当前位置:文档之家› maxwell网格剖分

maxwell网格剖分

maxwell网格剖分
maxwell网格剖分

maxwell网格剖分

良好的网格剖分,是利用电磁场有限元软件或程序进行电磁装备分析的前提和基础,这对于瞬态场和3D模型尤其如此。

静态场和涡流场都包含自适应求解过程,软件具有网格自加密能力,因此大多数情况下无须手动剖分,即可得到很好的网格。瞬态场网格必须手动剖分,初始网格(initial mesh)质量很差。自适应网格为瞬态场提供了一个很好的思路,就是导入静磁场和涡流场的自适应后的网格,为瞬态场所用,此功能通过Analysis/setup1/advanced/import mesh中实现。

做过3D分析的人都很清楚,网格的剖分是3D分析的重中之重环节。有时模型能剖分,能计算,但结果出来与设计或实验差很多,这时候问题往往出现在剖分这个环节,改一下剖分就对了。比如需要做涡流分析,那么就要考虑基于集肤效应深度的剖分,此功能在mesh operations/assign/on selection/skin depth based refinement。又比如,如果要分析永磁同步电动机的cogging torque,那么需要对气隙进行多层剖分,这时就需要采用所谓“哑元”的方法,通过多建几个气隙层来实现。再比如,对电机中常见的叠绕组或波绕组,为了对电机端部曲线部分进行更好地剖分,需要采用表面近似剖分。此功能在mesh operations/assign/surface approximation里面进行设置。

剖分有多种方法,主要就是on selection和in selection之分。前者是基于表面的剖分,后者是基于内部的剖分。注意,on selection并不是对内部不剖分,in selection也并不是对表面不剖分,而是两种剖分方法侧重点不同,正如其字面意思所示。一般而言,on selection 更适用于高频分析中对实体(solid)的剖分,因为高频分析中涡流效应很突出。in selection 更适合于对直流和工频的分析。对大多数物理模型而言,使用in selection足够。

最后,再谈谈设置剖分时,网格长度的问题。对相同或相近物理模型,可分为同一组,指定相同网格长度。对于较大模型,则网格长度可适当放大。举例而言,对永磁同步电机,电机定转子铁心分为一组,定子绕组自成一组,永磁体自成一组,band自成一组。上面这四组中,建议网格长度如下:定转子铁心>永磁体>定子绕组>band。同时选定定转子铁心,并使用in selection剖分,则系统会指定一个默认长度,一般取该默认长度的1/2就足够精确了。其他可类似操作。

注:本文基于maxwell讲解,但网格剖分方法并不局限于maxwell,适用于一切电磁场有限元分析软件,诸如flux,jmag,magnet,opera,comsol multiphysics,quickfield等。希望能举一反三,活学活用。

有限元分析中的二维Delaunay三角网格剖分

有限元分析中的二维Delaunay三角网格剖分 摘要 本文从有限元分析出发,引出三角网格剖分的概念。随后着重介绍了二维平面点集的Delaunay三角剖分。给出了一些重要的Delaunay三角形的定理和性质,也体现出了Delaunay三角剖分的优点。接着重点分析了构造二维Delaunay三角形的空洞算法,并用程序完成了它。最后又分析了算法中的不足,并给出论文改进的方法。 关键词:Delaunay三角形,V oronoi图,网格剖分 III

1 第一章绪论 1.1网格剖分的背景 有限元分析是数学的一个分支。其思想是将复杂的问题简单化,然后进行处理。处理办法是将整个研究对象分成一些有限的单元,然后对每个小单元做相应的处理,最后整合起来去逼近原来的整个对象。所以我们可以看到,有限元分析中将单元剖分的越小,得到的近似值就会越逼近真实值。但是往往我们需要处理的对象很复杂,需要的计算量也很大,人工很难完成。在早起年代,这个问题也阻止了有限元分析的发展。 近年来,随着计算机的发展,带动了一些需要大量计算的科学领域的发展。有限元分析就是其中一种,因为当计算机取代人力之后,其快速的计算能力作用愈发凸显,人们只需要控制相应的算法即可。作为最常用的处理手段,被大大的发展了之后,有限元分析也被应用于诸多方面。早期的有限元分析主要应用与航空航天和地质、地球物理方面,现在越来越多的在工程分析计算和计算流体力学中看见。 图 1.1 图 1.2

