当前位置:文档之家› 离散数学(第五版)清华大学出版社第4章习题解答

离散数学(第五版)清华大学出版社第4章习题解答

离散数学(第五版)清华大学出版社第4章习题解答
离散数学(第五版)清华大学出版社第4章习题解答

离散数学(第五版)清华大学出版社第4章习题解答4.1 A:⑤;B:③;C:①;D:⑧;E:⑩

4.2 A:②;B:③;C:⑤;D:⑩;E:⑦

4.3 A:②;B:⑦;C:⑤;D:⑧;E:④

分析题4.1-4.3 都涉及到关系的表示。先根据题意将关系表示成集合表达式,然后再进行相应的计算或解答,例如,题4.1中的

Is ={<1,1>,<2,2>}, Es ={<1,1>,<1,2>,<2,1>,<2,2>}

Is ={<1,1>,<1,2>,<2,2>};

而题4.2中的

R={<1,1>,<1,4>,<2,1>,<3,4>,<4,1>}.

为得到题4.3中的R须求解方程x+3y=12,最终得到

R={<3,3>,<6,2>,<9,1>}.

求RoR有三种方法,即集合表达式、关系矩阵和关系图的主法。下面由题 4.2的关系分别加以说明。

1°集合表达式法

将domR,domRUran,ranR的元素列出来,如图4.3所示。然后检查R的每个有序对,若∈R,则从domR中的x到ranR中的y画一个箭头。若danR中的x 经过2步有向路径到达ranR中的y,则∈RoR。由图4.3可知

RoR={<1,1>,<1,4><4,1>,<4,4>,<2,1>,<2,4>,<3,1>}.

如果求FoG,则将对应于G中的有序对的箭头画在左边,而将对应于F中的有序对的箭头画在右边。对应的三个集合分别为domG,ranUdomF,ranF,然后,同样地寻找domG到ranF的2步长的有向路径即可。

2°矩阵方法

若M是R的关系矩阵,则RoR的关系矩阵就是M·M,也可记作M,在计算2 48

乘积时的相加不是普通加法,而是逻辑加,即0+0=0,0+1=1+0=1+1=1,根据已知条件得

?1 0 0 1??1 0 0 1??1 0 0 1?

?1 0 0 0??1 0 0 0??1 0 0 1?

2 ??????

M =?????=??

?0 0 0 1??0 0 0 1??1 0 0 0?

?1 0 0 0??1 0 0 0??1 0 0 1?

M2中含有7个1,说明RoR中含有7个有序对。

图4.3 图4.4

3°关系图方法

n''

设G是R的关系图。为求R 的关系图G ,无将G的结点复制到G 中,然后依次检查G的每个结点。如果结点x到y有一条n步长的路径,就在G'中从x到y加一条有向边。当所有的结点检查完毕,就得到图G'。以题4.2为例。图4.4(1)表示R的关系图G。依次检查结点1,2,3,4。从1出发,沿环走2步仍回到1,所以,G'中有过1的环。从1出发,经<1,1>和<1,4>,2步可达4,所以,'中有从1到4的边。结点1检查完毕。类似地检查其他3个结点,2

G

步长的路径还有2→1→1,2→1→4,3→4→1,4→1→1,4→1→4。将这些路径'2

对应的边也加到G 中,最终得到R 的关系图。这个图给在图4.4(2).

4.4 A:④;B:⑧;C:⑨;D:⑤;E:⑩

分析根据表4.1中关系图的特征来判定R1,R2,LR5的性质,如表4.2所示。

表4.2

49

自反反自反对称反对称传递

R√

1

R2

R√

3√ √ √ √

R4

R5√ √ √ √

从表中可知R1,R2和R3不是传递的,理上如下:在R1中有边<3,1>和<1,2>,但缺少边<3,2>.在R2中有边<1,3>和<3,2>,但缺少边<1,2>。在R3中有边<1,2>和<2,1>,但缺少过1的环。

4.5 A:①;B:③;C:⑧;D:⑨;E:⑤

分析等价关系和划分是两个不同的概念,有着不同的表示方法,等价关系是有序对的集合,而划分是子集的集合,切不可混淆起来,但是对于给定的集合A,A上的等价关系R和A的划分π中一一对应的,这种对应的含义是

∈R?x和y在π的同一划分块里。

拘句话说,等价说系R的等价类就是划分π的划分块,它们表示了对A中元素的同一种分类方式。

给定划分π,求对应的等价关系R的方法和步骤说明如下:

1°设π中含有两个以上元素的划分块有l块,记作B1,B2,L.Bt。若Bi ={x1,x2,L,xj},j≥2,则∈Ri,s,t=1,2,L,j,s≠t.求出R1,R2,L,Rt。

2° R=R1UR2ULURtUIA.

本题中的π 的划分块都是单元集,没有含有个以上元素的划分块,所以,

1

R=IA,π2含有两个划分块,故对应地等价关系含有两个等价类。π3中只有一个划分块Z+.Z+包含了集合中的全体元素,这说明∈R ?x,y∈Z+,因此,

1

这个划分块对应的关系R就Z+上的全域关系,从而得到R=R UI 也是Z+上的11A

全域关系。

4.6 A:③;B:⑩;C:⑤;D:⑩;E:⑤

50

分析画哈斯图的关键在于确定结点的层次和元素间的盖住关系,下面讨论一下画图的基本步骤和应该注意的问题。

画图的基本步骤是:

1°确定偏序集中的极小元,并将这些极小元放在哈斯图的最底层,记为第0层。

2°若第n层的元素已确定完毕,从A中剩余的元素中选取至少能盖住第n层中一个元素的元素,将这些元素放在哈斯图的第n+1层。在排列第n+1层结点的位置时,注意把盖住较多元素的结点放在中间,将只盖住一个元素的结点放在两边,以减少连绩的交叉。

3°将相邻两层的结点根据盖住关系进行连线。

以本题的偏序集为例,1可以整除S中的全体整数,故1是最小元,也是唯一的极小元应该放在第0层。是1的倍数,即2,3,5,7,S中剩下的元素是4,6,8,9,10。哪些应该放在第2层呢?根据盖住关系,应该是4,6,9和10。因为4盖住,2,6盖住2和3,9盖住3,10盖住2和5. 8不盖住2,3,5,7中的任何一个元素,最后只剩下一个8放在第3层。图4.5给出了最终得到的哈斯图。在整除关系的哈斯图中,盖住关系体现为最小的倍数或最小的公倍数关系。如果偏序集是,那么哈斯图的结构将呈现出十分规则的形式。第0层是空集?,第1层是所有的单元集,第2层是所有的2元子集,…,直到最高层的集合A。这里的盖住关系就体现为包含关系。

在画哈斯图时应该注意下面几个问题。

1°哈斯图中不应该出现三角形,如果出现三角形,一定是盖住关系没有找

51

对。纠正的方法是重新考察这3个元素在偏序中的顺序中的顺序,然后将不满足盖住关系的那条边去掉。请看图 4.6(1)中的哈斯图。图中有两个三角形,即三角形abc和abd。根据结点位置可以看出满足如下的偏序关系:

apb,apc,bpc,apd,bpd

从而得到apbpc和apbpd。这就说明c和d不盖住a,应该把ac边和ad边从图中去掉,从而得到正确的哈斯图,如图4.6(2)所示。

2°哈斯图中不应该出现水平线段。根据哈斯图的层次结构,处在同一水平位置的结点是同一层的,它们没有顺序上的“大小”关系,是不可比的。出现这种错误的原因在于没有将“较大”的元素放在“较小”元素的上方。纠正时只要根据“大小”顺序将“较大”的元素放到更高的一层,将水平线改为斜一就可以了。

