当前位置:文档之家› γ-氧化铝的制备

γ-氧化铝的制备

γ-氧化铝的制备
γ-氧化铝的制备

γ-氧化铝的制备

一、实验目的

二、实验原理:

分别以十二烷基苯磺酸钠(DBS)、溴化十六烷基三甲铵(CTAB)和吐温-80(TW-80)为模板剂,以硝酸铝为铝源,采用溶胶-凝胶法制备介孔纳米γ-氧化铝。用X射线衍射(XRD)、氮气吸附-脱附、透射电镜(TEM)对样品进行表征;考察了模板剂的种类及用量对产品性能的影响。

实验结果表明:采用3种不同模板剂合成的前驱体经550℃煅烧所得产物均为具有孔道结构的介孔纳米γ-氧化铝,其中采用CTAB为模板剂合成的样品其比表面积为551. 8 m2/g,平均孔径为6. 68 nm,孔径分布较窄(2~16 nm),孔容为0. 922 cm3/g,比采用另外两种模板剂合成的样品其孔道分布更均匀,排列更规则致密,孔径分布明显变窄,比表面积有一定程度的增大。

氧化铝介孔材料在新型催化剂、高效吸附剂、分离介质等领域有巨大的应用价值,特别是在对大分子物质的催化、吸附与组装等领域有着广阔的应用前景。随着世界原油的重质化和劣质化,在催化裂解原料中掺炼重油、渣油已成为普遍采用的加工方式,因此要求催化裂解催化剂具有可扩散重油分子的大孔,其尺寸在介孔范围。氧化铝介孔材料由于具有较窄的孔径分布及比传统的氧化铝催化剂大的孔径和高的比表面积,因此有望取代传统的活性氧化铝而应用于大规模石油加工过程。目前合成介孔氧化铝使用的模板剂有阳离子表面活性剂、阴*基金项目:安阳市科技攻关资助项目(2008-51)。离子表面活性剂和非离子表面活性剂,不同的模板剂及其用量对合成的介孔材料的孔径大小及孔径分布有较大的影响。笔者采用3种模板剂合成出比表面积在219. 68~551. 80 m2/g、平均孔径在5. 45~6. 68 nm、孔径集中分布在2 ~

10 nm、孔容在0. 310~0. 922 cm3/g的介孔纳米γ-Al2O3材料。

三、仪器与试剂

试剂:十二烷基苯磺酸钠(DBS,AR);溴化十六烷基三甲铵(CTAB,AR);吐温-80(TW-80,AR);硝酸铝[Al (NO3)3·9H2O,AR ];碳酸氢铵(NH4HCO3,AR)。

四、实验内容

用二次蒸馏水分别配制一定浓度的CTAB溶液、TW-80溶液和DBS溶液。每种溶液各取2份,分别加入硝酸铝和碳酸氢铵固体,分别配制成质量分数为27%和12%的溶液。将碳酸氢铵溶液缓慢滴加到剧烈搅拌的硝酸铝溶液中,当反应溶液呈溶胶状时停止滴加,继续搅拌1 h、陈化48 h。将湿凝胶于60℃真空干燥24 h,获得干凝胶粉末。将干凝胶粉末在550℃

焙烧3 h,用玛瑙研钵研细。

五、结论:

1)、以硝酸铝和碳酸氢铵为原料,分别以DBS、CTAB和TW -80为模板剂合成的前驱体,在陈化48 h并在550℃焙烧3 h条件下合成的产物均为具有孔道结构的介孔纳米γ- Al2O3。2)采用CTAB为模板剂,且模板剂用量为n(Al2O3)∶n(CTAB)=1∶0. 012时,合成的介孔纳米γ- Al2O3的比表面积(551. 80 m2/g)、孔径(6. 68 nm)、孔容(0. 922 cm3/g)最大,且孔径分布较窄,集中分布在6. 24~8. 87 nm,比采用另两种模板剂合成的产物孔道分布更均匀,排列更规则致密;孔径分布明显变窄,比表面积明显增大。

以氨水和碳酸钱为沉淀剂制备氧化铝

一、实验原理:

γ-氧化铝是一种常用的催化剂载体,它具有比表面大和价廉易得等优点但对于很多高温反应体系,如汽车尾气催化净化,其热稳定性在很大程度上影响了汽车尾气净化催化剂的活性和稳定性,因此提高γ-氧化铝的高温热稳定性对保持汽车尾气净化催化剂的反应活性、延长催化剂的使用寿命非常重要。

研究表明,在γ-氧化铝中引人某些添加剂,如稀土La203,碱土BaO和SiO2等,对于阻止γ-氧化铝的高温烧结和向a相的转变,提高其稳定性非常有效。另外,氧化铝前驱体的结构和制备方法对γ-Al2O3的比表面积和热稳定性也有很大的影响。近年来也有一些研究将提高氧化铝的比表面积和高温稳定性的工作重点放在改进氧化铝制备方法上。最常用的氧化铝制备方法之一是用可溶性铝盐和沉淀剂氨水反应,经一定的温度焙烧后得到γ-Al2O3这种方法制备的γ-Al2O3〕的比表面积和孔容较小,且耐高温性能也差,分别以NH4Ac和氨水作沉淀剂制备氧化铝,并对它们进行了对比,发现前者具有更高的比表面积和更好的颗粒分布,了氨水和碳酸钱两种沉淀剂对前驱物和氧化铝的影响以及两种氧化铝分别作为载体的汽车尾气净化密偶催化剂的活性和抗老化性能。实验证明,以(NH4)2CO3,为沉淀剂制备的氧化铝具有更大的比表面积、孔容、平均孔径和更好的高温稳定性,以它作载体的催化剂具有

更好的催化活性和抗老化性能。

二、实验仪器与试剂

试剂:Al(NO3)3;氨水;HNO3;(NH4)2CO3。

仪器:恒流泵;布氏漏斗;抽虑瓶;马弗炉。

三、实验内容:

将一定量的Al(NO3)3溶液和氨水用恒流泵并流输送到烧杯中,并不断搅拌,使并流混合液的pH值保持在8.5左右,制得的凝胶经洗滤后,在90℃水浴蒸干,120℃烘干,得到的样品记为Al-AH。将此样品于马弗炉中600℃处理2h,得到的样品记为Al-a,最后将Al-a分别在1000℃下焙烧2 h,5h,10h,得到的样品分别记为Al-b,Al-c,Al-d,

