当前位置:文档之家› 大学物理第13章

大学物理第13章

大学物理第13章
大学物理第13章

大学物理上下册常用公式

大学物理第一学期公式集 概念(定义和相关公式) 1.位置矢量:r ,其在直角坐标系中:k z j y i x r ;222z y x r 角位置:θ 2.速度:dt r d V 平均速度:t r V 速率:dt ds V ( V V )角速度:dt d 角速度与速度的关系:V=rω 3.加速度:dt V d a 或 2 2dt r d a 平均加速度:t V a 角加速度:dt d 在自然坐标系中n a a a n 其中dt dV a (=rβ),r V n a 2 (=r 2 ω) 4.力:F =ma (或F =dt p d ) 力矩:F r M (大小:M=rFcos θ方向:右手螺旋法则) 5.动量:V m p ,角动量:V m r L (大小:L=rmvcos θ方向:右手螺旋法则) 6.冲量: dt F I (=F Δt);功: r d F A (气体对外做功:A=∫PdV ) 7.动能:mV 2/2 8.势能:A 保= – ΔE p 不同相互作用力势能形式不同 且零点选择不同其形式不同,在默认势能零点的 情况下: 机械能:E=E K +E P 9.热量:CRT M Q 其中:摩尔热容量C 与过程 有关,等容热容量C v 与等压热容量C p 之间的关系为:C p = C v +R 10. 压强: n tS I S F P 3 2 11. 分子平均平动能:kT 23 ;理想气体内能:RT s r t M E )2(2 12. 麦克斯韦速率分布函数:NdV dN V f )((意义:在V 附近单位速度间隔内的分子数所占比率) 13. 平均速率: RT N dN dV V Vf V V 80 )( 方均根速率: RT V 22 ;最可几速率: RT p V 3 14. 熵:S=Kln Ω(Ω为热力学几率,即:一种宏观态包含的微观态数) 15. 电场强度:E =F /q 0 (对点电荷:r r q E ?42 ) 16. 电势: a a r d E U (对点电荷r q U 04 );电势能:W a =qU a (A= –ΔW) 17. 电容:C=Q/U ;电容器储能:W=CU 2/2;电场能量密度ωe =ε0E 2/2 18. 磁感应强度:大小,B=F max /qv(T);方向,小磁针指向(S →N )。 mg(重力) → mgh -kx (弹性力) → kx 2/2 F= r r Mm G ?2 (万有引力) →r Mm G =E p r r Qq ?420 (静电力) →r Qq 04

大学物理(下)十三章作业与解答

第十三章电磁感应 一. 选择题 1. 如图,两根无限长平行直导线载有大小相同方向相反的电流I,均以的变化率增长,一矩形线圈位于导线平面内,则 (A) 线圈中无感应电流 (B) 线圈中感应电流方向不确定 (C) 线圈中感应电流为顺时针方向 (D) 线圈中感应电流为逆时针方向 [ ] 2. 将形状完全相同的铜环和木环静止放置,并使通过两环面的磁通量随时间的变化率相等,则不计自感时 (A) 铜环中有感应电动势,木环中无感应电动势 (B) 铜环中感应电动势大,木环中感应电动势小 (C) 铜环中感应电动势小,木环中感应电动势大 (D) 两环中感应电动势相等 [ ] 3. 如图,M、N为水平面内两根平行金属导轨,ab与cd为 相互平行且垂直于导轨并可在其上自由滑动的两根直裸导线,外 磁场均匀垂直于水平面向上,当外力使ab向右平移时,cd应 (A) 不动 (B) 转动 (C) 向左移动 (D) 向右移动 [ ] 4. 如图所示,直角三角形金属框abc放在均匀磁场中,磁场平行于ab 边,bc的长度为l. 当金属框绕ab边以匀角速ω转动时,则回路中的感应电 动势和a、c两点间的电势差为 (A) , , (B) (C) ,

