当前位置:文档之家› 大学物理下(计算题)

大学物理下(计算题)

大学物理下(计算题)
大学物理下(计算题)

第9章

9-4 直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上有一点荷

91 1.810C q -=?,B 点上有一点电荷92 4.810C q -=-?,已知

0.04m BC =,0.03m AC =,求C 点电场强度E ρ

的大小和方向

(cos370.8?≈,sin370.6?≈).

解:如解图9-4所示C 点的电场强度为12E E E =+r r r

99

411122

0 1.810910 1.810(N C )4π()(0.03)q E AC ε--???===?? 9941

2222

0 4.810910 2.710(N C )4π()(0.04)

q E BC ε--???===?? C 点电场强度E ρ

的大小

22

2244112 1.8 2.710 3.2410(N C )E E E -=+=+?=??

方向为

4o

14

2 1.810arctan arctan 33.72.710

E E α?===? 即方向与BC 边成33.7°。

9-5 两个点电荷6

6

12410C,810C q q --=?=?的间距为0.1m ,求距离它们都是0.1m 处

的电场强度E ρ

解:如解图9-5所示

9661

1122

01910410 3.610(N C )4π10

q E r ε---???===?? 96612222

029108107.210(N C )4π10

q E r ε---???===?? 1E ρ,2E ρ

沿x 、y 轴分解

611212cos60cos120 1.810(N C )x x x E E E E E -=+=?+?=-?? 611212sin60sin1209.3610(N C )y y y E E E E E -=+=?+?=??

电场强度为 22619.5210(N C )x y E E E -=

+=??

解图9-5

解图9-4

C

题图9-4

6o

6

9.3610arctan arctan 1011.810

y

x E E α?===-?

9-12.一均匀带电球壳半径16cm R =,外半径210cm R =,电荷体密度为5

3

210m C ρ--=??,

求:到球心距离r 分别为5cm 8cm 12cm 、、处场点的场强. 解: 根据高斯定理0

d ε∑?=?q

S E s

??得

2

π4ε∑=q r

E

当5=r cm 时,

0=∑q

,得

0=E ?

8=r cm 时,∑q 3

π4p

=3

(r )31R - ()

20313

π43π4r

R r E ερ

-=

41048.3?≈1C N -?, 方向沿半径向外. 12=r cm 时,3

π4∑=ρ

q -3

2(R )31R ()

420313

21010.4π43π4?≈-=

r

R R E ερ

1C N -? 沿半径向外.

9-13 两平行无限大均匀带电平面上的面电荷密度分别为+б和-2

б,如题图9-13所示,

(1)求图中三个区域的场强1E ρ,2E ρ,3E ρ的表达式;

(2)若62

4.4310C m σ--=??,那么,1E ρ,2E ρ,3E ρ各多大?

解:(1)无限大均匀带电平板周围一点的场强大小为

2E σ

ε=

在Ⅰ区域

题图9-13

1000

2222σσσεεε-=+=r r r r E i i i

Ⅱ区域

2000

23222σσσεεε=+=r r r r E i i i

Ⅲ区域

3000

2222σσσεεε=-=-r r r r E i i i

(2)若624.4310C m σ--=??则

5110 2.5010(V m )2E i i σε-==??r r

r

5120

37.5010(V m )2E i i σε-==??r r r

5130

2.5010(V m )2E i i σε-=-=-??r r r

9-17 如题图9-17所示,已知2810m a -=?,2610m b -=?,

81310C q -=?,82310C q -=-?,D 为12q q 连线中点,求:

(1)D 点和B 点的电势; (2) A 点和C 点的电势;

(3)将电量为9210C -?的点电荷q 0由A 点移到C 点,电场力所做的功;

(4)将q 0由B 点移到D 点,电场力所做的功。 解:(1)建立如解图9-17所示坐标系,由点电荷产生的电势的叠加得

8989

1222

0031091031091004104104π4π22D q q U a a εε----??????=+=-=?????? ? ?

????

同理,可得

0B U =

题图9-17

解图9-17

(2)

104πA q U b ε=

989832910310 1.810(V)610---???==??

2

04πC q U b

ε=

+

98

983

2910310 1.810(V)610---???=-=-?? (3)将点电荷q 0由A 点移到C 点,电场力所做的功

93360210[1.810( 1.810)]7.210(J)AC AC A q U --==???--?=?

(4)将q 0由B 点移到D 点,电场力所做的功

00BD BD A q U ==

9-20 半径为1R 和2R (2R >1R )的两无限长同轴圆柱面,单位长度上分别带有电量λ和

λ-,试求:

(1) 空间场强分布;

(2) 两圆柱面之间的电势差。

解: (1)由高斯定理求对称性电场的场强分布0

d ε∑?=?q

S E s

??

取同轴圆柱形高斯面,侧面积rl S π2=,则 rl E S E S

π2d =??

?

?

小圆柱面: 1R r <,

0q =∑

10E =

两圆柱面间:21R r R <<,

q l λ=∑,

r

E 02π2ελ

=

方向沿径向向外

大圆柱面外:2R r >,

0=∑q

03=E

(2)1

2002ln 2d 2d 2

1

2

1

R R r r r E U R R R R AB πελ

πελ===

?

?

9-21 在半径为R 1和R 2的两个同心球面上分别均匀带电q 1和q 2,求在10r R <<,

12R r R <<,2r R >三个区域的电势分布。

解:利用高斯定理求出空间的电场强度:

0I E = 1r R < 102

04II q E r r πε=

r

r

12R r R <<

1202

04III q q E r r πε+=r r 2r R >

则空间电势的分布:

1r R ≤

1

212d d d R R I I II III r

R R U E r E r E r +∞=?+?+??

??r r r

r r 2102114q q R R πε??=+ ???

22R r R ≤≤

2

2

d d R II II III r

R U E r E r +∞=?+??

?r r r r

2112212

002021444R r

q q q q q dr r R R r πεπεπε??

+=+

=+ ???

?

2r R ≥

1212200d d 44III III r

r q q q q U E r r r r

πεπε+∞

+∞++=?==?