将氨水改为(NH4)2CO3溶液,制备方法和条件不变,得到的前驱物样品和氧化铝样品分别记为Al'-AC, Al'-a,Al'-b,Al'-c,Al'-d。

纳米氧化铝制备工艺技术

1. 200780101735 用于制备有控制结构与粒度的纳米多孔氧化铝基材料的方法和利用所述方法获得的纳米多孔氧化铝 2. 92104368 尺寸可控纳米、亚微米级氧化铝粉的制备方法 3. 95105843 纳米级氧化铝的生产工艺 4. 96117151 纳米添加氧化铝陶瓷的改性方法 5. 00125966 一种形态松散的纳米、亚微米级高纯氧化铝的制备方法 6. 01134059 纳米氢氧化铝的制备方法 7. 01126878 纳米尺寸的均匀介孔氧化铝球的合成方法 8. 01124685 一种作催化剂载体用的纳米级氧化铝及其制备方法 9. 01121545 高纯纳米级氧化铝的制备方法 10. 01113724 去除纳米氧化铝模板背面剩余铝的方法 11. 01132376 导电性纳米氮化钛-氧化铝复合材料的制备方法 12. 02139370 氧化铝纳米纤维的制备方法 13. 02138470 制备纳米材料的氧化铝模板及模板的制备方法 14. 02136111 利用氧化铝模板生长锗纳米线的方法 15. 02129021 纳米羟基磷灰石/氧化铝复合生物陶瓷的制备方法 16. 02116802 超纯纳米级氧化铝粉体的制备方法 17. 02109247 一种带有氧化铝壳的复合金属纳米粉末材料及其制备方法 18. 02138014 醇铝气相法制取纳米高纯氧化铝的方法 19. 200310106128 高纯纳米氧化铝纤维粉体制备方法 20. 03141495 一种氧化铝纳米纤维的制备方法 21. 03140530 一种表面包膜氧化铝的纳米二氧化钛颗粒的制备方法 22. 03129084 纳米氧化铝材料的制造方法 23. 03117871 纳米氧化铝胶体功能陶瓷涂料生产方法 24. 03800065 α-氧化铝纳米粉的制备方法 25. 03136606 一种纳米孔氧化铝模板的生产工艺 26. 03133529 纳米氧化铝浆组合物及其制备方法 27. 03102045 一种含有改性纳米级氧化铝的半合成烃类转化催化剂 28. 200480009462 纳米多孔超细α-氧化铝粉末及其溶胶-凝胶制备方法 29. 200420080270 一种去除纳米氧化铝模板背面铝层的装置 30. 200410063067 纳米氧化铝铜基体触头材料 31. 200410019998 一种基于多孔氧化铝模板纳米掩膜法制备纳米材料阵列体系的方法 32. 200410013256 一种无硬团聚的纳米氧化铝的制备方法 33. 200410010510 阳极氧化铝模板中一维硅纳米结构的制备方法 34. 200410067540 纳米氢氧化铝的制备方法 35. 200410077970 纳米氢氧化铝、粘土与乙烯-醋酸乙烯共聚物的阻燃复合材料

氧化铝的制备方法

氧化铝的制备方法 1氧化铝的制备 硝酸铝分析纯天津市大茂化学试剂厂 异丙醇铝分析纯天津市大茂化学试剂厂 尿素分析纯天津市大茂化学试剂厂 硝酸分析纯广州化学试剂厂 1.1氨水沉淀法 氨水(2mol/L)用量筒量取150ml65%氨水注入1000ml的容量瓶,用去离子水标定至刻度。 硝酸(1:1)用量筒量取浓硝酸100ml注入200ml容量瓶中,用去离子水标定至刻度。 利用酸法即Al(NO3)3与氨水反应来制取拟薄水铝石。以防止引入其他金属离子,而且可以通过加热的方法去除溶液中的NH4+和NO3-离子。 实验步骤: 1)称取18.75 g(约0.05 mol)的硝酸铝溶于50ml去离子水中,加热搅拌使其溶解成透明Al(NO3)3溶液。 2)室温下用2mol/L的氨水进行滴定同时进行剧烈搅拌,直至pH值8.5后停止滴定并放慢脚板速度。 3)在室温条件下(搅拌)老化2小时。 滴定前,Al(NO3)3溶液的pH值1.8左右。滴定过程中,在pH值4.5时溶液黏度突然增大,并产生大量Al(OH)3半透明沉淀,继续滴定胶体黏度下降。pH值由1.8升至4.5共消耗氨水(2mol/L)约36毫升,由4.5至8.5消耗氨水约9毫升。 1.2均匀沉淀法 本步骤的目的是将溶液中的Al(OH)3微粒以沉淀的形式分离出来。碱性沉淀剂的直接加入难免会造成溶液中局部沉淀剂瞬时过量的现象,致使生成的沉淀粒子形态和尺寸均有较大区别,从而影响焙烧后氧化铝载体的性状。不同于其他沉淀剂的添加,尿素均相沉淀法通过尿素在加热过程中均匀缓慢的释放氨水从整体上提高pH值,克服了液相直接接触造成的瞬时局部过量的不足,从而获得尺寸均匀、分散性好的Al(OH)3沉淀。 实验步骤: 1)称取25 g(约理论用量4倍)的尿素溶于25ml去离子水中,将尿素溶液注入上一步生成的胶体溶液。 2)开始通过水浴加热,并不停搅拌,于90℃恒温加热2小时。加热在开始的一段时间内,pH值始终在1以下,升至约40~50℃左右,原本半透明的胶体逐渐变清。待到温度升至90℃时,由搅拌子中心漩涡出有气泡产生,溶液开始变混浊。pH值升至7以后,溶液基本呈乳白色,直至加热结束。 3)在室温条件下(搅拌)老化2小时。 1.3 溶胶凝胶异丙醇铝水解法 本步骤的目用溶胶凝胶法合成介孔氧化铝,比表面积大, 表面不同的电势使金属离子更容易负载, 在催化领域中具有重要的应用价值,其性能明显优于传统的氧化铝。采用硝酸和异丙醇铝来合成有序介孔氧化铝。 硝酸(0.05mol/L)用量筒量取浓硝酸0.67ml注入200ml容量瓶中,用去离子水标定

活性氧化铝的制备

活性氧化铝的制备 一、实验目的 1、通过铝盐与碱性沉淀剂的沉淀反应,掌握氧化铝催化剂和催化剂载体的制备过程。 2、了解制备氧化铝水合物的技术和原理。 3、掌握活性氧化铝的成型方法。 二、实验原理 活性氧化铝(γ-A l2O3)是一种多孔性,高分散度的固体物料,具有表面积大、吸咐性能好、表面酸性、热稳定性良好的特点,可作为多种化学反应的催化剂及催化剂载体。除此之外,它还广泛用于石油、国防、化肥、医药、卫生等部门。学习有关γ-A l2O3的制备方法,对掌握催化剂制备有重要意义。 催化剂或催化剂载体用的氧化铝,在物性和结构方面都有一定要求。最基本的是比表面积、孔结构、晶体结构等。例如,重整催化剂是将贵重金属铂、铼载在γ—Al2O3或η—Al2O3上。氧化铝的结构对反应活性影响极大,载于其他形态的氧化铝上,其活性是很低的,如烃类脱氢催化剂,若将Cr—K载在γ—Al2O3或η—Al2O3上,活性较好,而载在其他形态氧化铝上,活性很差。这说明它不仅起载体作用,而且也起到了活性组分的作用,因此,也称这种氧化铝为活性氧化铝。α—Al2O3在反应中是惰性物质,只能作载体使用。制备活性氧化铝的方法不同,得到的产品结构亦不相同,其活性的差异颇大,因此制备中应严格掌握每一步骤的条件,不应混入杂质,尽管制备方法和路线很多,但无论哪种路线都必须制成氧化铝水合物(氢氧化铝),再经高温脱水生成氧化铝。自然界存在的氧化铝或氢氧化铝脱水生成的氧化铝,不能作载体或催化剂使用,这不仅因杂质多,主要是难以得到所要求的结构和催化活性。为此,必须经过重新处理,可见制备氧化铝水合物是制活性Al2O3的基础。 氧化铝水合物经X射线分析,可知有多种形态,通常分为结晶态和非结晶态。结晶态中有一水和三水化物两类形体;非结晶态则含有无定形和结晶度很低的水化物两种形体,它们都是凝胶态。可总括为下述表达形式:

