当前位置:文档之家› 高中数学 圆锥曲线的统一定义

高中数学 圆锥曲线的统一定义

高中数学 圆锥曲线的统一定义
高中数学 圆锥曲线的统一定义

高中数学 圆锥曲线的统一定义

教材:苏教版《选修2-1》2.5(Page 51 —52)

江苏省泰州中学 宋健

一. 教材分析:

《圆锥曲线的统一定义》是选修2-1(苏教版)2.5节的内容。教材对本章总体设计思路是“总—分—总”,即先从整体上认识圆锥曲线的概念,了解椭圆、双曲线和抛物线的内在关系,再运用方程思想分别研究椭圆、双曲线和抛物线的几何性质,进而通过统一定义从总体上进一步认识三种圆锥曲线的关系。最后在学生对直线、圆及圆锥曲线的感性认识的基础上建立曲线方程的概念,并用方程观点认识和研究曲线交点等问题。本节从抛物线的定义出发,创设问题情境,提出类比、猜想,得到圆锥曲线的统一定义,从更高的形式上揭示圆锥曲线之间内在的关系,使学生充分感受数学的内在的、和谐的美,并且通过对研究过程的反思,培养欣赏美、发现美的能力和意识,提高数学审美意识。

二.目标分析:

鉴于以上对教材的分析及学生的实际情况,确定如下几个方面为本课的教学目标:

(一)知识和技能:

通过本节的学习,了解圆锥曲线的统一定义,掌握根据圆锥曲线的标准方程求准线方程的方法以及圆锥曲线的统一定义的简单应用。

(二)过程与方法

通过多媒体课件演示连续变化的圆锥曲线,让学生观察、类比、归纳自主总结得出圆锥曲线的统一定义,并能初步运用;

(三)情感与价值观

通过本节的学习,培养学生观察、猜想、归纳、推理的能力,感受圆锥曲线的统一美。

三.教法分析:

教学重点:圆锥曲线统一定义的推导

教学难点:如何设出定直线方程(准线方程)

教学手段:多媒体辅助教学

教学方法:设置适当情景,观察发现、探究合作、启发引导

四.过程实录:

F 的距离和到一条定直线(l F 不在l 上)的距离的比等于常数1的动点P 的轨迹是抛物线. 边说边在黑板上画出定点和定直线(如图).

(等待1分钟)

设计意图:由一个简单问题引出话题,激发学生学习兴趣,同时逐步解决本节的学习障碍。

生: (多名同学合作)

1. 若定点F 在定直线l 上,轨迹会是什么呢?

2. 平面内到两个定点F 1、F 2的距离相等的点的轨迹会是什么呢?

PF d =常数1

3. 平面内到两条定直线l1、l2的距离相等的点的轨迹会是什么呢?

4. 平面内到一个定点F和一条定直线l的(F不在l上)距离不相等的点的轨迹会是什么呢?

师:这些问题都挺有研究价值. 我们还可以提出其他一些问题,比如,将条件中的“在平面内”去掉,点的轨迹会是什么呢?这些问题请同学们课后研究一下,并与你的同伴互相交流各自的探究结果.

1的常数时,动点P的轨迹是什么曲线?

.

师生合作:学生说常数的数值,老师用几何画板画出对应的图像.

(学生有点想法了)

师:让常数自由变化,学生观察轨迹的变化(一分钟)

.

师:通过刚才的观察,你看出了些什么?常数与对应的图形有什么样的关联?

生:可以看到当这个常数在(0,1)之间时,轨迹像椭圆,当这个常数大于1时,轨迹像双曲线。

.

0,1)之间时,轨迹是不是椭圆,当这个常数大于1时,轨迹是不是双曲线呢?我们先研究这个常数在(0,1)之间时的情况.

前面已经研究过椭圆,如果这个轨迹是椭圆的话,这个定点会是椭圆的什么,这个常数又是椭圆的什么量?

生:定点是椭圆的焦点,常数应该是椭圆的离心率.

师:怎么说明轨迹是椭圆呢?

生:一是回到定义,也可以看看满足条件的动点P的轨迹方程,如果它是椭圆的标准方程,就可以证明猜想成立.

设计意图:一步步把学生思维从感性引向理性.

师:那么,怎样建系来研究P 点的轨迹呢?

生:以过点F 且垂直于定直线的直线为x 轴,取O 点,使

点F 的坐标为(,0)c ,建立直角坐标系(如图),点P 的坐标设

为(,)x y ,常数为c a

(0)a c >>. 师:很好,定直线的方程应该是什么呢?

(学生思考,并尝试计算)

生:P 可以取特殊点(比如右顶点),可以求出定直线的方程为2

a x c

=.

师:太棒了,有时研究特殊情形,会有意想不到的效果。

问题就变为:已知平面内点(,)P x y 到定点(,0)F c 的距离与它到定直线2:a l x c =的距离的比是常数c a

(0)a c >>,求点P 的轨迹.