?r r

解图9-21

第11章

1. 用两根彼此平行的长直导线将半径为R 的均匀导体圆环联到电源上,如题图所示,b 点为切点,求O 点的磁感应强度。

解:先看导体圆环,由于大ab 和小ab 并联,设大圆弧有电流1I ,小圆弧有电流2I ,必有:

12I R I R =大小由于圆环材料相同,电阻率相同,截面积S 相同,实际电阻与圆环弧的弧长l 大

和l 小有关,即:12,I l I l =大小

则1I 在O 点产生的1B r 的大小为0112

,4πI l B R μ=

而2I 在O 点产生的2B r

的大小为02212

.4I l B B R

μ=

=π小

1B r 和2B r 方向相反,大小相等.即120B B +=r r

。 直导线1L 在O 点产生的30B r

=。

直导线2L 在O 点产生的R

I

B πμ404=

,方向垂直纸面向外。 则O 点总的磁感强度大小为R

I

B B πμ4040==,方向垂直纸面向外。

2.一载有电流I 的长导线弯折成如题图所示的形状,CD 为1/4圆弧,半径为R ,圆心O 在

AC ,EF 的延长线上.求O 点处磁场的场强。

解:因为O 点在AC 和EF 的延长线上,故AC 和EF 段对

O 点的磁场没有贡献。 CD 段:

00,48CD I I

B R R

μμπ=

=π2

DE 段

0002(cos 45cos135).4242/2

DE I

I I

B a

R

R μμμ=

?-?=

=

πππ

O 点总磁感应强度为

0001

12824DE CD I

I

I B B B R

R

R μμμ??=+=

+

=

+ ?ππ??

,方同垂直纸面向外.

大学物理试卷大物下模拟试题

————————————————————————————————作者:————————————————————————————————日期:

09大物下模拟试题(1) 一、选择题(每小题3分,共36分) 1. 电流由长直导线1沿半径方向经a 点流入一由电阻均匀的导线构成的圆环,再由b 点沿半径方向从圆环流出,经长直导线2返回电源(如图).已知直导线上电流强度为I ,∠aOb =30°.若长直导线1、2和圆环中的电流在圆心O 点 产生的磁感强度分别用1B 、2B 、3B 表示,则圆心O 点的磁感强度大小 (A) B = 0,因为B 1 = B 2 = B 3 = 0. (B) B = 0,因为虽然B 1≠ 0、B 2≠ 0,但021 B B ,B 3 = 0. (C) B ≠ 0,因为虽然B 3= 0,但021 B B . (D) B ≠ 0,因为B 3≠ 0,021 B B ,所以0321 B B B . [ ] 2. 如图,流出纸面的电流为2I ,流进纸面的电流为I ,则下述 各式中哪一个是正确的? (A) I l H L 2d 1 . (B) I l H L 2 d (C) I l H L 3 d . (D) I l H L 4 d . [ ] 3. 一质量为m 、电荷为q 的粒子,以与均匀磁场B 垂直的速度v 射入磁场内,则粒子运动轨道所包围范围内的磁通量 m 与磁场磁感强度B 大小的关系曲线是(A)~(E)中的哪一条? [ ] 4. 如图所示的一细螺绕环,它由表面绝缘的导线在铁环上密绕 而成,每厘米绕10匝.当导线中的电流I 为2.0 A 时,测得铁环内的磁感应强度的大小B 为1.0 T ,则可求得铁环的相对磁导率 r 为(真 空磁导率 0 =4 ×10-7 T ·m ·A -1 ) (A) 7.96×102 (B) 3.98×102 (C) 1.99×102 (D) 63.3 [ ] 5. 有两个长直密绕螺线管,长度及线圈匝数均相同,半径分别为r 1 和r 2.管内充满均匀介质,其磁导率分别为 1和 2.设r 1∶r 2=1∶2, 1∶ 2=2∶1,当将两只螺线管串联在电路中通电稳定后,其自感系数之比L 1∶L 2与磁能之比W m 1∶W m 2分别为: (A) L 1∶L 2=1∶1,W m 1∶W m 2 =1∶1. (B) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶1. (C) L 1∶L 2=1∶2,W m 1∶W m 2 =1∶2. (D) L 1∶L 2=2∶1,W m 1∶W m 2 =2∶1. [ ] a b 1 O I c 2 L 2 L 1 L 3 L 4 2I I O B m (A)O B m (B)O B m (C) O B m (D)O B m (E)

本复习资料专门针对中北大学五院《物理光学与应用光学》石顺祥版教材,共有选择、填空、简答、证明、计算五个部分组成,经验证命中率很高,80分左右,不过要注意,证明题可能变成计算题,填空题变成选择题。 1-1: 8 610) (2)y t E i e++? =-+ 方程:y= y+= 方向向量:一个可以表示直线斜率的向量,这个向量就是方向向量。 Ax+By+C=0:若A、B不全为零,其方向向量:(- B,A)。 8 610) (2)y t E i e++? =-+ ) ( r k E E?- - =t i eω) ( r k E E?- =t i eω) ( r k E E?+ - =t i eω) ( r k E E?+ =t i eω 1-3 试确定下列各组光波表达式所代表的偏振态及取向 ①E x=E0sin(ωt-kz), E y= E0cos(ωt-kz) ②E x= E0cos(ωt-kz), E y= E0cos(ωt-kz+π/4) ③E x= E0sin(ωt-kz), E y=-E0sin(ωt-kz) E x=E0sin(ωt-kz), E y= E0cos(ωt-kz) 相位差π/2,E x=E y,圆。讨论xy平面的偏振情况 t=0时:合成矢量? t=T/4时:合成矢量? 右圆 E x= E0cos(ωt-kz), E y= E0cos(ωt-kz+π/4) 相位差π/4,椭圆。 t=0时:合成矢量? t=T/4时:合成矢量? 右椭圆,长半轴方向45o 见p25页。