试验纳米氧化铝粉体的制备及粒度分析

实验2 纳米氧化铝粉体的制备及粒度分析 一.实验目的 1.了解纳米材料的基本知识。 2.学习纳米氧化铝的制备。 3. 了解粒度分析的基本概念和原理。 4. 掌握马尔文激光粒度分析仪的使用。 二.实验原理 纳米氧化铝因其具有耐高温、耐腐蚀、比表面积大、反应活性高、烧结温度低,比普通氧化铝粉有着更优异的物化特性,在人工晶体、精细陶瓷、催化剂等方面得到广泛的应用。到目前为止纳米氧化铝粉末的制备方法众多,大致可分为气相法、固相法和液相化学反应法等,其中液相法制备Al2O3具有平均粒径小,分布范围窄、纯度高、活性高、设备简单、制备工艺影响因素可控等优点。 许多学者就纳米氧化铝的合成进行了广泛深入的研究。采用各种方法制备出纳米氧化铝粉体,但困扰纳米超细制备和应用的一个严重问题就是由于表面能造成的粉体的团聚,转相温度高而使颗粒明显长大,人们一般通过添加分散剂来克服团聚,因此对分散剂的合理选择,制备条件的有效控制及分散机理、分散效果的研究显得十分重要。 本实验以不同聚合度的聚乙二醇(PEG)为分散剂,采用沉淀法制备氢氧化铝胶体,胶体经800~1100℃高温煅烧2 h得到纳米氧化铝粉体,其在煅烧过程中经历Al(OH)3→AlOOH(勃姆石)→γ-Al2O3→δ-Al2O3→θ-Al2O3→α-Al2O3的相变过程,此方法能得到的最小平均粒径约为25 nm。 三.仪器与试剂 试剂:硫酸铝铵、浓氨水(25-28%)、聚乙二醇(PEG,聚合度n=200、600、2000、4000)、无水乙醇等,纯度均为AR级。 仪器:集热式恒温磁力搅拌器、40ml陶瓷坩埚、陶瓷研钵、500ml烧杯、真空水泵、布氏漏斗、抽滤瓶、马弗炉、50ml量筒、分析天平、空气塞、干燥箱、磁铁、容量瓶250ml、称量纸、滤纸、玻璃棒、钥匙、表面皿、分液漏斗。 Mastersizer 2000激光粒度仪。 四.实验步骤 1.查文献

氧化铝粉体制备

氧化铝粉体的合成与表征 1.国内外研究现状及其基本情况 氧化铝是一种具有多种形态的金属氧化物,主要晶型包括最常见的有a和y 型,晶型的转变主要取决于温度。氢氧化铝或水合氧化铝加热到800摄氏度左右转化为y型氧化铝,1200摄氏度时转化为a型氧化铝。因氧化铝特殊的结构和性质特点,使其在电子、化工、航空航天等领域得到广泛的应用。随着高科技的发展,社会对新材料越来越重视,国内外工作者对新材料的开发与应用给予了极大的关注,各种具有特殊功能的材料也得到人们的重视。其中,各种物质的超细化被人们认为是材料开发研究的基础。所谓超细粉体通常是指尺度介于分子,原子和宏观物体之间,粒度在(1-100)nm范围内的微粒]。 高纯超细氧化铝粉体是纯度在99.99%以上的超微细粉体材料,是二十一世纪新材料中产量最大、产值最高、用途最广的尖端材料之一,高纯氧化铝粉体因其纯度高,粒径小,显示出了常规材料所不具有的光、电、磁、热和机械特性,因而它作为一种新型功能材料广泛应用于光学、化工及特种陶瓷等多个领域[6]。 国外关于氧化铝的研究工作开展得比较早,技术也较先进。以下是一些具有代表性的研究成果:在气相法中,美国的Chen Y J用气相法制备出粒径为30—— 50nm的无团聚氧化铝纳米粒子;用气相热解法以三甲基铝Al(CH 3) 3 和N 2 0为原料, 加入C 2H 4 作为反应敏化剂,采用C0 2 激光(C 2 H 4 在C0 2 激光发射波长处有共振吸收)加 热进行反应,然后1200——1400℃下进行热处理成功地合成了粒径为15——20nm 的A1 20 3 粒子;日本专利用蒸发冷凝法,以氧化铝陶瓷(纯度为99.99%)作为蒸发源, 放在一个压力为0。01 Pa的真空器中,通入0 2, CO或C0 2 ,使压力保持在15Pa左 右,用C0 2 激光照射氧化铝陶瓷使之蒸发,蒸发出的氧化铝在气体中迅速冷却得到超细高纯氧化铝。在液相法中,Felde B用溶胶——凝胶法,以异丁醇铝为前驱体,加入乙酰丙酮和硝酸铵,经水解、沉化形成凝胶,再经干燥、锻烧得到粒 径为50nm的α-A1 20 3 粒子;法国的Eponthieu利用硝酸铝、二甲苯、tween80组成 微乳液体系,制得了40——50nm的氧化铝粒子。 我国氧化铝的研究是从90年代开始的,当时主要集中在中科院和高等院校,在1990——2000年10年中,中国打破西方国家对中国的封锁。己建立了多种物理、化学方法制备纳米材料。关于纳米氧化铝的研究也有一定的进展。王宏志等用络 合物——凝胶法在Al (NO 3) 3 溶液中加入丙烯酰胺单体N, N,一亚甲基丙烯酰胺 网络剂,在80℃聚合获得凝胶,经过干燥、锻烧得10nm的a-A1 20 3 粉体。周曦亚采 用均匀沉淀法,以硝酸铝和脲为原料制的氢氧化铝凝胶,在用低表面张力的乙醇 为脱水剂得到40nm以下的γ- A1 20 3 粒子;周恩绚等采用相转移分离法,在高速搅 拌下,将硫酸铝铵溶液迅速加入到碳酸氢铵溶液中生成溶胶,再加表面活性剂 Span和有机溶剂二甲苯,可知的粒径为20——30nm的a-A1 20 3 粒子。冯丽娟等以溶 液蒸发法(超临界法)研究了无机盐——有机溶剂(水和硝酸铝——乙醇)体系中超细氧化铝的制备,所得产品为短纤维状微晶,其长轴为90nm,短轴为5nm。 目前,氧化铝的制备主要停留在探索试验阶段,也进行了一些探索性的工业化水平的生产,但大多数制备方法得到的纳米氧化铝粒径分布较宽,并且制备过程重复性差。还有很多基础性的工作需要投入大量的人力、物力来完成。 2.氧化铝粉体的结构性质及应用