(学生先在稿纸上尝试后回答,老师板书)

解:

根据题意可得||PF c d a x c

==- (*) 化简得22222222()()a c x a y a a c -+=-

令222

a c

b -=,上式可化为22

221(0)x y a b a b +=>>,这是椭圆的标准方程. 设计意图:让学生尝试问题解决的快乐,增强自信心。

结论1:当点P(x ,y )到定点F(c,0)的距离与它到定直线2:a l x c =的距离的比是常数c a

时,点P 的轨迹是以焦点为(,0),(,0)c c -,长轴、短轴分别为2,2a b 的椭圆,方程为22

221(0)x y a b a b

+=>>,其中222b a c =-。这个常数就是椭圆的离心率e . 师:我们来一起进一步认识一下(*)式:

(1)将(*)式变形,c PF d ed a =?=,说明,求椭圆上的点到焦点的距离,可以先转化为求此点到定直线l 的距离;又由PF d e =

,求椭圆上的点到定直线l 的距离,可以转化为求此点到焦点的距离;

进一步:(*)式可变形为:2

()c a PF x a ex a c ==-=-,

从而,椭圆上的点到焦点的距离可由此点的横坐标求出;

(2)在推导椭圆的标准方程时,我们曾经得到这样一个式子:

2a cx

-=

c a x c

=-,原来,“到定点距离与到定直线距离之比为定值”早就蕴 涵在其中。

师:如果我们将条件(a >c >0)改为(c >a >0),点P的轨迹又发生如何变化呢? 学生思考,并很快类比得到

结论2:当点P 到定点(,0)F c 的距离和它到定直线2:a l x c =的距离的比是常数(0)c c a a

>>时,这个点的轨迹是双曲线,方程为22

221x y a b

-=(其中222b c a =-),这个常数就是双曲线的离心率.

设计意图:双曲线的类似命题由学生思考、发现,从而为引导学生建立圆锥曲线的统一定义奠定基础.

(教师引导学生共同来发现规律)

师:结论1、结论2,联想到抛物线的定义,你有什么想法?

(学生讨论)

生:圆锥曲线可以统一定义为:(老师板书)

平面内到一个定点F 和到一条定直线l (F 不在l 上)的距离的比等于常数e 的点的轨迹.

当01e <<时,它表示椭圆;

当1e >时,它表示双曲线;

当1e =时,它表示抛物线.

师:e 是圆锥曲线的离心率,定点F 是圆锥曲线的焦点,定直线l 是圆锥曲线的准线.

师:下面,我们对圆锥曲线的准线作一下探讨:

(1)椭圆和双曲线有几条准线?

(2)准线方程分别是什么?

生:根据图形的对称性可知,椭圆和双曲线都有两条准线,对于中心在原点,焦点在x 轴上的椭圆或双曲线,与焦点12(,0),(,0)F c F c -对应的准线方程分别为22

,a a x x c c =-=. 2a x c =- 2

a x c

=

a x c =-

a x c

= 师:如图,哪些线段的比是常数e ?

生:21=PF QF e PA QC

=. 生(补充):还有12=PF QF e PB QD =. 师:(强调对应性),左顶点对应左准线,右顶点对应右准线.

x

设计意图:对于焦点在y 轴上的圆锥曲线的准线方程,由对称性,学生在遇到这类问题时会很快解决问题,没有必要单独介绍。

师:今天我们一起学习了一些新知识,我有些迫不及待的想用这些知识了。

1.求下列曲线的焦点坐标和准线方程

生:自主完成 师:巡视释疑,提醒学生注意将方程先变成标准形式,对于焦点在y 轴上的曲线的焦点坐标和准线方程,可类比焦点在y 轴上的曲线的焦点坐标和准线方程。

设计意图:通过解题后的反思,增强学生的反思意识,有利于总结方法规律.

2.中心在原点,准线方程为4y =?,离心率为2

1的椭圆方程是 生:自主完成

师:巡视释疑,先定方程形式(焦点位置),再解出基本量.

设计意图:学生自主完成,有利于学生对基础知识的掌握和增强学好本课内容的信心。

3.已知 椭圆2212516x y +=上一点P 到左焦点的距离为345

, (1)求P 点到右准线的距离.

(2)求P 点的坐标。

生:尝试解决,并提出了两种解法

师:总结这两种解法,强调转化思想和对应性

设计意图:1、2两题是与准线方程有关的问题,巩固重点;2、3两题以椭圆作为背景,这是因为江苏高考对椭圆的要求较高,对双曲线、抛物线的要求较低。

师:这节课你有什么收获?

(留时间让学生畅谈在本节课中的体验、收获。)

生:回顾、总结,互相补充

师:通过本节课的学习,圆锥曲线在多方面达到和谐统一:方程(二次)、图形(平面截圆锥面所得)、统一定义、性质(焦点、准线、离心率、对称性等)、研究方法(内容、工具思想).

设计意图:圆锥曲线在多方面达到统一,对思想的提升,需要老师点出。

课本51P 习题2.5第1题(填在课本上)

课本51P 习题2.5第2题.

设计意图:回顾反思本课时所学知识,梳理巩固所学内容. 强化基本方法与技能训练,培养学生良好的学习习惯和品质,发现和弥补教学中的遗漏和不足。

五、板书设计:

22(1)24

x y +=22(2)24y x -=2(3)0

x y +=

六、教学反思:

1.核心观点

培养学生的数学思维能力是数学教学的核心问题,让学生经历思想方法的形成过程,这是基本而重要的。在这节课的教学中,要特别注意引导学生学会运用类比、归纳、猜想等方法,突出培养学生的探究能力,让学生了解探究问题的一般过程: 从而,领悟数学研究方法的模式化特点,感受理性思维的力量。

2.对教材的思考

新课程理念倡导教师,学生在课堂上一起生成发展的教学模式,体现“用教材教而不是教教材”的思想,注重师生间的互动。因此,用教材而不是教教材,要求教师能利用教材进行重新组合。课本的思考题和例一比较突然,不够自然。本节课通过(1)探求