常见的有限元分析可以分为六大步骤:问题及求解域的定义、求解域的网格剖分、确定状态变量及控制方法、单元推导、总装求解和结果解释。上述步骤又可被分为三大阶段:前置处理、计算求解和后置处理。而在前置处理中网格剖分作为最重要又最复杂的一个步骤,其处理结果制约着有限元的最后逼近结果。 网格剖分有很多形式:二维的主要剖分形状有三角形、四边形,三维的有四面体、六面体。在有限元分析中网格剖分有如下要求: 1、节点合法性。指每个单元的节点最多只能是其他单元的节点或边界点,而不能是内点。 2、单元相容性。指每个单元必须在求解域的内部。 3、良好的单元形状。指每个单元尽量最好是正的,比如二维是正多边形,三维是正多面体。 4、自适应性。是指在剖分域中曲率大或其他参数变化较大的地方剖分越密,单元越小,越平滑或其他参数变化不大的地方单元可以稍微稀疏。这样,既可以提高计算收敛速度,又可以提高逼近精度。 网格剖分的对象越是复杂,剖分的要求越高。对于复杂三维实体,现在还没有成熟的算法。 1.2 网格剖分的发展 网格剖分是几何模型和数值计算之间的桥梁。1974年网格剖分首次被Thompson等人用椭圆方程方法构造出来。之后Steger等人又提出了用双曲型方程来构造出网格。在20世纪90年代,非结构网格和自适应笛卡尔网格等技术相继被提出,大大推动了CFD的发展。 直到如今,网格技术已产生好多方法,非结构网格、结构网格以及自适应网格等,其中最为常用的是非结构网格技术和结构网格技术。 结构网格是指正交的排列规则的网格。它的特点是相邻的节点不需要遍历寻找就可以被计算出来。生成结构网格的方法主要有:贴体坐标法和块结构化网格。 非结构网格和结构网格对应,是指内部节点没有毗邻单元。其主要的方法有阵面、Delaunay三角剖分、四叉树和八叉树法。 本文主要针对于二维平面上的Delaunay三角剖分。 2

Comsol 网格剖分用户指南

“第一款真正的任意多物理场直接耦合分析软件” COMSOL Multiphysics V4.x操作手册丛书网格剖分用户指南 中仿科技公司(CnTech Co., Ltd.) 2010年10月

前言 COMSOL Multiphysics是一款大型的高级数值仿真软件,由瑞典的COMSOL公司开发,广泛应用于各个领域的科学研究以及工程计算,被当今世界科学家誉为“第一款真正的任意多物理场直接耦合分析软件”,适用于模拟科学和工程领域的各种物理过程。作为一款大型的高级数值仿真软件,COMSOL Multiphysics以有限元法为基础,通过求解偏微分方程(单场)或偏微分方程组(多场)来实现真实物理现象的仿真。COMSOL Multiphysics以高效的计算性能和杰出的多场直接耦合分析能力实现了任意多物理场的高度精确的数值仿真,在全球领先的数值仿真领域里广泛应用于声学、生物科学、化学反应、电磁学、流体动力学、燃料电池、地球科学、热传导、微系统、微波工程、光学、光子学、多孔介质、量子力学、射频、半导体、结构力学、传动现象、波的传播等领域得到了广泛的应用。 在全球各著名高校,COMSOL Multiphysics已经成为讲授有限元方法以及多物理场耦合分析的标准工具;在全球500强企业中,COMSOL Multiphysics被视作提升核心竞争力,增强创新能力,加速研发的重要工具。COMSOL Multiphysics多次被NASA技术杂志选为“本年度最佳上榜产品”,NASA技术杂志主编点评到,“当选为NASA科学家所选出的年度最佳CAE产品的优胜者,表明COMSOL Multiphysics是对工程领域最有价值和意义的产品”。 COMSOL Multiphysics 提供大量预定义的物理应用模式,涵盖声学、化工、流体流动、热传导、结构力学、电磁分析等多种物理场,模型中的材料属性、源项、以及边界条件等都可以是常数、任意变量的函数、逻辑表达式、或者直接是一个代表实测数据的插值函数等。同时,用户也可以自主选择需要的物理场并定义他们之间的相互关系。用户也可以输入自己的偏微分方程(PDEs),并指定它与其它方程或物理之间的关系。 本指南作为COMSOL Multiphysics V4.x操作手册丛书之一,详细介绍了在V4.x版本中,各种网格剖分技巧及使用方法。COMSOL Multiphysics可以创建自由网格、映射网格、扫掠网格、边界层网格等。利用这些网格剖分工具和方法,可以生成三角形和四边形(2D),四面体、六面体、棱柱、棱锥(金字塔)等网格单元,并且可以很方便的从四边形转换成三角形(2D),六面体、棱柱、棱锥转换成四面体(3D),同时还支持自适应网格、网格可视化、装配体的网格剖分等功能。