E x = E 0sin(ωt -kz ), E y =-E 0sin(ωt -kz ) 相位差0,直线。y =-x 方向向量:(-1,1) 1-4:两光波的振动方向相同,它们的合成光矢量为: 1268+=10[cos cos()] 10102 10[cos(53.13)cos sin(53.13)sin ]10cos(53.13)t t t t t π ωωωωω+-=?+?=?-E E 1-5:+=cos()cos()4x y iA kz t jA kz t π ωω-+--E =E E ;因此有: =,4 y x π ???=-- =, =ox oy E A A E , tan 1,α= 得到: tan 2tan(2)cos ,,4 π ψα?ψ== sin 2sin(2)sin ,,8 π χα?χ==- 222tan()0.4142,2,8b a b A a π-=-≈-+= 得到: 2220.17162, 1.31,0.5412a a A a A b A +===。 1-8:(2)解:g dv v v k dk =+,g dv dv d dv v dk d dk d ωωω==,g g dv dv v v k v kv dk d ω =+=+ g g dv v kv v d ω-=,11g v v v dv dv k d v d ωωω == -- ,v =,3 2()()2r r r r c dv d εμεμ-=- 2 2() /[1]()()211[1]22r r r r g r r r r r r r r r r r r c d v v c v v dv d d d v v d d d εμεμωωεμεμωωεμεμωωεμωεμω ====+-++ 1-11 一左旋圆偏振光,以50o角入射到空气-玻璃分界面上,见下图,试求反射光和透射光的偏振态

1、均匀带电细线ABCD 弯成如图所示的形状,其线电荷密度为λ,试求圆心O 处的电势。 解: 两段直线的电势为 2ln 42 1πελ =V 半圆的电势为 ππελ 24= V , O 点电势)2ln 2(40 ππελ += V 2、有一半径为 a 的半圆环,左半截均匀带有负电荷,电荷线密度为-λ,右半截均匀带有正电荷,电线密度为λ ,如图。试求:环心处 O 点的电场强度。 解:如图,在半圆周上取电荷元dq a a dE dE E E a dq dE ad dl dq x x 02 02 02d cos 212cos 41πελ θθλ πεθ πεθ λλπ - =-=-======???由对称性 3、一锥顶角为θ的圆台,上下底面半径分别为R 1和R 2,在 它的侧面上均匀带电,电荷面密度为σ,求顶点O 的电势。(以无穷远处为电势零点) 解::以顶点O 作坐标原点,圆锥轴线为X 轴向下为正. 在任意位置x 处取高度为d x 的小圆环, 其面积为 xdx dx r dS θθ πθπcos tan 2cos 2== 其上电量为 xdx tg dS dq θθ πσσcos 2== 它在O 点产生的电势为 2 204x r dq dU += πε 022202tan tan 4cos tan 2εθσθπεθθπσdx x x xdx = += 总电势 ??-= ==0 1202)(tan 221 εσθεσ R R dx dU U x x A B C D O

4、已知一带电细杆,杆长为l ,其线电荷密 度为λ = cx ,其中c 为常数。试求距杆右端距离为a 的P 点电势。 解:考虑杆上坐标为x 的一小块d x d x 在P 点产生的电势为 x a l xdx c x a l dx dU -+= -+=00441πελπε 求上式的积分,得P 点上的电势为 ])ln()[(44000l a a l a l c x a l xdx c U l -++=-+=?πεπε 5、有一半径为 a 的非均匀带电的半球面,电荷面密度为σ = σ0 cos θ,σ0为恒量 。试求:球心处 O 点的电势。 解: 6、有一半径为 a 的非均匀带电的半圆环,电荷线密度为λ =λ0 cos θ,λ0为恒量 。试求:圆心处 O 点的电势。 解: 7、有宽度为a 的直长均匀带电薄板,沿长度方向单位长度的 带电量为λ , 试求:与板的边缘距离为b 的一点P 处的电场强度 (已知电荷线密度为λ的无限长直线的电场强度为 r E 02πελ=)。 O 020********sin cos 4sin 24sin 2sin 2εσεθθθσπεθ θπσπεθθπσσθθπππR d R R Rd R dU U R dq dU Rd R ds dq Rd R ds =??=??=== ??==??=? ??圆环的电势 上取一圆环, y ?? ======-0022 000 24cos 4πελπεθθλθλλπεπ πd dU U ad dl dq , a dq dU dq ,在半圆上取电荷元P ·

(高起专)大学物理下 模拟题2 一、填空题 1,载有一定电流的圆线圈在周围空间产生的磁场与圆线圈半径R有关,当圆线圈半径增大时, (1)圆线圈中心点(即圆心)的磁场__________________________。 (2)圆线圈轴线上各点的磁场___________ ___________________。 2,有一长直金属圆筒,沿长度方向有稳恒电流I流通,在横截面上电流均匀分布。筒内空腔各处的磁感应强度为________,筒外空间中离轴线r处的磁感应强度为__________。 3,如图所示的空间区域内,分布着方向垂直于纸面的匀强磁场,在纸面内有一正方形边框abcd(磁场以边框为界)。而a、b、c三个角顶处开有很小的缺口。今有一束具有不同速度的电子由a缺口沿ad方向射入磁场区域,若b、c两缺口处分别有电子射出,则此两处出射电子的速率之比vb /vc =________________。 4,如图,在一固定的无限长载流直导线的旁边放置一个可以自由移动和转动的圆形的刚性线圈,线圈中通有电流,若线圈与直导线在同一平面,见图(a),则圆线圈将_______ _____;若线圈平面与直导线垂直,见图(b),则圆线圈将____________________ __ _____。 5,一个绕有 500匝导线的平均周长50cm的细环,载有 0.3A电流时,铁芯的相对磁导率为600 。(0μ=4π×10-7 T·m·A-1 ) (1)铁芯中的磁感应强度B为__________________________。 (2)铁芯中的磁场强度H为____________________________。 6,一导线被弯成如图所示形状,acb为半径为R的四分之三圆弧,直线段Oa长为R。若此导线放在匀强磁场B 中,B 的方向垂直图面向内。导线以角速度ω在图面内绕O点匀速转动,则此导线中的动生电动势i ε=___________________ ,电势最高的点是________________________。 a b c d (b) I B b