2

:a l x c

=; (2)剖析||c a x c =-;(3||c a x c

=-;(4)回归本质;这几个环节,让引入更自然. 这样的处理有别于传统教学的传授方法,更能增强学习的探究意识,

也与新课程的教学理念相吻合。

3. 现代化教学手段的运用

以多媒体为主的现代教育手段,可以有效的突破课堂教学时空的局限,弥补教材内容的单调、抽象等不足。本节课用电脑呈现随着离心率的连续变化,曲线的演变过程,大大激发学生的学习兴趣,有利于学生在教学重点难点上的突破,提高学生知识的吸收率。

(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线 一、考点(限考)概要: 1、椭圆: (1)轨迹定义: ①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。用集合表示为: ; ②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。其中定点叫焦点,定直线叫准线,常数是离心 率用集合表示为: ; (2)标准方程和性质:

注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。 (3)参数方程:(θ为参数); 3、双曲线: (1)轨迹定义: ①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。用集合表示为: ②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。其中定点叫焦点,定直线叫准线,常数e是离心率。 用集合表示为:

(2)标准方程和性质: 注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。

4、抛物线: (1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。用集合表示为 : (2)标准方程和性质: ①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;

二、复习点睛: 1、平面解析几何的知识结构: 2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。则椭圆的各性质(除切线外)均可在这个图中找到。

圆锥曲线的定义方程和性质知识点总结

椭圆的定义、性质及标准方程 1. 椭圆的定义: ⑴第一定义:平面内与两个定点12F F 、的距离之和等于常数(大于12F F )的点的轨迹叫做椭圆。这两个定点叫做椭圆的焦点,两焦点的距离叫做椭圆的焦距。 ⑵第二定义:动点M 到定点F 的距离和它到定直线l 的距离之比等于常数)10(<>=+b a b y a x 中心在原点,焦点在x 轴上 )0(12 2 22>>=+b a b x a y 中心在原点,焦点在y 轴上 图形 范围 x a y b ≤≤, x b y a ≤≤, 顶点 ()()()() 12120000A a A a B b B b --,、,,、, ()()()() 12120000A a A a B b B b --,、,,、, 对称轴 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 x 轴、y 轴; 长轴长2a ,短轴长2b ; 焦点在长轴上 焦点 ()()1200F c F c -,、, ()()1200F c F c -,、, 焦距 )0(221>=c c F F )0(221>=c c F F 离心率 )10(<<= e a c e )10(<<= e a c e 准线 2 a x c =± 2 a y c =± 参数方程与普通方程 22 22 1x y a b +=的参数方程为 ()cos sin x a y b θ θθ=?? =?为参数 22 22 1y x a b +=的参数方程为 ()cos sin y a x b θ θθ =?? =?为参数

高中数学圆锥曲线详解【免费】

解圆锥曲线问题常用方法+椭圆与双曲线的经典 结论+椭圆与双曲线的对偶性质总结 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2 =2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2 =4x 上一点P 到点A(3,42) (2)抛物线C: y 2 =4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点分析:(1)A 在抛物线外,如图,连PF ,则PF PH =

高中数学选修2-1圆锥曲线的统一定义 例题解析

圆锥曲线的统一定义 例题解析 【例1】以下同个关于圆锥曲线的命题中 ①设A 、B 为两个定点,k 为非零常数,k PB PA =-||||,则动点P 的轨迹为双曲线; ②设定圆C 上一定点A 作圆的动点弦AB ,O 为坐标原点,若),(2 1 +=则动点P 的轨迹为椭圆; ③方程02522=+-x x 的两根可分别作为椭圆和双曲线的离心率; ④双曲线 135 192522 22=+=-y x y x 与椭圆有相同的焦点. 其中真命题的序号为 (写出所有真命题的序号) 【分析】本题主要考查圆锥曲线的定义和性质主要由a,b,c,e 的关系求得 【解】双曲线的第一定义是:平面上的动点P 到两定点是A,B 之间的距离的差的绝对值为常数 2a, 且2||a AB <,那么P 点的轨迹为双曲线,故①错, 由1 ()2 OP OA OB =+,得P 为弦AB 的中点,故②错, 设22520x x -+=的两根为12,x x 则12125 ,12 x x x x +==可知两根互与为倒数,且均为正,故③ 对, 22 1259x y -=的焦点坐标(),而2 2135 x y +=的焦点坐标(),故④正确. 【点评】要牢牢掌握椭圆,双曲线的第一定义,同时还要掌握圆锥曲线的统一定义,弄清圆锥曲线中a,b,c,e 的相互关系. 【例2】设,2 0π θ<<曲线1sin cos 1cos sin 2222=-=+θθθθy x y x 和有4个不同的交点. (Ⅰ)求θ的取值范围; (Ⅱ)证明这4个交点共圆,并求圆半径的取值范围. 【分析】本小题主要考查坐标法、曲线的交点和三角函数性质等基础知识,以及逻辑推理能力和运算能力. 【解】(I )两曲线的交点坐标(x ,y )满足方程组 ?????=-=+,1sin cos ,1cos sin 2222θθθθy x y x 即?????-=+=. sin cos ,cos sin 22θθθθy x