(D) , [ ] 5.在一无限长圆柱区域内,存在随时间变化的均匀磁场,图示为磁场空间的一个横截面,下列说法正确的是 (A) 圆柱形区域内有感生电场,区域外无感生电场 (B) 圆柱形区域内无感生电场,区域外有感生电场 (C) 圆柱形区域内有感生电场,区域外也有感生电场 (D) 圆柱形区域内无感生电场,区域外也无感生电场 [ ] 6. 一密绕螺线管的自感为L ,若将其锯为相等的两半,则这两个螺线管的自感 (A) 都等于 (B) 一个大于,一个小于 (C) 都大于 (D) 都小于 [ ] 7. 一自感系数为0.1H 的线圈中,当电流在(1/10)s 内由1A 均匀减小到零时,线圈中自感电动势的大小为 (A) 100V (B) 10V (C) -1V (D) 1V [ ] 8. 面积为S 和2S 的两圆线圈1、2如图放置,通有相同的电流, 线圈1中的电流所产生的通过线圈2的磁通为Φ21,线圈2中的电流所产生的通过线圈1的磁通为Φ12,则Φ21和Φ12的大小关系为 (A) Φ21 = 2Φ12 (B) Φ12 = Φ21 (C) Φ12 < Φ21 (D) Φ21 = Φ12 / 2 [ ] 9. 通有电流I 的半径为R 圆线圈,放在近似真空的空间里,圆心处的磁场能量密度是: (A) (B) (C) (D) [ ] 10. 下列情况位移电流为零的是:

大学物理 马文蔚 第五版 下册 第九章到第十一章课后答案

第九章振动 9-1一个质点作简谐运动,振幅为A,在起始时刻质点的位移为,且向x 轴正方向运动,代表此简谐运动的旋转矢量为() 题9-1图 分析与解(b)图中旋转矢量的矢端在x轴上投影点的位移为-A/2,且投影点的运动方向指向Ox轴正向,即其速度的x分量大于零,故满足题意.因而正确答案为(b). 9-2已知某简谐运动的振动曲线如图(a)所示,则此简谐运动的运动方程为() 题9-2图 分析与解由振动曲线可知,初始时刻质点的位移为–A/2,且向x轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为.振动曲线上给出质点从–A/2 处运动到+A处所需时间为 1 s,由对应旋转矢量图可知相应的相位差,则角频率,故选(D).本题也可根据振动曲线所给信息,逐一代入方程来找出正确答案. 9-3两个同周期简谐运动曲线如图(a)所示, x1 的相位比x2 的相位() (A)落后(B)超前(C)落后(D)超前 分析与解由振动曲线图作出相应的旋转矢量图(b)即可得到答案为(b).

题9-3图 9-4当质点以频率ν作简谐运动时,它的动能的变化频率为() (A)(B)(C)(D) 分析与解质点作简谐运动的动能表式为,可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν的两倍.因而正确答案为(C). 9-5图(a)中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为() (A)(B)(C)(D) 分析与解由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差是(即反相位).运动方程分别为和 .它们的振幅不同.对于这样两个简谐运动,可用旋转矢量法, 如图(b)很方便求得合运动方程为.因而正确答案为(D). 题9-5图 9-6 有一个弹簧振子,振幅,周期,初相.试写出它的运动方程,并作出图、图和图.

大学物理公式大全

第一章 质点运动学和牛顿运动定律 平均速度 v = t △△r 瞬时速度 v= lim 0△t →△t △r =dt dr 1. 3速度v= dt ds = =→→lim lim △t 0 △t △t △r 平均加速度a = △t △v 瞬时加速度(加速度)a= lim 0△t →△t △v =dt dv 瞬时加速度a=dt dv =22dt r d 匀速直线运动质点坐标x=x 0+vt 变速运动速度 v=v 0+at 变速运动质点坐标x=x 0+v 0t+ 2 1at 2 ; 速度随坐标变化公式:v 2-v 02=2a(x-x 0) 自由落体运动 竖直上抛运动 ?????===gy v at y gt v 22122 ???????-=-=-=gy v v gt t v y gt v v 2212 0220 0 抛体运动速度分量???-==gt a v v a v v y x sin cos 00 抛体运动距离分量?? ? ??-?=?=20021sin cos gt t a v y t a v x 射程 X=g a v 2sin 2 射高Y=g a v 22sin 20 飞行时间y=xtga —g gx 2 轨迹方程y=xtga —a v gx 2 202 cos 2 向心加速度 a=R v 2 # 圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n 加速度数值 a=2 2n t a a + 法向加速度和匀速圆周运动的向心加速度相同a n =R v 2 切向加速度只改变速度的大小a t = dt dv ωΦR dt d R dt ds v === 角速度 dt φ ωd = 角加速度 22dt dt d d φ ωα== 角加速度a 与线加速度a n 、a t 间的关系 a n =22 2)(ωωR R R R v == a t =αωR dt d R dt dv == ; 牛顿第一定律:任何物体都保持静止或匀速直线运动 状态,除非它受到作用力而被迫改变这种状态。 牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。 1.37 F=ma 牛顿第三定律:若物体A 以力F 1作用与物体B ,则同时物体B 必以力F 2作用与物体A ;这两个力的大小相等、方向相反,而且沿同一直线。 万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线 1.39 F=G 2 2 1r m m G 为万有引力称量=×10-11N ?m 2/kg 2 重力 P=mg (g 重力加速度)

