当前位置:文档之家› 2000热分析讲义

2000热分析讲义

2000热分析讲义
2000热分析讲义

热分析讲义(陆昌伟)

目录

一. 绪论

1.1 关于热分析之定义

1.2 热分析的发展

1.3 热分析的分类

1.4 热分析杂志

1.5 热分析方法利用率统计

二. 热分析的物理基础

2.1 基本慨念

2.2 固体物质热性质

2.3 热稳定物质;热分析参比物

2.4 热量传递现象

2.5 热分析过程的传热

三. 热分析的基本实验方法

3.1 热重法(TG)- Thermogravemitry

3.2 差热分析(DTA)-Differential Thermoanalysis

3.3 差示扫描量热法(DSC)-Differential Scanning Calorimetry

3.4 热膨胀法(PRD)-Push rod dilatometer

四. 热分析联用和结合技术

4.1 TG-MS

4.2 DTA-MS

4.3 TG-DTA-MS

4.4 TG-DTA-MS + FTIR

4.5 TG-GC-MS

4.6 DSC+TG-MS

4.7 PRD+DSC+DTA

4.8 PRD+XRD

4.9 DSC+SXAS+XRD

五. 热分析在材料研究中的应用

5.1 PZT(Nb)和 PSZT 铁电材料的热物性学研究(DTA,DSC,PRD)硅酸盐学报

21(6)1993:528-533

5.2 氧化碲单晶热膨胀行为的实验研究 ( PRD + XRD )应用科学学报2(2) 1994:95-100

5.3 BfN-SiO2 复合材料的热膨胀及其与结构,密度关系的研究(PRD+XRD)

无机材料学报8(2)1993:243-247

5.4 G-DTA-MS StudiesontheThermal Decomposition Behaviour of Homogeneous

Precipitated Zr

2(SO

4

)(OH)

6

.6H

2

O Thermochimica Acta, 232(1994)77-84

5.5 Experimental Studies on the transition from xerogels to glasses for the system

SiO

2-PbO-B

2

O

3

with added DMSO using the thermal mass spectroscopy Coupling Technique.

Thermochimica Acta 260(1995)137-145

5.6 G-DTA-MS and DSC Studies on the Thermal Treatment Process of the 20%

AlO

3/2-SiO

2

-epoxySiO

3/2

Organic-inorganic Hybrid System. Thermochimica Acta

334(1999)149-155

一. 绪论

1.1 热分析的定义

按第五届国际热分析会议提出的热分析定义:

"在程序温度控制下, 测量物质的物理性质与温度关系的一类技术."

1.2 热分析的发展

1887, DTA- Le Chatalier , 首次利用热电偶经检流计照象记录矿物在升温时的电动势变化1899, Roberts-Austen , 利用参比热电偶以差示形式观测试样和参比物间温差

1940,热分析用于无机物,粘土矿物和聚合物

1960 以后, 热分析技术发展较快

1963 在苏格兰Aberdeen召开首次国际热分析会议(ICTA),International Confederation for Thermal Analysis

1968 在美国Boston召开第二届国际热分析会议此后,每三年召开一次

50年代末,60年代初,我国开始生产热分析仪

1979.12, 三热会议,即中国化学会物化专业委员会热化学,热力学,热分析(CTTT)

1979.12至1997,已召开过七次CTTT

1.3热分析方法的分类

1.4 热分析杂志

1) Journal of Thermal Analysis, 1969创刊,E.Buzgu, Simon,Hungary

2) Thermochimica Acta, 1970 创刊, W. W.Wendlandt. Department of Chemistry , University of Houston , Texas, U.S.A.

3) THermal Analysis Abstracts, TAA, Heyden & Sons, London

二.热分析的物理基础

2.1 基本概念

热—当系统与环境的温度不同时,系统与环境之间所传递的交换能量

热力学平衡在外界对物质既不作功也不传热时, 物质所有可观测的宏观性质不随时间而变化的状态。

聚集态: 固, 液, 气

相态: 晶相, 液相, 气相

物理性质类型: 力学, 热学, 电磁,光学,几何学

能量守恒: 变化方向△U = Q + W

热能热功

2.2 固体物质热性质

1) 热与物质的变化

2) 热物理性质, 体积, 量热性质(热容,比热等), 相变潜热

熔点转变温度晶型转变温度,升华、凝华

3) 热电现象: 电阻温度特性由于温度差产生电极化热释电

4) 导热

5) 固体热反应, 热分解

2.3 热稳定物质, 热分析参比物

α— Al2 O3 1200℃以下

2.4热量传递现象

1) 热传导

分子运动过程中分子间动能交换, 也可由自由电子迁移引起能量传递 2) 对流传热

流体内热量传递高→低

3) 热辐射

电磁波形式的外辐射热射线

2.5 热分析过程的传热

1) 试样装入均温块, 热传导

2) 试样在空气介质, 介质和试样对流传热

3) 程序升温、降温。温度梯度

4) 真空状态, 以辐射为主

5) 试样状况, 气体介质种类,炉,支架的材料的传热过程

2.6温度测量与控制

热电偶, 热电阻测温

三. 热分析基本实验方法

3.1 热重法(TG): Themogravemitry

对物质质量与温度关系进行测量的一种技术

W= f(T)

静态--恒温下测定

动态__程序升温下测定

3.1.1 热重仪

3.1.2 热重法数据表示和计算方法

CuSO

4.5H

2

O→CuSO

4

.3H

2

O + 2H

2

O

CuSO

4.3H

2

O → CuSO

4

.H

2

O + 2H

2

O

CuSO

4.H

2

O→ CuSO

4

+ H

2

O

3.1.3 DTG(Derivative Thermogravimetry),1953, Dekersey

重量随时间变化, dW/dt=f(T or t)

d2W/dt2=0 峰顶失重最大值与 TG曲线拐点相对应

3.1.4 DDTG 二次微商热重法Arora & Sigh

1)研究共沉淀制得的二元组份体系

2)若体系是二种沉淀简单混合,且每一沉淀物的任一分解特性不因混合物而变化, DDTG是一水平线

3)当一种热活性物存在, 用正峰;不存在,用负峰

3.1.5 影响热重数据的各种因素

1)浮力和对流

W(表观增重)= V.D(1-273/T)

V___受热区试样盘和支撑器体积

D____试样周围在273K时的密度

T____热力学温度

2)逸出挥发物再凝聚影响

3) 温度测量引起误差

4)实验条件的影响

升温速率; 试样坩; 气氛; 走纸速度

3.1.6热重动力学

1) 基本表达式: Arrhenius 方程

A(solid)→ B(solid) + C(gas)

-dc/dt=kf(c) k=Ae-E/rt

C_____相对失重或剩余分数, C=W/W0

A______颗粒因子

E______活化能(KJ/mol)

n______反应速度

R______气体常数

-dC/dT= A/Φ e-E/RT C n

-dC/C n = A/Φ e-E/RT dT

ln(-dC/dT)=ln A/Φ- E/RT + nlnC

dln(dC/dT)

__________ = - E/R

d(1/T)

由相同C的(dC/dT, T) 作ln(-dC/dT) -1/T图, 得一直线, 斜率为-E/R, 截距lnA/ C n ,

lnA/Φ C n = lnA/Φ + nln C

作lnA/Φ C n -LnC 图, 由斜率, 截距求n,A

nlogC---log(-dC/dt)= E/2.303RT-logA

当用不同称量, 不同速率,

nlogC

1-log(-dC/dt)

1

= E/2.303RT-logA

nlogC

2-log(-dC/dt)

2

= E/2.303RT-logA

log(-dC/dt)

1 -log(-dC/dt)

2

n= __________________________

logC1 -logC

2

不同Φ,方程两边除以ΔLnC,

ΔLnΦ(-dC/dT)=nΔLnC - E/RΔ(1/T)

ΔlogΦ(-dC/dT) E Δ(1/T)

= n -

ΔlogC 2.303R ΔlogC

3.2差热分析(DTA)-Differential Thermoanalysis

3.2.1 DTA 原理和方法

差热分析(DTA) 是在程序温度下,测定物质和差比物的温度差和温度关系的一种技术ΔT= T s - T r=f (T or

t )

3.2.2 差热分析仪

3.2.3 DTA 曲线方程

C s= 试样热容, Cr---参比物热容, K---传热系数

T w ---炉温, Ts--- 试样温度, Tr--- 参比物温度,

dTw

试样传热方程: C s = K (T w - T s)

dt

dT r

C r= K (T w– T r )

dt

相减,

dT w

(C s – C r ) = K (T s – T r ) =- KΔT

dt

C r– C s dT w Cp dT w

ΔT = =

K dt K dt

ΔC p = C r - C s (热容差)

3.2.4 DTA 基线方程

dTw

设Φ= , Cr≠Cs, Ts ≠Tr

dt

(即热源传热相同时,试样和参比物的热容也不同,即Cr≠Cs, Ts≠Tr, 即热源传热相同时,试样和参比物温度

也不等.