3°哈斯图中应尽量减少线的交叉,以使得图形清晰、易读,也便于检查错误,图形中线的交叉多少主要取决于同一层结点的排列顺序,如果出现交叉过多,可

以适当调正结点的排列顺序,注意变动结点时要同时移动连线。

最后谈谈怎样确定哈斯图中的极大元、极小元、最大元、最小元、最小上界和最大下界,具体的方法是:

1°如果图中有孤立结点,那么这个结点既是极小元,也是极大元,并且图中既元最小元,也元最大元(除了图中只有唯一孤立结点的特殊情况)。

2°除了孤立结点以外,其他的极小元是图中所有向下通路的终点,其他的极大元是图中所有向上通路的终点。

3°图中唯一的极小元是最小元,唯一的极大元是最大元;否则最小元和最大元不存在。

4°设B为偏序集的子集,若B中存在最大元,它就是B的最小上界;否则从A-B中选择那些向下可达B中每一个元素的结点,它们都是B的上界,其中的最小元是B的最小上界。类似地可以确定B的最大下界。

观察图4.5,1是所有向下通路的终点,是极小元,也是最小元,向上通路的终点有9,6,8,10和7,这些是极大元。由于极大元不是唯一的,所以,没有最在元。地于整个偏序集的最小上界和最大下界,就是它的最在元和最小元,因此,该偏序集没有最小上界,最大下界是1。

52

4.7 A:④;B:⑤;C:③;D:①;E:⑦

4.8 A:②;B:①;C:④;D:②;E:⑨

分析给定函数f:A→B,怎样判别它是否满足单射性呢?通常是根据函数的种类采取不同的方法。

1°若f:A→B是实数区间上的连续函数,那么,可以通过函数的图像来判别它的单射性。如果f的图像是严格单调上升(或下升)的,则f是单射的。如果在f的图像中间有极大或极小值,则f不是单射的。

2°若f不是通常的初等函数。那么,就须检查在f的对应关系中是否存在着多对一的形式,如果存在x1,x2∈A,x1≠x2但f(x1)= f(x2),这就是二对一,即两个自变量对应于一个函数值,从而判定f不是单射的。

下面考虑满射性的判别,满射性的判别可以归结为f的值域ranf的计算。如果ranf =B,则f :A→B是满射的,否则不是满射的。求ranf 的方法说明如下:

1°若f:A→B是实数区间上的初等函数,为了求ranf 首先要找到f的单调区间。针对f的每个单调区间求出f的该区音的最小和最大值,从而确定f在这个区间的局部值域。ranf 就是所有局部值域的并集。对于分段的初等函数也可以采用这种方法处理。

2°若f是用列元素的方法给出的,那么ranf就是所有有序对的第二元素构成的集合。

本题中只有f1是定义于实数区间上的初等函数。易见,指数函数的图像是严格单调上升的,并且所有的函数值都大于0。从而知道f1是单射的,但不是满射的。对于f2,由

f2(1) = f2(?1) = 1可知,它不是单射的。但ranf2=N,所以,它是满射的。f3既不是单射的,也不是满射的,因为f3(3)= f3(0)=0,且f3={0,1,2}.f4是

53

单射的,但不是满射的。因为m≠n时,必有,但<1,1>?ranf4. 4.9 A:③;B:①;C:⑦;D:⑤;E:⑨

分析1)先求出T的特征函数χT ={,,},它是从S到{0,1}的函数。而Ss中的函数是从{a,b,c}到{a,b,c}的函数,这就是说该函数应包含3个有序对,有序对的第一元素是a,b,c,而第二元素应该从a,b,c中选取(可以重复选取)。不难年出只有①满足要求。

(2)等价关系R对应的划分就是商集S/R。检查R的表达式,如果∈R,那么x,y 就在同一个等价类。不难看出S 中的元素被划分成两个等价类:{a,b},{c},因而对应的划分有2个划分块。

考虑自然映射g:S→S/R它将,S 中的元素所在的等价类,即将 a 映到[a]={a,b},将b映到[b]={a,b},将c映到[c]={c},将g写成集合表达式就是

g={,,}.

通常的自然映射是满射的,但不一定是单射的,除非等价关系为恒等关系,这时每个等价类只含有一个元素,不同元素的等价类也不同,g就成为双射函数了。

4.11 (1)

R={<1,1>,<1,2>,<1,3>,<1,4>,<1,5>,<1,6>,<2,2>,<2,4>,<2,6>,

<3,3>,<3,6><4,4>,<5,5>,<6,6>}.

(2)

R={<1,1>,<2,1>,<2,2>,<3,1>,<3,3>,<4,1>,<4,2>,<4,4>,<5,1>,

<5,5>,<6,1><6,2>,<6,3>,<`6,6>}.

(3) R={<1,2>,<1,3>,<2,1>,<2,3>,<2,4>,<3,1>,<3,2>,<3,4>,<3,5> ,

<4,2>,<4,3><4,5>,<4,6>,<5,3>,<5,6>,<6,4>,<6,5>}.]

54

4.12 对称性

4.13 R1oR2={},

R2oR1={,},

R2={,,},

1

R3={,,},

2

4.14

图4.7

分析根据闭包的计算公式

r(R)=RUR0,s(R)=RUR?1,t(R)=RUR2UL

可以得到由关系图求闭包的方法.

设G是R的关系图,G的结点记为x1,x2,L,xn,r(R),s(R),t(R)的关系图分别记作Gr,Gs和Gt.

为求Gr,先将图G 的结点和边拷贝到Gr中缺少环的结点都加上环就得到了r(R)的关系图.

为求Gs,也须将图G 拷贝到Gs,然后检查Gs的每一对结点xi和xj(i≠ j).如果在xi和xj之间只存在一条单向的边,就在这两个结点间加上一条方向相反的边.当Gs中所有的单向边都变成双向边以后就得到了s(R)的关系图.

最后拷虑Gt.首先将图G 拷贝到Gt,然后从x1开始依次检查x1,x2,L,xn.在

55

检查结点xi(i=1,2,L,n时,要找出从xi出发经过有限步(至少1步,至多n步)) 可达的所结点(包括xi自己在内)。如果从xi到这种结点之间缺少边,就把这条边加到G 中,当n个结点全部处理完毕,就得到t(R)的关系图。

t

以本题为例,依次检查结点a,b,c,d从a出发可达b,.c,d,e四个结点,所以图Gt 中应该加上a→c,a→d和的边。从b出发可达c,d,e三个结点,所以,图Gt中应该加上b→d的边。从c出发可达c和d,在Gt中应该加上边c→c,即通过c的环,类似地分析可以知道,在Gt中还应该加上过d的环。

4.15 若S不是单元集,则P(S)?{?}不构成S的划分。

4.16 在图4.8(1)中极小元、最小元是1,极大元、最大元是24,在图4.8(2)中极小元、最小元是1,极大元是5,6,7,8,9,没有最大元。

4.17 (1)不能;(2)能;(3)不能。

分析函数和关系的区别在于它们的对应法则。在关系R的表达式中,如果∈R,就说x对应到y,对于二元关系R,这种对应可以是一对一的,多对一的和一对多的。这里的一对多指的是一个x对应到多个y,但是对于函数,则不允许这种一对多的对应。至于单射函数,不但不允许一对多,也不允许多对一,只能存在一对一的对应。为了判别一个关系是否为函数,就要检查关系的对应中是否存在一对多的情况。如本题中的(1)式,<1,2>和<1,1>同时在关系中出现,因此不是函数。又如(3)式,<1,1>和<1,-1>也同时在关系中出现,破坏了函数定义。

4.18 当R=IS时满足要求。

56

4.19 fof,gof,fog,hog,fogoh∈NN,且

fof(n)=n+2.go f(n)=2n+2,

fog(n)=2n+1.hog(n)=0,

goh=?0 n为偶数

?2 n为奇数,

?

?1 n为偶数

fogoh(n)=?

?3 n为奇数.