.运动的描述 计算题 1、一质点沿X 轴运动,其加速度a=-kv 2 ,式中k 为常数。设t=0时,x=0,v=v 0,求该质点的运动方程。 2、一质点作直线运动,加速度为a=2+4t(SI),零时刻时x 0=5m ,v 0=6m/s ,求t=3s 时的速度和位置。 3、一质点沿X 轴运动,坐标与时间的关系为x 0=9+4t-2t 2 (SI ),则在最初2s 内的平均速度为多少?2s 末的瞬时速度为多少?加速度为多少? (此题与第4题相似,习题集上角度为45°) 4、以初速度 0v =201s m -?抛出一小球,抛出方向与水平面成幔60°的夹角, 求:(1)球轨道最高点的曲率半径1R ;(2)落地处的曲率半径2R . (提示:利用曲率半径与法向加速度之间的关系) 解:设小球所作抛物线轨道如题1-4图所示. 题1-4图 (1)在最高点, o 0160cos v v v x == 2 1s m 10-?==g a n 又∵ 121 1ρv a n =

∴ m 1010 )60cos 20(2 2111=??= =n a v ρ (2)在落地点, 2002==v v 1s m -?, 而 o 60cos 2?=g a n ∴ m 8060cos 10)20(2 2222=? ?==n a v ρ 8、质量为m 的质点沿x 方向作直线运动,受到阻力F=-k v 2 (k 做常数)作用,t=0时质点 位于原点,速度为v 0,求(1)t 时刻的速度;(2)求v 作为x 函数的表达式。 10、转动着的飞轮的转动惯量为J ,t=0时角位移为0,角速度为o ω ,此后飞轮经制动过程,角加速度与角速度平方成正比,比例系数为k (k 为大于零的常数),(1)求当达到 时,飞轮的制动经历多少时间(2)角位移作为时间的函数。 1-11(教科书上有类似的题目,页数P7,例1.1) 1-12(教课书上原题,页数P15) 运动定律与力学中的守恒定律 、计算题 1. 静水中停着两条质量均为M 的小船,当第一条船中的一个质量为m 的人以水平速度(相对于河岸)跳上第二条船后,两船运动的速度各多大?(忽略水对船的阻力). 解:以人与第一条船为系统,因水平方向合外力为零.所以水平方向动量守恒, 则有 Mv 1 +mv =0 v 1 = ν M m -

大学物理下练习题 一、选择题(每题1分,共41分) 1.关于电场强度定义式E = F /q 0,下列说法中哪个是正确的?(B ) (A) 场强E 的大小与试验电荷q 0的大小成反比; (B) 对场中某点,试验电荷受力F 与q 0的比值不因q 0而变; (C) 试验电荷受力F 的方向就是场强E 的方向; (D) 若场中某点不放试验电荷q 0,则F = 0,从而E = 0. 2.下列几个说法中哪一个是正确的?(C ) (A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向。 (B )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同。 (C )场强方向可由 E =F /q 定出,其中 q 为试验电荷的电量,q 可正、可负,F 为试验电荷所受的电场力。 ( D )以上说法都不正确。 3.图1.1所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ ( x < 0)和-λ ( x > 0),则xOy 平面上(0, a )点处的场强为: (A ) (A ) i a 02πελ . (B) 0. (C) i a 04πελ . (D) )(40j +i a πελ . 4. 边长为a 的正方形的四个顶点上放置如图1.2所示的点电荷,则中心O 处场强(C ) (A) 大小为零. (B) 大小为q/(2πε0a 2), 方向沿x 轴正向. (C) 大小为() 2022a q πε, 方向沿y 轴正向. (D) 大小为()2 022a q πε, 方向沿y 轴负向. 5. 如图1.3所示.有一电场强度E 平行于x 轴正向的均匀电场,则通过图中一半径为R 的半球面的电场强度通量为(D ) (A) πR 2E . (B) πR 2E /2 . (C) 2πR 2E . (D) 0 . 6. 下列关于高斯定理理解的说法中,正确的是:(B ) (A)当高斯面内电荷代数和为零时,高斯面上任意点的电场强度都等于零 +λ -λ ? (0, a ) x y O 图 1.1 图1.2 图1.3

《大学物理I 、II 》(下)重修模拟试题(2) 一、选择题(每小题3分,共36分) 1.轻弹簧上端固定,下系一质量为m 1的物体,稳定后在m 1下边又系一质量为m 2的物体,于是弹簧又伸长了?x .若将m 2移去,并令其振动,则振动周期为 (A) g m x m T 122?π= (B) g m x m T 212?π= (C)g m x m T 2121?π= (D) g m m x m T )(2212+π=? [ ] 2.有两个相同的容器,容积固定不变,一个盛有氦气,另一个盛有氢气(看成刚性分子的理想气体),它们的压强和温度都相等,现将5J 的热量传给氢气,使氢气温度升高,如果使氦气也升高同样的温度,则应向氦气传递热量是 [ ] (A) 6 J (B) 5 J (C) 3 J (D) 2 J 3.一机车汽笛频率为750 Hz ,机车以25 m/s 速度远离静止的观察者。观察者听到的声音的频率是(设空气中声速为340 m/s )。 (A) 810 Hz (B) 685 Hz (C) 805 Hz (D) 699 Hz [ ] 4.一质点在X 轴上作简谐振动,振幅4A cm =,周期2T s =,取其平衡位置为坐标原点,若0t =时刻质点第一次通过2x cm =-处,且向X 轴负方向运动,则质点第二次通过2x cm =-处的时刻为 [ ] (A )1s (B )32s (C )3 4 s (D )2 s