当 Cs>Cr, Ts

Qs = K(Tw-Ts)

Qr = K(Tw-Tr)

结果, Qs>Qr

试样升温比参比物快,以后,试样和参比物均以Φ速率升温,DTA 曲线开始出现的“弯曲”就变成平直,所

以,DTA曲线基线漂移与ΔCp有很大关系, 另外,传热系数Kr≠Ks以及仪器的电子线路零点漂移等原因,DTA曲线

在升温后总会发生漂移

3.2.4 影响DTA因数

(1)仪器因数. 试样支持器, 参比物支持位置

(2)操作条件影响. 升温速率; 气氛

(3) 试样性质影响用量; 粒度

DSC的基本原理和方法

差示扫描量热法是在程序温度下,测量输给物质和参比物的功率差和温度关系的一种技术.

功率补偿式, 热流式.

功率补偿式特点

1.试样,参比物分别具有独立加热和传热器.

2 .由两个控制系统监控: a.控制温度, 试样, 参比物在预定速率下升温或降温.

b.用于补偿试样和参比物之间的温差.(温差由试样放.吸热引起)

3.从补偿的功率直接求算热率.

dQ s dQ R dH

W= - =

dt dt dt

ΔW-----所补偿功率、Q s -----试样热量、Q R-----参比物热量.

dH/dt----单位时间内的焓变,即热流率(ms/s).

R s=R R (试样,参比物的加热器电阻相等),当无热效应,I2s R s = I2R R R, 当试样有热效应立即功率补偿

ΔW = I s2R s– I2R R R

令 R s=R R=R 则ΔW= R(I s +I R)(Is-I R)

又, I s + I R=I T

∴ΔW=I T(I s R-I R R) ΔW=I T(V s-V R)=I TΔV

I T- 总电流, ΔV-电压差, I T-常数时, ΔW和ΔV成正比.

∴ΔV直接表示 dH/dt

4.热流型特点:

(1).利用慷铜盘把热量输到试样和参比物

(2) 慷统盘还作为测量温度的热电偶结点的一部分

(3) 传输到试样和参比物的热流差通过试样和参比物平台下的镍铬板与慷铜盘的结点所构成的镍铬-慷铜热电偶进行监控

5. 功率补偿型DSC的曲线方程

dH -dq dT p

= + ( C s-C r)

dt dt dt

曲线峰面积Δq= - ΔH

6.DSC曲线的三个临界参数

a.曲线稳定斜率 - 是稳度增量线性增加结果,与界面传导率项成正比例

b.转变起始的温度Ti- 可从斜率与基线的交点得到

c.衰变常数K I- 转变完成时返回基线

7.DSC 的实验方法

(1) 三个关键操作参数:

试样量(m),升温速率,(Φ),气氛,ΔH小,或试样不均,

m ↑,但分峰率↓,峰变宽,∴Ф不能快; m↓,峰尖锐,分峰率也较好

(2)坩埚和装样:密封坩埚用于液态和蒸汽压高的固态试样

固体试样: 薄膜,薄片或细小颗粒,增大试样和坩埚的接触

(3)DSC实验数据处理

热膨胀 PRD (Push Rod Dilatometer ), TMA( Thermomechnic Analysis )

1.基本慨念

(1)热膨胀系数:表征物体受热时长度或体积增大程度

V2 - V1

β =

平均体膨胀系数 V1(T2-T1)

L2-L1

平均线膨胀系数α=

L1(T2-T1)

β≌3α

2.固体热膨胀理论

一维空间, 一个离子振动动能 E= 1/2 mx2

一个离子振动势能 U= 1/2 mω2x2– gx3

X –离子振动位移

M - 质量

ω- 角频率, ω =2πυ

式中,1/2 mω2x2是角谐振动位能, gx3为高次项纠正,

若不考虑纠正项, 则运动方程为

m( x‥ + ωx) = 0

其解: x0 = A Cos( ωt + α )

A-振幅、α- 初相、ωt + α–振动位相

考虑纠正相, 则离子振动运动方程:

m (x‥ + ωx ) – 3gx2 = 0

使 x=x0 + Δx, 代入上式求出Δx的一次近似:

x=Acos(ωt + α) –gA2/2mω2· cos2(ωt + α) +3gA2/ 2mω2

x- = 3gA2/ 2mω2

离子振动平均能量 W= 1/2 (x2 + ω2x2) = m/2 A2ω2

x- = 3g/ m2ω4 · W

dx-/dt = 3g dW/ m2ω4 dT =3g·C v /m2·ω4

dx/dt 即为膨胀系数, 与比热Cv 成正比

三维晶体, 对于立方晶系

Cv m+n+3 ∫T0 Cvdt

αT = : (1- · )2

V/F x 6 V/F x

Cv- 原子热容、V- 原子体积、x- 可压缩系数, F=1/6 (n+2), m,n方次指数, 原子间的引力和斥力按照这些指数随原子间距变化应用时, 需知道Θ(与Cv有关); m,n,V/F x

3.热膨胀系数与热容,熔点,键强度,折射率和原子量间的关系

(1)与Cv 关系

Cv. σ.X

β=

V0

x- 压缩系数, V0- 分子体积, σ-Gruneison常数 (一般,σ≌ 2

(2)与熔点关系

元素:

0.020

α=

T m T m ↑α↓

氧化物:

0.038

α= -7.0 × 10-6

T m

(3)与键强度关系

除了T m,还有生成热,结晶能可表征物资的键强,结构复杂的材料的键角易改变,键型各不相同,经验公式于实验结果偏离较大,一般,同类型结构有相近的α.

(4)与原子量关系

(5)与折射率关系

n ↑, α↓

4.Turner 方程: 对多相复合材料

α1K1/ρ1 +α2K2/ρ2+……..

α1 =

K1F1/ρ1+K2F2/ρ2 +……..

-ρ E

K= =

ΔV/V 3(1-2μ)

P-压力, V-体积, E-弹性模量, μ-泊松比, F i-材料内相的重量分数,

ρi-材料内I相的密度, ρr - 材料的平均密度

5.Kerner方程:对于不连续晶粒组成的复合材料

4G r αi V i

αr = ( + 3 )Σ

K r i4G r

( + 3 )

K i

G r- 复合材料剪切模量,对于两相混合,其中一相为分散相的复合材料

K1(3K2 + 4G1)2 +(K2-K1)(16G12 + 12G1K2)

αT=α1+ V2(α2-α1) ·{ }

(4G1+3K2)[4V2G1(K2-K1)+3K1K2+4G1K1]

or

( α2–α1 )V2

αr = α1 +

12K1G1 V2 11-V2

[ + + ]

