属护套对地应保持良好的绝缘,并在设计、安装时,按照安全、可靠、经济合理的原则,在电缆护套的一定位置,根据线路的不同情况,采用护套两端接地、护套一端接地、护套中点接地、护套交叉互联接地、电缆换位接地、金属护套交叉互联接地等特殊的连接和接地方式,以防止电缆护层绝缘被击穿。 2 高压电缆金属护套接地方式 2.1护套两端接地 它是指金属护套在电缆两端直接接地。这样金属护套将会出现很大的环流,其值可达线芯电流的50%~95%,使金属护套发热,不仅加速绝缘的老化,还降低了载流量,因此金属护套

电缆线路护套接地分析

电缆线路护套接地分析 1 高压电缆金属护套应正确可靠接地 110kV及以上高压电缆均为单芯,其线芯与金属护套可看作一个变压器,当线芯通过电流时就会有磁力线交链金属护套,在磁力线的作用下,金属护套上会感应电压,感应电压与电缆长度和流过导线的电流成正比。电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,为保障人身安全,金属护套上的感应电压不得超过50V;而当不接地端的电缆金属护套已用绝缘材料包裹时,该感应电压可提高到100V。另外,在发生不对称短路故障、遭受操作过电压或雷电冲击时,金属护套上会形成很高的感应电压,将使护套绝缘发生击穿。因此,电缆金属护套对地应保持良好的绝缘,并在设计、安装时,按照安全、可靠、经济合理的原则,在电缆护套的一定位置,根据线路的不同情况,采用护套两端接地、护套一端接地、护套中点接地、护套交叉互联接地、电缆换位接地、金属护套交叉互联接地等特殊的连接和接地方式,以防止电缆护层绝缘被击穿。 2 高压电缆金属护套接地方式 2、1护套两端接地 它是指金属护套在电缆两端直接接地。这样金属护套将会出现很大的环流,其值可达线芯电流的50%~95%,使金属护套发热,不仅加速绝缘的老化,还降低了载流量,因此金属护套不宜两端

直接接地。个别情况,如线路很短或轻载运行,运行时护套上的感应电压很小,环流对电缆的载流量影响不大,可采用此接地方式。 2、2护套一端接地 当电缆金属护套有一端接地而另一端不接地,将出现下列问题:首先,当雷电流或过电压波沿线芯流动时,金属护套不接地端会出现很高的冲击电压;另外,在短路电流流经线芯时,金属护套不接地端会出现较高的工频感应电压,造成电缆外护层绝缘不能承受这种过电压的作用而损坏,并导致电缆出现多点接地,形成环流。因此,为了保护绝缘,在采用一端直接接地时,另一端需经护层保护器接地限制护层上的过电压,同时安装沿电缆平行敷设的回流线,并在电缆一半处换位。当接地短路故障时,接地电流可以通过回流线流回系统的中性点。由于通过回流线的接地电流产生的磁通抵消了一部分电缆接地电流产生的磁通,因此装设回流线后可降低短路故障的感应电压。由于护套一端接地,另一端经保护器接地,金属护套的其它部位对地绝缘,这样护套与地之间不构成回路,也就不会形成环流。通常电缆线路长度在500米以下时采用此方式。 2、3护套中点接地 长电缆线路采用一端接地时,由于感应电压太高,易使护层绝缘击穿造成金属护套多点接地。此时,可在电缆线路的中间将

电缆接地问题 高压电力电缆的铜屏蔽和钢铠一般都需要接地

电缆接地问题高压电力电缆的铜屏蔽和钢铠一般都需要接地,两端接地和一端接地有什么区别?制作电缆终端头时,钢铠和铜屏蔽层能否焊接在一块?制作电缆中间头时,钢铠和铜屏蔽层能否焊接在一块?35KV高压电缆多为单芯电缆,单芯电缆在通电运行时,在屏蔽层会形成感应电压,如果两端的屏蔽同时接地,在屏蔽层与大地之间形成回路,会产生感应电流,这样电缆屏蔽层会发热,损耗大量的电能,影响线路的正常运行,为了避免这种现象的发生,通常采用一端接地的方式,当线路很长时还可以采用中点接地和交叉互联等方式。在制作电缆头时,将钢铠和铜屏蔽层分开焊接接地,是为了便于检测电缆内护层的好坏,在检测电缆护层时,钢铠与铜屏蔽间通上电压,如果能承受一定的电压就证明内护层是完好无损。如果没有这方面的要求,用不着检测电缆内护层,也可以将钢铠与铜屏蔽层连在一起接地(我们提倡分开引出后接地)。

