当前位置:文档之家› 一级倒立摆系统

一级倒立摆系统

一级倒立摆系统
一级倒立摆系统

直线一级倒立摆建模与性能分析

直线一级倒立摆建模及性能分析

一、数学模型建立

在忽略了空气阻力和各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示。u 为外界作用力;x 为小车位移; 为摆杆与铅垂方向的夹角;O 、G 分别为摆杆与小车的链接点、摆杆质心的位置;M 为小车的质量;m 为摆杆的质量;J 为摆杆绕G 的转动惯量;l 为O 到摆杆质心的距离,L 为摆杆的长度;0f 为小车与导轨间的滑动摩擦系数,1f 为摆杆绕 O 转动的摩擦阻力矩系数。

对于上图的物理模型我们做以下假设: M :小车质量 m :摆杆质量 b :小车摩擦系数

l :摆杆转动轴心到杆质心的长度 I :摆杆惯量 F :加在小车上的力 x :小车位置

?:摆杆与垂直向上方向的夹角

小 车

导 轨

x

l

F

摆杆

?

θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)

其机械部分遵守牛顿运动定律,其电子部分遵守电磁学的基本定律。因此可以通过机理建模得到系统较为精确的数学模型。

应用牛顿力学来建立系统的动力学方程过程如下: 分析小车水平方向所受的合力,可以得到以下方程:

N x b F x

M --= 由摆杆水平方向的受力进行分析可以得到下面等式:

2

2(sin )d N m x l dt

θ=+

即:2cos sin N mx ml ml θθθθ=+-

把这个等式代入上式中,就得到系统的第一个运动方程:

F ml ml x b x m M =-+++θθθθsin cos )(2 (1-1) 为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:

2

2(cos )d P mg m l dt

θ-=-

即:2sin cos P mg ml ml θθθθ-=+

力矩平衡方程如下:

θ

θθ I Nl Pl =--cos sin 注意:此方程中力矩的方向,由于θφθφφπθsin sin ,cos cos ,-=-=+=,故等式前面有负号。

合并这两个方程,约去P 和N ,得到第二个运动方程:

θθθcos sin )(2x

ml mgl ml I -=++ (1-2) 1.1 微分方程模型

设φπθ+=,当摆杆与垂直向上方向之间的夹角φ与1(单位是弧度)相比

很小,即 1<<φ 时,则可以进行近似处理:1cos -=θ,φθ-=sin ,0

)(2=dt d θ

为了与控制理论的表达习惯相统一,即u 一般表示控制量,用u 来代表被控对象的输入力F ,线性化后得到该系统数学模型的微分方程表达式:

()

?????=-++=-+u m l x b x m M x m l m gl m l I φφφ

)(2 (1-3)

1.2 传递函数模型

对方程组(1-3)进行拉普拉斯变换,得到

()

?????=Φ-++=Φ-Φ+)

()()()()()()()(2

222

2s U s s m l s s bX s s X m M s s m lX s m gl

s s m l I (1-4) 注意:推导传递函数时假设初始条件为0。

由于输出为角度φ,求解方程组(1-4)的第一个方程,可以得到

)(])([)(22s s

g

ml ml I s X Φ-+=

把上式代入方程组(1-4)的第二个方程,得到

)()()()()()()(2222

2s U s s ml s s s g ml

ml I b s s s g ml ml I m M =Φ-Φ??????+++Φ??????-++

整理后得到以输入力u 为输入量,以摆杆摆角φ为输出量的传递函数:

()s

q

bmgl

s q mgl m M s q ml I b s s

q ml s U s s G -+-++=Φ=23242

1)()()()( 其中 ])())([(2

2ml ml I m M q -++=

若取小车位移为输出量,可得传递函数:

s

q

bmgl s q mgl m M s q ml I b s ?q mgl

s q ml I s U s X s G -+-++-

+==2324

222)()()()()()(

1.3 状态空间数学模型

由现代控制理论原理可知,控制系统的状态空间方程可写成如下形式:

Du

CX Y Bu AX X

+=+=

方程组(1-3)对φ ,x 解代数方程,得到如下解:

?????

?

???

??+++++++++-==++++++++++-==u Mm l m M I m l Mm l m M I m M m gl x Mm l m M I m lb u Mm l m M I m l I Mm l m M I gl m x Mm l m M I b m l I x x x

2222

222222)()()()()()()()()(φφφφφ

整理后得到系统状态空间方程:

u Mm l m M I m l Mm l m M I m l

I x x Mm l m M I m M m gl Mm l m M I m lb

Mm l m M I gl m Mm l m M I b m l I x x ???

????

?

????????++++++?????????????????????????????

?+++++-+++++-=??????????????2222

2

2

2

2

2

2)(0)(00)()()(0

10

000)()()(0001

0φφφφ u x x x Y ??

????+?????

?

?

?????????????=??????=0001000001φφφ 以上就是一阶倒立摆小车系统的状态空间表达式

1.4 能控标准型和能观标准型

在Matlab 中,拉普拉斯变换后得到的传递函数可以通过计算并输入分子和分母矩阵来实现。假设系统内部各相关参数为:

M

小车质量 1.095 Kg m 摆杆质量

0.105Kg b 小车摩擦系数 0.15 N/m/sec l 摆杆转动轴心到杆质心的长度 0.35 m

I 摆杆惯量 0.0035kg*m*m T 采样时间 0.005秒

求解能控标准型和能观标准型程序代码如下:

>> A =[ 0 1.0000 0 0; 0 -0.0883 0.6084 0;

0 0 0 1.0000; 0 -0.2274 26.8117 0]

B =[ 0; 0.8829; 0; 2.2742]

C =[ 1 0 0 0; 0 0 1 0]

D =[ 0; 0;]

Qc=ctrb(A,B)

Qo=obsv(A,C)

j=poly(A)

a1=j(2)

a2=j(3)

a3=j(4)

a4=j(5)

Tc=Qc*[a3 a2 a1 1; a2 a1 1 0; a1 1 0 0; 1 0 0 0]

Ac=inv(Tc)*A*Tc

Bc=inv(Tc)*B

Cc=C*Tc

To=inv([a3 a2 a1 1 0 0 0 0 ; a2 a1 1 0 0 0 0 0 ; a1 1 0

0 0 0 0 0 ; 1 0 0 0 0 0 0 0]*Qo)