分析注意合成的正确表示方法。表示f和g合成的方法有两种:

1°说明fog是从哪个集合到个集合的函数,然后给出fog(x)的计算公式。

2°给出fog的集合表达式。

本题中的结果都采用了第一种表示方法,先说明地果函数是从N到N的函数,然后分别给出函数值的计算公式。也可以彩用第二种方法,如

fof ={|n∈N},

fogoh={,z|x,y∈N且x为偶数,y为奇数}.

但是,如果写成fo f =n+2就错了,因为fo f是函数,是有序对的集合,与函数值fof(n)是根本不同的两回事,不能混为一谈。

4.20 f?1:R×R→R×R,

?1x+y x?y

f ()=< 2 , 2 >.

分析首先由f的双射性确定f?1一定存在,然后通过f的定义求出反函数的对应法则。设f将对应到。根据f的定义有

=?x+y=u∧x?y=v

?2x=u+v∧2y=u?v?x=u+v∧y=u?v.

22

因而反函数的对应法则是对应到u+v,u?v 。

22

4.21 (1)如下列出gof的对应关系

57

x0 1 2 3 4 5 6 7 8…

f(x) 1 2 3 4 0 5 6 7 8…

g(f(x)) 3 1 3 2 0 3 3 3 4…

从而得到gof:N→N

?

?3 x=0,2或大于等于5的奇数

?1 x=1

gof(x)=?2 x=3

?

?x x≥6且x为偶数

?2

?0 x=4

?

gof是满射的,但不是单射的。

(2)gof({0,1,2})={1,3}.

4.22 (1)P(A)={?,{a},{b},{a,b}},

BA={f,f ,f ,f },其中

1 2 3 4

f1={,{b,0>, f2 ={},

f2={,{b,0>, f4={},

(2)令f:P(A)→BA,且

f(?)= f1,f({a})= f2,f({b})= f3,f({a,b})= f4

分析对于任意集合A,都可以构造从P(A)到{0,1}A的双射函数,任取A的子集B∈P(A),B的特征函数χB:A→{0,1}定义为

?1 x∈B

χ (x)=?

B0 x∈A?B

?

不同的子集的特征函数也不同,因此,令

?:P(A)→{0,1}A

?(B)=χB

?是P(A)到{0,1}A的双射,在本题的实例中的?是?(?)= f,?({a})= f ,

13

58

?({b})= f2,?({a,b})= f4.

4.23 (1)f:A→B,f(x)=2x

(2)f:A→B,f(x)=sinx .

分析给定集合A,B,如何构造从A到B的双射?一般可采用下面的方法处理。1°若A,B都是有穷集合,可以先用列元素的方法表示A,B,然后顺序将A 中的元素与B中的元素建立对应,如习题4.22.

1°若A,B都是有穷集合,可以先用列元素的方法表示A,B,然后顺序将A 中的元素与B中的元素建立对应,如习题4.22。

2°若A,B是实数区间,可以采用直线方程

作为从A到B的双射函数。

例如,A=[1,2],B=[2,6]是实数区间。如图4.9

所示,先将A,B区间分别标记在直角坐标系的x

轴和y轴上,过(1,2)和(2,6)两点的直线方

程将A中的每个数映到B中的每个数,因此,该直线方程所代表的一次函数就是从 A 到 B 的双射函数。由解析几何的知识可以得到双射函数f:A→B,f(x)=4x?2.

这种通过直线方程构造双射函数的方法对任意两个同类型的实数区间(同为闭区间、开区间或音开半闭的区间)都是适用的。但对半开半闭的区间要注意开端点与开端点对应,闭端点与闭端点对应。此外还要说明一点,对于某些特殊的实数区间可能选择其他严格单调的初等函数更方便,例如,A=[?1,1],B=[?π,π],那么取f(x)=arcsinx即可。

2 2

3°A是一个无穷集合,B是自然数集N。

为构造从A到B的双射只须将A中的元素排成一个有序序列,且指定这个序列的初始元素,这就叫做把A“良序化”。比如说 A 良序化以后,是集合{x0,x1,x2L},那令f:A→B,

f(xi)=i,i=0,1,2,Lf就是从A到B的双射。

59

例如,构造从整数集Z到自然数集N到自然数集N的双射。如下排列Z中元素,然后列出对应的自然数,即

Z:0,?1,1,?2,2,?3,3,L

Z:0, 1,2,?2,2,3,4,,5,6L

观察这两个序列,不难找到对应法则。

?2xx≥0

f:Z→N,f(x)=?

??2x?1 x<0

显然f是从Z到N的双射。

最后要指出,并不是任何两个集合都可以构造双射的。比如说,含有元素不一样多的有穷集之间不存在双射。即使都是无穷集也不一定存在双射,如实数集R 和自然数集N之间就不存在双射。这就涉及到集合“大小”的描述和度量方法,限于篇幅地此就不进行探入讨论了,有兴趣的读者可以阅读其他的《离散数学》书籍。

4.24 f1(x)= f1(y)?x=y,R1为N上的恒等关系,且有

N/R1={{n}}|n∈N}.

f2(x)= f2(y)?x与y的奇偶性相同。在N中的所有奇数构成一个等价类,所有的偶数构成另一个等价类。因此,

N/R2={{2n|n∈N},{2n+1|n∈.N}}.

f3(x)= f3(y)?x=y(mod3),即x除以3的余数与y除以3的余数相等。根据余数分别这0,1,2,可将N中的数分成3个等价类,因而

N/R3={{3n|n∈N},{3n+1|n∈.N}}.

4.25 (1)fog:N→R,fog(x)=x2?x

60

fog不是单射也不是满射。fog(A)={2,12,30,56,90}

fog(B)={0}。

x2

(2)fog:Z→R,fog(x)=efog不是单射也不是满射。

n2

fog(A)={e |n∈N}.

4n2

fog(B)={e |n∈N}.

离散数学(第五版)清华大学出版社第2章习题解答

离散数学(第五版)清华大学出版社第2章习题解答 2.1 本题没有给出个体域,因而使用全总个体域. (1) 令F(x):x是鸟 G(x):x会飞翔. 命题符号化为 ?x(F(x)→G(x)). (2)令F(x):x为人. G(x):x爱吃糖 命题符号化为 ??x(F(x)→G(x)) 或者 ?x(F(x)∧?G(x)) (3)令F(x):x为人. G(x):x爱看小说. 命题符号化为 ?x(F(x)∧G(x)). (4) F(x):x为人. G(x):x爱看电视. 命题符号化为 ??x(F(x)∧?G(x)). 分析1°如果没指出要求什么样的个体域,就使用全总个休域,使用全总个体域时,往往要使用特性谓词。(1)-(4)中的F(x)都是特性谓词。 2°初学者经常犯的错误是,将类似于(1)中的命题符号化为 27 ?x(F(x)∧G(x)) 即用合取联结词取代蕴含联结词,这是万万不可的。将(1)中命题叙述得更透彻些,是说“对于宇宙间的一切事物百言,如果它是鸟,则它会飞翔。”因而符号化应该使用联结词→而不能使用∧。若使用∧,使(1)中命题变成了“宇宙间的一切事物都是鸟并且都会飞翔。”这显然改变了原命题的意义。