为什么高压单芯交联聚乙烯绝缘电力电缆要采用特殊的接地方式?电力安全规程规定:35kV及以下电压等级的电缆都采用两端接地方式,这是因为这些电缆大多数是三芯电缆,在正常运行中,流过三个线芯的电流总和为零,在铝包或金属屏蔽层外基本上没有磁链,这样,在铝包或金属屏蔽层两端就基本上没有感应电压,所以两端接地后不会有感应电流流过铝包或金属屏蔽层。但是当电压超过35kV时,大多数采用单芯电缆,单芯电缆的线芯与金属屏蔽的关系,可看作一个变压器的初级绕组。当单芯电缆线芯通过电流时就会有磁力线交链铝包或金属屏蔽层,使它的两端出现感应电压。感应电压的大小与电缆线路的长度和流过导体的电流成正比,电缆很长时,护套上的感应电压叠加起来可达到危及人身安全的程度,在线路发生短路故障、遭受操作过电压或雷电冲击时,屏蔽上会形成很高的感应电压,甚至可能击穿护套绝缘。此时,如果仍将铝包或金属屏蔽层两端三相互联接地,则铝包或金属屏蔽层将会出现很大的环流,其值可

改善超高压电缆金属铝护套氩弧焊 焊接质量的方法探讨

C-34 目录 摘要 (3) 关键词 (3) 一引言 (3) 二氩弧焊生产中的缺陷 (4) 三影响金属铝护套氩弧焊焊接质量的原因分析 (4) 四改进措施 (5) 4.1 方法因素的改进 (5) 4.2 人为因素的改进 (6) 4.3 材料因素的改进 (6) 4.4 设备因素的改进 (7) 五效果检查 (7) 六结束语 (8)

1 改善超高压电缆金属铝护套氩弧焊 焊接质量的方法探讨 摘要:本文描述了高压电缆金属铝护套氩弧焊生产过程中产生的产品质量缺陷,并对由此导致的氩弧焊铝护套漏气进行了剖析,结合多年的生产工作经验,通过采取控制电流,气压、调整模子材料,固定焊缝缝隙等一系列措施,并制定操作规范、加大巡检力度,有效控制了氩弧焊产品漏气的发生,节约了原材料提高了产品质量。使公司的产品市场竞争力得到有效的提升。 关键词:高压电缆、金属铝护套、氩弧焊、质量缺陷 一、引言 近年来随着国家电力事业的飞速发展,高压电缆产品的需求量也大大增加,我公司为满足市场的需求,拓宽公司产品的供应、适应日益激烈的市场竞争,去年公司引进了一条芬兰超高压立塔生产线,所生产的产品以优良的品质,为公司赢得了良好的信誉和大量的客户。但在长期生产工作中,在铝护套氩弧焊生产工序中发现氩弧焊铝护套偶尔有漏气现象,一直困扰着我们,这不但影响了产品质量,也影响了我们的交货期,为了提高产品质量,本人对产品进行了跟踪、分析、攻关,制定了相应的改进措施,通过在实际生产操作中的有效实施, 2 大大减少氩弧焊工序漏气质量问题的发生,提高了我公司超高压电缆

产品的质量。 二、氩弧焊生产中的缺陷 金属铝护套氩弧焊是采用卷板铝材通过精切、卷筒、焊接,在线检测、轧纹过程来实现,我们在生产过程中发现焊缝经常移位,走“长城形”,造成漏焊、假焊、虚焊经轧纹时就开裂,如果未经处理在用户使用过程中一旦浸水就会产生水树造成绝缘击穿的严重后果,而返工查找缺陷、修补也将造成大量材料和人力的浪费,所以必须找出引发质量缺陷的根本因素,追本溯源提前做好防范工作,才能有效的控制这个问题的发生。 三、影响金属铝护套氩弧焊焊接质量的原因分析 作为高压电缆结构中的金属铝护套对电缆起作防腐、防潮、屏蔽的作用,同时还起着机械保护作用,所以铝管焊缝质量好坏非常关键,是直接影响电缆使用寿命的重要因素之一。 根据我从事金属铝护套生产线多年经验的积累,并对氩弧焊生产流程进行长期跟踪后,发现影响氩弧焊焊接质量的原因主要有以下几个因素: 1、方法因素:在生产过程中控制不当,没依据不同的铝板厚度控制不同电流,另不同的规格控制焊接的速度也不同。 2、人为因素:操作工人操作技能水平不够,责任心不强,不了解焊接的工艺参数,不熟悉各类产品的标准,没选择合适的模具,巡检 3 的力度不够等。 3、材料因素:卷板铝材质量差,斑块氧化严重,受潮杂质多,这些

相关主题
文本预览
相关文档 最新文档