大学物理学下册标准答案第11章

第11章 稳恒磁场 习 题 一 选择题 11-1 边长为l 的正方形线圈,分别用图11-1中所示的两种方式通以电流I (其中ab 、cd 与正方形共面),在这两种情况下,线圈在其中心产生的磁感应强度的大小分别为:[ ] (A )10B =,20B = (B )10B = ,02I B l π= (C )01I B l π= ,20B = (D )01I B l π= ,02I B l π= 答案:C 解析:有限长直导线在空间激发的磁感应强度大小为012(cos cos )4I B d μθθπ= -,并结合右手螺旋定则判断磁感应强度方向,按照磁场的叠加原理,可计 算 01I B l π= ,20B =。故正确答案为(C )。 11-2 两个载有相等电流I 的半径为R 的圆线圈一个处于水平位置,一个处于竖直位置,两个线圈的圆心重合,如图11-2所示,则在圆心O 处的磁感应强度大小为多少? [ ] (A )0 (B )R I 2/0μ (C )R I 2/20μ (D )R I /0μ 答案:C 解析:圆线圈在圆心处的磁感应强度大小为120/2B B I R μ==,按照右手螺旋定 习题11-1图 习题11-2图

则判断知1B 和2B 的方向相互垂直,依照磁场的矢量叠加原理,计算可得圆心O 处的磁感应强度大小为0/2B I R =。 11-3 如图11-3所示,在均匀磁场B 中,有一个半径为R 的半球面S ,S 边线所在平面的单位法线矢量n 与磁感应强度B 的夹角为α,则通过该半球面的磁通量的大小为[ ] (A )B R 2π (B )B R 22π (C )2cos R B πα (D )2sin R B πα 答案:C 解析:通过半球面的磁感应线线必通过底面,因此2cos m B S R B παΦ=?=。故正确答案为(C )。 11-4 如图11-4所示,在无限长载流直导线附近作一球形闭合曲面S ,当曲面S 向长直导线靠近时,穿过曲面S 的磁通量Φ B 将如何变化?[ ] (A )Φ增大,B 也增大 (B )Φ不变,B 也不变 (C )Φ增大,B 不变 (D )Φ不变,B 增大 答案:D 解析:根据磁场的高斯定理0S BdS Φ= =? ,通过闭合曲面S 的磁感应强度始终 为0,保持不变。无限长载流直导线在空间中激发的磁感应强度大小为02I B d μπ= ,曲面S 靠近长直导线时,距离d 减小,从而B 增大。故正确答案为(D )。 11-5下列说法正确的是[ ] (A) 闭合回路上各点磁感应强度都为零时,回路内一定没有电流穿过 (B) 闭合回路上各点磁感应强度都为零时,回路内穿过电流的代数和必定为零 (C) 磁感应强度沿闭合回路的积分为零时,回路上各点的磁感应强度必定为零 (D) 磁感应强度沿闭合回路的积分不为零时,回路上任意一点的磁感应强度 I 习题11-4图 习题11-3图