HGT-3927工业活性氧化铝简介

HG/T 3927-2007 工业活性氧化铝 1 范围 本标准规定了工业活性氧化铝的要求、试验方法、检验规则、标志、标签、包装、运输和贮存。 本标准适用于工业活性氧化铝。该产品用于炼油、化肥、石化、天然气、制氧和化工等行业,主要用作气体和液体吸附剂、吸氟剂、干燥剂、和催化剂载体等。 分子式:Al2O3 ?nH2O(n<1) 3 分类 工业活性氧化铝分为六类: 吸附剂——通用型,用于各种烃类气体、天然气、石油裂解气等的吸附、脱水等。 除氟型——用于饮用水、工业水除氟。 再生剂——用于蒽醌法生产双氧水。 脱氯剂——用于各种气体及黏性树脂等液体的脱氯。 催化剂载体——用作各种催化剂载体。 空分干燥剂——空分专用干燥剂。 4 要求 4.1 外观:白色球状或柱状。 4.2 工业活性氧化铝应符合表1要求。 表1 要求

5 试验方法 5.1 安全提示 本试验方法中使用的部分试剂具有腐蚀性,操作时须小心谨慎!如贱到皮肤上应立即用水冲洗,严重者应立即治疗。 5.2 一般规定 本标准所用试剂和水在没有注明其他要求时,均指分析纯试剂和GB/T 6682一1992中规定的三级水。试验中所用标准滴定溶液、制剂及制品,在没有注明其他要求时,均按HG/T 3696.3的规定制备。 5.3 外观判别 在自然光条件下,用目视法判别。 5.4 三氧化二铝含量的测定 5.4.1 方法提要 铝离子与已知过量的乙二胺四乙酸二钠标准溶(EDTA)进行络合,形成稳定的A1-EDTA 络合物,过剩的EDTA在pH=5条件下,以二甲酚橙做指示剂,用氯化锌标准滴定溶液回滴至终点。 5.4.2 试剂 5.4.2.1 六次甲基四胺。 5.4.2.2 硫酸溶液:1+1。 5.4.2.3 盐酸溶液:1+4。 5.4.2.4 氨水溶液:1+9。 5.4.2.5 乙二胺四乙酸二钠标准滴定溶液:c(EDTA)≈0.05mol/L。 5.4.2.6 氯化锌标准滴定溶液:c(ZnCl2)≈0.05mol/L。 5.4.2.7 二甲酚橙指示剂.2g/L。 5.4.3 分析步骤 5.4.3.1 试验溶液的制备 称取已研细并经(250±100)℃烘干2h的约0.5g试样,精确至0.0002g,置于150mL 烧杯中。慢慢加入少量水,搅拌至糊状。再加入10mL硫酸溶液,移至电炉上加热溶解至透明,取下冷却。移入100mL容量瓶中,用水稀释至刻度,摇匀。 5.4.3.2 测定 用移液管移取10mL试验溶液,置于300mL锥形瓶中。准确加入30mL EDTA标准溶液,用水冲洗瓶壁。加入六滴二甲酚橙指示液,用氨水溶液调至溶液呈紫红色,移至电炉上加热煮沸1min,取下冷却(若氨水溶液过量,再用盐酸溶液调呈亮黄色再过一滴)。加1.5g六次甲基四胺,用氯化锌标准滴定溶液滴定至出现玫瑰红色即为终点。 5.4.4 结果计算 三氧化二铝含量以三氧化二铝(Al2O3)的质量分数ω1计,数值以%表示,按公式(1)计算: () () ()1 ...... .......... 100 100 / 10 m 10 c c3 2 2 1 1 1? ? - =- M V V ω 式中: C1——乙二胺四乙酸二钠标准滴定溶液的浓度的准确数值,单位为摩尔每升(mol/L);V1——加入EDTA标准滴定溶液的体积的数值,单位为毫升(mL); C2——氯化锌标准滴定溶液的浓度的准确数值,单位为摩尔每升(mol/L);

实验讲义-活性氧化铝的制备

实验1 催化剂载体——活性氧化铝的制备 一、目的与要求 1.通过铝盐与碱性沉淀剂的沉淀反应,掌握氧化铝催化剂载体的制备过程。 2.了解制备氧化铝水合物的技术和原理。 3.掌握活性氧化铝的成型方法。 二、实验原理 活性氧化铝(Al2O3)是一种具有优异性能的无机物质,不仅能作脱水吸附剂、色谱吸附剂,更重要的是作催化剂和催化剂载体,并广泛用于石油化工领域,涉及重整、加氢、脱氢、脱水、脱卤、歧化、异构化等各种反应。它之所以能如此广泛地被采用,主要原因是它在结构上有多种形态及物理性质和化学性质的千差万别。学习有关Al2O3的制备方法,对掌握催化剂的制备有重要意义。 催化剂或催化剂载体用的氧化铝,在物理性质和结构方面都有一定要求。最基本的是比表面积、孔结构、晶体结构等。例如,重整催化剂是将贵重金属铂、铼载在γ-Al2O3或η-Al2O3上。氧化铝的结构对反应活性影响极大。载于其他形态的氧化铝上,其活性是很低的,如烃类脱氢催化剂,若将Cr-K载在γ-Al2O3或η-Al2O3上,活性较好,而载在其他形态氧化铝上,活性很差。这说明它不仅起载体作用,而且也起到了活性组分的作用,因此,也称这种氧化铝为活性氧化铝。α-Al2O3在反应中是情性物质,只能作载体使用。制备活性氧化铝的方法不同,得到的产品结构亦不相同,其活性的差异也很大,因此制备中应严格掌握每一步骤的条件,并且不应混入杂质。尽管制备方法和路线很多,但无论哪种路线都必须制成氧化铝水合物(氢氧化铝),再经高温脱水生成氧化铝。自然界存在的氧化铝或氢氧化铝脱水生成的氧化铝,不能作载体或催化剂使用。这不仅是杂质多,主要是难以得到所要求的结构和催化活性。为此,必须经过重新处理。可见制备氧化铝水合物是制备活性Al2O3的基础。 氧化铝水合物经X射线分析,可知有多种形态,通常分为结晶态和非结晶态。结晶态中含有一水和三水化物2类形体;非结晶态则含有无定形和结晶度很低的水化物2种形体,它们都是凝胶态。可总括为下述表达形式: -Al2O3·H2O,一软水铝石 -Al2O3·H2O,一硬水铝石 -Al2O3·3H2O,α三水铝石 -Al2O3·3H2O,β三水铝石 β-Al2O3·3H2O,新β三水铝石 2 O3≥3 2 O/Al2O3≈1.5~2.0 水合氧化铝