5.如图所示,平板玻璃和凸透镜构成牛顿环装置,全部浸入n =1.60的液体中,凸透镜可沿O O '移动,用波长λ=500 nm(1nm=10-9m)的单色光垂直入射。从上向下观察,看到中心是一个暗斑,此时凸透镜顶点距平板玻璃的距离最少是 (A) 156.3 nm (B) 148.8 nm (C) 78.1 nm (D) 74.4 nm (E) 0 [ ] 6.一横波以波速u 沿x 轴负方向传播,t 时刻波形曲线如图所示,则该时刻 [ ] (A) A 点振动速度大于零 (B) B 点静止不动 (C) C 点向下运动 (D) D 点振动速度小于零 7.1 mol 刚性双原子分子理想气体,当温度为T 时,其内能为 [ ] (A) RT 23 (B)kT 23 (C)RT 2 5 (D) kT 2 5 (式中R 为普适气体常量,k 为玻尔兹曼常量) 8.如图所示,折射率为n 2、厚度为e 的 透明介质薄膜的上方和下方的透明介质的折 射率分别为n 1和n 3,已知n 1<n 2<n 3.若用 波长为λ的单色平行光垂直入射到该薄膜上, 则从薄膜上、下两表面反射的光束①与②的 光程差是 [ ] (A) 2n 2 e -λ / 2 (B) 2n 2 e (C) 2n 2 e + λ / 2 (D) 2n 2 e -λ / (2n 2) n=1.68 n=1.60 n=1.58 O ' O λ x u A y B C D O n 2 n 1 n 3 e ① ②

三、计算题 1如图所示,一个半径为R 1的均匀球体,总电荷为Q 1,球体外同心罩一个半径为R 2的均匀带电球面,总电荷为Q 2,试求:⑴ 用高斯定理求各区域电场的分布;⑵ 用场强积分球体与球面间的电势分布(R 1<r )两点的电势。

4、如左下图所示装置,均质圆盘形定滑轮C 的质量为m 、半径为r ,滑轮两边分别悬挂质量为1m 和2m 的物体A 、B 。A 置于倾角为θ的斜面上,它和斜面间的摩擦因数为μ。当B 向下作加速运动时,求:(1)两物体的线加速度的大小;(2)水平和竖直两段绳索的张力大小。(设绳的质量和伸长略去不计,绳与滑轮间无相对滑动,滑轮与转轴间的摩擦略去不计。)(注:只需列出足够的方程,不必写出结果) 5、一个质量为M 、半径为R 的定滑轮(当作均质圆盘)上面绕有细绳。绳的一端在滑轮边缘上,另一端挂一质量为m 的物体。忽略轴处摩擦,求物体m 由静止下落h 高度时的速度和此时滑轮的角速度。 6、一细而轻的绳索跨过一质量为M ,半径为R 的定滑轮C ,绳的两端分别系有质量为1m 和2m 的物体,且1m >2m ,绳的质量、轮轴间的摩擦不计且绳与轮间无相对滑动。轮可视为圆盘,求物体的加速度的大小和绳的张力。 B

第3大题: 计算题( 分) 3.1 (10分)如图所示,一个劲度系数为k 的轻弹簧与一轻柔绳相连接,该绳跨过一半径为R ,转动惯量为I 的定滑轮,绳的另一端悬挂一质量为m 的物体。开始时,弹簧无伸长,物体由静止释放。滑轮与轴之间的摩擦可以忽略不计。当物体下落h 时,试求物体的速度v ? Mg-T1=ma (T1-T2)R=I β T2-kx=0 a=βR 联立解得a=(mg-kx)/(m+I/R2) d )(1 d 0 2 ??-+= h v kx mg R I m v v 解得v=genhao (2mgh-kh2)/ (m+I/R2) 3.2 (10分)一皮带传动装置如图所示, B A,两轮上套有传动皮带。外力矩M 作用 在A 轮上,驱使其转动,并通过传动皮带带动B 轮转动。B A,两轮皆可视为质量均匀分布的圆盘,其质量分别为1m 和2m ,半径分别为1R 和2R 。设皮带在轮上不打滑,并略去转轴与轮之间的摩擦。试求B A,两轮的角加速度1β和2β。解 12 111212 1)(βR m R T T M = -- (1)……………………….2分 22222212 1)(βR m R T T = - (2)………………..2分 由于皮带不打滑,切向速度相同,其变化率即切相加速度相同: 2211ββR R = 由式(2)(3)得 2 1211)(2R m m M += β 代入式(3)得2 1212 )(2R R m m M += β 3.3 (10分)如图所示,一根细棒长为L ,总质量为m ,其质量分布与离O 点的距离成正比。现将细棒放在粗糙的水平桌面上,棒可绕过其端点O 的竖直轴转动。已知棒与桌面间的摩擦系数为μ,棒的初始角度为0ω。求: (1) 细棒对给定轴的转动惯量 (2) 细棒绕轴转动时所受的摩擦力矩; (3) 细棒从角速度0ω开始到停止转动所经过的时间。 解 (1)由题意可知细棒的质量线密度为 kr =λ 式中k 为常数。由于细棒的总质量为m ,所以 m r kr L =? d 0 … 由此得 22L m k = 故 r L m kr 22= =λ ……… 得一并代入式得由式得由式)1()3(21)2(1 21 222221???? ???== -βββR R R m T T

力学计算题 质量为0.25 kg 的质点,受力i t F = (SI)的作用,式中t 为时间.t = 0时该质点以j 2=v (SI)的速度通过坐标原点,则该质点任意时刻的位置矢量是 ______________.j t i t 23 23+ (SI) 1 (0155) 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为 22 1 MR , 滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系. 1 (0155) 解:根据牛顿运动定律和转动定律列方程 对物体: mg -T =ma ① 对滑轮: TR = J β ② 运动学关系: a =R β ③ 将①、②、③式联立得 a =mg / (m +2 1 M ) ∵ v 0=0, ∴ v =at =mgt / (m + 2 1 M ) 4 匀质杆长为l ,质量为m ,可绕过O 点且与杆垂直的水平轴在竖直面内自由转动。如图所示,OA =1 3 l ,杆对轴的转动 惯量I = 1 9 m l 2,开始静止。现用一水平常力F =2mg 作用于端 点A ,当杆转角6 π θ= 时撤去力F 。求: (1)过程中力F 做功;(2)杆转到平衡位置时的角速度。 a