大学物理公式大全下册

电磁学 1.定义: ①E 和B : F =q(E +V ×B )洛仑兹公式 ②电势:? ∞ ?= r r d E U 电势差:?-+ ?=l d E U 电动势:? + - ?= l d K ε(q F K 非静电 =) ③电通量:???=S d E e φ磁通量:???=S d B B φ磁通链: ΦB =N φB 单位:韦伯(Wb ) 磁矩:m =I S =IS n ? ④电偶极矩:p =q l ⑤电容:C=q/U 单位:法拉(F ) *自感:L=Ψ/I 单位:亨利(H ) *互感:M=Ψ21/I 1=Ψ12/I 2 单位:亨利(H ) ⑥电流:I = dt dq ; *位移电流:I D =ε 0dt d e φ 单位:安培(A ) ⑦*能流密度: B E S ?= μ 1 2.实验定律 ①库仑定律:0 204r r Qq F πε= ②毕奥—沙伐尔定律:204?r r l Id B d πμ?= ③安培定律:d F =I l d ×B ④电磁感应定律:ε感= –dt d B φ 动生电动势:?+ -??= l d B V )(ε 感生电动势:? - + ?=l d E i ε(E i 为感生电场) *⑤欧姆定律:U=IR (E =ρj )其中ρ为电导率 3.*定理(麦克斯韦方程组) 电场的高斯定理:?? =?0 εq S d E ??=?0 εq S d E 静 (E 静是有源场) ??=?0S d E 感 (E 感是无源场) 磁场的高斯定理:??=?0S d B ??=?0S d B (B 稳是无源场) E =F /q 0 单位:N/C =V/m B=F max /qv ;方向,小磁针指向(S →N );单位:特斯拉(T )=104高斯(G ) Θ ⊕ -q l

大学物理学 (第3版.修订版) 北京邮电大学出版社 下册 第十一章 习题11 答案

习题11 11.1选择题 (1)一圆形线圈在磁场中作下列运动时,那些情况会产生感应电流() (A )沿垂直磁场方向平移;(B )以直径为轴转动,轴跟磁场垂直; (C )沿平行磁场方向平移;(D )以直径为轴转动,轴跟磁场平行。 [答案:B] (2)下列哪些矢量场为保守力场() (A ) 静电场;(B )稳恒磁场;(C )感生电场;(D )变化的磁场。 [答案:A] (3) 用线圈的自感系数 L 来表示载流线圈磁场能量的公式22 1LI W m =() ( A )只适用于无限长密绕线管; ( B ) 只适用于一个匝数很多,且密绕的螺线环; ( C ) 只适用于单匝圆线圈; ( D )适用于自感系数L 一定的任意线圈。 [答案:D] (4)对于涡旋电场,下列说法不正确的是(): (A )涡旋电场对电荷有作用力; (B )涡旋电场由变化的磁场产生; (C )涡旋场由电荷激发; (D )涡旋电场的电力线闭合的。 [答案:C] 11.2 填空题 (1)将金属圆环从磁极间沿与磁感应强度垂直的方向抽出时,圆环将受到 。 [答案:磁力] (2)产生动生电动势的非静电场力是 ,产生感生电动势的非静电场力是 ,激发感生电场的场源是 。 [答案:洛伦兹力,涡旋电场力,变化的磁场] (3)长为l 的金属直导线在垂直于均匀的平面内以角速度ω转动,如果转轴的位置在 ,这个导线上的电动势最大,数值为 ;如果转轴的位置在 ,整个导线上的电动势最小,数值为 。 [答案:端点,2 2 1l B ω;中点,0] 11.3一半径r =10cm B =0.8T 的均匀磁场中.回路平面与B 垂直.当回路半 径以恒定速率 t r d d =80cm ·s -1 收缩时,求回路中感应电动势的大小. 解: 回路磁通 2 πr B BS m ==Φ