氧化铝纳米材料+-教学教材

氧化铝纳米材料+-

沉淀法制备纳米级Al2O3中的团聚控制 学号:姓名: 自从Gleiter等在20世纪80年代中期制得纳米级Al2O3,人们对这一高新材料的认识不断加深并陆续发现它的更多特性。作为一种多功能的超微粒子,纳米Al2O3已广泛应用于结构及功能陶瓷、复合材料、催化剂载体、荧光材料、红外吸收材料等[1]。由于氧化铝陶瓷来源廉价,且具有耐腐蚀、耐高温、高硬度、高强度、抗磨损、抗氧化和绝缘性好等良好特性,在冶金、化工、电子、国防、航天及核工业等高科技领域得到了广泛的应用。制备纳米Al2O3是为进一步制备纳米Al2O3高分子复合材料提供优质原料。如何制备出价格低廉、工艺简单、性能优良的纳米氧化铝粉体一直是国内外研究的热点[2,3]。目前,制备纳米Al2O3粉体主要有固相法、气相法和液相法三大类。固相法操作简单,但生成颗粒粒径难以控制,且分布不均;气相法设备要求严格,操作复杂;液相法成本较低,生产设备和工艺过程简单,生成颗粒纯度高,粒径小且分布均匀,是制备纳米陶瓷粉体最常用的方法[4]。常用的液相法有:溶胶-凝胶法,水热法,微乳液法,沉淀法[5]。本文主要介绍沉淀法制备纳米氧化铝粉体的不同反应体系,并着重介绍了近几年在颗粒细化、减少团聚等研究方面取得的主要进展。 沉淀法就是在金属盐溶液中加入适当的沉淀剂,得到前驱体沉淀,再经过过滤、洗涤、干燥、煅烧等工艺得到所要的产物。沉淀法因原料成本低,设备及工艺简单,易于工业化,在生产高纯超细氧化铝粉末时有其优势[6]。近年来研究使用的不同反应体系主要有以下三种: (1)铝盐+碳酸铵体系

a.以硝酸铝为母液,碳酸铵为沉淀剂,其反应方程为: A1(NO3)3+2 (NH4)2CO3+H2O= NH4AlO(OH)HCO3+3NH4NO3+CO2该反应体系在酸性(pH>5)和碱性条件下都可以得到纳米粉体,但在碱性条件下结果较好。两种添加顺序,将A1(NO3)3溶液加(NH4)2CO3溶液或相反,都可以得到碳酸铝胺NH4AlO (OH)HCO3沉淀,在1150℃下煅烧沉淀可得到粒径小于50nm 的粉体[7]。 b.以硫酸铝铵为母液,碳酸氢铵为沉淀剂,其反应方程式为: NH4A1(SO4)2+4NH4HCO3 = NH4AlO (OH)HCO3 +2 (NH4 )2SO4 +3CO2+H2O 这是目前研究最多的反应体系。两种添加顺序也都可以得到沉淀。采用先缓漫滴加碳酸氢铵至稍过量,然后以喷雾混合的方式,可使沉淀过程保持均相,获得平均粒径为30nm 的NH4AlO(OH)HCO3前驱体粉末。喷雾混合方式可使溶液的pH 值迅速上升,有利于晶核形成,而前驱沉淀物的晶核数目越多,产物的粒径就越小[8]。 (2)无机盐+尿素均相沉淀体系 在反应体系中加入尿素.随着温度升高,尿素分解生成沉淀剂 NH4OHCO(NH2)2+3H2O=CO2 +2NH4OH 沉淀剂NH4OH 在溶液中均匀分布,使沉淀均匀缓慢地生成,在沉淀过程中反应容器内一直保持均相。此方法制备的纳米氧化铝具有粒度小、粒径分布窄,制备成本低、工艺简单等优点,但同时由于其沉淀产物主要为氢氧化铝,因此存在较为严重的团聚问题。

多孔氧化铝模板的制备及应用

2010,Vol.27No.2 化学与生物工程 Chemistry &Bioengineering 74  收稿日期:2009-09-09 作者简介:李雪芳(1972-),女,四川仁寿人,讲师,研究方向:药物制备与分析。E 2mail :lasalixuefang @https://www.doczj.com/doc/e216408388.html, 。 多孔氧化铝模板的制备及应用 李雪芳 (拉萨师范高等专科学校数学与自然科学系,西藏拉萨850007) 摘 要:以磷酸溶液为电解液、以高纯铝为阳极,采用两步阳极氧化法制备氧化铝模板。扫描电子显微镜(SEM )对其表面形貌分析表明,氧化铝膜为多孔结构,膜孔径随着阳极氧化电压的增大而不断增大。对阳极氧化电流密度变化分析证实,铝的阳极氧化经历了三个阶段:阻挡层的生成、多孔层的形成和多孔层的稳定生长。以制备的氧化铝膜为阴极、锌片为阳极,以硝酸锌和硼酸的混合液为电解液,采用交流电沉积方法制备了针状氧化锌纳米线。 关键词:多孔氧化铝模板;阳极氧化;电沉积;氧化锌 中图分类号:O 6461542 TQ 15311 文献标识码:A 文章编号:1672-5425(2010)02-0074-03 纳米材料在光学、电学、磁学[1]和力学等方面具有独特的性质,因此受到了人们的广泛关注,特别是纳米有序阵列材料显得更为重要。通过电化学沉积法、化学气相沉积法、溶胶-凝胶等方法在氧化铝孔内可以沉积各类物质,还可以通过修饰氧化铝膜纳米孔来制备各种不同用途的纳米材料。模板法是合成纳米线和纳米管等一维纳米材料的主要方法[2]。其中,多孔氧化铝膜作为一种重要的模板近年来得到了广泛的应用,如Masuda 等[3]以氧化铝膜为模板采用两步复制法制备了具有规则排列纳米孔的铂膜和金膜。 纳米氧化锌由于具有优良的光学、电学和声学等性能而成为一种重要的金属氧化物半导体材料,越来越受到重视,其制备方法有电沉积法、水热法、磁控溅射法[4,5]等,但以多孔氧化铝为模板,交流电沉积制备针状氧化锌纳米线却未见报道。 作者在此采用两步阳极氧化法,于不同的电压下电解制备氧化铝膜,讨论了电压对氧化铝膜形貌的影响;并进一步以氧化铝膜为阴极,采用交流电沉积法制备了氧化锌纳米线。 1 实验 111 试剂与仪器 磷酸、丙酮、氢氧化钠、高氯酸、乙醇、硝酸锌、硼酸等均为分析纯;实验用水为二次去离子水。 D H1722型直流稳压电源,北京大华无线电仪器 厂;B K 250型交流变压器,上海中发电气有限公司; J SM 26490L V 型扫描电子显微镜,日本电子;GEN E 2 SIS 2000XMS 型X 2射线能谱仪,美国EDS 。112 氧化铝模板的制备 将高纯度(99199%)的铝片,分别在丙酮、去离子 水中超声清洗2h 以除去表面杂质,然后在115mol ?L -1的NaO H 溶液中浸泡4min ,接着在高氯酸和乙醇的混合溶液(体积比为1∶4)中,以15V 恒压电化学抛光3min 。以70g ?L -1H 3PO 4为电解液,以铝片为阳极,室温下进行两次阳极氧化。第一次阳极氧化(氧化时间为115h )后,在6%的H 3PO 4溶液中浸泡4h ,以去除第一次氧化所形成的氧化膜,用去离子水冲洗干净后,进行第二次阳极氧化(氧化时间为3h )。113 氧化锌的沉积 以013mol ?L -1Zn (NO 3)2和011mol ?L -1H 3BO 4的混合溶液为电解液,采用两极体系,以氧化铝膜为阴极、Zn 片为阳极,在4V 、50Hz 交流电作用下于沸腾溶液中沉积1h ;清洗,干燥,400℃热处理3h ,即得氧化锌纳米线。114 氧化铝膜和氧化锌的形貌和成分分析 膜层表面形貌通过J SM 26490L V 型扫描电镜(SEM )观察,加速电压为013~30kV ;膜层的微区化学成分用GEN ESIS 2000XMS 型X 2射线能谱(EDS )进行分析。 2 结果与讨论 211 氧化铝模板的制备 21111 阳极氧化电压对多孔氧化铝形貌的影响 图1是氧化电压为30V 、75V 、120V 时,两步阳