圆锥曲线间的三个统一统一定义、统一公式、统一方程

圆锥曲线间的三个统一 巴彦淖尔市奋斗中学0504班 高卓玮 指导老师:薛红梅 世界之美在于和谐,圆锥曲线间也有其在的和谐与统一,通过对圆锥曲线图形和已知公式的变换,我们可以得出以下结论。 一、四种圆锥曲线的统一定义 动点P 到定点F 的距离到定直线L 的距离之比等于常数e ,则当01e <<时,动点P 的轨迹是椭圆:当1e =时,动点P 的轨迹是抛物线;当1e >时,动点P 的轨迹是双曲线;若0e =,我们规定直线L 在无穷远处且P 与F 的距离为定值(非零),则此时动点P 的轨迹是圆,同时我们称e 为圆锥曲线的离心率,F 为焦点,L 为准线。 二、四种圆锥曲线的统一方程 从第1点我们可以知道离心率影响着圆锥曲线的形状。为了实现统一我们把椭圆、双曲线进行平移,使椭圆、双曲线的右顶点与坐标原点重合,记它们 的半通径为p ,则2 b p a =。 如图1,将椭圆22 221(0)x y a b a b +=>>按向量(,0a )平移 得到2222()1x a y a b -+= ∴22 2222b b y x x a a =+ ∵椭圆的半通径211||b F M p a ==,2 221b e a =- ∴椭圆的方程可写成2222(1)y px e x =+- (01)e << 类似的,如图2,将双曲线22 221(0,0)x y a b a b -=>>按向量(,0)a -平移得到

2222()1x a y a b +-= ∴22 2222b b y x x a a =+ ∵双曲线的半通径222||b F M a =,2 221b e a =- ∴双曲线方程可写成2222(1)(1)y px e x e =+-> 对于抛物线22(0)y px x =>P 为半通径,离心率1e =,它也可写成 2222(1)(1)y px e x e =+-= 对于圆心在(P ,0),半径为P 的圆,其方程为222()x p y p -+=,它也可写成2222(1)(0)y px e x e =+-= 于是在同一坐标下,四种圆锥曲线有统一的方程2222(1)y px e x =+-,其中P 是曲线的半通径长,当0e =,01e <<,1,1e e =>时分别表示圆、椭圆、抛物线、双曲线。 三、四种圆锥曲线的统一焦点坐标、准线方程和焦半径公式 在同一坐标系下,作出方程2222(1)y px e x =+-所表示的四种圆锥曲线,如图3,设P 、B 、A 、C 分别是圆的圆心,椭圆的左焦点、抛物线的焦点、双曲线的右焦点统一记为2222(1)y px e x =+-的焦点F 则有222(1)(1)11 c a a e P OC c a e a c e e --=-===>+++ (1)21 p p OA e e ===+,222(1)(01)11a c a e p OB a c e a c e e --=-===<<+++ (0)1 p OP p e e ===+ 即方程2222(1)y px e x =+-所表示的四种圆锥曲线的一个焦点为(,0)1 p F e +,设焦点F 相应的准线为x m =,则有OF e m =-。

高中数学圆锥曲线专题-理科

圆锥曲线专题 【考纲要求】 一、直线 1.掌握直线的点方向式方程、点法向式方程、点斜式方程,认识坐标法在建立形与数的关 系中的作用; 2.会求直线的一般式方程,理解方程中字母系数表示斜率和截距的几何意义:懂得一元二 次方程的图像是直线; 3.会用直线方程判定两条直线间的平行或垂直关系(方向向量、法向量); 4.会求两条相交直线的交点坐标和夹角,掌握点到直线的距离公式。 二、圆锥曲线 1.理解曲线的方程与方程的曲线的意义,并能由此利用代数方法判定点是否在曲线上,以 及求曲线交点; 2.掌握圆、椭圆、双曲线、抛物线的定义,并理解上述曲线在直角坐标系中的标准方程的 推导过程; 3.理解椭圆、双曲线、抛物线的有关概念及简单的几何特性,掌握求这些曲线方程的基本 方法,并能根据曲线方程的关系解决简单的直线与上述曲线有两个交点情况下的有关问题; 4.能利用直线和圆、圆和圆的位置关系的几何判定,确定它们之间的位置关系,并能利用 解析法解决相应的几何问题。 【知识导图】【精解名题】 一、弦长问题 例1 如图,已知椭圆 2 21 2 x y +=及点B(0, -2),过点B引椭圆的割线(与椭圆相交的直线)BD与椭圆交于C、D两点 (1)确定直线BD斜率的取值范围 (2)若割线BD过椭圆的左焦点 12 ,F F是椭圆的右焦点,求 2 CDF ?的面积 y x B C D F1F2 O

二、轨迹问题 例2 如图,已知平行四边形ABCO ,O 是坐标原点,点A 在线段MN 上移动,x=4,y=t (33)t -≤≤上移动,点C 在双曲线 22 1169 x y -=上移动,求点B 的轨迹方程 三、对称问题 例3 已知直线l :22 2,: 1169 x y y kx C =++=,问椭圆上是否存在相异两点A 、B ,关于直线l 对称,请说明理由 四、最值问题 例4 已知抛物线2 :2()C x y m =--,点A 、B 及P(2, 4)均在抛物线上,且直线PA 与PB 的倾斜角互补 (1)求证:直线AB 的斜率为定值 (2)当直线AB 在y 轴上的截距为正值时,求ABP ?面积的最大值 五、参数的取值范围 例5 已知(,0),(1,),a x b y → → == ()a → +⊥()a → - (1)求点P (x, y )的轨迹C 的方程 (2)直线:(0,0)l y kx m k m =+≠≠与曲线C 交于A 、B 两点,且在以点D (0,-1)为圆 心的同一圆上,求m 的取值范围 六、探索性问题 例6 设x, y ∈R ,,i j →→ 为直角坐标平面内x, y 轴正方向上的单位向量,若向量 (2)a x i y j → →→=++,且(2)b x i y j →→→=+-且8a b →→ += (1)求点M (x, y )的轨迹方程 (2)过点(0,3)作直线l 与曲线C 交于A 、B 两点,设OP OA OB → → → =+,是否存在这样的直线l ,使得四边形OAPB 是矩形?若存在,求出直线l 的方程;若不存在,请说明理由