3K1 + 4G1 3K 4G1 3K2

(6)气孔率, 微应力, 配位数,原子价对α的影响

A: 气孔弥散分布在连续的固相基体中, 可近似当作气孔和固相复合材料,用

Turner 方程

结果: 和固体基体的α相近,

结论: 连续固相中的气孔不会对α有明显影响

B.材料相互结合较弱,颗粒间只有很小部分接触, α取决于颗粒尺寸,结合强弱,个相异性, 不易找到经验

方程

(2)配位数

α= C/q2

C- 1×106

q- 原子价于配位数的商

配位数↑,α↓

(3)微应力

E.α.ΔT

σ=

1 -μ

E-扬氏模量

μ- 泊松比

ΔT –温度变化

7. 材料相变时的热膨胀行为

热膨胀性能与材料结构有关,当材料内部发生相变时,热膨胀系数在相变点会发生突变,

同质多晶转变

铁电体在居里温度转变

Fe3O4, 5760C, α出现最大值

8. 热膨胀系数的顶杆测定方法和装置

差热分析__实验报告

差热分析 一、实验目的 1. 用差热仪绘制CuSO4·5H2O等样品的差热图。 2. 了解差热分析仪的工作原理及使用方法。 3. 了解热电偶的测温原理和如何利用热电偶绘制差热图。 二、实验原理 物质在受热或冷却过程中,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸附、脱附等物理或化学变化,并伴随着有焓的改变,因而产生热效应,其表现为物质与环境(样品与参比物)之间有温度差。差热分析就是通过温差测量来确定物质的物理化学性质的一种热分析方法。 差热分析仪的结构如下图所示。它包括带有控温装置的加热炉、放置样品和参比物的坩埚、用以盛放坩埚并使其温度均匀的保持器、测温热电偶、差热信号放大器和信号接收系统(记录仪或微机)。差热图的绘制是通过两支型号相同的热电偶,分别插入样品和参比物中,并将其相同端连接在一起(即并联,见图5-1)。A 两支笔记录的时间—温度(温差)图就称为差热图,或称为热谱图。 图5-1 差热分析原理图 图5-1 典型的差热图从差热图上可清晰地看到差热峰的数目、位置、方向、宽度、高度、对称性以及峰面积等。峰的数目表示物质发生物理化学变化的次数;峰的位置表示物质发生变化的转化温度(如图5-2中T B);峰的方向表明体系发生热效应的正负性;峰面积说明热效应的大小。相同条件下,峰面积大的表示热效应也大。在相同的测

定条件下,许多物质的热谱图具有特征性:即一定的物质就有一定的差热峰的数目、位置、方向、峰温等,因此,可通过与已知的热谱图的比较来鉴别样品的种类、相变温度、热效应等物理化学性质。因此,差热分析广泛应用于化学、化工、冶金、陶瓷、地质和金属材料等领域的科研和生产部门。理论上讲,可通过峰面积的测量对物质进行定量分析。 本实验采用CuSO 4·5H 2O ,CuSO 4·5H 2O 是一种蓝色斜方晶系,在不同温度下,可以逐步失水: CuSO 4·5H 2O CuSO 4·3H 2O CuSO 4·H 2O CuSO 4 (s ) 从反应式看,失去最后一个水分子显得特别困难,说明各水分子之间的结合能力不一样。 四个水分子与铜离子的以配位键结合,第五个水分子以氢键与两个配位水分子和SO 4 2-离子结合。 加热失水时,先失去Cu 2+ 左边的两个非氢键原子,再失去Cu 2+ 右边的两个水分子,最后失去以氢键连接在SO 4 2- 上的水分子。 三、仪器试剂 差热分析仪1套;分析物CuSO 4·5H 2O ;参比物α-Al 2O 3。 四、实验步骤 1、 开启仪器电源开关,将各控制箱开关打开,仪器预热。开启计算机开关。 2、参比物(α-Al 2O 3)可多次重复利用,取干净的坩埚,装入CuSO 4·5H 2O 样品、装满,再次加入CuSO 4·5H 2O 将坩埚填满,备用。 3、抬升炉盖,将上步装好的CuSO 4·5H 2O 样品放入炉中,盖好炉盖。 4、打开计算机软件进行参数设定,横坐标2400S 、纵坐标300℃、升温速率

热分析考试考试)20121210)

热分析习题 一、填空(10分,共10题,每题1分)。 1、差热分析是在程序控温条件下,测量样品坩埚与坩埚间的温度差与温 度的关系的方法。(参比) 2、同步热分析技术可以通过一次测试分别同时提供-TG或 -TG两组信号。(DTA-TG ,DSD-TG) 3、差示扫描量热分析是在程序控温条件下,测量输入到物质与参比物的功率差与温度的关 系的方法,其纵坐标单位为。(mw或mw/mg) 4、硅酸盐类样品在进行热分析时,不能选用材质的样品坩埚。(刚玉) 5、差示扫描量热分析根据所用测量方法的不同,可以分类为热流型DSC 与 型DSC。(功率补偿) 6、与差热分析(DTA)的不同,差示扫描量热分析(DSC)既可以用于定性分析,又可以 用于分析。(定量) 7、差热分析(DTA)需要校正,但不需要灵敏度校正。(温度) 8、TG热失重曲线的标注常常需要参照DTG曲线,DTG曲线上一个谷代表一个失重阶段, 而拐点温度显示的是最快的温度。(失重) 9、物质的膨胀系数可以分为线膨胀系数与膨胀系数。(体) 10、热膨胀系数是材料的主要物理性质之一,它是衡量材料的好坏的一个重要指 标。(热稳定性) 二、名词解释 1.热重分析答案:在程序控温条件下,测量物质的质量与温度的关系的方法。 2.差热分析答案:在程序控温条件下,测量物质与参比物的温度差与温度的关系的方法。 3.差示扫描量热分析答案:在程序控温条件下,测量输入到物质与参比物的功率差与温度的关系的方法。 4.热膨胀分析答案:在程序控温条件下,测定试样尺寸变化与温度或时间的关系的方法。 三、简答题 1.DSC与DTA测定原理的不同 答案:DSC是在控制温度变化情况下,以温度(或时间)为横坐标,以样品与参比物间温差为零所需供给的热量为纵坐标所得的扫描曲线。DTA是测量T-T 的关系,而DSC是保持T = 0,测定H-T 的关系。两者最大的差别是DTA只能定性或半定量,而DSC的结果可用于定量分析。DTA在试样发生热效应时,试样的实际温度已不是程序升温时所控制的温度(如

三种热分析方法综合介绍.

三种热分析方法综合介绍 热分析是在程序控制温度的条件下,测量物质的物理性质随温度变化关系的一类技术。该技术包括三个方面的内容:其一,物质要承受程序控温的作用,通常指以一定的速率升(降)温。其二,要选定用来测定的一种物理量,它可以是热学的、力学的、声学的、光学的以及电学的和磁学的等。其三,测量物理量随温度的变化关系。 物质在受热过程中要发生各种物理、化学变化,可用各种热分析方法跟踪这种变化。表1中列出根据所测物理性质对热分析方法的分类。其中以差热分析(DTA)和热重分析(TG)的历史最长,使用也最广泛;微分热重分析(DTG)和差示扫描置热法(DSC)近年来也得到较迅速地发展。下面简单介绍DTA、TG和DSC的基本原理和技术。 表1热分析方法的分类 (一)差热分析(DTA) 差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。在DAT试验中,样品温度的变化是由于相变或反应的吸热或放热效应引起的。一般说来,相变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。 图1为差热分析装置示意图,典型的DTA装置由温度程序控制单元、差热放大单元和记录单元组成。将试样S和参比物R一同放在加热电炉中进行程序升温,试样在受热过程中所发生的物理化学变化往往会伴随着焓的改变,从而使它与热惰性的参比物之间形成一定的温度差。差热分析中温差信号很小,一般只有几微伏到几十微伏,因此差热信号经差热放大后在记录单元绘出差热分析曲线。从曲线的位置、形状、大小可得到有关热力学和热动力学方面的信息。