Ao=inv(To)*A*To

Bo=inv(To)*B

Co=C*To

A =

0 1.0000 0 0

0 -0.0883 0.6084 0

0 0 0 1.0000

0 -0.2274 26.8117 0

B =

0.8829

2.2742

C =

1 0 0 0

0 0 1 0

D =

Qc =

0 0.8829 -0.0780 1.3905

0.8829 -0.0780 1.3905 -0.2449

0 2.2742 -0.2008 60.9929

2.2742 -0.2008 60.9929 -5.6992

Qo =

1.0000 0 0 0

0 0 1.0000 0

0 1.0000 0 0

0 0 0 1.0000

0 -0.0883 0.6084 0

0 -0.2274 26.8117 0

0 0.0078 -0.0537 0.6084

0 0.0201 -0.1384 26.8117

j =

1.0000 0.0883 -26.8117 -

2.2291 0

a1 =

0.0883

a2 =

-26.8117

a3 =

-2.2291

a4 =

Tc =

-22.2884 -0.0000 0.8829 0

0.0000 -22.2884 -0.0000 0.8829

0.0000 0.0000 2.2742 0

-0.0000 0.0000 0.0000 2.2742 Ac =

-0.0000 1.0000 -0.0000 0

0.0000 0.0000 1.0000 -0.0000

-0.0000 -0.0000 0 1.0000

0.0000 2.2291 26.8117 -0.0883

0.0000

1.0000

Cc =

-22.2884 -0.0000 0.8829 0

0.0000 0.0000 2.2742 0 To =

0 0 0 1.0000

0 1.0000 -0.0883 27.8363

0 0 1.0000 -0.0883

1.0000 -0.0883 27.8363 -

2.6063 Ao =

-27.8285 -0.0952 -746.5329 -0.9837

0.0883 -27.9246 5.5523 -777.3860

1.0000 0 27.8285 -0.1483

0 1.0000 -0.0883 27.8363 Bo =

2.4346

0.8832

0 0 0 1.0000

0 0 1.0000 -0.0883

约旦规范型

A =[ 0 1.0000 0 0; 0 -0.0883 0.6084 0;

0 0 0 1.0000; 0 -0.2274 26.8117 0]

B =[ 0; 0.8829; 0; 2.2742]

C =[ 1 0 0 0; 0 0 1 0]

D =[ 0; 0;]

[V,E]=eig(A)

[Ad]=[inv(V)]*A*V

[Bd]=[inv(V)]*B

[Cd]=C*V

A =

0 1.0000 0 0

0 -0.0883 0.6084 0

0 0 0 1.0000

0 -0.2274 26.8117 0

B =

0.8829

2.2742

C =

1 0 0 0

0 0 1 0

D =

V =

1.0000 -0.9966 -0.0044 0.0042

0 0.0829 0.0226 0.0219

0 0.0007 -0.1895 0.1897

0 -0.0001 0.9816 0.9816

E =

0 0 0 0

0 -0.0831 0 0

0 0 -5.1806 0

0 0 0 5.1755 Ad =

0 -0.0000 0.0000 -0.0000

0 -0.0831 0.0000 -0.0000

0 0.0000 -5.1806 -0.0000

0 0.0000 -0.0000 5.1755 Bd =

9.9987

10.0329

1.1779

1.1395

Cd =

1.0000 -0.9966 -0.0044 0.0042

0 0.0007 -0.1895 0.1897

二、系统MATLAB仿真、开环响应

2.1 传递函数

在Matlab中,拉普拉斯变换后得到的传递函数可以通过计算并输入分子和分母矩阵来实现。假设系统内部各相关参数为:

M小车质量 1.095 Kg

m摆杆质量 0.105Kg

b小车摩擦系数 0.15N/m/sec

l摆杆转动轴心到杆质心的长度 0.35 m

I摆杆惯量 0.0035kg*m*m

T采样时间 0.005秒

程序代码如下:

>> A =[ 0 1.0000 0 0; 0 -0.0883 0.6084 0;

0 0 0 1.0000; 0 -0.2274 26.8117 0]

B =[ 0; 0.8829; 0; 2.2742]

C =[ 1 0 0 0; 0 0 1 0]

D =[ 0; 0;]

[num,den]=ss2tf(A,B,C,D)

A =

0 1.0000 0 0

0 -0.0883 0.6084 0

0 0 0 1.0000

0 -0.2274 26.8117 0

B =

0.8829

2.2742

C =

1 0 0 0

0 0 1 0

D =

num =

0 0.0000 0.8829 -0.0000 -22.2884

0 0.0000 2.2742 0.0000 0

den =

1.0000 0.0883 -26.8117 -

2.2291 0

2.2 状态空间法

状态空间法可以进行单输入多输出系统设计,因此在这个实验中,我们将尝试同时对摆杆角度和小车位置进行控制。为了更具挑战性,给小车加一个阶跃输入信号。

我们用Matlab 求出系统的状态空间方程各矩阵,并仿真系统的开环阶跃响应。在这里给出一个state.m文件,执行这个文件,Matlab将会给出系统状态空间方程的A,B,C和D矩阵,并绘出在给定输入为一个0.2 m的阶跃信号时系统的响应曲线。state.m程序如下:

M小车质量 1.095 Kg

m摆杆质量0.105Kg

b小车摩擦系数0.15 N/m/sec

l摆杆转动轴心到杆质心的长度0.35 m

I摆杆惯量0.0035kg*m*m

T采样时间0.005秒

% —————— state.m ——————

% 倒立摆状态方程及开环阶跃响应

% 输入倒立摆相关参数

M = 1.095;

m = 0.105;

b = 0.15;

I = 0.0035;

g = 9.8;

l = 0.35;

% p用于状态方程计算

p = I*(M+m)+M*m*l^2;

% 输入倒立摆状态方程并显示

A = [0 1 0 0;

0 -(I+m*l^2)*b/p (m^2*g*l^2)/p 0;

0 0 0 1;

0 -(m*l*b)/p m*g*l*(M+m)/p 0]

B = [ 0;

(I+m*l^2)/p;

0;

m*l/p]

C = [1 0 0 0;

0 0 1 0]

D = [0;

0]

% 求开环系统的阶跃响应并显示

T = 0:0.005:5;

U = 0.2*ones(size(T));

[Y,X] = lsim(A,B,C,D,U,T);

plot(T,Y)

% 显示范围:横坐标0-2,纵坐标0-100,此条语句参数可根据仿真输出曲线调整axis([0 2 0 100])

grid

% —————— end ——————

执行上面的文件,得到系统的状态空间A、B、C、D矩阵, 显示结果如下所示:>> state

A =

0 1.0000 0 0

0 -0.0883 0.6084 0

0 0 0 1.0000

0 -0.2274 26.8117 0

B =

0.8829

2.2742

C =

1 0 0 0

0 0 1 0

D =

>>

MATLAB 仿真的开环阶跃响应曲线如下图所示,系统不稳定。

图中,实线是摆杆角度响应曲线,虚线是小车位置响应曲线。

三、 性能分析

3.1 系统的可控性和可观测性判别

由秩判据:

1. 线性定常系统0,(0),0x Ax Bu x x t =+=≥完全可控的充分必要条件是: ()rank M n =

1n M B

AB

A B -??=??

其中,n 为矩阵的维数;M 称为系统的可控性判别阵。

2. 线性定常系统0,(0),0x Ax Bu x x t =+=≥完全可观测的充分必要条件是: ()rank N n =

1n C CA N CA -??