高中数学圆锥曲线小结论

椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即0 20 2y a x b K AB -=。 双曲线 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角. 2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为 直径的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相交.

高考的数学中圆锥曲线重要结论地最全的总结

高考数学圆锥曲线重要结论 一、定义:第一定义:平面内到两定点F1(-c,0),F2(c,0)的距离和为定值(大于两定点间的距离|F1F2|)2a的点的轨迹叫椭圆,两定点叫椭圆的焦点,两焦点间的距离叫焦距,与坐标轴的交点叫顶点。 第二定义:平面内到一个定点F的距离与到定直线1的距离比为常数e(0

圆锥曲线的统一定义 (2)

§2.5圆锥曲线的统一定义 教学目的: 1、知识与技能: 掌握椭圆、双曲线的第二定义以及准线的概念 2.过程与方法 类比抛物线的定义引出椭圆和双曲线的第二定义,借助几何画板等多媒体手段探究出轨迹的形成,进一步推导出椭圆和双曲线的方程。 3.情感、态度与价值观 通过本节课的学习,可以培养我们类比推理的能力,探究能力,激发我们的学习兴趣,培养学生思考问题、分析问题、解决问题的能力. 教学重点:圆锥曲线的统一定义的形成 教学难点:圆锥曲线方程的推导 教学过程: 一.情境设置 复习回顾 1、抛物线的定义: 探究与思考: 1≠d PF 呢 2、在推导椭圆的标准方程时,我们曾得到这样一个式子: 将其变形为: 你能解释这个式子的几何意义吗? 二、知识建构 例1.已知点P(x,y)到定点F(c,0)的距离与它到定直线c a x l 2 :=的距离的比是常数 c a (a>c>0),求 P 的轨迹. 变题:已知点P(x,y)到定点F(c,0)的距离与它到定直线c a x l 2 := 的距离的比是常数 c a (c>a>0),求P 的轨迹. 222)(y c x a cx a +-=-a c x c a y c x =-+-22 2)(

圆锥曲线的统一定义:平面内到一定点 F 与到一条定直线l 的距离之比为常数 e 的点的轨迹.( 点F 不在直线l 上) (1)当 0< e <1 时, 点的轨迹是 (2)当 e >1 时, 点的轨迹是 (3)当 e = 1 时, 点的轨迹是 其中常数e 叫做圆锥曲线的离心率, 定点F 叫做圆锥曲线的焦点, 定直线l 就是该圆锥曲线的准线. 思考 1、上述定义中只给出了一个焦点,一条准线,还有另一焦点,是否还有另一准线? 2、另一焦点的坐标和准线的方程是什么? 3、题中的|MF|=ed 的距离d 到底是到哪一条准线的距离?能否随意选一条? 准线: 定义式: )0(12222>>=+b a b y a x ) 0,0(122 22>>=-b a b y a x

高中数学圆锥曲线解题技巧总结

高中数学圆锥曲线解题 技巧总结 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

解圆锥曲线问题的常用方法大全 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020 =-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42)与到准线的距离和最小,则点 P 的坐标为______________ (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 分析:(1)A 在抛物线外,如图,连PF ,则PF PH =现,当A 、P 、F 三点共线时,距离和最小。

高考数学圆锥曲线的常用公式及结论(非常推荐)

高考数学常用公式及结论 圆锥曲线 1.椭圆22 221(0)x y a b a b +=>>的参数方程是cos sin x a y b θθ=??=?. 2.椭圆22 221(0)x y a b a b +=>>焦半径公式 )(21c a x e PF +=,)(2 2x c a e PF -=. 3.椭圆的的内外部 (1)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的内部22 00221x y a b ?+<. (2)点00(,)P x y 在椭圆22 221(0)x y a b a b +=>>的外部22 00221x y a b ?+>. 4. 椭圆的切线方程 (1)椭圆22221(0)x y a b a b +=>>上一点00(,)P x y 处的切线方程是00221x x y y a b +=. (2)过椭圆22 221(0)x y a b a b +=>>外一点00(,)P x y 所引两条切线的切点弦方程 是 00221x x y y a b +=. (3)椭圆22 221(0)x y a b a b +=>>与直线0Ax By C ++=相切的条件是 22222A a B b c +=.