热分析实验报告

热分析实验报告 一、实验目的 1、了解STA449C综合热分析仪的原理及仪器装置; 2、学习使用TG-DSC综合热分析方法。

二、实验内容 1、对照仪器了解各步具体的操作及其目的。 2、测定纯Al-TiO2升温过程中的DSC、TG曲线,分析其热效应及其反应机理。 3、运用分析工具标定热分析曲线上的反应起始温度、热焓值等数据。 三、实验设备和材料 STA449C综合热分析仪 四、实验原理 热分析(Thermal Analysis TA)技术是指在程序控温和一定气氛下,测量试样的物理性质随温度或时间变化的一种技术。根据被测量物质的物理性质不同,常见的热分析方法有热重分析(Thermogravimetry TG)、差热分析(Difference Thermal Analysis,DTA)、差示扫描量热分析(Difference Scanning Claorimetry,DSC)等。其内涵有三个方面:①试样要承受程序温控的作用,即以一定的速率等速升(降)温,该试样物质包括原始试样和在测量过程中因化学变化产生的中间产物和最终产物;②选择一种可观测的物理量,如热学的,或光学、力学、电学及磁学等;③观测的物理量随温度而变化。

热分析技术主要用于测量和分析试样物质在温度变化过程中的一些物理变化(如晶型转变、相态转变及吸附等)、化学变化(分解、氧化、还原、脱水反应等)及其力学特性的变化,通过这些变化的研究,可以认识试样物质的内部结构,获得相关的热力学和动力学数据,为材料的进一步研究提供理论依据。 综合热分析,就是在相同的热条件下利用由多个单一的热分析仪组合在一起形成综合热分析仪,见图1,对同一试样同时进行多种热分析的方法。 图1 综合热分析仪器(STA449C) (1)、热重分析( TG)原理 热重法(TG)就是在程序控温下,测量物质的质量随温度变化的关系。采用仪器为日本人本多光太郎于1915年制作了零位型热天平(见图2)。其工作原理如下:在加热过程中如果试样无质量变化,热天平将保持初始的平衡状态,一旦样品中有质量变化时,

实验一综合热分析实验

实验一综合热分析实验 一、目的要求 1.了解综合热分析仪的基本构造、原理及方法。 2.了解实验条件的选择。 3.掌握热分析样品的制样方法。 4.掌握对样品的热分析图谱进行相关分析和计算。 二、综合热分析仪的结构、原理及性能 综合热分析仪是在程序控制温度下同步测定物质的重量变化、温度变化和热效应的装置。一般地,综合热分析仪主要由程序控制系统、测量系统、显示系统、气氛控制系统、操作控制和数据处理系统等部分组成。 1.TG的结构、原理及性能 热重法(TG)是在程序控制温度下,测量物质的质量与温度关系的一种热分析技术。热重法记录的是热重曲线(TG曲线),它以质量作为纵坐标,以温度或时间为横坐标,即m—T曲线。 热重法通常有下列两种类型:等温热重法:在恒温下测定物质质量变化与时间的关系;非等温热重法:在程序升温下测定物质质量变化与温度的关系。 热重法所用仪器称为热重分析仪或热天平,其基本构造是由精密天平和程序控温的加热炉组成,热天平是根据天平梁的倾斜与重量变化的关系进行测定的,通常测定重量变化的方法有变位法和零位法两种。①变位法是利用物质的质量变化与天平梁的倾斜成正比的关系,用差动变压器直接控制检测。②零位法是靠电磁作用力使因质量变化而倾斜的的天平梁恢复到原来的平衡位置,施加的电磁力与质量变化成正比,而电磁力的大小与方向是通过调节转换结构中线圈中的电流实现的,因此检测此电流即可知质量变化。天平梁倾斜由光电元件检出,经电子放大后反馈到安装在天平衡量上的感应线圈,使天平梁又回到原点。 SDTQ600综合热分析仪采用水平双杆双天平的结构设计。一臂作为水平天平零位平衡测量,另一臂作为高灵敏度DTA的热电偶。同时,一臂用来装填试样,

差热分析_实验报告

学生实验报告 实验名称差热分析 姓名:学号:实验时间: 2011/5/20 一、实验目的 1、掌握差热分析原理和定性解释差热谱图。 2、用差热仪测定和绘制CuSO4·5H2O等样品的差热图。 二、实验原理 1、差热分析原理 差热分析是测定试样在受热(或冷却)过程中,由于物理变化或化学变化所产生的热效应来研究物质转化及花絮而反应的一种分析方法,简称DTA(Differential Thermal Analysis)。 物质在受热或者冷却过程中个,当达到某一温度时,往往会发生熔化、凝固、晶型转变、分解、化合、吸收、脱附等物理或化学变化,因而产生热效应,其表现为体系与环境(样品与参比物之间)有温度差;另有一些物理变化如玻璃化转变,虽无热效应发生但比热同等某些物理性质也会发生改变,此时物质的质量不一定改变,但温度必定会变化。差热分析就是在物质这类性质基础上,基于程序控温下测量样品与参比物的温度差与温度(或时间)相互关系的一种技术。 DTA的工作原理(图1 仪器简易图)是在程序温度控制下恒速升温(或降温)时,通过热偶点极连续测定试样同参比物间的温度差ΔT,从而以ΔT对T 作图得到热谱图曲线(图2 差热曲线示意图),进而通过对其分析处理获取所需信息。 图1 仪器简易图

实验仪器实物图 图2 差热曲线示意图 在进行DTA测试是,试样和参比物分别放在两个样品池内(如简易图所示),加热炉以一定速率升温,若试样没有热反应,则它的温度和参比物温度间温差ΔT=0,差热曲线为一条直线,称为基线;若试样在某温度范围内有吸热(放热)反应,则试样温度将停止(或加快)上升,试样和参比物之间产生温差ΔT,将该信号放大,有计算机进行数据采集处理后形成DTA峰形曲线,根据出峰的温度 及其面积的大小与形状可以进行分析。 差热峰的面积与过程的热效应成正比,即 ΔH。式中,m为样品质量;b、d分别为峰的 起始、终止时刻;ΔT为时间τ内样品与参比物的温差;

17. 实验三 TG-DSC 综合热分析

实验三 TG-DSC综合热分析 热分析是在温度程序控制下测量物质的物理性质与温度关系的一类技术。常用的单一的热分析方法主要有:差热分析(DTA)、示差扫描量热法(DSC)、热重分析(TG)和体积热分析等测定物质在热处理过程中的能量、质量和体积变化的分析方法。综合热分析,就是在相同的热处理条件下利用由多个单一的热分析仪组合在一起而构成的综合热分析仪,对实验材料同时实现多种热分析的方法。 综合热分析,能够同时提供更多的表征材料热特性的信息。其中TGD-TA 和TG-DSC的组合,是较普遍采用的综合热分析方法。它可实现:一般鉴定和确定产品的烧成制度,测定热力学参数(如比热容和热熔等)和结晶度、成分的定量分析以及反应动力学方面的研究等。 一、目的意义 (1)了解STA409综合热分析仪的原理及仪器装置; (2)学习使用TG-DSC综合热分析方法鉴定聚合物。 二、基本原理 由于试样材料在加热或冷却过程中,会发生一些物理化学反应,同时产生热效应和质量等方面的变化,这是热分析技术的基础。 热重分析方法,分为静法和动法。热重分析仪,有热天平式和弹簧式两种基本类型。本实验采用的是热天平式动法热重分析。 当试样在热处理过程中,随温度变化有水分的排除或热分解等反应时放出气体,则在热天平上产生失重;当试样在热处理过程中,随温度变化有Fe2+氧化成Fe3+等氧化反应时,则在热天平上表现出增重 示差扫描量热法(DSC),分为功率补偿式和热流式两种方法。前者的技术思想是,通过功率补偿使试样和参比物的温度处于动态的零位平衡状态;后者的技术思想是,要求试样和参比物的温度差与传输到试样和参比物之间的热流差成正比关系。本实验采用的是热流式示差扫描量热法。 首先在确定的程序温度下,对样品坩锅和参比物坩锅进行DSC空运行分析,得到两个空坩锅DSC的分析结果—形成Baseline分析文件;然后在样品坩锅中加人适量的样品,再在Baseline文件的基础上进行样品测试,得到样品十坩锅的测试文件;最后由测试文件中扣除Baseline文件,即得到纯粹样品的DSC分析