头像网格之icem剖分

网格剖分之人头——ICEM 先来看看头像的原始几何模型吧,原始文件是影像扫描技术成型的自由曲面蒙皮模型,当然先要把曲面转换成实体格式(这一步对专业的网格平台不是必需),还好,手头先进的三维CAD 程序正好发挥用途,一个简单的操作,便完成了曲面向实体的转变,很显然,这是一个对称体,为了减少工作量,当然,对称化的处理是必须的(见图1、2),对不住了,我只有残忍地把这家伙一劈为二了。 图1 整体头像 图2 对称头像 好了,完成了基本头像几何的边界,接下来的工作应该是几何拓补规划,把脑筋转起来,OK,很快就发现了,整体头像的几何拓补非常简单,几乎就是一个方块+圆柱+切削圆球的组合体(图3、4),麻烦的制造者在于这家伙脑袋上长了眼睛和一个嘴巴,嘴巴是一个洞穴,眼睛也是一个洞穴,显然,最终拓补构造的时候,这个地方可能得多挖两锄头,至少得搞两个坑出来,把多余的“赘肉”给割掉(鼻子很简单,不过就是广阔的平原上冒出一个小山丘,而且和立脸颊面部连接非常光滑,没有凹凸拐点,因此,应该不影响咱们的网格分布构造)。OK,到目前为止,美容手术之前的准备工作已经结束,可以躺到手术床上了。 图3 整体拓补 图4 面部拓补

上了手术台(导入ICEM),当然首先要做的工作便是一系列“宽衣解带”工作,ICEM里面这个过程称之为几何清理和修复,当然,这一切过程都基本上是自动化的,也有需要手工清理的时候,那种情况的前提是“相貌”长得实在太丑(几何模型太“烂”),不手工打底,实在没有办法。这个头像的几何模型还可以,基本上没有什么多余操作,自动清理就是了,这个过程实在没有啰嗦的必要,大多数网格程序都差不多。接下来,先回顾一下几种典型的几何拓补关系的分块方法(图5),彻底理解了这些分块思路,这个模型就简单了,图6为分块组合方式(几乎是高质量结构化六面体网格的必须方式)——从左到右,依次为圆球挖孔、1/8圆球+1/4圆柱、1/4圆球+1/2圆柱、圆柱、圆球、1/2圆柱+方体,当然,圆球也可异化为椭球体,方体可以异化为梯形体、楔形体、1/8圆球体可以异化为三棱锥体,这些异化体的几何拓补以及分块组合方式是完全相同的,因此图5的几何组合元素具有相当的普适性。图6、7是对应的分块拓补和网格,值得一提的是,最后的网格质量是相当地高。 图5 典型的几何拓补组合形式

浅谈ANSOFT_MAXWELL网格剖分

仅作探讨,欢迎拍砖! 曾经看到师兄一篇大作,将ANSYS和ANSOFT做过南慕容北乔峰的类比,真是崇拜得五体投地,一塌糊涂,屁滚尿流,接二连三,不三不四。个人比较欣赏乔峰大侠,遂,改投ANSOFT门下。想当年ANSYS的APDL用得忒熟无比,想想就此放弃,于心不忍,于是重操APDL。近日,在论坛上看到有人对MAXWELL的网格剖分大发牢骚,甚至还恶言相向,GG我实在看不下去了,于是有此文。 就从网格剖分谈开去。 开篇之前,对比下面两幅图。 图1ANSYS映射网格剖分(APDL如下) /clear /filname,joe_yan,1 /prep7 et,1,solid117 block,0,10,0,10,0,10 mshkey,1 mshape,0,3D aesize,all,1 vmesh,all save 图2ANSOFT MAXWELL网格剖分(自适应剖分)