??

??=??????

其中,n 为矩阵的维数;N 称为系统的可控性判别阵。

程序代码如下:

% —————— state.m —————— % 倒立摆可控性、可观性判别 % 输入倒立摆相关参数 M = 1.095; m = 0.105; b = 0.15; I = 0.0035; g = 9.8; l = 0.26;

% p 用于状态方程计算 p = I*(M+m)+M*m*l^2;

% 输入倒立摆状态方程并显示

A = [0 1 0 0; 0 -(I+m*l^2)*b/p (m^2*g*l^2)/p 0; 0 0 0 1; 0 -(m*l*b)/p m*g*l*(M+m)/p 0]

B = [ 0; (I+m*l^2)/p; 0;

m*l/p]

C = [1 0 0 0;

0 0 1 0]

D = [0;

0]

% 可控性判别

M=ctrb(A,B);

k1=rank(M);

if k1==4

disp('系统完全可控!')

else

disp('系统不完全可控!')

end

% 可观性判别

N=obsv(A,C);

k2=rank(N);

if k2==4

disp('系统完全可观测!')

else

disp('系统不完全可观测!')

end

% ——————end ——————

程序运行结果为:

A =

0 1.0000 0 0

0 -0.0883 0.6084 0

0 0 0 1.0000

0 -0.2274 26.8117 0

B =

0.8829

2.2742

C =

1 0 0 0

0 0 1 0

D =

0 0

系统完全可控! 系统完全可观测!

3.2 分析系统的稳定性—李雅普诺夫稳定性及其线性定常系统的特征值判据 1. 平衡状态:

李雅普诺夫关于稳定性的研究均针对平衡状态而言,对于所有的t ,满足

(),0e e x f x t ==

的状态称为平衡状态。

对线性定常系统x Ax =,其平衡状态满足0e Ax =,当A 为非奇异矩阵是,系统只有唯一的零解,即只存在一个位于状态空间原点的平衡状态。若A 为奇异矩阵,则系统存在有无穷多个平衡状态。 2. 李雅普诺夫意义下的稳定性:

设系统初始状态位于以平衡状态e x 为球心,δ为半径的闭球域()S δ内,即

00,e x x t t δ-≤=

若能使系统方程的解()00;,x t x t 在t →∞的过程中,都位于以e x 为球心、任意规定的半径为ε的闭球域()S ε内,即

()0000;,,x t x t x t t ε-≤≥

则称系统的平衡状态e x 在李雅普诺夫意义下是稳定的。 3. 渐近稳定性

若系统的平衡状态e x 不仅具有李雅普诺夫意义下的稳定性,且有

()00lim ;,0e t x t x t x →∞

-=

则称此平衡状态是渐近稳定的。这时,从()S δ出发的轨迹不仅不会超出()S ε,且当t →∞时收敛于e x ,显见经典控制理论中的稳定性定义与此处的渐近稳定性对应。对于严格的线性系统,如果它是稳定的,则必定是大范围稳定的。

4. 线性定常系统的特征值判据

定理:对于线性定常系统0,(0),0x Ax x x t ==≥,有

1).系统的每一平衡状态是在李雅普诺夫意义下的稳定的充分必要条件是,A 的所有特征值均具有非正(负或零)实部,且具有零实部的特征值为A 的最小多项式的单根.。

2).系统的唯一平衡状态0e x =是渐近稳定的充分必要条件是,A 的所有特征值均具有负实部。

输入以下程序:

[V ,T] = eig(A); T T =

0 0 0 0 0 -0.0831 0 0 0 0 -5.1806 0 0 0 0 5.1755

因为01755.53>=λ,所以系统在李雅普诺夫意义下不是稳定的。

四. 根轨迹校正以及仿真

已知系统的传递函数:

2135

.001015.00275

.0)(2+=

s S G

设计控制器使得调整时间 ;最大超调 。

计算整理可得超前校正装置的零点和极点分别为:

8922.6-=c Z 5658.25-=p Z

由此可得校正后的传递函数:

2135

.001015.00275

.05658.25)8922.6()()(2+++=

=s s s K s K s G Q

现在利用MATLAN仿真,选择不同的K观察系统的阶跃响应曲线。K=141.7时,画出闭环控制系统:

阶跃响应曲线

一级倒立摆的建模与控制分析

控制工程与仿真课程设计报告 报告题目直线一级倒立摆建模、分析及控制器的设计 组员1专业、班级14自动化1 班姓名朱永远学号1405031009 组员1专业、班级14自动化1 班姓名王宪孺学号1405031011组员1专业、班级14自动化1 班姓名孙金红学号1405031013 报告评分标准 评分项目权重评价内容评价结果项目得分 内容70设计方案较合 理、正确,内容 较完整 70-50分 设计方案基本合 理、正确,内容 基本完整 50-30分 设计方案基本不 合理、正确,内 容不完整 0-30分 语言组织15语言较流顺,标 点符号较正确 10-15分语言基本通顺, 标点符号基本正 确 5-10分 语言不通顺,有 错别字,标点符 号混乱 5分以下 格式15 报告格式较正 确,排版较规范 美观 10-15分 报告格式基本正 确,排版不规范 5-10分 报告格式不正 确,排版混乱 5分以下总分

直线一级倒立摆建模、分析及控制器的设计 一状态空间模型的建立 1.1直线一级倒立摆的数学模型 图1.1 直线一级倒立摆系统 本文中倒立摆系统描述中涉及的符号、物理意义及相关数值如表1.1所示。

图1.2是系统中小车的受力分析图。其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。 图1.2 系统中小车的受力分析图 图1.3是系统中摆杆的受力分析图。F s 是摆杆受到的水平方向的干扰力, F h 是摆杆受到的垂直方向的干扰力,合力是垂直方向夹角为α的干扰力F g 。

图1.3 摆杆受力分析图 分析小车水平方向所受的合力,可以得到以下方程: ()11- 设摆杆受到与垂直方向夹角为α 的干扰力Fg ,可分解为水平方向、垂直方向的干扰力,所产生的力矩可以等效为在摆杆顶端的水平干扰力FS 、垂直干扰力Fh 产生的力矩。 ()21- 对摆杆水平方向的受力进行分析可以得到下面等式: ()θsin 22 l x dt d m F N S +=- ()31- 即: αθθθθsin sin cos 2f F ml ml x m N +-+= ()41- 对图1.3摆杆垂直方向上的合力进行分析,可以得到下面方程: ()θcos 22 l l dt d m F mg P h -=++- ()51- 即 θθθθ αcos sin cos 2 ml ml F mg P g +=++- ()61- 力矩平衡方程如下: 0cos sin sin cos cos sin =++++θθθθαθα I Nl Pl l F l F g g ()71- 代入P 和N ,得到方程: () 0cos 2sin sin 2cos sin cos 2cos sin 2222=+-++++θθθθθθθαθαx ml ml mgl ml I l F l F g g ()81- 设φπθ+=,(φ是摆杆杆与垂直向上方向之间的夹角,单位是弧度),代入上式。假设φ<<1,则可进行近似处理: φφφφφφφ===?? ? ??==2sin ,12cos ,0,sin ,1cos 2 dt d N x f F x M --= α sin g S F F =α cos g h F F =