热重分析实验报告

南昌大学实验报告 学生姓名:_______ 学号:_______专业班级:__________ 实验类型:□演示□验证□综合□设计□创新实验日期:2013-04-09实验成绩: 热重分析 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造; 2.掌握热重分析仪的使用方法; 3.测定硫酸铜晶体试样的差热谱图,并根据所得到的差热谱图,分析样品在加热过程中发生的化学变化。 二、实验原理 热重法(TG)是在程序控制温度的条件下测量物质的质量与温度关系的一种技术。热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 热重实验仪器主要由记录天平、炉子、程序控温装置、记录仪器和支撑器等几个部分组成,其中最主要的组成部分是记录天平,它基本上与一台优质的分析天平相同,如准确度、重现性、抗震性能、反应性、结构坚固程度以及适应环境温度变化的能力等都有较高的要求。记录天平根据动作方式可以分为两大类:偏转型和指零型,无论哪种方式都是将测量到的重量变化用适当的转换器变成与重量变化成比例的电信号,并可以将得到的连续记录转换成其他方式,如原始数据的微分、积分、对数或者其他函数等,用来对实验的多方面热分析。在上述方法中又以指零型天平中的电化学法适应性更强。发生重量变化时,天平梁发生偏转,梁中心的纽带同时被拉紧,光电检测元件的偏转输出变大,导致吸引线圈中电流的改变。在天平一端悬挂着一根位于吸引线圈中的磁棒,能通过自动调节线圈电流时天平梁保持平衡态,吸引线圈中的电流变化与样品的重量变化成正比,由计算机自动采集数据得到 TG 曲线。燃烧失重速率曲线 DTG 可以通过对曲线的数学分析得到。 热重分析原理如下图所示:

DSC TG综合热分析实验(可打印修改)

华南师范大学实验报告 专业:材料化学年级:2008级 课程名字:近代材料分析测试技术实验项目:综合热分析实验 实验类型:验证实验时间:2011年5月6日指导老师:石光老师实验评分: 实验六:综合热分析实验 一、实验目的 1.了解综合热分析仪的原理及仪器装置、操作方法。 2.通过实验掌握热重分析的实验技术。 3.使用综合分析仪分析高聚物的热效应和热稳定性。 二、实验原理 在程序温度(等速升降温、恒温和循环)控制下,测量物质的质量和热量随温度变化的分析仪器。刚开始加热时,试样和参比物以相同温度升温,试样没有热效应,DSC曲线上为平直的基线。当温度上升到试样产玻璃化转时,大分子的链段开始运动。试样的热容发生明显的变化,由于热容增大需要吸收更多的热量,于是DSC曲线上方出现一个转折,该转折对应的温度,即玻璃化转变温度(Tg)。若试样是能结晶的并处于过冷的无定形状态,则在玻璃温度以上的适当温度进行结晶,同时放出大量的热量,此时DSC曲线上表现为放热峰。再进一步加热,晶体开始熔融而需要吸收热量,其DSC 曲线在相反方向出现吸热峰。当熔融完成后,加于试样的热能再使试样温度升高,直到等于参比物的温度,回复到基线位置,将熔融峰顶点对应的温度记作熔点(T m);继续加热试样可能发生其他变化,如氧化、分解(氧化是放热反应,分解是吸热反应)。因此,根据DSC曲线可以确定高聚物的转变和特征温度。 三.仪器和试剂 交联壳聚糖微球、吸附了重金属的交联壳聚糖微球,聚丙烯,高密度聚乙烯,a-Al2O3、STA409PC综合热分析仪。 四、实验步骤 (一)操作条件

1、实验室门应轻开轻关,尽量避免或减少人员走动。 2、计算机在仪器测试时,不能上网或运行系统资源占用较大的程序。 3、充入保护气体。 4、吹扫气体。 5、恒温水浴保证测量天平工作在一个恒定的温度下。 (二)试样准备 1、检查并保证测试试样及其分解物。 2、坩埚(包括参比坩埚)预先进行热处理到等于或高于其最高测量温度。 3、保证与测量坩埚底部接触良好,样品应适量,确保测量精度。 4、对于热反应剧烈或在反应过程中易产生气泡的样品,应适当减少样品量。 5、炉子内部温度必须保持恒定(室温),天平稳定后的读数才有效。 6、测试必须保证样品温度(达到室温)及天平均稳定后才能开始。 7、先将试样制成细粉状并通过80~100目的筛孔,称取聚丙烯和低压聚乙烯的混合物 (重量比3:1混合)10mg装入试样坩埚、隋性参比物a-Al2O3填充于另一坩埚中,样品量一般不超过坩埚容积的2/3,把装样的坩埚在清洁的石台上轻墩数次,使样品松紧适中。 (三)开机 (1)开机过程无先后顺序。恒温水浴及其他仪器应至少提前1h打开。 (2)开机后,首先调整保护气体及吹扫气体输出压力及流速并待其稳定。 (四)样品测试程序 以使用TG-DSC样品支架进行测试为例,升温速度除特殊要求外,一般为 10~30K/min。 (五)测试结果分析 1)仪器测试结束后打开Tools菜单,从下拉菜单中选择Run analysis program 选项,进入软件界面。 2)在分析软件界面中点击工具栏中的Segments按钮,打开Segments对话框, 去掉Segments对话框中的“1”、“2”复选项,点击OK按钮关闭对话框。 3)点击工具栏上的“X-time/X-temperature”转换开关,使横坐标由时间转换 成温度。 4)点击待分析曲线使之选中,然后点击工具栏上的“1st Derivative”一次微 分按钮,屏幕上出现一条待分析曲线的一次微分曲线。 5)完成全部分析内容后,即可打印输出,测试分析操作结束。 五、影响综合热分析的因素 1、升温速率

热分析实验

材料的综合热分析实验 一、实验目的 1、掌握两种常用的热分析方法─差热分析法和热重法的基本原理和分析方法, 2、差热分析和热重分析仪器的基本结构和基本操作。 二、差热分析和热重法的基本原理 1、差热分析法(Differential Thermal Analysis,DTA) 差热分析是在程序控温下测量样品和参比物的温度差与温度(或时间)相互关系的一种技术。物质在加热或冷却过程中会发生物理或化学变化,同时产生放热或吸热的热效应,从而导致样品温度发生变化。因此差热分析是一种通过热焓变化测量来了解物质相关性质的技术。 样品和热惰性的参比物分别放在加热炉中的两个坩埚中,以某一恒定的速率加热时,样品和参比物的温度线性升高;如样品没有产生焓变,则样品与参比物的温度是一致的(假设没有温度滞后),即样品与参比物的温差?T=0;如样品发生吸热变化,样品将从外部环境吸收热量,该过程不可能瞬间完成,样品温度偏离线性升温线,向低温方向移动,样品与参比物的温差?T<0;反之,如样品发生放热变化,由于热量不可能从样品瞬间逸出,样品温度偏离线性升温线,向高温方向变化,温差?T>0。上述温差?T(称为DTA信号)经检测和放大以峰形曲线记录下来。经过一个传热过程,样品才会回复到与参比物相同的温度。 在差热分析时,样品和参比物的温度分别是通过热电偶测量的,将两支相同的热电偶同极串联构成差热电偶测定温度差。当样品和参比物温差?T=0,两支热电偶热电势大小相同,方向相反,差热电偶记录的信号为水平线;当温差?T≠0,差热电偶的电势信号经放大和A/D转换,被记录为峰形曲线,通常峰向上为放热,峰向下为吸热。 差热曲线直接提供的信息主要有峰的位置、峰的形状和个数、峰的面积,通过它们可以对物质进行定性和定量分析,并研究变化过程的动力学。峰的位置是由导致热效应变化的温度和热效应种类(吸热或放热)决定的,前者体现在峰的起始温度上,后者体现在峰的方向上。不同物质的热性质是不同的,相应的差热曲线上的峰位置、峰个数和形状也不一样,这是差热分析进行定性分析的依据。分析DTA曲线时通常需要知道样品发生热效应的起始温度,根据国际热分析协会(ICTA)的规定,该起始温度应为峰前缘斜率最大处的切线与外推基线的交线所对应的温度T(如图2),该温度与其它方法测得的热效应起始温度较一致。DTA峰的峰温Tp虽然比较容易测定,但它既不反映变化速率到达最大值时的温度,也与放热或吸热结束时的温度无关,其物理意义并不明确。此外,峰的面积与焓变有关。