5.双曲线22 221(0,0)x y a b a b -=>>的焦半径公式 21|()|a PF e x c =+,2 2|()|a PF e x c =-. 6.双曲线的内外部 (1)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的内部22 00221x y a b ?->. (2)点00(,)P x y 在双曲线22 221(0,0)x y a b a b -=>>的外部22 00221x y a b ?-<. 7.双曲线的方程与渐近线方程的关系 (1)若双曲线方程为12222=-b y a x ?渐近线方程:22220x y a b -=?x a b y ±=. (2)若渐近线方程为x a b y ±=?0=±b y a x ?双曲线可设为λ=-22 22 b y a x . (3)若双曲线与12222=-b y a x 有公共渐近线,可设为λ=-22 22b y a x (0>λ,焦 点在x 轴上,0<λ,焦点在y 轴上). 8. 双曲线的切线方程 (1)双曲线22 221(0,0)x y a b a b -=>>上一点00(,)P x y 处的切线方程是 00221x x y y a b -=. (2)过双曲线22 221(0,0)x y a b a b -=>>外一点00(,)P x y 所引两条切线的切点弦 方程是 00221x x y y a b -=.

高中数学学案:圆锥曲线的定义在解题中的应用

高中数学学案:圆锥曲线的定义在解题中的应用 1. 了解圆锥曲线的统一定义,能够运用定义求圆锥曲线的标准方程. 2. 理解圆锥曲线准线的意义,会利用准线进行相关的转化和计算. 1. 阅读:选修11第52~53页(理科阅读选修21相应内容);阅读之前先独立书写出圆锥曲线的统一定义,并尝试根据圆锥曲线的统一定义推导出椭圆方程. 2. 解悟:①写出圆锥曲线的统一定义,写出椭圆x 2a 2+y 2b 2=1(a>b>0)和双曲线x 2a 2-y 2 b 2=1(a>0,b>0)的准线方程;②椭圆、双曲线、抛物线各有几条准线?有什么特征? 3. 在教材上的空白处完成选修11第54页练习第2题(理科完成选修21相应任务). 基础诊断 1. 点P 在椭圆x 225+y 2 9=1上,它到左焦点的距离是它到右焦点距离的两倍,则点P 到左准线 的距离为 25 3 . 解析:设椭圆的左,右焦点分别为F 1,F 2,由题意知PF 1+PF 2=2a =10,PF 1=2PF 2,所以PF 1=203,PF 2=103.因为椭圆x 225+y 29=1的离心率为e =45,所以点P 到左准线的距离d =PF 1e =20 345=253. 2. 已知椭圆x 225+y 29=1上一点的横坐标为2,则该点到左焦点的距离是 33 5 . 解析:椭圆x 225+y 29=1,则a =5,b =3,c =4,所以离心率e =c a =4 5.由焦半径公式可得该点到左 焦点的距离为a +ex =5+45×2=33 5. 3. 焦点在x 轴上,且一个焦点到渐近线的距离为3,到相应准线的距离为9 5的双曲线的标准 方程为 x 216-y 2 9=1 . 解析:设双曲线的方程为x 2a 2-y 2b 2=1,焦点为(-c,0),(c,0),渐近线方程为y =±b a x,准线方程为x =±a 2c ,由题意得焦点到渐近线的距离d =bc a 2+ b 2=bc c = b =3,所以b =3.因为焦点到相应准线的

高中数学圆锥曲线问题常用方法经典例题(含答案)

专题:解圆锥曲线问题常用方法(一) 【学习要点】 解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则 有 020 20=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)

高中数学 圆锥曲线题型总结

直线和圆锥曲线常考题型 运用的知识: 1、中点坐标公式:1212,y 22 x x y y x ++= =,其中,x y 是点 1122(,)(,)A x y B x y ,的中点坐标。 2、弦长公式:若点1122(,)(,)A x y B x y ,在直线(0)y kx b k =+≠上, 则 1122y kx b y kx b =+=+,,这是同点纵横坐标变换,是两大坐标变换技巧之一, AB === = 或者 AB === = 3、两条直线111222: ,:l y k x b l y k x b =+=+垂直:则121k k =- 两条直线垂直,则直线所在的向量120v v = 4、韦达定理:若一元二次方程2 0(0)ax bx c a ++=≠有两个不同的根12,x x ,则1212,b c x x x x a a +=-=。 常见的一些题型: 题型一:数形结合确定直线和圆锥曲线的位置关系 例题1、已知直线:1l y kx =+与椭圆22 : 14x y C m +=始终有交点,求m 的取值范围 解:根据直线:1l y kx =+的方程可知,直线恒过定点(0,1),椭圆22 : 14x y C m +=过动点04m ±≠(,且,如果直线 :1l y kx =+和椭圆22 :14x y C m + =14m ≥≠,且,即14m m ≤≠且。 规律提示:通过直线的代数形式,可以看出直线的特点: :101l y kx =+?过定点(,) :(1)1l y k x =+?-过定点(,0) :2(1)1l y k x -=+?-过定点(,2) 题型二:弦的垂直平分线问题 例题2、过点T(-1,0)作直线l 与曲线N :2 y x =交于A 、B 两点,在x 轴上是否存在一点E(0x ,0),使得ABE ?是等边三角形,若存在, 求出0x ;若不存在,请说明理由。 解:依题意知,直线的斜率存在,且不等于0。

高考数学一轮复习 圆锥曲线的统一定义教案

江苏省泰兴市第三中学2015届高考数学一轮复习 圆锥曲线的 统一定义教案 一、教学目标 1. 了解圆锥曲线的统一定义. 2.掌握根据标准方程求圆锥曲线的准线方程的方法。 二、教学重点、难点 重点:圆锥曲线的统一定义。 难点:圆锥曲线的统一定义 三、教学过程 (一) 创设情境 我们知道,平面内到一个定点F 的距离和到一条定直线L (F 不在L 上)的距离 的比等于1的动点P 的轨迹是抛物线。如图(1)即 1PF PA =时,点P 的轨迹是抛物线。 下面思考这样个问题:当这个比值是一个不等于1的常数时,我们来观察动点P 的轨迹又是什么曲线呢?比如: 12PF PA =和2PF PA =时,动点P 的轨迹怎么变化? (二 )师生探究 下面我们来探讨这样个问题: 例1:已知点P (x,y )到定点F (c,0)的距离与它到定直线l :x=2 a c 的距离的比是常数 c a (a >c >0),求点P 的轨迹。