(完整版)一级倒立摆系统分析

一级倒立摆的系统分析 一、倒立摆系统的模型建立 如图1-1所示为一级倒立摆的物理模型 图1-1 一级倒立摆物理模型 对于上图的物理模型我们做以下假设: M:小车质量 m:摆杆质量 b:小车摩擦系数 l:摆杆转动轴心到杆质心的长度 I:摆杆惯量 F:加在小车上的力 x:小车位置 ?:摆杆与垂直向上方向的夹角 θ:摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下)图1-2是系统中小车和摆杆的受力分析图。其中,N和P为小车与摆

杆相互作用力的水平和垂直方向的分量。注意:实际倒立摆系统中的检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图所示,图示方向为矢量正方向。 图1-2 小车及摆杆受力分析 分析小车水平方向受力,可以得到以下方程: M x?=F-bx?-N (1-1) 由摆杆水平方向的受力进行分析可以得到以下方程: N =m d 2dt (x +l sin θ) (1-2) 即: N =mx?+mlθcos θ?mlθ2sin θ (1-3) 将这个等式代入式(1-1)中,可以得到系统的第一个运动方程: (M +m )x?+bx?+mlθcos θ?mlθ2sin θ=F (1-4) 为推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得出以下方程: P ?mg =m d 2dt 2 (l cos θ) (1-5) P ?mg =? mlθsin θ?mlθ2cos θ (1-6) 利用力矩平衡方程可以有:

?Pl sinθ?Nl cosθ=Iθ (1-7) 注意:此方程中的力矩方向,由于θ=π+?,cos?=?cosθ,sin?=?sinθ,所以等式前面含有负号。 合并两个方程,约去P和N可以得到第二个运动方程: (I+ml2)θ+mgl sinθ=?mlx?cosθ (1-8) 设θ=π+?,假设?与1(单位是弧度)相比很小,即?<<1,则 可以进行近似处理:cosθ=?1,sinθ=??,(dθ dt ) 2 =0。用u来 代表被控对象的输入力F,线性化后的两个运动方程如下: {(I+ml2)??mgl?=mlx? (M+m)x?+bx??ml?=u (1-9) 假设初始条件为0,则对式(1-9)进行拉普拉斯变换,可以得到: {(I+ml2)Φ(s)s2?mglΦ(s)=mlX(s)s2 (M+m)X(s)s2+bX(s)s?mlΦ(s)s2=U(s) (1-10) 由于输出为角度?,求解方程组的第一个方程,可以得到: X(s)=[(I+ml2) ml ?g s ]Φ(s) (1-11) 或改写为:Φ(s) X(s)=mls2 (I+ml2)s2?mgl (1-12) 如果令v=x?,则有:Φ(s) V(s)=ml (I+ml2)s2?mgl (1-13) 如果将上式代入方程组的第二个方程,可以得到: (M+m)[(I+ml2) ml ?g s ]Φ(s)s2+b[(I+ml2) ml +g s ]Φ(s)s?mlΦ(s)s2= U(s) (1-14) 整理后可得传递函数: Φ(s) U(s)= ml q s2 s4+b(I+ml 2) q s3?(M+m)mgl q s2?bmgl q s (1-15)

一阶倒立摆控制系统

一阶直线倒立摆系统 姓名: 班级: 学号:

目录 摘要 (3) 第一部分单阶倒立摆系统建模 (4) (一)对象模型 (4) (二)电动机、驱动器及机械传动装置的模型 (6) 第二部分单阶倒立摆系统分析 (7) 第三部分单阶倒立摆系统控制 (11) (一)内环控制器的设计 (11) (二)外环控制器的设计 (14) 第四部分单阶倒立摆系统仿真结果 (16) 系统的simulink仿真 (16)

摘要: 该问题源自对于娱乐型”独轮自行车机器人”的控制,实验中对该系统进行系统仿真,通过对该实物模型的理论分析与实物仿真实验研究,有助于实现对独轮自行车机器人的有效控制。 控制理论中把此问题归结为“一阶直线倒立摆控制问题”。另外,诸如机器人行走过程中的平衡控制、火箭发射中的垂直度控制、卫星飞行中的姿态控制、海上钻井平台的稳定控制、飞机安全着陆控制等均涉及到倒立摆的控制问题。 实验中通过检测小车位置与摆杆的摆动角,来适当控制驱动电动机拖动力的大小,控制器由一台工业控制计算机(IPC)完成。实验将借助于“Simulink封装技术——子系统”,在模型验证的基础上,采用双闭环PID控制方案,实现倒立摆位置伺服控制的数字仿真实验。实验过程涉及对系统的建模、对系统的分析以及对系统的控制等步骤,最终得出实验结果。仿真实验结果不仅证明了PID方案对系统平衡控制的有效性,同时也展示了它们的控制品质和特性。 第一部分单阶倒立摆系统建模

(一) 对象模型 由于此问题为”单一刚性铰链、两自由度动力学问题”,因此,依据经典力学的牛顿定律即可满足要求。 如图1.1所示,设小车的质量为0m ,倒立摆均匀杆的质量为m ,摆长为2l ,摆的偏角为θ,小车的位移为x ,作用在小车上的水平方向上的力为F ,1O 为摆杆的质心。 图1.1 一阶倒立摆的物理模型 根据刚体绕定轴转动的动力学微分方程,转动惯量与角加速度乘积等于作用于刚体主动力对该轴力矩的代数和,则 1)摆杆绕其重心的转动方程为 sin cos y x l F J F l θθθ=-&& (1-1) 2)摆杆重心的水平运动可描述为 2 2(sin )x d F m x l dt θ=+ (1-2) 3)摆杆重心在垂直方向上的运动可描述为 2 2(cos )y d F mg m l dt θ-= (1-3) 4)小车水平方向运动可描述为 202x d x F F m dt -= (1-4)

一级倒立摆地Simulink仿真

单级倒立摆稳定控制 直线一级倒立摆系统在忽略了空气阻力及各种摩擦之后,可抽象成小车和匀质摆杆组成的系统,如图1所示。 图1 直线一级倒立摆系统 图2 控制系统结构 假设小车质量M =0.5kg ,匀质摆杆质量m=0.2kg ,摆杆长度2l =0.6m ,x (t )为小车的水平位移,θ为摆杆的角位移,2 /8.9s m g =。控制的目标是通过外力u (t)使得摆直立向上(即0)(=t θ)。该系统的非线性模型为: u ml x m M ml mgl x ml ml J +=++=++22)sin ()()cos (sin )cos ()(θθθθθθθ ,其中231ml J =。 解: 一、 非线性模型线性化及建立状态空间模型 因为在工作点附近(0,0==θ θ )对系统进行线性化,所以 可以做如下线性化处理:32 sin ,cos 13!2!θθθθθ≈-≈-