南京大学-差热分析实验报告

差热分析 近代物理实验 一.实验目的 1?掌握差热分析的基本原理及测量方法。 2?学会差热分析仪的操作,并绘制CuSO4 5H2O等样品的差热图。 3?掌握差热曲线的处理方法,对实验结果进行分析。 二.实验原理 1、差热分析基本原理 物质在加热或冷却过程中,当达到特定温度时,会产生物理或化学变化,同时产生吸热和放热 的现象,反映了物质系统的焓发生了变化。在升温或降温时发生的相变过程,是一种物理变化,一般来说由固相转变为液相或气相的过程是吸热过程,而其相反的相变过程则为放热过程。在各种化学变化中,失水、还原、分解等反应一般为吸热过程,而水化、氧化和化合等反应则为放热过程。差热分析利用这一特点,通过对温差和相应的特征温度进行分析,可以鉴别物质或研究有关的转化温度、热效应等物理化学性质,由差热图谱的特征还可以用以鉴别样品的种类,计算某些反应的活化能和反应级数等。 在差热分析中,为反映微小的温差变化,用的是温差热电偶。在作差热鉴定时,是将与参比物 等量、等粒级的粉末状样品,分放在两个坩埚内,坩埚的底部各与温差热电偶的两个焊接点接触,与两坩埚的等距离等高处,装有测量加热炉温度的测温热电偶,它们的各自两端都分别接人记录仪的回路中在等速升温过程中,温度和时间是线性关系,即升温的速度变化比较稳定,便于准确地确定样品反应变化时的温度。样品在某一升温区没有任何变化,即也不吸热、也不放热,在温差热电偶的两个焊接点上不产生温差,在差热记录图谱上是一条直线,已叫基线。如果在某一温度区间样 品产生热效应,在温差热电偶的两个焊接点上就产生了温差,从而在温差热电偶两端就产生热电势差,经过信号放大进入记录仪中推动记录装置偏离基线而移动,反应完了又回到基线。吸热和放热效应所产生的热电势的方向是相反的,所以反映在差热曲线图谱上分别在基线的两侧,这个热电势的大小,除了正比于样品的数量外,还与物质本身的性质有关。 将在实验温区内呈热稳定的已知物质与试样一起放入一个加热系统中,并以线性程序温度对它们加热。如以AI2O3为参比物,它在整个试验温度内不发生任何物理化学变化,因而不产生任何热

热重分析实验报告

热重分析实验报告 南昌大学实验报告 学生姓名: _______ 学号: _______专业班级:__________ 实验类型:?演示?验证 ?综合?设计?创新实验日期:2013-04-09 实验成绩: 热重分析 一、实验目的 1.了解热重分析法的基本原理和差热分析仪的基本构造; 2.掌握热重分析仪的使用方法; 3.测定硫酸铜晶体试样的差热谱图,并根据所得到的差热谱图,分析样品在加热过程中发生的化学变化。 二、实验原理 热重法(TG)是在程序控制温度的条件下测量物质的质量与温度关系的一种技术。热重分析仪主要由天平、炉子、程序控温系统、记录系统等几个部分构成。最常用的测量的原理有两种,即变位法和零位法。所谓变位法,是根据天平梁倾斜度与质量变化成比例的关系,用差动变压器等检知倾斜度,并自动记录。零位法是采用差动变压器法、光学法测定天平梁的倾斜度,然后去调整安装在天平系统和磁场中线圈的电流,使线圈转动恢复天平梁的倾斜,即所谓零位法。由于线圈转动所施加的力与质量变化成比例,这个力又与线圈中的电流成比例,因此只需测量并记录电流的变化,便可得到质量变化的曲线。 热重实验仪器主要由记录天平、炉子、程序控温装置、记录仪器和支撑器等几个部分组成,其中最主要的组成部分是记录天平,它基本上与一台优质的分析天平相同,如准确度、重现性、抗震性能、反应性、结构坚固程度以及适应环境温度

变化的能力等都有较高的要求。记录天平根据动作方式可以分为两大类:偏转型和指零型,无论哪种方式都是将测量到的重量变化用适当的转换器变成与重量变化成比例的电信号,并可以将得到的连续记录转换成其他方式,如原始数据的微分、积分、对数或者其他函数等,用来对实验的多方面热分析。在上述方法中又以指零型天平中的电化学法适应性更强。发生重量变化时,天平梁发生偏转,梁中心的纽带同时被拉紧,光电检测元件的偏转输出变大,导致吸引线圈中电流的改变。在天平一端悬挂着一根位于吸引线圈中的磁棒,能通过自动调节线圈电流时天平梁保持平衡态,吸引线圈中的电流变化与样品的重量变化成正比,由计算机自动采集数据得到 TG 曲线。燃烧失重速率曲线 DTG 可以通过对曲线的数学分析得到。 热重分析原理如下图所示: 三、实验仪器及试剂 HCT-2 型 TG-DTA 综合热分析仪、镊子、五水硫酸铜晶体等 四、实验步骤 1、打开炉子,将左右两个陶瓷杆放入瓷坩埚容器,关好炉子在操作界面上调零。 2、将坩埚放在天平上称量,记下数值P1,然后将测试样放入已称坩埚中称量,记下试样的初始质量。 3、将称好的样品坩埚放入加热炉中吊盘内。 4、调整炉温,选择好升温速率。 5、开启冷却水,通入惰性气体。 6、启动电炉电源,使电源按给定的速率升温。 7、观察测温表,每隔一定时间开启天平一次,读取并记录质量数值。 8、测试完毕,切断电源,待温度降低至100摄氏度时切断冷却水。 五、实验结果及数据处理

综合热分析实验

一、实验目的: 1.了解综合热分析仪的原理及仪器装置、操作方法。 2.通过实验掌握热重分析的实验技术。 3.使用综合分析仪分析高聚物的热效应和热稳定性。 二、实验原理 由于试样材料在加热或冷却过程中,会发生一些物理化学反应,同时产生热效应和质量方面的变化,这是热分析技术的基础。 热重分析方法分为静态和动态。热重分析仪有热天平式和弹簧式两种基本类型。本实验采用的是热天平动态热重分析。 当样品在热处理过程中,随温度变化有水分的排除或热分解等反应时放出气体,则在热天平上产生失重;当试样在热处理过程中,随温度变化有二价铁氧化成三价铁等氧化反应时,则在热天平上表现出增重。 示差扫描量热法(DSC)分为功率补偿式和热流式两种方式。前者的技术思想是,通过功率补偿使试样和参比物的温度处于动态的零位平衡状态;后者的技术思想是,要求试样和参比物的温度差与传输到试样和参比物间的热流差成正比关系。本实验采用的是热流式示差扫描量热法。 首先在确定的程序温度下,对样品坩埚和参比坩埚进行DSC空运行分析,得到两个空坩埚的DSC的分析结果---形成Baseline分析文件;然后在样品坩埚中加入适量的样品,再在Baseline文件的基础上进行样品测试,得到样品+坩埚的测试文件;最后由测试文件中扣除Baseline文件,即得到纯粹样品的DSC分析结果。 刚开始加热时,试样和参比物以相同温度升温,试样没有热效应,DSC曲线上为平直的基线。当温度上升到试样产玻璃化转时,大分子的链段开始运动。试样的热容发生明显的变化,由于热容增大需要吸收更多的热量,于是DSC曲线上方出现一个转折,该转折对应的温度,即玻璃化转变温度(Tg)。若试样是能结晶的并处于过冷的无定形状态,则在玻璃温度以上的适当温度进行结晶,同时放出大量的热量,此时DSC曲线上表现为放热峰。再进一步加热,晶体开始熔融而需要吸收热量,其DSC曲线在相反方向出现吸热峰。当熔融完成后,加于试样的热能再使试样温度升高,直到等于参比物的温度,回复到基线位置,将熔融峰顶点对应的温度记作熔点(T m );继续加热试样可能发生其他变化,如氧化、分解(氧化是放热反应,分解是吸热反应)。因此,根据DSC曲线可以确定高聚物的转变和特征温度。 三.仪器和试剂 仪器:a-Al 2O 3 、STA409PC综合热分析仪 试剂:高密度聚乙烯 四、实验步骤 ⒈对坩埚预先进行热处理到等于或高于需测量的最高温度