3°(2)与(4)中两种符号化公式是等值的,请读者正确的使用量词否定等值式,证明(2),(4)中两公式各为等值的。 2.2 (1)d (a),(b),(c)中均符号化为 ?xF(x) 其中F(x):(x+1)2=x2+2x+1,此命题在(a),(b),(c)中均为真命题。 (2)在(a),(b),(c)中均符号化为 ?xG(x) 其中G(x):x+2=0,此命题在(a)中为假命题,在(b)(c)中均为真命题。 (3)在(a),(b),(c)中均符号化为 ?xH(x) 其中H(x):5x=1.此命题在(a),(b)中均为假命题,在(c)中为真命题。 分析1°命题的真值与个体域有关。 2°有的命题在不同个体域中,符号化的形式不同,考虑命题 “人都呼吸”。 在个体域为人类集合时,应符号化为 ?xF(x) 这里,F(x):x呼吸,没有引入特性谓词。 在个体域为全总个体域时,应符号化为 ?x(F(x)→G(x)) 这里,F(x):x为人,且F(x)为特性谓词。G(x):x呼吸。 28 2.3 因题目中未给出个体域,因而应采用全总个体域。 (1)令:F(x):x是大学生,G(x):x是文科生,H(x):x是理科生,命题符号化为?x(F(x)→(G(x)∨H(x)) (2)令F(x):x是人,G(y):y是化,H(x):x喜欢,命题符号化为 ?x(F(x)∧?y(G(y)→H(x,y))) (3)令F(x):x是人,G(x):x犯错误,命题符号化为 ??x(F(x)∧?G(x)), 或另一种等值的形式为 ?x(F(x)→G(x)

离散数学习题(耿素云屈婉玲)

离散数学习题答案 习题二及答案:(P38) 5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ?→∧∧ 解:原式()p q q r ?∨∧∧q r ?∧()p p q r ??∨∧∧ ()()p q r p q r ??∧∧∨∧∧37m m ?∨,此即公式的主析取范式, 所以成真赋值为011,111。 6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨?∨ 解:原式()()p p r p q r ?∨?∨∧?∨∨()p q r ??∨∨4M ?,此即公式的主合取范式, 所以成假赋值为100。 7、求下列公式的主析取范式,再用主析取范式求主合取范式: (1)()p q r ∧∨ 解:原式()(()())p q r r p p q q r ?∧∧?∨∨?∨∧?∨∧ ()()()()()()p q r p q r p q r p q r p q r p q r ?∧∧?∨∧∧∨?∧?∧∨?∧∧∨∧?∧∨∧∧ ()()()()()p q r p q r p q r p q r p q r ??∧?∧∨?∧∧∨∧?∧∨∧∧?∨∧∧ 13567m m m m m ?∨∨∨∨,此即主析取范式。 主析取范式中没出现的极小项为0m ,2m ,4m ,所以主合取范式中含有三个极大项0M ,2M ,4M ,故原式的主合取范式024M M M ?∧∧。 9、用真值表法求下面公式的主析取范式: (1)()()p q p r ∨∨?∧ 解:公式的真值表如下:

由真值表可以看出成真赋值的情况有7种,此7种成真赋值所对应的极小项的析取即为主析取范式,故主析取范式 1234567m m m m m m m ?∨∨∨∨∨∨ 习题三及答案:(P52-54) 11、填充下面推理证明中没有写出的推理规则。 前提:,,,p q q r r s p ?∨?∨→ 结论:s 证明: ① p 前提引入 ② p q ?∨ 前提引入 ③ q ①②析取三段论 ④ q r ?∨ 前提引入 ⑤ r ③④析取三段论 ⑥ r s → 前提引入 ⑦ s ⑤⑥假言推理 15、在自然推理系统P 中用附加前提法证明下面推理: (2)前提:()(),()p q r s s t u ∨→∧∨→ 结论: p u → 证明:用附加前提证明法。 ① p 附加前提引入 ② p q ∨ ①附加 ③ ()()p q r s ∨→∧ 前提引入 ④ r s ∧ ②③假言推理 ⑤ s ④化简 ⑥ s t ∨ ⑤附加 ⑦ ()s t u ∨→ 前提引入 ⑧ u ⑥⑦假言推理 故推理正确。 16、在自然推理系统P 中用归谬法证明下面推理: (1)前提: p q →?,r q ?∨,r s ∧? 结论:p ?

离散数学习题解答

习题一 1.下列句子中,哪些是命题?在是命题的句子中,哪些是简单命题?哪些是真命题?哪些命题的真值现在还不知道? (1)中国有四大发明. 答:此命题是简单命题,其真值为1. (2)5是无理数. 答:此命题是简单命题,其真值为1. (3)3是素数或4是素数. 答:是命题,但不是简单命题,其真值为1. x+< (4)235 答:不是命题. (5)你去图书馆吗? 答:不是命题. (6)2与3是偶数. 答:是命题,但不是简单命题,其真值为0. (7)刘红与魏新是同学. 答:此命题是简单命题,其真值还不知道. (8)这朵玫瑰花多美丽呀! 答:不是命题. (9)吸烟请到吸烟室去! 答:不是命题. (10)圆的面积等于半径的平方乘以π. 答:此命题是简单命题,其真值为1. (11)只有6是偶数,3才能是2的倍数. 答:是命题,但不是简单命题,其真值为0. (12)8是偶数的充分必要条件是8能被3整除. 答:是命题,但不是简单命题,其真值为0. (13)2008年元旦下大雪. 答:此命题是简单命题,其真值还不知道. 2.将上题中是简单命题的命题符号化. 解:(1)p:中国有四大发明. (2)p:是无理数. (7)p:刘红与魏新是同学. (10)p:圆的面积等于半径的平方乘以π. (13)p:2008年元旦下大雪. 3.写出下列各命题的否定式,并将原命题及其否定式都符号化,最后指出各否定式的真值. (1)5是有理数. 答:否定式:5是无理数.p:5是有理数.q:5是无理数.其否定式q的真值为1.

(2)25不是无理数. 答:否定式:25是有理数. p :25不是无理数. q :25是有理数. 其否定式q 的真值为1. (3)2.5是自然数. 答:否定式:2.5不是自然数. p :2.5是自然数. q :2.5不是自然数. 其否定式q 的真值为1. (4)ln1是整数. 答:否定式:ln1不是整数. p :ln1是整数. q :ln1不是整数. 其否定式q 的真值为1. 4.将下列命题符号化,并指出真值. (1)2与5都是素数 答:p :2是素数,q :5是素数,符号化为p q ∧,其真值为1. (2)不但π是无理数,而且自然对数的底e 也是无理数. 答:p :π是无理数,q :自然对数的底e 是无理数,符号化为p q ∧,其真值为1. (3)虽然2是最小的素数,但2不是最小的自然数. 答:p :2是最小的素数,q :2是最小的自然数,符号化为p q ∧?,其真值为1. (4)3是偶素数. 答:p :3是素数,q :3是偶数,符号化为p q ∧,其真值为0. (5)4既不是素数,也不是偶数. 答:p :4是素数,q :4是偶数,符号化为p q ?∧?,其真值为0. 5.将下列命题符号化,并指出真值. (1)2或3是偶数. (2)2或4是偶数. (3)3或5是偶数. (4)3不是偶数或4不是偶数. (5)3不是素数或4不是偶数. 答: p :2是偶数,q :3是偶数,r :3是素数,s :4是偶数, t :5是偶数 (1) 符号化: p q ∨,其真值为1. (2) 符号化:p r ∨,其真值为1. (3) 符号化:r t ∨,其真值为0. (4) 符号化:q s ?∨?,其真值为1. (5) 符号化:r s ?∨?,其真值为0. 6.将下列命题符号化. (1)小丽只能从筐里拿一个苹果或一个梨. 答:p :小丽从筐里拿一个苹果,q :小丽从筐里拿一个梨,符号化为: p q ∨. (2)这学期,刘晓月只能选学英语或日语中的一门外语课. 答:p :刘晓月选学英语,q :刘晓月选学日语,符号化为: ()()p q p q ?∧∨∧?. 7.设p :王冬生于1971年,q :王冬生于1972年,说明命题“王冬生于1971年或1972年”既可以化 答:列出两种符号化的真值表:

离散数学习题解答

离散数学习题解答 数理逻辑习题 1. 将下列命题符号化: (1)要是明天不下雨且我有时间,那么我去步行街购物。 设p :明天下雨 q :我有时间 r :我去步行街购物 r q p →∧?)( (2)如果小王和小张是一个组,那么这次英语竞赛一定取胜。 设p :小王和小张是一个组 q :这次英语竞赛一定取胜 q p → (3)除非天下雨,否则他不乘出租车上班。 设p :天下雨 q :他乘出租车上班 p q → (4)我反悔,仅当太阳从西边出来。 设p :我反悔 q :太阳从西边出来 q p → (5)如果()f x 在点0x 处可导,则()f x 在点0x 处可微。反之亦然。 设p :()f x 在点0x 处可导 q :()f x 在点0x 处可微 q p ? (6)明天既不是晴天也不是下雨天。 设p :明天是晴天 q :明天是雨天 q p ?∧? 4、用真值表判断下列公式的类型。 (2)r q p →?)( 公式是可满足式。

5、证明下列等值式 方法:等值演算、主范式、真值表 (2))()())((r p q p r q p →→→?→→ ) ()()())()(()()()()()(r q p r q p r q p r p q r p q p p r p q p r p q p r p q p →→?→∨??∨?∨??∨?∨??∨?∨?∧?∨?∨?∨?∧?∨?∨∨???→→→ 6、使用恒等式证明下列各式,并写出它们的对偶公式。 (3)T p q p q ?∧∨??∨))(( T p q q p q q p q p p q p q p q p q p q ??∨?∨??∨?∨??∨?∧?∨∨??∨?∧∨?∧∨??∨)())()(())(())(( T p q p q ?∧∨??∨))((的对偶公式: F p q p q ?∨∧??∧))(( 7、证明下列蕴涵式 (1))(q p q p →?∧ T q p q p q p q p q p q p ?∨?∨?∨??∨?∨∧??→→∧)()()()(

离散数学第五版 模拟试题 及答案

《离散数学》模拟试题3 一、填空题(每小题2分,共20分) 1. 已知集合A ={φ,1,2},则A得幂集合p(A)=_____ _。 2. 设集合E ={a, b, c, d, e}, A= {a, b, c}, B = {a, d, e}, 则A∪B =___ ___, A∩B =____ __,A-B =___ ___,~A∩~B =____ ____。 3. 设A,B是两个集合,其中A= {1, 2, 3}, B= {1, 2},则A-B =____ ___, ρ(A)-ρ(B)=_____ _ _。 4. 已知命题公式R Q P G→ ∧ ? =) (,则G的析取范式为。 5. 设P:2+2=4,Q:3是奇数;将命题“2+2=4,当且仅当3是奇数。”符号化 ,其真值为。 二、单项选择题(选择一个正确答案的代号填入括号中,每小题4分,共16分。) 1. 设A、B是两个集合,A={1,3,4},B={1,2},则A-B为(). A.{1} B. {1, 3} C. {3,4} D. {1,2} 2. 下列式子中正确的有()。 A. φ=0 B. φ∈{φ} C. φ∈{a,b} D. φ∈φ 3. 设集合X={x, y},则ρ(X)=()。 A. {{x},{y}} B. {φ,{x},{y}} C. {φ,{x},{y},{x, y}} D. {{x},{y},{x, y}} 4. 设集合A={1,2,3},A上的关系R={(1,1),(2,2),(2,3),(3,3),(3,2)}, 则R不具备(). 三、计算题(共50分) 1. (6分)设全集E=N,有下列子集:A={1,2,8,10},B={n|n2<50 ,n∈N},C= {n|n可以被3整除,且n<20 ,n∈N},D={n|2i,i<6且i、n∈N},求下列集合:(1)A∪(C∩D) (2)A∩(B∪(C∩D)) (3)B-(A∩C) (4)(~A∩B) ∪D 2. (6分)设集合A={a, b, c},A上二元关系R1,R2,R3分别为:R1=A×A, R2 ={(a,a),(b,b)},R3 ={(a,a)},试分别用 定义和矩阵运算求R1·R2 ,22R,R1·R2 ·R3 , (R1·R2 ·R3 )-1 。 3.(6分)化简等价式(﹁P∧(﹁Q∧R))∨(Q∧R)∨(P∧R). 4.(8分) 设集合A={1,2,3},R为A上的二元关系,且 M R= 写出R的关系表达式,画出R的关系图并说明R的性质. 5. (10分)设公式G的真值表如下. 试叙述如何根据真值表求G的 主析取范式和主合取范式,并 写出G的主析取范式和主合取范式. 1 0 0 1 1 0 1 0 0

自考离散数学教材课后题第五章答案

习题参考答案 1、设无向图G有16条边,有3个4度结点,4个3度结点,其余结点的度数均小于3,问:G中至少有几个结点。 阮允准同学提供答案: 解:设度数小于3的结点有x个,则有 3×4+4×3+2x≥2×16 解得:x≥4 所以度数小于3的结点至少有4个 所以G至少有11个结点 2、设无向图G有9个结点,每个结点的度数不是5就是6,证明:G中至少有5个6度结点或至少有6个5度结点。 阮允准同学答案: 证明:由题意可知:度数为5的结点数只能是0,2,4,6,8。 若度数为5的结点数为0,2,4个,则度数为6的结点数为9,7,5个结论成立。 若度数为5的结点数为6,8个,结论显然成立。 由上可知,G中至少有5个6度点或至少有6个5度点。 3、证明:简单图的最大度小于结点数。

阮同学认为题中应指定是无向简单图. 晓津证明如下:设简单图有n个结点,某结点的度为最大度,因为简单图任一结点没有平行边,而任一结点的的边必连有另一结点,则其最多有n-1条边与其他结点相连,因此其度数最多只有n-1条,小于结点数n. 4、设图G有n个结点,n+1条边,证明:G中至少有一个结点度数≥3 。阮同学给出证明如下: 证明:设G中所有结点的度数都小于3,即每个结点度数都小于等于2,则所有结点度数之和小于等于2n,所以G的边数必小于等于n,这和已知G有n+1条边相矛盾。所以结论成立。 5、试证明下图中两个图不同构。 晓津证明:同构的充要条件是两图的结点和边分别存在一一对应且保持关联关系。我们可以看出,(a)图和(b)图中都有一个三度结点,(a)图中三度结点的某条边关联着两个一度结点和一个二度结点,而(b)图中三度结点关联着两个二度结点和一个一度结点,因此可断定二图不是同构的。 6、画出所有5个结点3条边,以及5个结点7条边的简单图。 解:如下图所示:(晓津与阮同学答案一致)

离散数学习题解答(第五章)格与布尔代数

离散数学习题解答 习题五(第五章 格与布尔代数) 1.设〈L ,?〉是半序集,?是L 上的整除关系。问当L 取下列集合时,〈L ,?〉是否是格。 a) L={1,2,3,4,6,12} b) L={1,2,3,4,6,8,12} c) L={1,2,3,4,5,6,8,9,10} [解] a) 〈L ,?〉是格,因为L 中任两个元素都有上、下确界。 b) 〈L ,?〉不是格。因为L 中存在着两个元素没有上确界。 例如:8 12=LUB{8,12}不存在。 c) 〈L ,?〉不是格。因为L 中存在着两个元素没有上确界。 1 6 3 1 2 4 8 63 1 2 4 1 1