对比图1、2明眼人一看就知道显然是图1的网格划分优良。于是乎,俗人皆言:“MAXWELL 网格剖分垃圾~~!!” 掌嘴!!我要说。 先声明,本人不是MAXWELL的死忠!个人更偏向于ANSYS的APDL,一看到那黑乎乎一块的经典界面,我就澎湃。即便如此,本人还是坚持MAXWELL的网格剖分很强大。 MAXWELL有两种网格剖分形式,其一,如上图2所示的自适应剖分;其二,手动剖分。其中手动剖分又分为二,其一,选择剖分;其二,内部剖分。其中,选择剖分又分为二,其一,基于长度;其二,基于表层深度。为何一个网格剖分要纠结如斯?我要说,因为MAXWELL 人性化。比如说,为何手动剖分又要分为表层剖分和内部剖分,因为,表层剖分主要是针对集肤效应而言,大家都知道,集肤效应主要集中在导磁体表面,可是如何做到从内到外将网格剖分从疏到密的剖分呢?我们可以采用MAXWELL提供的表层剖分功能。 至此有人又要叫嚣了:“诶,你看,明明ANSYS网格剖分要比ANSOFT网格剖分来的均匀而细致。” 我要说,对!! 爸特!!! 针对不同分析,网格也呈现出不一样的规律性。比如说,对于结构分析,那么我们当然希望网格剖分能够均匀,这样计算应力才会准确。而对于流体力学来说,我们则希望网格剖分随着流体的流动方向呈现出渐变变化。而对于电磁场来说,我们则希望,在气隙部分能够划分得密一些,而对于其他对磁场影响不大的环节我们希望网格划分的疏一些,这样,就可以充分利用PC的硬件资源。毕竟,升级电脑花的米不是小数目。 好,如何对MAXWELL进行网格设置?像图2所示那样进行自适应剖分就可以了吗? 答曰:“你是天才,自适应剖分就可以了。” 如果就此搁笔,我想是个人都会拿砖拍我。好吧。后半句是:“如果你想更完美一些,可以利用MAXWELL的手动剖分功能。不过有利也有弊,手动剖分很大程度上依赖于经验。你懂的~~~” 以下表述将主要借助贴图和文字的形式,换句话说,以下内容将会是图文并茂! 问题1:MAXWELL在哪里进行手动剖分? 答:project manager--->mesh operations如下图3 图3