热分析常用方法及谱图

常用的热分析方法 l热重法(Thermogravimetry TG) l 差示扫描量热仪(Differential Scanning Calorimetry DSC)l 差热分析(Differential Thermal Analysis DTA) l 热机械分析(Thermomechanical Analysis TMA) l 动态热机械法(Dynamic Mechanical Analysis DMA) 谱图分析的一般方法 《热分析导论》刘振海主编 《分析化学手册》热分析分册 TGA DSC 分析图谱的一般方法——TGA 1. 典型图谱 分析图谱的一般方法——TGA的实测图谱

I、PVC 35.26% II、Nylon 6 25.47% III、碳黑14.69% IV、玻纤24.58% 已知样品的图谱分析 与已知样品各方面特性结合起来分析 如:无机物(黏土、矿物、配合物)、生物大分子、高分子材料、金属材料等热分析谱图都有各自的特征峰。 与测试的仪器、条件和样品结合起来分析 仪器条件样品 应用与举例 TGA DSC/DTA TMA 影响测试图谱结果的因素——测试条件 TGA 升温速率 样品气氛

扫描速率 样品气氛 升温速率对TGA 曲线的影响 气氛对TGA 曲线的影响 PE TGA-7 测试条件: 扫描速率:10C/min 气氛:a. 真空 b. 空气 流量:20ml/min 样品:CaCO3(AR) 过200目筛,3-5mg 扫描速率对DSC/DTA曲线的影响气氛对DSC/DTA曲线的影响 气氛的性质

两个氧化分解峰 曲线b: 一个氧化分解峰, 和一个热裂解峰 影响测试图谱结果的因素——样品方面 TGA/DSC/DTA 样品的用量 样品的粒度与形状 样品的性质 样品用量对TGA/DSC/DTA曲线的影响 样品的粒度与形状对曲线的影响——TGA/DSC/DTA 样品的性质对曲线的影响——TGA/DSC/DTA TGA/ DSC/DTA 热分析曲线的形状随样品的比热、导热性和反应性的不同而不同。即使是同种物质,由于加工条件的不同,其热谱图也可能不同。如PET树脂,经过拉伸过的PET树脂升温结晶峰就会消失。 PET 树脂的DSC 曲线 TGA应用 成分分析 无机物、有机物、药物和高聚物的鉴别与多组分混合物的定量分析。游离水、结合水、结晶水的测定,残余溶剂或单体的测定、添加剂的测定等。 热稳定性的测定 物质的热稳定性、抗氧化性的测定,热分解反应的动力学研究等 居里点的测定 磁性材料居里点的测定 可用TGA测量的变化过程

实验十九差热分析

实验十九 差热分析 一、目的意义 差热分析(DTA ,differentialthermal analysis)是研究相平衡与相变的动态方法中的 一种,利用差热曲线的数据,工艺上可以确定材料的烧成制度及玻璃的转变与受控结晶等工 艺参数,还可以对矿物进行定性、定量分析。 本实验的目的: 1.了解差热分析的基本原理及仪器装置; 2.学习使用差热分析方祛鉴定未知矿物。 二、基本原理 差热分析的基本原理是:在程序控制温度下;将试样与参比物质在相同条件下加热或 冷却,测量试样与参比物之间的温差与温度的关系,从而给出材料结构变化的相关信息。 物质在加热过程中,由于脱水,分解或相变等物理化学变化,经常会产生吸热或放热 效应。差热分析就是通过精确测定物质加热(或冷却)过程中伴随物理化学变化的同时产生 热效应的大小以及产生热效应时所对应的温度,来达到对物质进行定性和/或定量分析的目 的。 差热分析是把试样与参比物质(参比物质在整个实验温度范围内不应该有任何热效应, 其导热系数,比热等物理参数尽可能与试样相同,亦称惰性物质或标准物质或中性物质) 置于差热电偶的热端所对应的两个样品座内,在同一温度场中加热。当试样加热过程中产生 吸热或放热效应时,试样的温度就会低于或高于参比物质的温度,差热电偶的冷端就会输出 相应的差热电势。如果试样加热过程这中无热效应产生,则差热电势为零。通过检流计偏转 与否来检测差热电势的正负,就可推知是吸热或放热效应。在与参比物质对应的热电偶的冷 端连接上温度指示装置,就可检测出物质发生物理化学变化时所对应的温度. 不同的物质,产生热效应的温度范围不同,差热曲线的形状亦不相同(如图16-2所示)。 把试样的差热曲线与相同实验条件下的已知物质的差热曲线作比较,就可以定性地确定试洋 的矿物组成。差热曲线的峰(谷)面积的大小与热效应的大小相对应,根据热效应的大小, 可对试样作定量估计。 三.仪器设备与装置 差热分析所用的设备主要由加热炉, 差热电偶,样品座及差热信号和温度的显 示仪表等所组成。 加热炉依据测量的温度范围不同有低 温型(800-1000C 0以下),中温型1200C 0以下),高温型(1400-1600C 0以下). 差热电偶是把材质相同的两个热电偶 的相同极连接在一起,另外两个极作为差 热电偶的输出极输出差热电势。差热分析 装置示意图如16-1所示。 差热分析仪是将差热分析装置中的 样品室,温度显示,差热信号采集及记录 全部自动化的一种分析仪器。依据组合方 式不同,有DTA-TG 型DAT-DSC(differen- 图17-1 差热分析装置示意图 tial scan ningcalorimetry)型,有的综 图16-1 V-电压表A-电流表 R1,R2-检流计

热分析实验方案

一、实验目的 1.了解热分析法的种类、仪器装置及使用方法。 2.掌握几种热分析法的基本原理、测试技术及影响测量准确性的因素。 3.掌握热分析法在聚合物结晶中的分析原理,并能对实验结果做出解释。 二、方法简介: 1. 热重分析法 热重分析法( TG )是在程序温度控制下,测量物质的质量随温度变化的一种实验技术。一般有静态法和动态法两种类型:静态法是在恒温下测定物质质量变化与温度的关系,将试样在各给定温度加热至恒重,该法用来研究固相物质热分解的反应速率和测定反应速度常数。动态法是在程序升温下测定物质质量变化与温度的关系,采用连续升温连续称重的方式。 由热重分析记录的质量变化对温度的关系曲线称为热重曲线( TG 曲线)。 曲线横坐标为温度,纵坐标为质量,如热分解反应 A(s) → B(s)+ C(g) 的热重 曲线如图 1 所示。图中 T i 为起始温度,即累积质量变化达到热天平可检测的温度;

Tf 为终止温度,即累积质量变化达到最大值时的温度;热重曲线上质量基本不变的部分称为基线或平台。若试样初始质量为 W0 ,失重后试样质量为 W1 ,测失重百分数为 2.差示扫描量热法(DSC) DSC的技术方法是按照程序改变温度,使试样与标样之间的温度差为零。测量两者单位时间的热能输入差。就是说,使物转移过程中的温度和热量能够加以定量物质在加热过程中会在某温度下发生分解、脱水、氧化、还原和升华等一系 列的物理化学变化而出现质量变化,发生质量变化的温度及质量变化百分数随物 质的结构和组成而异,因此可以利用物质的热重曲线来研究物质的热变化过程,推测反应机理及产物。 将实验以一定的升温速度加热至熔点以上,恒温一定时间,以充分消除试样的热历史,然后,迅速降温至测试温度进行等温结晶。由于结晶时放出结晶潜热,所以出现一个放热峰,见图。基线开始向放热方向偏离时,作为开始结晶的时间(t0),重新回到基线时,作为结晶结束的时间(t=t∞),则t时刻的结晶程度为 式中 xt、x∞是结晶时间为t及无限大时非晶态转变为晶态的分数;At、A∞为0~t时间及0~∞时间DSC曲线所包含的面积。