倒例如:46=LUB{4,6}不存在。 2.设A ,B 是两个集合,f 是从A 到B 的映射。证明:〈S ,?〉是〈2B ,?〉的子格。其中 S={y|y=f (x),x ∈2A } [证] 对于任何B 1∈S ,存在着A 1∈2A ,使B 1=f (A 1),由于f(A 1)={y|y ∈B ∧(x)(x ∈A 1∧f (x)=y)}?B 所以B 1∈2B ,故此S ?2B ;又B 0=f (A)∈S (因为A ∈2A ),所以S 非空; 对于任何B 1,B 2∈S ,存在着A 1,A 2∈2A ,使得B 1=f (A 1),B 2=f (A 2),从而 L ∪B{B 1,B 2}=B 1∪B 2=f (A 1)f (A 2) =f (A 1∪A 2) (习题三的8的1)) 由于A 1∪A 2?A ,即A 1∪A 2∈2A ,因此f (A 1∪A 2)∈S ,即上确界L ∪B{B 1,B 2}存在。 对于任何B 1,B 2∈S ,定义A 1=f –1 (B 1)={x|x ∈A ∧f (x)∈B 1},A 2=f -1 (B 2)={x|x ∈A ∧f (x)∈B 2},则A 1,A 2∈2A ,且显然B 1=f (A 1),B 2=f (A 2),于是 GLB{B 1,B 2}=B 1∩B 2=f (A 1)∩f (A 2) ?f (A 1∩A 2) (习题三的8的2)) 又若y ∈B 1∩B 2,则y ∈B ,且y ∈B 2。由于y ∈B 1=f (A 1)={y|y ∈B ∧(x)(x ∈A 1∧f (x)=y)},于是存在着x ∈A 1,使f (x)=y ,但是f (x)=y ∈B 2。故此x ∈A 2=f -1 (B 2)={x|x ∈A ∧f(x)∈B 2},因此x ∈A 1∩A 2,从而y=f (x)∈f (A 1∩A 2),所以 GLB{B 1,B 2}=B 1∩B 2=f (A 1)∩f (A 2) ?f (A 1∩A 2) 9 7 31

《离散数学》复习题及答案

《离散数学》试题及答案 一、选择或填空 (数理逻辑部分) 1、下列哪些公式为永真蕴含式?( ) (1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P 答:(1),(4) 2、下列公式中哪些是永真式?( ) (1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q) 答:(2),(3),(4) 3、设有下列公式,请问哪几个是永真蕴涵式?( ) (1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q (4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P 答:(2),(3),(4),(5),(6) 4、公式?x((A(x)?B(y,x))??z C(y,z))?D(x)中,自由变元是( ),约束变元是( )。 答:x,y, x,z 5、判断下列语句是不是命题。若是,给出命题的真值。( ) (1)北京是中华人民共和国的首都。 (2) 陕西师大是一座工厂。 (3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。 (5) 前进! (6) 给我一杯水吧! 答:(1)是,T (2)是,F (3)不是 (4)是,T (5)不是(6)不是 6、命题“存在一些人是大学生”的否定是( ),而命题“所有的人都是要死的”的否定是( )。 答:所有人都不是大学生,有些人不会死

7、设P:我生病,Q:我去学校,则下列命题可符号化为( )。 (1) 只有在生病时,我才不去学校 (2) 若我生病,则我不去学校 (3) 当且仅当我生病时,我才不去学校(4) 若我不生病,则我一定去学校答:(1)P ?(4)Q P→ ? P? Q→ ?(2)Q P? →(3)Q 8、设个体域为整数集,则下列公式的意义是( )。 (1) ?x?y(x+y=0) (2) ?y?x(x+y=0) 答:(1)对任一整数x存在整数 y满足x+y=0(2)存在整数y对任一整数x满足x+y=0 9、设全体域D是正整数集合,确定下列命题的真值: (1) ?x?y (xy=y) ( ) (2) ?x?y(x+y=y) ( ) (3) ?x?y(x+y=x) ( ) (4) ?x?y(y=2x) ( ) 答:(1) F (2) F (3)F (4)T 10、设谓词P(x):x是奇数,Q(x):x是偶数,谓词公式?x(P(x)?Q(x))在哪个个体域中为真?( ) (1) 自然数(2) 实数 (3) 复数(4) (1)--(3)均成立 答:(1) 11、命题“2是偶数或-3是负数”的否定是()。 答:2不是偶数且-3不是负数。 12、永真式的否定是() (1) 永真式(2) 永假式(3) 可满足式(4) (1)--(3)均有可能 答:(2) 13、公式(?P∧Q)∨(?P∧?Q)化简为(),公式 Q→(P∨(P∧Q))可化简为()。 答:?P ,Q→P 14、谓词公式?x(P(x)??yR(y))→Q(x)中量词?x的辖域是()。 答:P(x)??yR(y) 15、令R(x):x是实数,Q(x):x是有理数。则命题“并非每个实数都是有理数”的符号化表示为()。

离散数学(第五版)清华大学出版社第1章习题解答

离散数学(第五版)清华大学出版社第1章习题解答 1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。 分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。 本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。 其次,4)这个句子是陈述句,但它表示的判断结果是不确定。又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们 都是简单命题。(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来 的复合命题。这里的“且”为“合取”联结词。在日常生活中,合取联结词有许 多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。但要注意,有时“和”或“与” 联结的是主语,构成简单命题。例如,(14)、(15)中的“与”与“和”是联结 的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。 1.2 (1)p: 2是无理数,p为真命题。 (2)p:5能被2整除,p为假命题。 (6)p→q。其中,p:2是素数,q:三角形有三条边。由于p与q都是真 命题,因而p→q为假命题。 (7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。由于p为假命 题,q为真命题,因而p→q为假命题。 (8)p:2000年10月1日天气晴好,今日(1999年2月13日)我们还不 知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。(9)p:太阳系外的星球上的生物。它的真值情况而定,是确定的。 1 (10)p:小李在宿舍里. p的真值则具体情况而定,是确定的。 (12)p∨q,其中,p:4是偶数,q:4是奇数。由于q是假命题,所以,q 为假命题,p∨q为真命题。

离散数学 第5章 习题解答

第5章 习题解答 5.1 A:③; B:⑥; C:⑧; D:⑩; E:⑨ 分析 S 为n 元集,那么有个元素.S 上的一个二元运算就是函数 S S ?2n .这样的函数有个.因此上的二元运算有个. S S S f →?:2n n },{b a 162 =n n 下面说明通过运算表判别二元运算性质及求特导元素的方法. 1 °交换律 若运算表中元素关于主对角线成对称分布,则该运算满足交换律. 2 °幂等律 设运算表表头元素的排列顺序为如果主对角线元,,,21n x x x 素的排列也为 则该运算满足幂等律. ,,,21n x x x 其他性质,如结合律或者涉及到两个运算表的分配律和吸收律,在运算表中没有明显的特征,只能针对所有可能的元素等来验证相关的算律是否成立. z y x ,,3 ° 幺元设运算表表头元素的排列顺序为如果元素所在的.e ,,,21n x x x i x 行和列的元素排列顺序也是则为幺元. ,,,21n x x x i x 4 ° 零元如果元素所在的行和列的元素都是,则是零元. .θi x i x i x 5 ° 幂等元.设运算表表头元素的排列顺序为如果主对角线上,,,21n x x x 第个元素恰 为那么是幂等元.易见幺元和零元都是幂等元. i },,2,1{n i x i ∈i x 6 ° 可逆元素及其逆元.设为任意元素,如果所在的行和列都有幺元,并i x i x 且这两个幺元关于主对角线成对称分布,比如说第行第列和第行第列的两i j j i 个位置,那么与互为逆元.如果所在的行和列具有共同的幺元,则幺元一j x i x i x 定在主对角线上,那么的逆元就是自己.如果所在的和地或者所在的列没i x i x i x 有幺元,那么不是可逆元素.不难看出幺元一定是可逆元素,且;而零i x e e e =-1元不是可逆元素. θ以本题为例,的运算表是对称分布的,因此,这三个运算是可交换的, 321,,f f f

离散数学第四版 课后答案

离散数学第四版课后答案 第1章习题解答 1.1 除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9), (10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。 分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。 本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。 其次,4)这个句子是陈述句,但它表示的判断结果是不确定。又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。这里的“且”为“合取”联结词。在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。但要注意,有时“和”或“与” 联结的是主语,构成简单命题。例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。 1.2 (1)p: 2是无理数,p为真命题。 (2)p:5能被2整除,p为假命题。 (6)p→q。其中,p:2是素数,q:三角形有三条边。由于p与q都是真 命题,因而p→q为假命题。 (7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。由于p为假命