有限元网格剖分方法概述

有限元网格剖分方法概述 在采用有限元法进行结构分析时,首先必须对结构进行离散,形成有限元网格,并给出与此网格相应的各种信息,如单元信息、节点坐标、材料信息、约束信息和荷载信息等等,是一项十分复杂、艰巨的工作。如果采用人工方法离散对象和处理计算结果,势必费力、费时且极易出错,尤其当分析模型复杂时,采用人工方法甚至很难进行,这将严重影响高级有限元分析程序的推广和使用。因此,开展自动离散对象及结果的计算机可视化显示的研究是一项重要而紧迫的任务。 有限元网格生成技术发展到现在, 已经出现了大量的不同实现方法,列举如下: 映射法 映射法是一种半自动网格生成方法,根据映射函数的不同,主要可分为超限映射和等参映射。因前一种映射在几何逼近精度上比后一种高,故被广泛采用。映射法的基本思想是:在简单区域内采用某种映射函数构造简单区域的边界点和内点,并按某种规则连接结点构成网格单元。也就是根据形体边界的参数方程,利用映射函数,把参数空间内单元正方形或单元三角形(对于三维问题是单元立方体或单元四面体)的网格映射到欧氏空间,从而生成实际的网格。这种方法的主要步骤是,首先人为地把分析域分成一个个简单可映射的子域,每个子域为三角形或四边形,然后根据网格密度的需要,定义每个子域边界上的节点数,再根据这些信息,利用映射函数划分网格。 这种网格控制机理有以下几个缺点: (1)它不是完全面向几何特征的,很难完成自动化,尤其是对于3D区域。 (2)它是通过低维点来生成高维单元。例如,在2D问题中,先定义映射边界上的点数,然后形成平面单元。这对于单元的定位,尤其是对于远离映射边界的单元的定位,是十分困难的,使得对局部的控制能力下降。 (3)各映射块之间的网格密度相互影响程度很大。也就是说,改变某一映射块的网格密度,其它各映射块的网格都要做相应的调整。 其优点是:由于概念明确,方法简单,单元性能较好,对规则均一的区域,适用性很强,因此得到了较大的发展,并在一些商用软件如ANSYS等得到应用。 2 。拓扑分解法 拓扑分解法较其它方法发展较晚, 它首先是由Wordenwaber提出来的。该方法假设最后网格顶点全部由目标边界顶点组成, 那么可以用一种三角化算法将目标用尽量少的三角形完全分割覆盖。这些三角形主要是由目标的拓扑结构决定, 这样目标的复杂拓扑结构被分解成简单的三角形拓扑结构。该方法生成的网格一般相当粗糙, 必须与其它方法相结合, 通过网格加密等过程, 才能生成合适的网格。该方法后来被发展为普遍使用的目标初始三角化算法, 用来实现从实体表述到初始三角化表述的自动化转换。 单一的拓扑分解法因只依赖于几何体的拓扑结构使网格剖分不理想,有时甚至很差。 3.连接节点法 这类方法一般包括二步:区域内布点及其三角化。早期的方法通常是先在区域内布点, 然后再将它们联成三角形或四面体, 在三角化过程中, 对所生成的单元形状难于控制。随着Delaunay三角化(简称为DT ) 方法的出现, 该类方法已成为目前三大最流行的全自动网格生成方法之一。 DT法的基本原理:任意给定N个平面点Pi(i=1,2,…,N)构成的点集为S,称满足下列条件的点集Vi为Voronoi多边形。其中,Vi满足下列条件: Vi ={ X:|X- Pi|(|X- Pj|,X(R2,i(j,j=1,2,…,N }Vi为凸多边形,称{ Vi}mi=1为Dirichlet Tesselation

六面体网格剖分算法的研究现状

六面体网格剖分算法的研究现状? 李丹金灿刘晓平 合肥工业大学计算机与信息学院可视化与协同计算(VCC)研究室,安徽合肥 230009 摘 要:总结了有限元六面体网格生成方法的研究进展。首先,指出了六面体网格不同于其他网格的优点。其次对当前的主要研究热点——全六面体网格生成进行了阐述。最后简要地探讨了该领域的发展趋势。 关键词:有限元面体网格格生成 Present Situation of Research on Finite Element All-hex Mesh Generation Methods Li Dan Jin Can Liu Xiao-ping VCC Division, School of Computer and Information, Hefei University of Technology, Hefei, 230009, China Abstract: This paper presents the advances of research in all-hex mesh generation for finite element computation. Firstly, the advantages of all-hex mesh different from other meshes are presented. Secondly, the main research fields-all-hex mesh generation are discussed in detail. Finally, the trends of this field are presented briefly. Keywords: Finite Element; all-hex mesh; mesh generation 1 前言 有限元分析是结合工业建模、计算机技术和数值计算而产生的新兴学科。有限元分析的基本过程可以分为三个阶段:有限元模型的建立(工业建模,即前处理)、有限元分析(数值计算)、结果处理和评价(即后处理)。根据专家统计,有限元分析各个阶段所占用的时间分别为:40%~45%的时间用于模型的建立,50%~55%的时间用于结果处理和评定,而 *基金资助:国家自然科学基金(60673028). 作者简介:李丹(1987-), 女, 安徽合肥, 汉族, 硕士研究生, 研究方向为计算机辅助设计; 金灿(1982-), 男, 安徽合肥, 汉族, 博士生, 研究方向为计算机辅助设计; 刘晓平(1964), 男, 山东济南, 汉族, 教授, 博导, 研究方向为建模、仿真与协同计算.