纳米氧化铝的制备与应用

纳米氧化铝的制备与应用 作者:XXX 摘要:纳米技术日新月异,纳米材料科学也不断的进步。纳米氧化铝作为纳米材料的一员,因其特殊的性能成为一种用途广泛的纳米材料,其制备方法不断涌现,其应用范围也不断拓展,已逐渐成为重要的无机纳米材料。对纳米氧化铝的制备方法与应用的领域做进一步的研究,有着十分重要的经济意义和现实意义。本文主要介绍了纳米氧化铝的制备方法和应用现状,并对其研究前景作了简要展望。 关键词:纳米氧化铝,制备,应用 引言 纳米氧化铝是一种尺寸为1~ 100nm的超微颗粒, 具有强的体积效应、量子尺寸效应、表面效应和宏观量子隧道效应, 在光、电、热力学和化学反应等许多方面表现出一系列的优异性能, 广泛用作精细陶瓷、复合材料、荧光材料、湿敏性传感器及红外吸收材料等[1,2]。自80年代中期Gleiter 等制得纳米级Al2O3粉末以来, 人们对这一高新材料的认识不断加深并发现其中有许多特性, 本文试对其制备方法与应用研究取得的进展作一综述。 1 纳米Al2O3的制备技术 目前纳米Al2O3的制备方法可归纳为固相法、气相法和液相法三大类, 但随着科技的不断发展和对不同物理、化学特性超微粒的需求, 在上述三类方法的基础上又衍生出许多新的技术。 1. 1 气相合成法 气相法制备高纯超细粒子氧化铝主要采用化学气相沉积法( Chemical Vapor Deposition法) , 是以金属单质、卤化物、氢化物或有机金属化合物为原料, 通过气相加热分解和化学反应合成微粒。 1. 1. 1 火焰CVD[ 3, 4] 借助惰性气体将反应物送进反应室中, 燃料气体的火焰将反应物蒸发, 气态反应物被氧化成粒径为10~50nm的超细高纯氧化铝粉末。反应物母体为金属铝的碳水化合物、氧化铝; 氧化剂为氧气; 产生火焰的燃料气体是氢气、甲烷、乙烯、乙炔或它们的混合气体, 并用惰性气体稀释; 所用燃烧炉是逆流扩散火焰燃烧炉。美国Chen Y J[5]等利用此法制备出粒径为30~ 50nm的无团聚氧化铝纳米粒子。 1. 1. 2 激光热解CVD法 意大利的E Borsella[6]利用三甲基铝Al(CH3) 3和N2O作为气相反应物, 加入C2H4作为反应敏化剂,采用CO2激光( C2H4在CO2激光发射波长处有共振吸收) 加热进行反应, 然后在1200~ 1400 下进行热处理成功地合成了粒径为15~ 20nm的Al2O3粒子。经X射线衍射、电镜和BET表面积测试, 粉末主要为球形单晶纳米粒子。 1. 1. 3 激光加热蒸发CVD法 日本专利[ 7]提出氧化铝陶瓷( 纯度为99. 99%)作为蒸发源, 放在一个压力为0. 01Pa的真空泵中,通O2、CO或CO2, 使压力保持在15Pa左右, 用CO2激光照射氧化铝陶瓷使之蒸发, 蒸发出的氧化铝在气体中迅速冷却得到超细高纯氧化铝。Bharti[ 8]用此法制备20~ 30nm的氧化铝球形粒子。该方法具有能量转换效率高、粒子大小均一、不团聚、粒径小、可精确控制等优点, 但成本高、产率低、难以实现工业化生产。 1. 2 液相合成法

氧化铝制取的方程式

,氧化铝制取的方程式 αK与RP值的关系: aK是铝酸钠溶液中所含苛性碱与氧化铝的物质的量的比。 Rp是溶液中所含氧化铝与苛性碱的质量比。 两者相乘等与1.645,即是氧化铝分子量的大小除以苛性碱分子量大小的值。 类别:氧化铝制取工 | 评论(0) | 浏览(66 ) 实验室提纯铝土矿中的氧化铝的方程式 2009-05-11 16:22 求实验室提纯铝土矿中的氧化铝的方程式: 铝土矿中常含有少量的SiO2和Fe2O3,写出实验室由铝土矿制取纯净Al2O3时需加入的试剂和反应方程式: 加HCl溶液过量,过滤除去SiO2沉淀,方程式为Al2O3+6HCl→2AlCl3+3H2O,Fe2O3+6HCl→2FeCl3+3H2O 加NaOH溶液过量,过滤除去Fe(OH)3,方程式为 4NaOH+AlCl3→NaAlO2+3NaCl+2H2O ,3NaOH+FeCl3→Fe(OH)3↓+3NaCl 通入CO2过量,过滤得到Al(OH)3,方程式为 2NaAlO2+CO2+3H2O→2Al(OH)3↓+Na2CO3 煅烧Al(OH)3可以得到纯净的Al2O3,方程式为2Al(OH)3→Al2O3+3H2O↑ 铝土矿的主要化学成分为Al2O3,一般为40%~70%质量分数,另含SiO2、Fe2O3、TiO2及少量CAO、MgO及微量Ga、V、P、V、Cr等。以Al2O3在矿物存在形态分为:三水铝石(Al2O3?3H2O),一水软铝石,一水硬铝石(分子式均为Al2O3.H2O)。评定铝土矿质量标准是铝硅比,生产要求该值不低于3~3.5。 等 从铝土矿制取Al2O3方法很多,目前工业上几乎采用碱法,又分为拜耳法、烧结法、联合法等三种: Al2O3?3H2O(或Al2O3?H2O)+NaOH→(浸出/分解)NaAl(OH)4+赤泥→(晶种分解