当θ很小时,由cos θ、sin θ的幂级数展开式可知,忽略高次项后, 可得cos θ≈1,sin θ≈θ,θ’^2≈0; 因此模型线性化后如下: (J+ml^2)θ’’+mlx ’’=mgl θ (a) ml θ’’+(M+m) x ’’=u (b) 其中23 1ml J = 取系统的状态变量为,,,,4321θθ ====x x x x x x 输出T x y ][θ=包括小车位移和摆杆的角位移. 即X=????????????4321x x x x =????? ???????''θθx x Y=??????θx =??????31x x 由线性化后运动方程组得 X1’=x ’=x2 x2’=x ’’=m m M mg 3)(43-+-x3+m m M 3)(44-+u X3’ =θ’=x4 x4’=θ’’=ml l m M g m M 3)(4)(3-++x3+ml l m M 3)(43-+-u 故空间状态方程如下: X ’=????????????'4'3'2'1x x x x =????????????????? ?-++-+-03)(4)(300100003)(4300 0010ml l m M g m M m m M mg ????????????4321x x x x + ???????? ??????????-+--+ml l m M m m M 3)(4303)(440 u

单级倒立摆系统的分析与设计

单级倒立摆系统的分析与设计 小组成员:武锦张东瀛杨姣 李邦志胡友辉 一.倒立摆系统简介 倒立摆系统是一个典型的高阶次、多变量、不稳定和强耦合的非线性系统。由于它的行为与火箭飞行以及两足机器人行走有很大的相似性,因而对其研究具有重大的理论和实践意义。由于倒立摆系统本身所具有的上述特点,使它成为人们深入学习、研究和证实各种控制理论有效性的实验系统。 单级倒立摆系统(Simple Inverted Pendulum System)是一种广泛应用的物理模型,其结构和飞机着陆、火箭飞行及机器人的关节运动等有很多相似之处,因而对倒立摆系统平衡的控制方法在航空及机器人等领域有着广泛的用途,倒立摆控制理论产生的方法和技术将在半导体及精密仪器加工、机器入技术、导弹拦截控制系统、航空器对接控制技术等方面具有广阔的开发利用前景。 倒立摆仿真或实物控制实验是控制领域中用来检验某种控制理论或方法的典型方案。最初研究开始于二十世纪50年代,单级倒立摆可以看作是一个火箭模型,相比之下二阶倒立摆就复杂得多。1972年,Sturgen等采用线性模拟电路实现了对二级倒立摆的控制。目前,一级倒立摆控制的仿真或实物系统已广泛用于教学。 二.系统建模 1.单级倒立摆系统的物理模型 图1:单级倒立摆系统的物理模型

单级倒立摆系统是如下的物理模型:在惯性参考系下的光滑水平平面上,放置一个可以在平行于纸面方向左右自由移动的小车(cart ),一根刚性的摆杆(pendulum leg )通过其末端的一个不计摩擦的固定连接点(flex Joint )与小车相连构成一个倒立摆。倒立摆和小车共同构成了单级倒立摆系统。倒立摆可以在平行于纸面180°的范围内自由摆动。倒立摆控制系统的目的是使倒立摆在外力的摄动下摆杆仍然保持竖直向上状态。在小车静止的状态下,由于受到重力的作用,倒立摆的稳定性在摆杆受到微小的摄动时就会发生不可逆转的破坏而使倒立摆无法复位,这时必须使小车在平行于纸面的方向通过位移产生相应的加速度。依照惯性参考系下的牛顿力学原理,作用力与物体位移对时间的二阶导数存在线性关系,单级倒立摆系统是一个非线性系统。 各个参数的物理意义为: M — 小车的质量 m — 倒立摆的质量 F — 作用到小车上的水平驱动力 L — 倒立摆的长度 x — 小车的位置 θ— 某一时刻摆角 整个倒立摆系统就受到重力、驱动力和摩擦阻力的三个外力的共同作用。这里,驱动力F 是由连接小车的传动装置提供,控制倒立摆的稳定实际上就是依靠控制驱动力F 使小车在水平面上做与倒立摆运动相关的特定运动。为了简化模型以利于仿真,假设小车与导轨以及摆杆与小车铰链之间的摩擦均为0。 2.单级倒立摆系统的数学模型 令小车的水平位移为x ,运动速度为v ,加速度a 。 小车的动能为212kc E Mx =,选择特定的参考平面使得小车的势能为0。 摆杆的长度为L ,某时刻摆角为θ,在摆杆上与固定连接点距离为q (0

(完整版)一级直线倒立摆matlab程序

非线性作业 一 一级直线倒立摆 如图1所示 系统里的各参数变量 M :小车系统的等效质量(1.096kg ); 1m :摆杆的质量(0.109kg ); 2m :摆杆的半长(0.25m ); J :摆杆系统的转动惯量(0.0034kg*m ); g :重力加速度(9.8N/Kg ); r :小车的水平位置(m ); θ:摆角大小(以竖直向上为0起始位置,逆时针方向为正方向); h F :小车对摆杆水平方向作用力(N )(向左为正方向),h F ’是其反作用力; v F :小车对摆杆竖直方向作用力(N )(向上为正方向),v F ’是其反作用力; U :电动机经传动机构给小车的力,可理解为控制作用u’(向左为正方向); p x :摆杆重心的水平位置(m );p y :摆杆重心的竖直位置(m )。 1.1一级倒立摆的数学建模 定义系统的状态为[r,r, θ, θ] 经推导整理后可以达到倒立摆系统的牛顿力学模型: θθθsin cos )(2mgl l r m ml I =-+ (1) u ml r m M ml -?=+-?2sin )(cos θθθθ& (2) 因为摆杆一般在工作在竖直向上的小领域内θ=0,可以在小范围近似处理: 0,0sin ,1cos 2==≈θθθ&,则数学模型可以整理成: θθmgl l r m ml I =-+&&&&)(2 (3) u r m M ml =++-&&&&)(θ (4) 系统的状态空间模型为

??????????????θθ&&&&&&r r =????????????????+++++0)() (0010000)(0000102222Mml m M I m M mgl Mml m M I gl m ??????????????θθ&&r r +???????? ??????????+++++222)(0)(0Mml m M I ml Mml m M I ml I u (5) u r r r y ??????+?????? ??????????????=??????=0000101000θθθ&& (6) 代人实际系统的参数后状态方程为: ????????????? ?θθ&&&&&&r r =????????????08285.2700100006293.0000010??????????????θθ&&r r +u ????????????3566.208832.00 (7) u r r r y ??????+????????????? ???????=??????=0000101000θθθ&& (8) 1.2滑模变结构在一级倒立摆系统的应用 主要包括切换函数的设计、控制率的设计和系统消除抖振的抑制。基于线性二次型最优化理论的切换函数设计,定义系统的优化积分指标是: Qxdt x J T ?∞ =0 Q>0, 本文采用指数趋近律:)sgn(S kS S ε--=&,其中k 和ε为正数。将其代人S=Cx=0中,可以得到: )sgn(S kS CBu CAx x C S ε--=+==&& (9) 控制率为:))sgn(()(1S kS CAx CB u ε++-=- (10) ε的选取主要是为了抑制系统的摩擦力和近似线性化所带来的误差和参数摄动等因素,从而使得系统具有良好的鲁棒性。文中k=25, ε=0.8。取变换矩阵T 。