题,q为真命题,因而p→q为假命题。 (8)p:2000年10月1日天气晴好,今日(1999年2月13日)我们还不 知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。(9)p:太阳系外的星球上的生物。它的真值情况而定,是确定的。 1 (10)p:小李在宿舍里. p的真值则具体情况而定,是确定的。 (12)p∨q,其中,p:4是偶数,q:4是奇数。由于q是假命题,所以,q 为假命题,p∨q为真命题。 (13)p∨q,其中,p:4是偶数,q:4是奇数,由于q是假命题,所以,p∨q 为假命题。 (14)p:李明与王华是同学,真值由具体情况而定(是确定的)。 (15)p:蓝色和黄色可以调配成绿色。这是真命题。 分析命题的真值是唯一确定的,有些命题的真值我们立即可知,有些则不能马上知道,但它们的真值不会变化,是客观存在的。 1.3 令p:2+2=4,q:3+3=6,则以下命题分别符号化为 (1)p→q (2)p→?q (3)?p→q (4)?p→?q

屈婉玲版离散数学课后习题答案

第四章部分课后习题参考答案 3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值: (1) 对于任意x,均有2=(x+)(x). (2) 存在x,使得x+5=9. 其中(a)个体域为自然数集合. (b)个体域为实数集合. 解: F(x): 2=(x+)(x). G(x): x+5=9. (1)在两个个体域中都解释为)(x ?,在(a)中为假命题,在 xF (b)中为真命题。 (2)在两个个体域中都解释为)(x ?,在(a)(b)中均为真命 xG 题。 4. 在一阶逻辑中将下列命题符号化: (1) 没有不能表示成分数的有理数. (2) 在卖菜的人不全是外地人. 解: (1)F(x): x能表示成分数 H(x): x是有理数 命题符号化为: )) F x∧ x ?? ? ) ( H ( (x (2)F(x): x是卖菜的人

H(x): x是外地人 命题符号化为: )) F ?? x x→ (x ( H ) ( 5. 在一阶逻辑将下列命题符号化: (1) 火车都比轮船快. (3) 不存在比所有火车都快的汽车. 解: (1)F(x): x是火车; G(x): x是轮船; H(x,y): x比y快 命题符号化为: )) F y x G ? y ? ∧ x→ ( ( )) ( H ) x ((y , (2) (1)F(x): x是火车; G(x): x是汽车; H(x,y): x比y快 命题符号化为: ))) x F x y G ∧ ? H ?? y→ ) ( , x ( ( ( (y ) 9.给定解释I如下: (a) 个体域D为实数集合R. (b) D中特定元素=0. (c) 特定函数(x,y)=x y,x,y D ∈. (d) 特定谓词(x,y):x=y,(x,y):x

离散数学第一章部分课后习题参考答案

第一章部分课后习题参考答案 16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。 (1)p∨(q∧r)0∨(0∧1) 0 (2)(p?r)∧(﹁q∨s) (0?1)∧(1∨1) 0∧10. (3)(p∧q∧r)?(p∧q∧﹁r) (1∧1∧1)? (0∧0∧0)0 (4)(r∧s)→(p∧q) (0∧1)→(1∧0) 0→0 1 17.判断下面一段论述是否为真:“是无理数。并且,如果3是无理数,则也是无理数。另外6能被2整除,6才能被4整除。” 答:p: 是无理数 1 q: 3是无理数0 r: 是无理数 1 s:6能被2整除 1 t: 6能被4整除0 命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。 19.用真值表判断下列公式的类型: (4)(p→q) →(q→p) (5)(p∧r) (p∧q) (6)((p→q) ∧(q→r)) →(p→r) 答:(4) p q p→q q p q→p (p→q)→(q→p) 0 0 1 1 1 1 1 0 1 1 0 1 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 所以公式类型为永真式 (5)公式类型为可满足式(方法如上例) (6)公式类型为永真式(方法如上例) 第二章部分课后习题参考答案 3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值. (1) (p∧q→q) (2)(p→(p∨q))∨(p→r) (3)(p∨q)→(p∧r) 答:(2)(p→(p∨q))∨(p→r)(p∨(p∨q))∨(p∨r)p∨p∨q∨r1

所以公式类型为永真式 (3)P q r p∨q p∧r (p∨q)→(p∧r) 0 0 0 0 0 1 0 0 1 0 0 1 0 1 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 1 0 0 1 1 1 1 1 1 所以公式类型为可满足式 4.用等值演算法证明下面等值式: (2)(p→q)∧(p→r)(p→(q∧r)) (4)(p∧q)∨(p∧q)(p∨q) ∧(p∧q) 证明(2)(p→q)∧(p→r) (p∨q)∧(p∨r) p∨(q∧r)) p→(q∧r) (4)(p∧q)∨(p∧q)(p∨(p∧q)) ∧(q∨(p∧q) (p∨p)∧(p∨q)∧(q∨p) ∧(q∨q) 1∧(p∨q)∧(p∧q)∧1 (p∨q)∧(p∧q) 5.求下列公式的主析取范式与主合取范式,并求成真赋值 (1)(p→q)→(q∨p) (2)(p→q)∧q∧r (3)(p∨(q∧r))→(p∨q∨r) 解: (1)主析取范式 (p→q)→(q p) (p q)(q p) (p q)(q p) (p q)(q p)(q p)(p q)(p q) (p q)(p q)(p q) ∑(0,2,3) 主合取范式: (p→q)→(q p) (p q)(q p)

最新离散数学习题答案

离散数学习题答案 习题一及答案:(P14-15) 14、将下列命题符号化: (5)李辛与李末是兄弟 解:设p :李辛与李末是兄弟,则命题符号化的结果是p (6)王强与刘威都学过法语 解:设p :王强学过法语;q :刘威学过法语;则命题符号化的结果是 p q ∧ (9)只有天下大雨,他才乘班车上班 解:设p :天下大雨;q :他乘班车上班;则命题符号化的结果是q p → (11)下雪路滑,他迟到了 解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的结果是()p q r ∧→ 15、设p :2+3=5. q :大熊猫产在中国. r :太阳从西方升起. 求下列复合命题的真值: (4)()(())p q r p q r ∧∧???∨?→ 解:p=1,q=1,r=0, ()(110)1p q r ∧∧??∧∧??, (())((11)0)(00)1p q r ?∨?→??∨?→?→? ()(())111p q r p q r ∴∧∧???∨?→??? 19、用真值表判断下列公式的类型: (2)()p p q →?→? 解:列出公式的真值表,如下所示: 20、求下列公式的成真赋值:

(4)()p q q ?∨→ 解:因为该公式是一个蕴含式,所以首先分析它的成假赋值,成假赋值的条件是: ()10p q q ?∨??????00 p q ????? 所以公式的成真赋值有:01,10,11。 习题二及答案:(P38) 5、求下列公式的主析取范式,并求成真赋值: (2)()()p q q r ?→∧∧ 解:原式()p q q r ?∨∧∧q r ?∧()p p q r ??∨∧∧ ()()p q r p q r ??∧∧∨∧∧37m m ?∨,此即公式的主析取范式, 所以成真赋值为011,111。 6、求下列公式的主合取范式,并求成假赋值: (2)()()p q p r ∧∨?∨ 解:原式()()p p r p q r ?∨?∨∧?∨∨()p q r ??∨∨4M ?,此即公式的主合取范式, 所以成假赋值为100。 7、求下列公式的主析取范式,再用主析取范式求主合取范式: (1)()p q r ∧∨ 解:原式()(()())p q r r p p q q r ?∧∧?∨∨?∨∧?∨∧ ()()()()()()p q r p q r p q r p q r p q r p q r ?∧∧?∨∧∧∨?∧?∧∨?∧∧∨∧?∧∨∧∧ ()()()()()p q r p q r p q r p q r p q r ??∧?∧∨?∧∧∨∧?∧∨∧∧?∨∧∧ 13567m m m m m ?∨∨∨∨,此即主析取范式。 主析取范式中没出现的极小项为0m ,2m ,4m ,所以主合取范式中含有三个极大项0M ,2M ,4M ,故原式的主合取范式024M M M ?∧∧。 9、用真值表法求下面公式的主析取范式:

离散数学(第五版)清华大学出版社第

离散数学(第五版)清华大学出版社第1章习题解答1.1除(3),(4),(5),(11)外全是命题,其中,(1),(2),(8),(9),(10),(14),(15)是简单命题,(6),(7),(12),(13)是复合命题。 分析首先应注意到,命题是陈述句,因而不是陈述句的句子都不是命题。 本题中,(3)为疑问句,(5)为感叹句,(11)为祈使句,它们都不是陈述句,所以它们都不是命题。 其次,4)这个句子是陈述句,但它表示的判断结果是不确定。又因为(1),(2),(8),(9),(10),(14),(15)都是简单的陈述句,因而作为命题,它们都是简单命题。(6)和(7)各为由联结词“当且仅当”联结起来的复合命题,(12)是由联结词“或”联结的复合命题,而(13)是由联结词“且”联结起来的复合命题。这里的“且”为“合取”联结词。在日常生活中,合取联结词有许多表述法,例如,“虽然……,但是……”、“不仅……,而且……”、“一面……,一面……”、“……和……”、“……与……”等。但要注意,有时“和”或“与” 联结的是主语,构成简单命题。例如,(14)、(15)中的“与”与“和”是联结的主语,这两个命题均为简单命题,而不是复合命题,希望读者在遇到“和”或“与”出现的命题时,要根据命题所陈述的含义加以区分。 1.2(1)p:2是无理数,p为真命题。 (2)p:5能被2整除,p为假命题。 (6)p→q。其中,p:2是素数,q:三角形有三条边。由于p与q都是真命题,因而p→q为假命题。 (7)p→q,其中,p:雪是黑色的,q:太阳从东方升起。由于p为假命可编辑范本 题,q为真命题,因而p→q为假命题。 (8)p:2000年10月1日天气晴好,今日(1999年2月13日)我们还不知道p的真假,但p的真值是确定的(客观存在的),只是现在不知道而已。

离散数学课后习题答案(左孝凌版)

离散数学课后习题答案(左孝凌版) 1-1,1-2解: a)是命题,真值为T。 b)不是命题。 c)是命题,真值要根据具体情况确定。 d)不是命题。 e)是命题,真值为T。 f)是命题,真值为T。 g)是命题,真值为F。 h)不是命题。 i)不是命题。 (2)解: 原子命题:我爱北京天安门。 复合命题:如果不是练健美操,我就出外旅游拉。 (3)解: a)(┓P ∧R)→Q b)Q→R c)┓P d)P→┓Q (4)解: a)设Q:我将去参加舞会。R:我有时间。P:天下雨。 Q (R∧┓P):我将去参加舞会当且仅当我有时间和天不下雨。 b)设R:我在看电视。Q:我在吃苹果。

R∧Q:我在看电视边吃苹果。 c) 设Q:一个数是奇数。R:一个数不能被2除。 (Q→R)∧(R→Q):一个数是奇数,则它不能被2整除并且一个数不能被2整除,则它是奇数。 (5) 解: a)设P:王强身体很好。Q:王强成绩很好。P∧Q b)设P:小李看书。Q:小李听音乐。P∧Q c)设P:气候很好。Q:气候很热。P∨Q d)设P: a和b是偶数。Q:a+b是偶数。P→Q e)设P:四边形ABCD是平行四边形。Q :四边形ABCD的对边平行。P Q f)设P:语法错误。Q:程序错误。R:停机。(P∨ Q)→ R (6) 解: a)P:天气炎热。Q:正在下雨。 P∧Q b)P:天气炎热。R:湿度较低。 P∧R c)R:天正在下雨。S:湿度很高。 R∨S d)A:刘英上山。B:李进上山。 A∧B e)M:老王是革新者。N:小李是革新者。 M∨N f)L:你看电影。M:我看电影。┓L→┓M g)P:我不看电视。Q:我不外出。 R:我在睡觉。 P∧Q∧R h)P:控制台打字机作输入设备。Q:控制台打字机作输出设备。P∧Q 1-3 (1)解:

离散数学习题详细答案

离散数学习题详细答案

————————————————————————————————作者:————————————————————————————————日期:

离散数学习题答案 习题一及答案:(P14-15) 14、将下列命题符号化: (5)李辛与李末是兄弟 解:设p :李辛与李末是兄弟,则命题符号化的结果是p (6)王强与刘威都学过法语 解:设p :王强学过法语;q :刘威学过法语;则命题符号化的结果是 p q ∧ (9)只有天下大雨,他才乘班车上班 解:设p :天下大雨;q :他乘班车上班;则命题符号化的结果是q p → (11)下雪路滑,他迟到了 解:设p :下雪;q :路滑;r :他迟到了;则命题符号化的结果是()p q r ∧→ 15、设p :2+3=5. q :大熊猫产在中国. r :太阳从西方升起. 求下列复合命题的真值: (4)()(())p q r p q r ∧∧???∨?→ 解:p=1,q=1,r=0, ()(110)1p q r ∧∧??∧∧??, (())((11)0)(00)1p q r ?∨?→??∨?→?→? ()(())111p q r p q r ∴∧∧???∨?→??? 19、用真值表判断下列公式的类型: (2)()p p q →?→? 解:列出公式的真值表,如下所示: p q p ? q ? ()p p →? ()p p q →?→? 0 0 1 1 1 1 0 1 1 0 1 0 1 0 0 1 0 1 1 1 0 0 0 1 由真值表可以看出公式有3个成真赋值,故公式是非重言式的可满足式。 20、求下列公式的成真赋值:

离散数学第五章习题.doc

第五章习题 7年昆明理工 1、在自然数集合 N上,下列哪种运算是可结合的。() A. a*b=a-b B.a*b=max(a,b) C. a*b=a+2b D.a*b=|a-b| 2、设 Z 为整数集合, +为普通加法,则代数系统 中,Z 对加法的幺元为 _______,Z 对+的零元为 _______,对任意 x∈N,x -1 =_______。 3、设 是一个代数系统 ,其中 * 是一个二元运算使任意a,b∈ A, 有a*b=a. (1)证明 * 运算是可结合的。 (2)说明 * 运算是否可交换。 6年清华大学 1 设是二元代数,元素 a∈A 有左逆元 a l-1和右逆元 a r-1,若运算 满足()律,则 a l-1=a r-1 A. 结合 B.交换 C.等幂 D. 分配 2设为实数集 R 上的二元运算, x,y∈R有 x y=x+y-2xy, 说明运算是 否为可交换的、可结合的?确定运算的幺元、零元和所有幂等元及可 逆元素的逆元。

其他习题 1、已知集合 A={1 ,2,?,10}, 下面定的哪些运算关于集合 A 是不封的 .() A. x*y=max(x,y) B.x*y=min(x,y) C.x*y=GCD(x,y) , 即 x,y 的最大公数 D.x*y=LCM(x,y), 即 x,y 的最小公倍数 2、 Z* 是正整数集合, +,—, * ,△分是数的普通加法、减法, 乘法和平方运算,下列()不能构成代数系。 A. B. C. < Z* ,*> D. 3、 * 是集合 A 上的二元运算,若 A 中一个元素 e,它即是 _______,又是 _______,称 e 是 A 中关于运算 * 的幺元。 4、 S=R-{-1},R 数集,任意 a,b ∈S,a*b=a+b+ab 明 是否构成群。

相关主题
文本预览
相关文档 最新文档