结论:点P 的轨迹是焦点为(-c ,0),(c ,0),长轴、短轴分别为2a ,2b 的椭圆。这个椭圆的离心率e 就是P 到定点F 的距离和它到定直线l (F 不在l 上)的距离的比。 变式:如果我们在例1中,将条件(a >c >0)改为(c >a >0),点P的轨迹又发生如何变化呢? 下面,我们对上面三种情况总结归纳出圆锥曲线的一种统一定义. 结论:圆锥曲线统一定义:平面内到一个定点F和到一条定直线L (F 不在L 上)的距离的比等于常数e 的点的轨迹.当0<e <1时,它表示椭圆;当e >1时,它表示双曲线;当e =1时,它表示抛物线.(其中e 是圆锥曲线的离心率,定点F是圆锥曲线的焦点,定直线是圆锥曲线的准线) 例3:已知动点M 到A (2,0)的距离等于它到直线x=-1的距离的2倍,求点M 的轨迹方程。 例4.椭圆22 2214x y b b +=上一点到右准线的距离是,求该点到椭圆左焦点的距离. 例5.若椭圆22 143 x y +=内有一点(1,1)P -,F 为右焦点,椭圆上有一点M 使||2||MP MF +最小,求点M 的坐标及最小值。

高中数学圆锥曲线的知识点总结

高考数学圆锥曲线部分知识点梳理 一、方程的曲线: 在平面直角坐标系中,如果某曲线C (看作适合某种条件的点的集合或轨迹 )上的点与一个二元方程 (,)0f x y =的实数解建立了如下的关系:(1)曲线上的点的坐标都是这个方程的解;(2)以这个方程的解为坐标 的点都是曲线上的点,那么这个方程叫做曲线的方程;这条曲线叫做方程的曲线. 点与曲线的关系:若曲线C 的方程是(,)0f x y =,则点000(,)P x y 在曲线C 上?00(,)0f x y =;点000(,)P x y 不在曲线C 上?00(,)0f x y ≠. 两条曲线的交点:若曲线1C ,2C 的方程分别为1(,)0f x y =,2(,)0f x y =,则点000(,)P x y 是1C ,2C 的交点 ?{ ),(0),(002001==y x f y x f 方程组有n 个不同的实数解,两条曲线就有n 个不同的交点;方程组没有实数解,曲线就没 有交点. 二、圆: 1、定义:点集{|}M OM r =,其中定点O 为圆心,定长r 为半径. 2、方程:(1)标准方程:圆心在(,)C a b ,半径为r 的圆方程是2 2 2 ()()x a y b r -+-= 圆心在坐标原点,半径为r 的圆方程是2 2 2x y r += (2)一般方程:①当22 40D E F +->时,一元二次方程2 20x y Dx Ey F ++++=叫做圆的一般方程,圆心为 )2 ,2(E D -- 半径是2. 配方,将方程22 0x y Dx Ey F ++++=化为 22224()()224 D E D E F x y +-+++= ②当2 2 40D E F +-=时,方程表示一个点)2 ,2(E D -- ③当2 2 40D E F +-<时,方程不表示任何图形. (3)点与圆的位置关系 已知圆心(,)C a b ,半径为r ,点M 的坐标为00(,)x y ,则||MC r < ?点M 在圆C 内,||MC r =?点M 在圆C 上,||MC r >?点M 在圆C 外,其中||MC = (4)直线和圆的位置关系:①直线和圆有相交、相切、相离三种位置关系:直线与圆相交?有两个公共点;直线与圆相切?有一个公共点;直线与圆相离?没有公共点. ②直线和圆的位置关系的判定:(i)判别式法;(ii)利用圆心(,)C a b 到直线0Ax By C ++=的距离 2 2 B A C Bb Aa d +++= 与半径r 的大小关系来判定.

高二数学圆锥曲线测试题以及详细答案

圆锥曲线测试题及详细答案 一、选择题: 1、双曲线 22 1102x y -=的焦距为( ) 2.椭圆14 22 =+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的 直线与椭圆相交,一个交点为P ,则||2PF = ( ) A . 23 B .3 C .2 7 D .4 3.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线 C. 椭圆 D.以上都不对 4.设P 是双曲线192 22=-y a x 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1 =PF ,则=||2PF ( ) 】 A. 1或5 B. 1或9 C. 1 D. 9 5、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角 形,则椭圆的离心率是( ). A. B. C. 2 D. 1 6.双曲线)0(12 2≠=-mn n y m x 离心率为2,有一个焦点与抛物线x y 42=的焦点重合,则mn 的值为( ) A .163 B .83 C .316 D .38 7. 若双曲线22 21613x y p -=的左焦点在抛物线y 2=2px 的准线上,则p 的值为 ( ) (A)2 (B)3 (C)4 8.如果椭圆 19 362 2=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) A 02=-y x B 042=-+y x C 01232=-+y x D 082=-+y x 9、无论θ为何值,方程1sin 22 2=?+y x θ所表示的曲线必不是( ) |