倒立摆系统的建模及Matlab仿真资料

第1 页共11 页 倒立摆系统的建模及Matlab仿真 1.系统的物理模型 考虑如图(1)所示的倒立摆系统。图中,倒立摆安装在一个小车上。这里仅考虑倒立摆在图面内运动的二维问题。 图(1)倒立摆系统 假定倒立摆系统的参数如下。 摆杆的质量:m=0.1g l=1m小车的质量:摆杆的长度:2重力加速度:g=9.8m/M=1kg s摆杆的质量在摆杆的中心。 设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量?≤10%,调节时间ts ≤4s ,通过小车的水平运动使倒立摆保持在垂直位置。 2.系统的数学模型 2.1建立倒置摆的运动方程并将其线性化。 为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。 ?),在u设小车瞬时位置为z,摆心瞬时位置为(作用下,小车及摆均产生加速远 动,sin?lz根据牛顿第二定律,在水平直线远动方向的惯性力应与u平衡,于是有 22dzd?)?sinu?M?m(zl22dtdt???2????z(M?mml?)cos?mlusin? 即:??①

绕摆轴转动的惯性力矩与重力矩平衡,因而有. 第2 页共11 页 2??d??? sin??lcosm(z?lsinmgl)??2dt?????22???????即: nis?l?ocgcosincoszs?ls??② 以上两个方程都是非线性方程,为求得解析解,需作线性化处理。由于控制的目的是保持倒立摆直?2?????且可忽略则,立,在试驾合适的外力条件下,假定θ很小,接近于零时合理的,1sincos??,项。于是有 ???M?zm?u?ml??)(③ ????g?z?l??④联立求解可得1mg?u?z????MM 1)?m(M????u??MlMl 列写系统的状态空间表达式。2.2??T xx,x,x,,选取系统变量则 xx,x,xx?,42134123xx??211mgux???x?32MM x?x?431)(M?mu?x?x? 34MlMl 即00100????z??1mg??????000?z?????d MM??Bu?Ax?xux????????00001???dt????1gm?(M)????000??????? MlMl??????Cx?0?y?xx1001代入数据计算得到:0100????000?1??????T0D,?0??1BA?,?001,C100??1000??00011?? 11 页3 页共第 3.设计控制器3.1判断系统的能控性和稳定性 1100????0011????23BBAABAB?Q?故被控对象完全可控, rank()=4,Q kk??11?0?10??011?10???22???11?。出现大于零的特征值,故被,,0 解得特征值为 0由特征方程0??11I?A?)(控对象不稳定3.2确定希望的极点, 另一对为远极点,认为系统性能主要由主导,选其中一对为主导极点和希望的极点n=4ss21极点决定,远极点只有微小影响。根据二阶系统的关系式,先确定主导极点???42??1????10.?e??t1.67?有,闭环可得;取误差带,于是取,则6.?059?0.02.?0? pns??n2????1?js??=-10.8j,远极点选择使它和原点的距离大于主导极点与原点 距离主导极点为?n,21s??15倍,取的54,33.3采用状态反馈方法使系统稳定并配置极点 ??kkkk?k;状态反馈系统的状态方程,馈状态反的控制规律为为kxu??3102?,其

哈工大一阶倒立摆

哈尔滨工业大学 控制科学与工程系 控制系统设计课程设计报告

姓名:院(系): 专业:自动化班号: 任务起至日期: 2014 年9 月9 日至 2014 年9 月20 日 课程设计题目:直线一级倒立摆控制器设计 已知技术参数和设计要求: 本课程设计的被控对象采用固高公司的直线一级倒立摆系统GIP-100-L。 系统内部各相关参数为: M小车质量0.5kg; m摆杆质量0.2kg; b小车摩擦系数0.1N/m/sec; l摆杆转动轴心到杆质心的长度0.3m; I摆杆惯量0.006kg*m*m; T采样时间0.005秒。 设计要求: 1.推导出系统的传递函数和状态空间方程。用Matlab进行阶跃输入仿真,验证系统的稳定性。 2.设计PID控制器,使得当在小车上施加0.1N的脉冲信号时,闭环系统的响应指标为: (1)稳定时间小于5秒; (2)稳态时摆杆与垂直方向的夹角变化小于0.1弧度。 3.设计状态空间极点配置控制器,使得当在小车上施加0.2m的阶跃信号时,闭环系统的响应指标为: (1)摆杆角度错误!未找到引用源。和小车位移x的稳定时间小于3秒 (2)x的上升时间小于1秒 (3)错误!未找到引用源。的超调量小于20度(0.35弧度) (4)稳态误差小于2%。 工作量: 1.建立直线一级倒立摆的线性化数学模型; 2.倒立摆系统的PID控制器设计、Matlab仿真及实物调试; 3.倒立摆系统的极点配置控制器设计、Matlab仿真及实物调试。

哈尔滨工业大学 (1) 控制系统设计课程设计报告 (1) 一.实验设备简介 (3) 二.直线一阶倒立摆数学模型的推导 (6) 2.1概述 (6) 2.2数学模型的建立 (7) 2.3一阶倒立摆的状态空间模型: (9) 2.4实际参数代入: (10) 三.定量、定性分析系统的性能 (11) 3.1 对系统的稳定性进行分析 (11) 3.2 对系统的稳定性进行分析: (12) 四. 实际系统的传递函数与状态方程 (13) 五. 系统阶跃响应分析 (14) 六.一阶倒立摆PID控制器设计 (15) 6.1 PID控制分析 (15) 6.2 PID控制参数设定及MATLAB仿真 (17) 6.3 PID控制实验 (18) 七.状态空间极点配置控制器设计 (19) 7.1 状态空间分析 (20) 7.2 极点配置及MA TLAB仿真 (21) 7.3 利用爱克曼公式计算 (21) 八.课程设计心得与体会 (22) 一.实验设备简介 倒立摆控制系统:Inverted Pendulum System (IPS) 倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。 倒立摆是进行控制理论研究的典型实验平台。倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。