活性氧化铝的制备及除氟性能研究

活性氧化铝的制备及除氟性能研究 时海平1,王东田1,2,田美玲1 (1.苏州科技学院环境科学与工程学院,江苏苏州215011;2.苏州科技学院化学与生物学院,江苏苏州215009) 摘要:采用溶胶-凝胶法制备出多孔活性氧化铝,采用XRD 表征手段对其和参比成品活性氧化铝的晶相进行分析。XRD 测定表明实验条件下制得的活性氧化铝为非晶态的γ-Al 2O 3,成品活性氧化铝为结晶完整的γ-Al 2O 3。用静态吸附法比较了制备的活性氧化铝、成品氧化铝对氟离子的吸附性能,结果表明:实验制得的活性氧化铝对氟离子的吸附性能较好。 关键词:溶胶-凝胶法;活性氧化铝;晶相;吸附 中图分类号:O643文献标识码:A 文章编号:1672-0679(2010)03-0023-04 氟是人体必需的微量元素,适量的氟能增加骨骼的坚固性,有一定的防治龋齿病的功效[1]。但过量摄入会引起慢性氟中毒,引发氟斑牙与氟骨症等[1,2]。目前去除水体中的氟主要有两种方法[3~6]:化学沉淀法与吸附法。吸附法是除氟的重要方法,除氟效果十分显著。白色颗粒状活性氧化铝是目前广泛应用的除氟吸附剂,其孔隙结构发达、比表面积较大、吸附容量大且化学稳定性好。 溶胶-凝胶技术能够通过低温化学手段在微观层次上裁剪和控制材料的显微结构,使材料的均匀性达到亚微米级、纳米级甚至分子级的水平[7],因此近年来在合成陶瓷、氧化物涂层、高温超导材料、复杂氧化物材料等方面取得了广泛的应用。目前国内外主要以醇铝水解制备大孔体积、低密度γ-Al 2O 3,该法环境污染小,产品纯度高,物化性能好,但成本较高;且通过溶胶-凝胶法所制取的活性氧化铝以薄膜及纳米级的分体为主,应用于催化剂及载体上较多,对于通过溶胶-凝胶法制取中孔的氧化铝颗粒适用于除氟方面的较为少见。本文以分析纯AlCl 3·6H 2O 为原料,通过溶胶-凝胶法制备了勃姆石(γ-AlOOH )的铝凝胶,通过干燥、煅烧制备了γ-Al 2O 3的粉体;通过浸渍法制备了γ-Al 2O 3的薄膜;并应用XRD 现代分析技术对所制得的粉体的晶相进行表征;同时对制备出来的活性氧化铝进行除氟性能研究。 1实验材料与方法 1.1材料与仪器 分析纯氯化铝(AlCl 3·6H 2O )、分析纯氨水(NH 3·H 2O )、分析纯盐酸(HCl ),实验所用水为去离子水。参比活性氧化铝为苏州宏鹏吸附剂厂生产的球形活性氧化铝,其各项物理指标如表1所示(厂家提供)。D8-FO -CUS XRD 衍射仪(德国BRUCKER 公司) 1.2勃姆石γ-AlOOH 凝胶的配制 以AlCl 3·6H 2O 为原料,在高速搅拌下将一定量的NH 3·H 2O 逐步滴加到不同浓度的AlCl 3·6H 2O 溶液中,形成γ-AlOOH 沉 淀凝胶,将一部分沉淀凝胶在一定温度下再加入一定浓度的 HCl 作为胶溶剂在高速搅拌作用下回溶,使之形成透明、稳定的 勃姆石γ-AlOOH 水溶胶。 1.3γ-Al 2O 3粉末的制备 将制得的γ-AlOOH 沉淀凝胶和γ-AlOOH 水溶胶置于烘 —————————————————— —[收稿日期]2010-03-25 [作者简介]时海平(1983-),女,江苏连云港人,硕士研究生。 第23卷 第3期苏州科技学院学报(工程技术版)Vol.23No.32010年9月Journal of Suzhou University of Science and Technology (Engineering and Technology ) Sep .20 10

氧化铝工艺流程图

拜耳法生产氧化铝的基本流程 ⒈原矿浆制备。首先将铝土矿破碎到符合要求的粒度(如果处理一水硬铝土型铝土矿需加水量的石灰),与含有游离的NaOH的循环母液按一定的比例配合一道送入湿磨内进行细磨,制成合格的原矿浆,并在矿浆槽内贮存和预热。 ⒉高压溶出。原矿浆经预热后进入压煮器组(或管道溶出器设备),在高压下溶出。铝土矿内所含氧化铝溶解成铝酸钠进入溶液,而氧化钛以及大部分的二氧化硅等杂质进入固相残渣即赤泥中。溶出所得矿浆称压煮矿浆,经自蒸发器减压降温后送入缓冲槽。

⒊压煮矿浆和稀释及赤泥分离和洗涤。压煮矿浆含氧化铝浓度高,为了便于赤泥沉降分离和下一步的晶种分解,首先加入赤泥洗液将压煮矿浆进行稀释(称赤泥浆液),然后利用沉降槽进行赤泥与铝酸钠溶液的分离。分离后的赤泥经过几次洗涤回收所含的附碱后排至赤泥场(国外有排入深海的),赤泥洗液用来稀释下一批压煮矿浆。 ⒋晶种分解。分离赤泥后的铝酸钠溶液(生产上称粗液)经过进上步过滤净化后制得精液,经过热交器冷却到一定的温度,在添加晶种的条伯下进行分解,结晶析出氢氧化铝。 ⒌氢氧化铝的分级与洗涤分解后所得氢氧化铝浆液送去沉降分离,并按氧化铝颗粒大小进行分级,细粒作晶种,粗粒经洗涤后送焙烧制得氧化铝。分离氧氧化铝后的种分母液和氢氧化铝洗液(统称母液)经热交换器预热后送去蒸发。 ⒍氢氧化铝焙烧。氢氧化铝含有部分附着水和结晶水,在回转窑内经过高温 焙烧脱水并进行一系列的晶相转变制得含有一定γ—Al 2O 3 和α—Al 2 O 3 的产品氧 化铝。 ⒎母液蒸发和苏打苛性化。预热后的母液经蒸发器浓缩后得到合乎浓度要求的循环母液,补加NaOH后又返回湿磨,准备溶出下一批矿石。 在母液蒸发过程中会有一部分Na 2CO 3 ·H 2 O与水溶解后加石灰进行苛化使之 变成NaOH用来溶出下批铝土矿。