圆锥曲线的统一定义解读

圆锥曲线的统一定义解读 江苏王冬琴 圆锥曲线的统一定义揭示了椭圆、双曲线、抛物线三种曲线的内在关系,使我们充分感受数学的内在的、和谐的美,有了发现美、欣赏美的意识;统一定义的推导需要娴熟的代数恒等变形的技能,整个推导过程渗透了特殊到一般,具体到抽象的数学思想. 一、圆锥曲线的统一定义 1.定义平面内到一定点F 与到一条定直线l ( 点F 不在直线l 上)的距离之比为常数e 的点的轨迹叫圆锥曲线. ①当 0< e <1 时, 点的轨迹是椭圆;②当e= 1 时, 点的轨迹是抛物线;③当e>1 时, 点的轨迹是双曲线,其中常数e叫做圆锥曲线的离心率,定点F叫做圆锥曲线的焦点, 定直线l就是该圆锥曲线的准线. 2.焦半径:圆锥曲线上的点与焦点的连线段叫做焦半径. 运用圆锥曲线的统一定义,可以推导出曲线上一点到焦点的距离就是焦半径,一般用点的坐标和离心率表示. 3.注意事项 (1)统一定义是充分必要条件,即满足条件的点一定在圆锥曲线上,反之,圆锥曲线上的任意一点也满足条件. (2)焦点与准线要对应,对于椭圆或双曲线,其上的一点到一个焦点的距离与它到相应准线的距离的比等于它的离心率。这里的“相应”指的是:“左焦点对应左准线”、“右焦点对应右准线”;特别地,对于焦点在x 轴上的双曲线来说,右支上任意一点到左焦点的距离与这点到左准线的距离之比也等于离心率. (3)准线与圆锥曲线一定没公共点. (4)当点F在直线l上时,设平面内动点M到直线l的距离是d,且MF e d =,若1 e>, 则动点M的轨迹是过F点与直线l成等锐角的两条相交直线;若1 e=,则动点M的轨迹是过F点与直线l成等直角的一条直线;若1 e<,则动点M的轨迹不存在. 二、圆锥曲线的几何性质

高中数学圆锥曲线题目(答案)

解圆锥曲线问题常用以下方法: 1、定义法 (1)椭圆有两种定义。第一定义中,r 1+r 2=2a 。第二定义中,r 1=ed 1 r 2=ed 2。 (2)双曲线有两种定义。第一定义中,a r r 221=-,当r 1>r 2时,注意r 2的最小值为c-a :第二定义中,r 1=ed 1,r 2=ed 2,尤其应注意第二定义的应用,常常将 半径与“点到准线距离”互相转化。 (3)抛物线只有一种定义,而此定义的作用较椭圆、双曲线更大,很多抛物线问题用定义解决更直接简明。 2、韦达定理法 因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用。 3、解析几何的运算中,常设一些量而并不解解出这些量,利用这些量过渡使问题得以解决,这种方法称为“设而不求法”。设而不求法对于直线与圆锥曲线相交而产生的弦中点问题,常用“点差法”,即设弦的两个端点A(x 1,y 1),B(x 2,y 2),弦AB 中点为M(x 0,y 0),将点A 、B 坐标代入圆锥曲线方程,作差后,产生弦中点与弦斜率的关系,这是一种常见的“设而不求”法,具体有: (1))0(122 22>>=+b a b y a x 与直线相交于A 、B ,设弦AB 中点为M(x 0,y 0),则有02 020=+k b y a x 。 (2))0,0(122 22>>=-b a b y a x 与直线l 相交于A 、B ,设弦AB 中点为M(x 0,y 0)则有02 020=-k b y a x (3)y 2=2px (p>0)与直线l 相交于A 、B 设弦AB 中点为M(x 0,y 0),则有2y 0k=2p,即y 0k=p. 【典型例题】 例1、(1)抛物线C:y 2=4x 上一点P 到点A(3,42) (2)抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,分析:(1)A 在抛物线外,如图,连PF ,则PF PH =P 、F 三点共线时,距离和最小。 (2)B 在抛物线内,如图,作QR ⊥l 交于R ,则当B 、Q 、R 最小。 解:(1)(2,2) 连PF ,当A 、P 、F 三点共线时,PF AP PH AP +=+最小,此时y=22(x-1),代入y 2=4x 得P(2,22),(注:另一交点为( 2,2 1 -)

高中数学 有关圆锥曲线的经典结论

有关解析几何的经典结论 一、椭 圆 1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角. 2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径 的圆,除去长轴的两个端点. 3. 以焦点弦PQ 为直径的圆必与对应准线相离. 4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切. 5. 若000(,)P x y 在椭圆22 22 1x y a b +=上,则过0 P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22 221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点 弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22 221x y a b += (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点 12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2 F PF S b γ ?=. 8. 椭圆22 221x y a b +=(a >b >0)的焦半径公式: 10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ). 9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和 AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF. 11. AB 是椭圆22 221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则 2 2OM AB b k k a ?=-, 即020 2y a x b K AB -=。 12. 若000(,)P x y 在椭圆 22 22 1x y a b +=内,则被Po 所平分的中点弦的方程是22 00002222x x y y x y a b a b +=+. 13. 若000(,)P x y 在椭圆22 221x y a b +=内,则过Po 的弦中点的轨迹方程是

相关主题
文本预览
相关文档 最新文档