一级倒立摆【控制专区】系统设计

基于双闭环PID控制的一阶倒立摆控制系统设计 一、设计目的 倒立摆是一个非线性、不稳定系统,经常作为研究比较不同控制方法的典型例子。设计一个倒立摆的控制系统,使倒立摆这样一个不稳定的被控对象通过引入适当的控制策略使之成为一个能够满足各种性能指标的稳定系统。 二、设计要求 倒立摆的设计要求是使摆杆尽快地达到一个平衡位置,并且使之没有大的振荡和过大的角度和速度。当摆杆到达期望的位置后,系统能克服随机扰动而保持稳定的位置。实验参数自己选定,但要合理符合实际情况,控制方式为双PID控制,并利用MATLAB进行仿真,并用simulink对相应的模块进行仿真。 三、设计原理 倒立摆控制系统的工作原理是:由轴角编码器测得小车的位置和摆杆相对垂直方向的角度,作为系统的两个输出量被反馈至控制计算机。计算机根据一定的控制算法,计算出空置量,并转化为相应的电压信号提供给驱动电路,以驱动直流力矩电机的运动,从而通过牵引机构带动小车的移动来控制摆杆和保持平衡。 四、设计步骤 首先画出一阶倒立摆控制系统的原理方框图 一阶倒立摆控制系统示意图如图所示: 分析工作原理,可以得出一阶倒立摆系统原理方框图:

一阶倒立摆控制系统动态结构图 下面的工作是根据结构框图,分析和解决各个环节的传递函数! 1.一阶倒立摆建模 在忽略了空气流动阻力,以及各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图所示,其中: M :小车质量 m :为摆杆质量 J :为摆杆惯量 F :加在小车上的力 x :小车位置 θ:摆杆与垂直向上方向的夹角 l :摆杆转动轴心到杆质心的长度 根据牛顿运动定律以及刚体运动规律,可知: (1) 摆杆绕其重心的转动方程为 (2) 摆杆重心的运动方程为 得 sin cos ..........(1)y x J F l F l θθθ=-2 22 2(sin ) (2) (cos ) (3) x y d F m x l d t d F mg m l d t θθ=+=-

一级直线倒立摆系统模糊控制器设计---实验指导书

一级直线倒立摆系统模糊控制器设计 实验指导书

目录 1 实验要求................................................................................. . (3) 1.1 实验准备................................................................................. . (3) 1.2 评分规则................................................................................. . (3) 1.3 实验报告容................................................................................. .. (3) 1.4 安全注意事项................................................................................. .. (3) 2 倒立摆实验平台介绍................................................................................. .. (4) 2.1 硬件组成................................................................................. . (4) 2.2 软件结构................................................................................. . (4) 3 倒立摆数学建模(预习 容) .............................................................................. (6) 4 模糊控制实验................................................................................. (8) 4.1 模糊控制器设计(预习容)............................................................................... (8) 4.2 模糊控制器仿真................................................................................. (12) 4.3 模糊控制器实时控制实验................................................................................. .. (12) 5 附录:控制理论中常用的MATLAB 函

一级倒立摆分析.

一级倒立摆的极点配置及仿真 摘要 倒立摆系统是一个复杂的、高度非线性的、不稳定的高阶系统,是学习和研究现代控制理论最合适的实验装置。倒立摆的控制是控制理论应用的一个典型范例,一个稳定的倒立摆系统对于证实状态空间理论的实用性是非常有用的。 本文主要研究的是一级倒立摆,首先应用动力学方程建立一级倒立摆的非线性数学模型,采用小偏差线性化的方法在平衡点附近局部线性化得到线性化的数学模型。然后通过输入单位阶跃信号分析系统的开环稳定性,由线性化得到的状态方程判断系统的能控性和能观性,结合系统的稳定性条件、调整时间以及超调量找到合适的极点,运用极点的配置方法(Matlab的acker函数)算出状态反馈增益矩阵K,运用状态空间分析方法,采用状态反馈为倒立摆系统建立稳定的控制律,并判断加入反馈矩阵K后的能观性和能控性是否改变。最后应用Matlab中的Simulink建立相应框图,得到输出变量水平位置和角度随时间的变化曲线,验证加入反馈矩阵K后一级倒立摆系统的稳定性。 关键词:一级倒立摆状态反馈极点配置Matlab Simulink

目录 1、一级倒立摆系统简介 (3) 2、一级倒立摆系统的数学模型 (4) 2.1、数学模型的建立 (4) 2.2、运动分析 (5) 2.2.1、沿水平方向运动(直线运动) (5) 2.2.2、绕轴线的转动(旋转运动) (7) 3、状态空间极点配置 (9) 3.1、系统开环稳定性分析 (9) 3.2、开环系统的能控性分析 (11) 3.3、开环系统的能观性分析 (12) 3.4、系统极点配置 (13) 3.5、闭环系统的能控性和能观性分析 (16) 4、一级倒立摆系统Matlab仿真 (17) 4.1、系统开环Simulink搭建及仿真 (17) 4.2、系统极点配置后的Simulink仿真 (20) 5、总结 (24) 6、参考文献 (25)

倒立摆系统的建模及Matlab仿真

倒立摆系统的建模及Matlab 仿真 1.系统的物理模型 考虑如图(1)面内运动的二维问题。 图(1)倒立摆系统 假定倒立摆系统的参数如下。 摆杆的质量:m=0.1g 摆杆的长度:l =1m 小车的质量: M=1kg 重力加速度:g=9.8m/2s 摆杆的质量在摆杆的中心。 设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量δ ≤10%,调节时 间ts ≤4s ,通过小车的水平运动使倒立摆保持在垂直位置。 2.系统的数学模型 2.1建立倒置摆的运动方程并将其线性化。 为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。 设小车瞬时位置为z,摆心瞬时位置为(θsin l z +),在u 作用下,小车及摆均产生加速远动,根据牛顿第二定律,在水平直线远动方向的惯性力应与u 平衡,于是有 u l z dt d m dt z d M =++)sin (22 22θ 即: u ml ml z m M =-++θθθθsin cos )(2&&&&& ① 绕摆轴转动的惯性力矩与重力矩平衡,因而有

θθθsin cos )sin (22mgl l l z dt d m =??? ????+ 即: θθθθθθθsin cos sin cos cos 22g l l z =-+&&&&& ② 以上两个方程都是非线性方程,为求得解析解,需作线性化处理。由于控制的目的是保持倒立摆直 立,在试驾合适的外力条件下,假定θ很小,接近于零时合理的,则1cos ,sin ≈≈θθθ,且可忽略θ θ2&项。于是有 u ml z m M =++θ&&&& )( ③ θθg l z =+&&&& ④ 联立求解可得 u Ml Ml m M u M M mg z 1)(1 -+=+- =θθθ&&&& 2.2列写系统的状态空间表达式。 选取系统变量4321,,,x x x x , []T x x x x x 4321,,,=则 u Ml x Ml m M x x x u M x M mg x x x 1 )(134433221-+= =+-==&&&& 即 []Cx x x y Bu Ax u Ml M x Ml g m M M mg z z dt d x ===+=?????? ? ???????-+?????????? ??? ? +- =???? ????????=000110100)(0 010 0000000 1 1θθ&&& 代入数据计算得到: [][]0,0001,1010,01100 1000010000 1 0==-=? ? ??? ? ??? ???-=D C B A T