解:(1)力F 对轴的力矩为 F 13 l cos θ = 2 m g 1 3 l cos θ, 所以 A =6 2cos 3l M d Md mg d π θθθθ?== ??? =1 3 mgl (2)撤去力F 后机械能守恒,设平衡位置势能为零 2 12 I A ω=, ω=== 2((0561) 质量分别为m 和2m 、半径分别为r 和2r 的两个均匀圆盘,同轴地粘在一起,可以绕通过盘心且垂直盘面的水平光滑固定轴转动,对转轴的转动惯量为9mr 2 / 2,大小圆盘边缘都绕有绳子,绳子下端都挂一质量为m 的重物,如图所示.求盘的角加速度的大 小. 0561) 解:受力分析如图. 2分 mg -T 2 = ma 2 1分 T 1-mg = ma 1 1分 T 2 (2r )-T 1r = 9mr 2β / 2 2分 2r β = a 2 1分 r β = a 1 1分 解上述5个联立方程,得: r g 192= β 2分 1.(本题10分)(5270) 如图所示的阿特伍德机装置中,滑轮和绳子间没有滑动且绳子不可以伸长,轴与轮间有阻力矩,求滑轮两边绳子中的张力.已知m 1=20 kg ,m 2=10 kg .滑轮质量为m 3=5 kg .滑轮半径为r =0.2 m .滑轮可视为均匀圆盘,阻力矩M f =6.6 N ·m ,已知圆盘对过其中心且与盘面垂直的轴的转动惯量为 232 1 r m . 1. (10分) a a 1

大学物理练习题1:“力学—运动学” 一、选择题 1、以下哪种情况不可以把研究对象看作质点( A )。 A 、地球自转; B 、地球绕太阳公转; C 、平动的物体; D 、物体的形状和线度对研究问题的性质影响很小。 2、下面对质点的描述正确的是( C )。 ①质点是忽略其大小和形状,具有空间位置和整个物体质量的点;②质点可近视认为成微观粒子;③大物体可看作是由大量质点组成;④地球不能当作一个质点来处理,只能认为是有大量质点的组合;⑤在自然界中,可以找到实际的质点。 A 、①②③; B 、②④⑤; C 、①③; D 、①②③④。 3、一质点作直线运动的速度图线为左下图所示,下列右下图位移图线中,哪一幅正确地表示了该质点的运动规律?( D ) 4、质点沿x 轴运动的加速度与时间的关系如图所示,由图可求出质点的( B )。 A 、第6秒末的速度; B 、前6秒内的速度增量; C 、第6秒末的位置; D 、前6秒内的位移。 5、某物体的运动规律为t kV dt dV 2-=(式中k 为常数)。当0=t 时,初速率为0V ,则V 与时间t 的函数关系为( C )。 A 、022 1V kt V += ; B 、0221V kt V +-=; C 、021211V kt V +=; D 、021211V kt V +-=θ。

6、质点作曲线运动,在时刻t 质点的位矢为r ,t 至)(t t ?+时间内的位移为r ?,路程为s ?, 位矢大小的变化量为r ?。根据上述情况,则必有:( D )。 A 、r s r ?=?=? ; B 、r s r ?≠?≠? ,当0→?t 时有dr ds r d == ; C 、r s r ?≠?≠? ,当0→?t 时有ds dr r d ≠= ; D 、r s r ?≠?≠? ,当0→?t 时有dr ds r d ≠= 。 7、一质点在平面上作一般曲线运动,其瞬时速度为ν ,瞬时速率为ν,平均速度为ν ,平均速率为ν,它们之间必有如下关系( D )。 A 、νννν== , ; B 、νννν=≠ , ; C 、νννν≠≠ , ; D 、νννν≠= , 。 8、下面对运动的描述正确的是( C )。 A 、物体走过的路程越长,它的位移也越大; B 、质点在时刻t 和t t ?+的速度分别为1v 和2v ,则在时间t ?内的平均速度为2 21v v +; C 、若物体的加速度为恒量(即其大小和方向都不变),则它一定作匀变速直线运动; D 、在质点的曲线运动中,加速度的方向和速度的方向总是不一致的。 9、下面正确的表述是( B )。 A 、质点作圆周运动,加速度一定与速度垂直; B 、物体作直线运动,法向加速度必为零; C 、轨道最弯处,法向加速度最大; D 、某时刻的速率为零,切向加速度必为零。 10、下列几种运动形式,哪一种运动是加速度矢量a 保持不变的运动?( C )。 A 、单摆运动; B 、匀速度圆周运动; C 、抛体运动; D 、以上三种运动都是a 保持不变的运动。 11、一个质点在做圆周运动时,有( B )。 A 、切向加速度一定改变,法向加速度也改变; B 、切向加速度可能不变,法向加速度一定改变; C 、切向加速度可能不变,法向加速度不变; D 、切向加速度一定改变,法向加速度不变。

第9章 振动 作 业 一、教材:选择填空题 1~5;计算题:13,14,18 二、附加题 (一)、选择题 1、一沿x 轴作简谐振动的弹簧振子,振幅为A ,周期为T ,振动方程用余弦函数表示,如果该振子的初相为π3 4 ,则t =0时,质点的位置在: (A)过A x 21=处,向负方向运动; (B) 过A x 2 1=处,向正方向运动; (C) 过A x 21-=处,向负方向运动; (D) 过A x 2 1-=处,向正方向运动。 2、一质点作简谐振动,振动方程为:x =A cos(ωt +φ )在t=T/2(T 为周期)时刻,质点的速度为: (A) sin A ω?-. (B) sin A ω?. (C) cos A ω?-. (D) cos A ω?. 3、一质点沿x 轴做简谐运动,振动方程为:21410cos(2)3 x t ππ-=?+。从t = 0时刻起,到x =-2cm 处,且向x 轴正方向运动的最短时间间隔为: (A) 1s 8. (B) 1s 4. (C) 1s 2. (D) 1s 3. (E) 1s 6 . (二)、计算题 1、一物体沿x 轴做简谐运动,振幅A = 0.12m ,周期T = 2s .当t = 0时,物体的位移x 0= 0.06m ,且向x 轴正向运动.求:(1)此简谐运动的运动方程;(2)t = T /4时物体的位置、速度和加速度; 2、一物体沿x 轴做简谐运动,振幅A = 10.0cm ,周期T = 2.0s .当t = 0时,物体的位移x 0= -5cm ,且向x 轴负方向运动.求:(1)简谐运动方程;(2)t = 0.5s 时,物体的位移;(3)何时物体第一次运动到x = 5cm 处?(4)再经过多少时间物体第二次运动到x = 5cm 处?