四面体剖分的实现

四面体剖分的实现 1 研究现状 网格剖分算法经历了从平面到曲面,再到三维实体剖分的发展过程,国内外学者为推动网格剖分的发展做出了很多贡献。作为当前网格生成领域研究热点的四面体剖分,出现了很多方法,其中比较成熟和普遍使用的算法有:Delaunay 法和前沿推进法,以及映射法、栅格法、模板法和多区域法等。 Delaunay法在三维空间存在边界一致性和薄元处理等问题,由于这些问题的存在,使Delaunay法适用范围有限,稳定性不好。针对存在的这些问题,Y Bai 等改良了约束Delaunay网格生成算法;陈学工等提出可消除退化现象引起的潜在错误的方法。前沿推进法是节点和单元同步生成。前沿推进法是一种全自动网格剖分算法,三维的前沿推进法是从待剖分域的表面三角形集合(称作初始前沿队列)开始,循环往复,当前沿队列为空时结束的一种网格划分方法。前沿推进法缺乏一般性的理论支撑,要进行大量的算术判断,占用了大量时间,因此对数据结构的要求很髙,对于三维空间前沿推进法还存在收敛性等问题。基于此很多人都对前沿推进法做了改进工作,吴宝海等提出一种两侧推进的波前法,Li等人采用由内而外的波前推进的方式生成了全六面体网格。 除过以上介绍的算法,四面体网格划分有针对不同问题的算法。如陈一民等提出对多面体进行划分的算法; B Jonathan等提出一种多材质的四面体网格生成算法;J Wang等提出了一种能得到高质量四面体网格的自适应算法;S Tian 等提出了一种在模型轮廓的基础上生成网格的算法;R Montenegro等提出自动生成自适应四面体网格的算法。 如何自动划分网格逐渐成为有限元法发展的瓶颈,许多科学家和工程师在全自动有限元网格划分算法的研巧和实现上努力。网格生成是实际问题求解的前提,对于超薄、相邻或包含关系的复杂模型,生成符合实际要求的有限元网格是一个耗时很大的任务。此时,网格的自动生成算法节省时间的同时提供了髙精度,保证了问题分析的准确性。自动网格剖分算法发展至今,很多商业软件如Fluent、Ansys、Hyper mash等都提供了相应的网格剖分模块,对于规则的几何形状,生

平面域三角形网格的自动剖分_倪培桐

平面域三角形网格的自动剖分 倪培桐,江 洧 (广东省水利水电科学研究所,广东 广州 510610) 摘 要:利用前沿生成法生成平面计算区域的三角形单元,提出了最小角最长边原则,并用该方法生成的三角形单元网格运用到思贤 水流数学模型计算中,取得良好的效果。 关键词:平面域;三角形网格;剖分;最小角最长边 中图分类号:T V 131.2 文献标识码:A 文章编号:1001-9235(2001)02-0010-03收稿日期:2000-07-28; 修回日期:2000-08-30 作者简介:倪培桐(1971—),男,山东泰安人,助理工程师,硕士,研究方向为河口动力学,目前从事水利水电工程数值模拟工作。 1 前言 求解具有复杂几何形状的流场时,网格的选取和生成是十分困难的问题。要做到边界适应性好,符合该密的区域网格密,该疏的区域网格疏等要求,有限元法是较为理想的计算网格模式。在有限元计算中,网格的生成往往需要较大的工作量,是数值计算分析工作的“瓶颈”。鉴于此,自动生成技术成为目前计算流体力学有限元方法数值计算前处理的研究热点。 三角形单元的自动生成是有限元计算前处理的重要步骤,基于散点三角形自动生成已经比较成熟。对于任意平面域而言,前沿生成法在具有复杂边界的平面域三角形网格自动剖分过程中有较大的实用价值,该方法不需要事先在计算域内布置好内部节点。2 前沿生成法 前沿生成法和Delaunay 方法是目前最为流行的三角形自动剖分方法。其原理是将区域边界点划分为变化均匀的外围三角形的边,然后以这些边为三角形的始边向内生成近似的正三角形,同时形成新的区域边界。重复上述步骤即可得到正三角形。刘春太等提出,对离散的区域边界按最长边算法中,优先考虑最长边。本文经试验发现当区域相邻两边长度差别较大时,优先考虑最长边容易导致生成钝角三角形,而流体力学数值计算要求三角形尽可能接近正三角形,因此本文优先考虑最小角,提出最小角最长边原则,即对复杂区域而言,优先在最小角的最长边开始生成三角形。具体实施步骤如下: (1)首先确定区域边界离散的均匀变化的线段,线段的长度视数值模型计算要求而定。 (2)三角形节点生成、单元生成算法: a )计算离散后的封闭区域的有向边,由小到大排列为 前沿队列。该队列变量包含的信息为:边序号、边始点坐标、终点坐标、边前点、边后点。以A 1A 2为例前沿队列存储信息分别为:A 1A 2的序号、A 1A 2边的始点A 1、A 1A 2边的终点A 2、A 1A 2边的前点A 3、A 1A 2边的后点A 4,如图1所示 。 图1 前沿队列存储变量示意图 b )用前沿队列信息计算出封闭区域的最小内角,该内角的有向最长边AB 为优先生成三角形的边。 c )从现有边界离散点中寻找与AB 形成有效三角形的前沿节点C 记入候选点表(约束条件为:C 位于AB 的左侧邻域,半径R <3 AB ;C 与AB 不共线;CA 、CB 与除AB 外的边不相交、不共线,或C 对AB 可见)。 d )取出所有当前候选点表中顶角值最大的点C ,若AB 为三角形的最长边,那么三角形ABC 作为候选三角形,记入候选三角形队列。执行f )步骤。 e )在区域内部生成新的节点D ,初步确定D 的位置为等边三角形ABD 的顶点,调整D 到AB 的距离h ,重新确定D 点的坐标。 h =0.3a 当p <0.3a (1) h =0.3+0.566/0.7(p /a -0.3) 当0.3a ≤p