单级倒立摆经典控制系统

单级倒立摆经典控制系统 摘要:倒立摆控制系统虽然作为热门研究课题之一,但见于资料上的大多采用现代控制方法,本课题的目的就是要用经典的方法对单级倒立摆设计控制器进行探索。本文以经典控制理论为基础,建立小车倒立摆系统的数学模型,使用PID控制法设计出确定参数(摆长和摆杆质量)下的控制器使系统稳定,并利用MATLAB软件进行仿真。 关键词:单级倒立摆;经典控制;数学模型;PID控制器;MATLAB 1绪论 自动控制理论是研究自动控制共同规律的技术科学。它的发展初期,是以反馈理论为基础的自动调节原理,并主要用于工业控制。 控制理论在几十年中,迅速经历了从经典理论到现代理论再到智能控制理论的阶段,并有众多的分支和研究发展方向。 1.1经典控制理论 控制理论的发展,起于“经典控制理论”。早期最有代表性的自动控制系统是18世纪的蒸汽机调速器。20世纪前,主要集中在温度、压力、液位、转速等控制。20世纪起,应用范围扩大到电压、电流的反馈控制,频率调节,锅炉控制,电机转速控制等。二战期间,为设计和制造飞机及船用自动驾驶仪、火炮定位系统、雷达跟踪系统及其他基于反馈原理的军用装备,促进了自动控制理论的发展。

至二战结束时,经典控制理论形成以传递函数为基础的理论体系,主要研究单输入-单输出、线性定常系统的分析问题。经典控制理论的研究对象是线性单输入单输出系统,用常系数微分方程来描述。它包含利用各种曲线图的频率响应法和利用拉普拉斯变换求解微分方程的时域分析法。这些方法现在仍是人们学习控制理论的入门之道。 1.2倒立摆 1.2.1倒立摆的概念 图1 一级倒立摆装置 倒立摆是处于倒置不稳定状态,人为控制使其处于动态平衡的一种摆。如杂技演员顶杆的物理机制可简化为一级倒立摆系统,是一个复杂、多变量、存在严重非线性、非自治不稳定系统。

基于PID控制的一级倒立摆系统的研究

本科生毕业设计(论文) 论文题目:基于PID控制的一级倒立摆系统的研究 姓名: 学院: 专业: 班级、学号: 指导教师:

摘要 本文的研究对象为一级倒立摆系统,主要是基于PID控制的一级倒立摆控制系统的设计。利用PID参数整定的多种方法对PID的三个参数进行调节,并对其优化,然后用利用Matlab对其进行仿真,并对最后仿真图的结果进行分析与比较。 倒立摆是一种典型的非线性、多变量、强耦合、快速的、自然不稳定的系统。在实际生产生活中有很多类似的系统,故研究一级倒立摆系统的PID控制具有很大的实际意义。本文介绍了多种PID参数整定算法,主要采用了的是Z-N整定法,并详细介绍了PID参数整定算法的相关理论和具体操作方法。在本文中还建立了一级倒立摆的数学模型和物理模型。本文着重讲述了Z-N整定法和试凑法对PID三个参数的进行优化的具体方法。用Matlab对一级倒立摆系统进行了仿真,并且比较这些方法的优缺点,对最后的仿真图结果研究和分析。得出PID参数整定方法的优缺点。 关键词: PID控制器参数整定一级倒立摆 Matlab仿真

Abstract Object of this paper is an inverted pendulum system is mainly based on PID control an inverted pendulum control system design. Use a variety of PID parameter tuning method to adjust the three parameters of PID, and its optimization, and then use them using matlab simulation, and the results of the last simulation diagram analysis and comparison. Inverted pendulum is a typical non-linear, multi-variable, strong coupling, fast, naturally unstable system. In real life there are a lot of similar production systems, it is of an inverted pendulum system PID control has great practical significance. This article describes a variety of PID parameter tuning algorithm, the main use of the Z-N entire titration, and details of the PID parameter tuning algorithms related theory and specific methods of operation. In this article, also established a mathematical model of the inverted pendulum and physical models. This paper focuses on the ZN Tuning Method for PID and genetic algorithms to optimize the three parameters of specific methods. Using Matlab on an inverted pendulum system is simulated, and compare the advantages and disadvantages of these methods, drawing on the final results of the simulation study and

一级倒立摆的建模及控制分析

直线一级倒立摆的建模及控制分析 摘要:本文利用牛顿—欧拉方法,建立了直线型一级倒立摆系统的数学模型。在分析的基础上, 采用状态反馈控制中极点配置法设计了用于直线型一级倒立摆系统的控制器。此外,用MATLAB 仿真绘制了相应的曲线并做了分析。 一、问题描述 倒立摆控制系统是机器人技术、控制理论、计算机控制等多个领域和多种技术的有机结合,其被控系统本身是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,是控制理论研究中较为理想的实验对象。它为控制理论的教学、实验和科研构建了一个良好的实验平台,促进了控制系统新理论、新思想的发展。倒立摆系统可以采用多种理论和方法来实现其稳定控制,如PID,自适应、状态反馈、智能控制等方法都己经在倒立摆控制系统上得到实现。 由于直线一级倒立摆的力学模型较简单,又是研究其他倒立摆的基础,所以本文利用所学的矩阵论知识对此倒立摆进行建模和控制分析。 二、方法简述 本文利用牛顿—欧拉方法,建立了直线型一级倒立摆系统的数学模型。在分析的基础上, 采用状态反馈控制中极点配置法设计了用于直线型一级倒立摆系 统的控制器。此外,用MATLAB 仿真绘制了相应的曲线并做了分析。 三、模型的建立及分析 3.1 微分方程的推导 在忽略了空气阻力,各种摩擦之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如下图1所示。

图1 直线一级倒立摆系统 假设 M 为小车质量;m 为摆杆质量;b 为小车摩擦系数;l 为摆杆转动轴心到杆质心的长度;I 为摆杆惯量;F 为加在小车上的力;x 为小车位置;φ为摆杆与垂直向上方向的夹角;θ为摆杆与垂直向下方向的夹角。 图2是系统中小车和摆杆的受力分析图。其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。值得注意的是: 在实际倒立摆系统中检测和执行装置的正负方向已确定, 因而矢量方向定义如图2所示, 图示方向为矢量正向。 (a) (b) 图2 小车和摆杆的受力分析图 分析小车水平方向所受的合力,可以得到以下方程: N x b F x M --= (1) 由摆杆水平方向的受力进行分析可以得到下面等式: θθθθs i n c o s 2 ml ml x m N -+= (2) 把这个等式代入上式中,就得到系统的第一个运动方程: ()F ml ml x b x m M =-+++θθθθsin cos 2 (3)

相关主题
文本预览
相关文档 最新文档