苏州大学 普通物理(一)下 课程试卷(04)卷 共6页 一、填空题:(每空2分,共40分。在每题空白处写出必要的算式) 1、波长630nm 的激光入射到一双缝上,产生的相邻干涉明纹的间距为8.3mm ,另一波长的光产生的相邻干涉明纹的间距为7.6mm ,则该光波长为 。 2、一个透明塑料(n=1.40)制成的劈尖,其夹角rad 4100.1-?=α,当用单色光垂直照射时,观察到两相邻干涉明(或暗)条纹之间的距离为 2.5mm ,则单色光的波长λ= 。 3、用平行绿光(λ=546nm )垂直照射单缝,紧靠缝后放一焦距为50cm 的会聚透镜,现测得位于透镜焦平面处的屏幕上中央明纹的宽度为5.46mm ,则缝宽为 。 4、波长为500nm 的光垂直照射到牛顿环装置上,在反射光中测量第四级明环的半径r 4=2.96mm ,则透镜的曲率半径R 为 。 5、一直径为3.0cm 的会聚透镜,焦距为20cm ,若入射光的波长为550nm ,为了满足瑞利判据,两个遥远的物点必须有角距离 。 6、氟化镁(n=1.38)作为透镜的增透材料,为在可见光的中心波长500nm 得最佳增透效果,氟化镁薄膜的最小厚度是 。 7、已知红宝石的折射率为1.76,当线偏振的激光的振动方向平行于入射面,则该激光束的入射角为 时,它通过红宝石棒在棒的端面上没有反射损失。 8、在温度为127℃时,1mol 氧气(其分子视为刚性分子)的内能为 J ,其中分子转动的总动能为 J 。 9、已知某理想气体分子的方均根速率s m v rms /400=,当气体压强为1atm 时,其密度为ρ= 。 10、氢气分子在标准状态下的平均碰撞频率为s /1012.89?,分子平均速率为1700m/s ,则氢分子的平均自由程为 。 11、2mol 单原子分子理想气体,经一等容过程中,温度从200K 上升到500K ,若该过程为准静态过程,则气体吸收的热量为 ;若不是准静态过程,则气体吸收的热量为 。 12、一热机从温度为1000K 的高温热源吸热,向温度为800K 的低温热源放热。 若热机在最大效率下工作,且每一循环吸热2000J ,则此热机每一循环作功 J 。 13、火车站的站台长100m ,从高速运动的火车上测量站台的长度是80m ,那么火车通过站台的速度为 。 14、以速度为c 2 3运动的中子,它的总能量是其静能的 倍。 15、金属锂的逸出功为2.7eV ,那么它的光电效应红限波长为 ,

计算题 第三章 2.质量为1 kg 的物体,它与水平桌面间的摩擦系数μ = 0.2 .现对物体施以F = 10t (SI)的力,(t 表示时刻),力的方向保持一定,如图所示.如t = 0时物体静止,则t = 3 s 时 它的速度大小v 为多少? 十二 5. 一质点的运动轨迹如图所示.已知质点的质量为20 g ,在A 、B 二位置处的速率都为20 m/s ,A v 与x 轴成45°角,B v 垂直于y 轴,求质点由A 点到B 点这段 时间内,作用在质点上外力的总冲量.八 6. 质量为m 的小物体放在质量为M 的冰块的弧形斜面上,斜面下端为水平面,如图.所有接触面的摩擦力都可忽略不计.开始时m 与M 均静止,现在令m 滑下来落入下面的凹部而相对M 静止,问M 可滑多远. 有位同学这么解:m 滑下高度h ,由机械能守恒,得mgh = 2 1m v 2 即m 到最低位置时有水平速度v =gh 2,然后与M 碰撞后达到一共同速度V ,由动量守恒m v =(M+m )V ,可得 gh m M m m M m 2+=+=v V 因为忽略摩擦力所以M 将以稳定速度V 不断向前滑行. 请指出这位同学的错误,并给出正确解答. 四 7. 一物体按规律x =ct 3 在流体媒质中作直线运动,式中c 为常量,t 为时间.设媒质对物体的阻力正比于速度的平方,阻力系数为k ,试求物体由x =0运动到x =l 时,阻力所作的功 四 8.一链条总长为l ,质量为m ,放在桌面上,并使其部分下垂,下垂一段的 长度为a .设链条与桌面之间的滑动摩擦系数为μ.令链条由静止开始运动,则 (1)到链条刚离开桌面的过程中,摩擦力对链条作了多少功? (2)链条刚离开桌面时的速率是多少? 十二 x y O B A B v A v a l -a

大物计算题 2-27 计算题2-27图所示系统中物体的加速度.设滑轮为质量均匀分布的圆柱体,其质量为 M ,半径为r ,在绳与轮缘的摩擦力作用下旋转,忽略桌面与物体间的摩擦,设1m =50 kg ,2m =200 kg,M =15 kg, r =0.1 m 解: 分别以1m ,2m 滑轮为研究对象,受力图如图(b)所示.对1m ,2m 运用牛顿定律,有 a m T g m 222=- ① a m T 11= ② 对滑轮运用转动定律,有 β)2 1 (212Mr r T r T =- ③ 又, βr a = ④ 联立以上4个方程,得 2212s m 6.72 15 20058 .92002 -?=+ +?= + += M m m g m a 题2-27(a)图 题2-27(b)图 题2-28图