催化剂载体-活性氧化铝的制备实验

催化剂载体-活性氧化铝的制备实验 一、实验目的 1、通过铝盐与碱性沉淀剂的沉淀反应,掌握氧化铝催化剂和催化剂载体的制备过程。 2、了解制备氧化铝水合物的技术和原理。 3、掌握活性氧化铝的成型方法。 二、实验内容 1、通过铝盐与碱性沉淀剂反应,制备氧化铝催化剂。 三、实验原理 催化剂或催化剂载体用的氧化铝,在物性和结构方面都有一定要求。最基本的是比表面积、孔结构、晶体结构等。例如,重整催化剂是将贵重金属铂、 铼载在γ—Al 2O 3 或η—Al 2 O 3 上。氧化铝的结构对反应活性影响极大,载于其 他形态的氧化铝上,其活性是很低的,如烃类脱氢催化剂,若将Cr—K载在γ—Al2O3或η—Al2O3上,活性较好,而载在其他形态氧化铝上,活性很差。这说明它不仅起载体作用,而且也起到了活性组分的作用,因此,也称这种 氧化铝为活性氧化铝。α—Al 2O 3 在反应中是惰性物质,只能作载体使用。制 备活性氧化铝的方法不同,得到的产品结构亦不相同,其活性的差异颇大,因此制备中应严格掌握每一步骤的条件,不应混入杂质,尽管制备方法和路线很多,但无论哪种路线都必须制成氧化铝水合物(氢氧化铝),再经高温脱水生成氧化铝。自然界存在的氧化铝或氢氧化铝脱水生成的氧化铝,不能作载体或催化剂使用,这不仅因杂质多,主要是难以得到所要求的结构和催化 活性。为此,必须经过重新处理,可见制备氧化铝水合物是制活性Al 2O 3 的基 础。 氧化铝水合物经X射线分析,可知有多种形态,通常分为结晶态和非结晶态。结晶态中有一水和三水化物两类形体;非结晶态则含有无定形和结晶度很低的水化物两种形体,它们都是凝胶态。可总括为下述表达形式:

氧化铝制取工中级模拟试题

氧化铝中级考试(A卷) 一.判断题(请将判断结果填入括号中。正确的填“√”,错误的填“×”。每题0.5分,满分8分) 1.分解原液中Al 2O 3 浓度越高,分解槽的单位产能就越大,在一定时间内,溶液 的稳定性降低,分解率增大。( N) 2.当分解终温一定时,在一定的分解时间内,降低分解初温能得到较高的分解率。(Y ) 3.所谓附聚是指一些细小晶粒互相依附并粘结成为一个较大晶体的过程。(Y) 4.种分原液分子比高,则分解速度快。( N ) 5.电气着火时用水扑灭,以防止更大的火灾。( N ) 6..分解初温越高,析出的氢氧化铝中不可洗碱的含量越高。( N ) 7..降低温度可以提高铝酸钠溶液的稳定性。() 8.SiO2在高压溶出过程中的行为取决于它的矿物组成,溶出温度和时间。() 9..生产砂状氧化铝应采用低温焙烧制度。 10.原矿浆苛性碱浓度和铝土矿类型是影响高压溶出溶出速度的主要因素。() 11.向蒸发原液中添加某种表面活性物质是延缓结垢生成的方法之一。() 12.赤泥的压缩液固比越小,赤泥的沉降性能越好。() 13.提高自蒸发级数和予热级数,可以提高热回收率。 14.采用管道化溶出可以强化溶出过程,达到较高的溶出温度,特别适于处理三水铝石型铝土矿。() 15赤泥沉降过程中添加絮凝剂是目前工业上普遍采用的加速赤泥沉降的方法。 16.种分分解率低于碳分分解率。 二、填空题(每空1分,共25分) 1.目前,工业上几乎全部是采用_______生产氧化铝。 2.工业氧化铝是各种_____________经热分解的_____________产物,按照它们的生成_____________可以分为_____________氧化铝和_____________氧化铝。 3由于电解槽中间下料和烟气____________的需要,铝电解用氧化铝逐渐向_____________转化。 6.奥地利人K.J拜耳发明了用_____________溶液直接浸出铝土矿生产氧化铝的拜耳法。 7.铝酸钠溶液的苛性比值是溶液所含苛性碱与氧化铝的___________。 8.氧化铝不溶于水,但它能溶于___________,又能溶于___________,是一种典型的___________化合物。 9.拜耳法在处理___________铝土矿,特别是用在处理___________铝土矿时有流程简单、作业方便等优点。 10.混联法生产氧化铝是在___________基础上结合我国铝土矿的资源特点创造的生产新工艺。 11.通常将一升(或1立方米)循环母液在一次作业周期所生产的___________的克数(或公斤)称为拜耳法的循环效率。

三氧化铝的制备与表征

催化剂制备 题目:三氧化铝的制备与表征 班级: 学号: 姓名: 指导教师: 2010年12月

目录 1 前言 (1) 1.1 氧化铝的性质 (1) 1.2 氧化铝的用途 (1) 1.3 氧化铝的一些研究.............................................................. 错误!未定义书签。 2 实验部分 (4) 2.1 实验原理 (4) 2.2 实验仪器与药品 (6) 2.3 实验的方案 (6) 2.4 实验方法 (6) 2.4.1γ- Al2O3的制备 (6) 2.4.2 指示剂法测定表面固体酸的分布 (7) 3 实验结果与讨论 (8) 3.1 氧化铝的产率 (8) 3.2 表面酸强度的影响因素 (9) 3.3 计算催化剂的酸度 (11) 参考文献 (20)

1 前 言 1.1 氧化铝的性质 氧化铝化学式Al2O3,分子量101.96。矾土的主要成分。白色粉末。流动性好,不溶于水,能溶解在熔融的冰晶石中。具有不同晶型,它的四种同素异构体β-氧化铝 ,δ- 氧化铝, v -氧化铝 ,a -氧化铝 ,主要有α型和γ型两种变体,工业上可从铝土矿中提取。名称 :氧化铝;刚玉; 白玉; 红宝石; 蓝宝石; 刚玉粉。常见的是α-Al2O3和γ-Al2O3。自然界中的刚玉为α-Al2O3,六方紧密堆积晶体,α-Al2O3的熔点2015±15℃,密度3.965g/cm3,硬度8.8,不溶于水、酸或碱。32O Al -γ属立方紧密堆积晶体,不溶于水,但能溶于酸和碱,是典型的两性氧化物。 Al2O3+6H+=2Al3++3H2O Al2O3+2OH-=2AlO2-+H2O 1.2 氧化铝的用途 氧化铝化学式Al2O3,分子量101.96,矾土的主要成分。氧化铝是白色晶状粉末,已经证实氧化铝有α、β、γ、δ、η、θ、κ和χ等十一种晶体。不同的制备方法及工艺条件可获得不同晶体结构的氧化铝,不同的晶体结构的氧化铝具有不同性质和用途[3]。 (1) 耐火材料 供耐火材料用的氧化铝原料,约占铝土矿、矾土页岩等天然产品的一半以上。其余为电融氧化铝、烧结氧化铝、合成莫来石、氧化铝水泥等合成产品,近几年其需要量略有增长趋势。在此领域也出现了合成尖晶石,并有出售。 电融氧化铝是将氧化铝原料用电弧炉熔融后冷却凝固,再粉碎成适当粒级的产品。由于其难以烧结,于高温下很少变形,适于做过苛条件下使用的高铝耐火砖及不定形耐火材料的骨料。 烧结氧化铝是将氧化铝原料成形为粒料,高温烧结粉碎而成。其用途与电融氧化铝大致相同。 氧化铝水泥是由氧化铝原料和生石灰制成,是以铝酸钙类和刚玉为主要成分的水硬性耐火材料,用做成形耐火材料的原料,能满足稳定性的要求。 (2) 研磨材料-磨料 电融氧化铝的另一用途是作研磨材料即磨料。研磨材料大致可分氧化铝质和

相关主题
文本预览
相关文档 最新文档