实验1.聚合物的热分析 实验报告

实验五 聚合物差热热重同时热分析法 差热分析是在温度程序控制下测量试样与参比物之间的温度差随温度变化的一种技术。简称DTA(Differential Thermal Analysis)。在DTA 基础上发展起来的另一种技术是差示扫描量热法。差示扫描量热法是在温度程序控制下测量试样相对于参比物的热流速度随温度变化的一种技术。简称DSC (Differential Scanning Calorimetry )。试样在受热或冷却过程中,由于发生物理变化或化学变化而产生热效应,这些热效应均可用DTA 、DSC 进行检测。DTA 、DSC 在高分子方面的应用特别广泛。它们的主要用途是:①研究聚合物的相转变,测定结晶温度T c 、熔点T m 、结晶度X D 、等温结晶动力学参数。②测定玻璃化转变温度T g 。③研究聚合、固化、交联、氧化、分 解等反应,测定反应温度或反应温区、反应热、 反应动力学参数。 图1 是聚合物DTA 曲线或DSC 曲线的模 式图。 当温度达到玻璃化转变温度T g 时,试样的 热容增大就需要吸收更多的热量,使基线发生位 移。假如试样是能结晶的,并且处于过冷的非晶 状态,那么在T g 以上可以进行结晶,同时放出 大量的结晶热而产生一个放热峰。进一步升温,结晶熔融吸热,出现吸热峰。再进一步升温,试样可能发生氧化、交联反应而放热,出现放热峰,最后试样则发生分解,吸热,出现吸热峰。当然并不是所有的聚合物试样都存在上述全部物理变化和化学变化。 通常按图2 a 的方法确定T g :由玻璃化 转变前后的直线部分取切线,再在实验曲线 上取一点,使其平分两切线间的距离?,这 一点所对应温度即为T g 。T m 的确定对低分子 纯物质来说,象苯甲酸,如图2 b 所示,由 峰的前部斜率最大处作切线与基线延长线相 交,此点所对应的温度取作为T m 。对聚合物 来说,如图2 c 所示,由峰的两边斜率最大 处引切线,相交点所对应的温度取作为T m 。 或取峰顶温度作为T m 。T c 通常也是取峰顶温 度。峰面积的取法如图2d e 所示。可用求积 仪或剪纸称重法量出面积。由标准物质测出单位面积所对应的热量(毫卡/厘米2),再由测试试样的峰面积可求得试样的熔融热f H ?(毫卡/毫克),若百分之百结晶的试样的熔融热*f H ?是已知的, 则可按下式计算试样的结晶度: 热重分析法简称TGA (Thermogravimetric Analysis ), 它是测定试样在温度等速上升时%100*???=f f D H H X 结晶度

热分析实验

热分析实验(演示试验) 一、实验目的和意义 1、了解差热分析的仪器装置及使用方法。 2、掌握差热分析的基本原理和具体步骤。 二、实验原理 (一)差热分析的基本原理 差热分析是在程序控制温度下,测量物质与参比物之间的温度差与温度关系的一种技术。差热分析曲线是描述样品与参比物之间的温差(ΔT)随温度或时间的变化关系。在DAT 试验中,样品温度的变化是由于相转变或反应的吸热或放热效应引起的。如:相转变,熔化,结晶结构的转变,沸腾,升华,蒸发,脱氢反应,化合或分解反应,氧化或还原反应,晶格结构的破坏和其它化学反应。一般说来,相转变、脱氢还原和一些分解反应产生吸热效应;而结晶、氧化和一些分解反应产生放热效应。 在进行差热分析时,将试样和参比物分别放入坩埚,置于炉中以一定速率进行程序升温,设试样和参比物(包括容器、温差电偶等)的热容量Cs、Cr不随温度而变。则它们的升温曲线ΔT大体上是一致的,形成DTA曲线的基线。随着温度的增加,试样产生了热效应(例如相转变),则与参比物间的温差变大,在DTA曲线中表现为峰。显然,温差越大,峰也越大,试样发生变化的次数多,峰的数目也多,所以各种吸热和放热峰的个数、形状和位置与相应的温度可用来定性地鉴定所研究的物质,而峰面积与热量的变化有关。 三、实验方法和步骤 (一)试样制备 1、试样过筛满足DTA分析细度要求。 2、将试样放置到DTA测试仪器的样品台。 (二)差热分析仪试验 1、首先请开启外部冷却水,开启DTA电源和配套电脑,设备预热20~30分钟。 2、开启DTA的测试软件,在相应的栏目中设定扫描温度范围、扫描速度、测试样品等各项参数。 3、启动DTA开始测试,得到DTA测试图谱。 (三)注意事项 1、做实验时,放完样品后,炉子一定要向下放好,如没有放下炉子,在实验时会把加热炉烧坏。 2、做实验前先打开电源。 3、通冷却水,保证水畅通。 4、参比物放在支撑杆左侧,测试物放在右侧。 5、每次升温,炉子应冷却到室温左右。 6、开始做实验时,放下炉子后应稳定5分钟左右开始进行数据采集(保证炉膛温度均匀)。 7、升温过程中如果出现异常情况,应先关闭仪器电源。 8、实验结束后应继续通冷却水30分钟左右。 四、主要实验装置和仪器 差热分析仪、电子天平等 五、实验数据记录与处理 (一)DTA试样制备要求

综合热分析实验

实验二综合热分析实验 一.实验目的 1.了解热分析技术适用范围与测试对象 2.了解综合热分析仪STA 449C的结构和测试原理 3.观察热分析仪的操作方法和测试结果分析。 二.实验原理 热分析是指在程序温度的控制下测量物质的物理性能与温度关系的一类技术。在热分析法中,物质在一定温度范围内发生变化,包括与周围环境作用而经历的物理变化和化学变化,如释放出结晶水和挥发性物质的碎片、热量的吸收或释放,某些变化还涉及到物质的质量增加或质量损失,发生热化学变化和热物理性质及电学性质变化等。热分析法的核心就是研究物质在受热或冷却时产生的物理和化学的变迁速率和温度以及所涉及的能量和质量变化。总之,热分析技术是建立在物质热行为上的一类分析方法。 就固体物质而言受热后物理性质将发生变化。如导热系数、热膨胀系数、热辐射性质、热容等都会发生变化。当金属材料从一个相转变为另一个相的过程中会吸收或放出热量,如固态相变潜热、固液熔融相变潜热,发生相变所对应的温度称为临界点。热分析方法就是测出发生相变的临界点温度。对于金属合金材料,可以通过测出一系列不同成份配比的合金的临界点,并将同一物性的点连起来而得到合金的相图,这也是测定相图的最常用的方法。 常用的热分析方法有三种:差热分析法(DTA)、差示扫描量热分析法(DSC)和热重分析法(TG)。 1.差热分析法(DTA) 差热分析是在温度程序的控制下,测量物质的温度与参比物的温度差和温度关系的一种技术。其原理是:在相同的加热条件下对试样加热或冷却,若试样中不发生任何热效应,试样的温度和参比物的温度相等,两者温差为零。若试样发生吸热效应,试样的温度将滞后于参比物的温度,此时两者的温差不为零,并在DTA曲线上出现一个吸热峰;若试样发生放热效应,试样的温度将超前于参比物的温度,此时两者的温差也不为零,并在DTA曲线上出现一个放热峰。根据记录的曲线,就可以测出反应开始的起始温度,反应峰所对应的温度(峰位置),峰的面积就和产生的热效应值对应。通过这些信息,就可以对物质进行定性和定量分析。 2.差示扫描量热分析法(DSC) 差示扫描量热分析也是用参比物和试样进行比较,但是两者的重要差别在于DSC的参比物和试样各自由一个单独的微型加热室加热。当试样按程序升温时,控制系统根据试样和参比物的温差信号来调节加热器的功率输出,使试样和参比物在整个试验过程中(不论有无热效应发生)始终保持温度一致,即两者的温差为零。所记录的是试样和参比物之间的功率差随温度的变化曲线,称为DSC曲线。

相关主题
文本预览
相关文档 最新文档