maxwell网格剖分

maxwell网格剖分 良好的网格剖分,是利用电磁场有限元软件或程序进行电磁装备分析的前提和基础,这对于瞬态场和3D模型尤其如此。 静态场和涡流场都包含自适应求解过程,软件具有网格自加密能力,因此大多数情况下无须手动剖分,即可得到很好的网格。瞬态场网格必须手动剖分,初始网格(initial mesh)质量很差。自适应网格为瞬态场提供了一个很好的思路,就是导入静磁场和涡流场的自适应后的网格,为瞬态场所用,此功能通过Analysis/setup1/advanced/import mesh中实现。 做过3D分析的人都很清楚,网格的剖分是3D分析的重中之重环节。有时模型能剖分,能计算,但结果出来与设计或实验差很多,这时候问题往往出现在剖分这个环节,改一下剖分就对了。比如需要做涡流分析,那么就要考虑基于集肤效应深度的剖分,此功能在mesh operations/assign/on selection/skin depth based refinement。又比如,如果要分析永磁同步电动机的cogging torque,那么需要对气隙进行多层剖分,这时就需要采用所谓“哑元”的方法,通过多建几个气隙层来实现。再比如,对电机中常见的叠绕组或波绕组,为了对电机端部曲线部分进行更好地剖分,需要采用表面近似剖分。此功能在mesh operations/assign/surface approximation里面进行设置。 剖分有多种方法,主要就是on selection和in selection之分。前者是基于表面的剖分,后者是基于内部的剖分。注意,on selection并不是对内部不剖分,in selection也并不是对表面不剖分,而是两种剖分方法侧重点不同,正如其字面意思所示。一般而言,on selection 更适用于高频分析中对实体(solid)的剖分,因为高频分析中涡流效应很突出。in selection 更适合于对直流和工频的分析。对大多数物理模型而言,使用in selection足够。 最后,再谈谈设置剖分时,网格长度的问题。对相同或相近物理模型,可分为同一组,指定相同网格长度。对于较大模型,则网格长度可适当放大。举例而言,对永磁同步电机,电机定转子铁心分为一组,定子绕组自成一组,永磁体自成一组,band自成一组。上面这四组中,建议网格长度如下:定转子铁心>永磁体>定子绕组>band。同时选定定转子铁心,并使用in selection剖分,则系统会指定一个默认长度,一般取该默认长度的1/2就足够精确了。其他可类似操作。 注:本文基于maxwell讲解,但网格剖分方法并不局限于maxwell,适用于一切电磁场有限元分析软件,诸如flux,jmag,magnet,opera,comsol multiphysics,quickfield等。希望能举一反三,活学活用。

相关主题
文本预览
相关文档 最新文档