2-28 如题2-28图所示,一匀质细杆质量为m ,长为l ,可绕过一端O 的水平轴自由转动,杆于水平位置由静止开始摆下.求: (1)初始时刻的角加速度; (2)杆转过θ角时的角速度. 解: (1)由转动定律,有 β)3 1 (212ml mg = ∴ l g 23=β (2)由机械能守恒定律,有 22)3 1 (21sin 2ωθml l mg = ∴ l g θ ωsin 3= 题2-29图 2-29 如题2-29图所示,质量为M ,长为l 的均匀直棒,可绕垂直于棒一端的水平轴O 无摩擦地转动,它原来静止在平衡位置上.现有一质量为m 的弹性小球飞来,正好在棒的下端与棒垂直地相撞.相撞后,使棒从平衡位置处摆动到最大角度=θ 30°处. (1)设这碰撞为弹性碰撞,试计算小球初速0v 的值; (2)相撞时小球受到多大的冲量? 解: (1)设小球的初速度为0v ,棒经小球碰撞后得到的初角速度为ω,而小球的速度变为 v ,按题意,小球和棒作弹性碰撞,所以碰撞时遵从角动量守恒定律和机械能守恒定律,可 列式: mvl I l mv +=ω0 ① 2 2202 12121mv I mv +=ω ②

第9章 9-4 直角三角形ABC 如题图9-4所示,AB 为斜边,A 点上有一点荷 91 1.810C q -=?,B 点上有一点电荷 92 4.810C q -=-?,已知 0.04m BC =,0.03m AC =,求C 点电场强度E ρ 的大小和方向 (cos370.8?≈,sin370.6?≈). 解:如解图9-4所示C 点的电场强度为 12 E E E =+r r r 99 41 1122 0 1.810910 1.810(N C )4π()(0.03)q E AC ε--???===?? 9941 2222 0 4.810910 2.710(N C )4π()(0.04)q E BC ε--???===?? C 点电场强度E ρ 的大小 222244112 1.8 2.710 3.2410(N C ) E E E -=+=+?=?? 方向为 4o 14 2 1.810arctan arctan 33.7 2.710E E α?===? 即方向与BC 边成33.7°。 9-5 两个点电荷 6612410C,810C q q --=?=?的间距为0.1m ,求距离它们都是0.1m 处 的电场强度E ρ。 解:如解图9-5所示 9661 1122 01910410 3.610(N C )4π10q E r ε---???===?? 96612222 029108107.210(N C )4π10q E r ε---???===?? 1E ρ,2E ρ 沿x 、y 轴分解 611212cos60cos120 1.810(N C )x x x E E E E E -=+=?+?=-?? 611212sin60sin1209.3610(N C ) y y y E E E E E -=+=?+?=?? 电场强度为 22 619.5210(N C ) x y E E E -=+=?? 解图9-5 解图9-4 C 题图9-4

重庆师范大学第2008至2009学年度第二学期自测试卷 大学物理 课程性质:必修 考核方式:考试 专业:信息与计算科学 年级:2008级本科 本卷满分100分 完卷时间:120分钟 一 单项选择题(共三十小题,其中前25小题每题3分,后5小题每题5分,共100分) 1、如图所示,质点作匀速率园周运动,其半径为R ,从A 点出发,经半圆到达B 点,试问下列叙述中哪个是不正确的( A ) A .速度增量0=?V B .速率增量0=?V C .位移大小R r 2| |=? D .路程S =πR 2. 在光滑水平面上停放着一辆小车,车上站着两个人,现在两个人都以相同的对地速度,从车尾跳下车。若两人同时跳下车时,小车反冲的速度为1V ;两个人若先后跳下车,小车的反冲速度为2V ,比较1V 与2V 的大小,应是:( A ) A .1V =2V ; B .1V >2V ; C .1V <2V ; D .条件不足,无法比较 3. 质量一定的一个质点,在下列说法中,哪个是正确的?( D ) A .若质点所受合力的方向不变,则一定作直线运动; B .若质点所受合力的大小不变,则一定作匀加速直线运动; C .若质点所受的合力恒定,一定作直线运动; D .若质点自静止开始,所受的合力恒定,则一定作匀加速直线运动。 4. 下列四种运动形式中,a 保持不变的运动是 ( C ) A .匀速园周运动; B .单摆的运动; C .抛体运动; D .变加速直线运动 5. 一质点在o-xy 平面上运动,其运动方程为j t t i t t r )24()23(22+++++=,则该质点是作( C )

江汉大学文理学院2008——2009学年第一学期 大 学 物 理Ⅰ模 拟 试 卷 一、选择题(本大题共10题,每题3分,共30分) 1.关于介质中的高斯定理,下列说法中正确的是[ B ] A.高斯面内无自由电荷,则面上各点D 为零 B.高斯面的D 通量与面内自由电荷有关 C.高斯面上处处D 为零,则面内必定不存在自由电荷 D.以上说法都不正确 2. 半径为R 的均匀带电球面的静电场中各 点的电场强度的大小E 与距球心的距离r 之间的关系曲线为: [ B ] 3.一空气平行板电容器充电后与电源断开, 然后在两极板间充满某种各向同性、均匀电介质,则电场强度的大小E 、电容C 、电压 U 、电场能量W 四个量各自与充入介质前相比较,增大( ↑)或减小(↓)的情形为 [ B ] (A) E ↑,C ↑,U ↑,W ↑. (B) E ↓,C ↑,U ↓,W ↓. (C) E ↓,C ↑,U ↑,W ↓. (D) E ↑,C ↓,U ↓,W ↑. 4.图中实线为某电场中的电场线,虚线表示等势(位)面,由图可看出: (A) E A >E B >E C ,U A >U B >U C . [ D ] (B) E A <E B <E C ,U A <U B <U C . (C) E A >E B >E C ,U A <U B <U C . (D) E A <E B <E C ,U A >U B >U C . 5.无限长直导线在P 处弯成半径为R 的圆,当通以电流I 时,则在圆心O 点的磁感强度大小等于 [ C ] (A) R I π20μ. (B) R I 40μ. (C) )1 1(20π-R I μ. (D ) )11(40 π +R I μ 6. 波长λ =500nm 的光沿x 轴正向传播,若光的波长的不确定量?λ =10- 4 nm ,则利用不确定 关系式h x p x ≥??可得光子的x 坐标的不确定量至少为 [ C ] E O r (D) E ∝1/r 2

相关主题
文本预览
相关文档 最新文档