大学物理 马文蔚 第五版 下册 第九章到第十一章课后答案汇总

第九章振动 9-1一个质点作简谐运动, 振幅为A,在起始时刻质点的位移为 2 A -,且向x轴正方向运动,代表此简谐运动的旋转矢量为() 题9-1图 分析与解(b)图中旋转矢量的矢端在x轴上投影点的位移为-A/2,且投影点的运动方向指向O x轴正向,即其速度的x分量大于零,故满足题意.因而正确答案为(b).9-2已知某简谐运动的振动曲线如图(a)所示,则此简谐运动的运动方程为()()()()() ()()()() cm π 3 2 π 3 4 cos 2 D cm π 3 2 π 3 4 cos 2 B cm π 3 2 π 3 2 cos 2 C cm π 3 2 π 3 2 cos 2 A ?? ? ?? ? + = ?? ? ?? ? - = ?? ? ?? ? + = ?? ? ?? ? - = t x t x t x t x 题9-2图 分析与解由振动曲线可知,初始时刻质点的位移为–A/2,且向x轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为3/π 2.振动曲线上给出质点从–A/2 处运动到+A处所需时间为 1 s,由对应旋转矢量图可知相应的相位差3/π 4 Δ=,则角频率()1s3/π4 Δ / Δ- = =t ω,故选(D).本题也可根据振动曲线所给信息,逐一代入方程来找出正确答案.

9-3 两个同周期简谐运动曲线如图(a ) 所示, x 1 的相位比x 2 的相位( ) (A ) 落后2π (B )超前2 π (C )落后π (D )超前π 分析与解 由振动曲线图作出相应的旋转矢量图(b ) 即可得到答案为(b ). 题9-3 图 9-4 当质点以频率ν 作简谐运动时,它的动能的变化频率为( ) (A ) 2 v (B )v (C )v 2 (D )v 4 分析与解 质点作简谐运动的动能表式为()?ωω+=t A m E k 222sin 2 1,可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν的两倍.因而正确答案为(C ). 9-5 图(a )中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为( ) (A ) π2 3 (B )π21 (C )π (D )0 分析与解 由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差 是π(即反相位).运动方程分别为t A x ωcos 1=和()πcos 2 2+= t ωA x .它们的振幅不同.对于这样两个简谐运动,可用旋转矢量法,如图(b )很方便求得合运动方程为t A x ωcos 21=.因而正确答案为(D ).

大学物理公式大全

第一章 质点运动学与牛顿运动定律 1、1平均速度 v = t △△r 1、2 瞬时速度 v=lim 0△t →△t △r =dt dr 1. 3速度v= dt ds = =→→lim lim △t 0 △t △t △r 1、6 平均加速度a = △t △v 1、7瞬时加速度(加速度)a=lim 0△t →△t △v =dt dv 1、8瞬时加速度a=dt dv =2 2dt r d 1、11匀速直线运动质点坐标x=x 0+vt 1、12变速运动速度 v=v 0+at 1、13变速运动质点坐标x=x 0+v 0t+ 2 1at 2 1、14速度随坐标变化公式:v 2 -v 02 =2a(x-x 0) 1、15自由落体运动 1、16竖直上抛运动 ?????===gy v at y gt v 22122 ???? ???-=-=-=gy v v gt t v y gt v v 2212 02200 1、17 抛体运动速度分量???-==gt a v v a v v y x sin cos 00 1、18 抛体运动距离分量?? ? ??-?=?=20021sin cos gt t a v y t a v x 1、19射程 X=g a v 2sin 2 1、20射高Y= g a v 22sin 20 1、21飞行时间y=xtga —g gx 2 1、22轨迹方程y=xtga —a v gx 2 202 cos 2 1、23向心加速度 a=R v 2 1、24圆周运动加速度等于切向加速度与法向加速度矢量与a=a t +a n 1、25 加速度数值 a=2 2 n t a a + 1、26 法向加速度与匀速圆周运动的向心加速度相同 a n =R v 2 1、27切向加速度只改变速度的大小a t = dt dv 1、28 ωΦR dt d R dt ds v === 1、29角速度 dt φ ωd = 1、30角加速度 22dt dt d d φ ωα== 1、31角加速度a 与线加速度a n 、a t 间的关系 a n =222)(ωωR R R R v == a t =αωR dt d R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动 状态,除非它受到作用力而被迫改变这种状态。 牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。 1.37 F=ma 牛顿第三定律:若物体A 以力F 1作用与物体B,则同时物体B 必以力F 2作用与物体A;这两个力的大小相等、方向相反,而且沿同一直线。 万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线 1、39 F=G 2 2 1r m m G 为万有引力称量=6、67×10-11 N ?m 2 /kg 2 1、40 重力 P=mg (g 重力加速度) 1、41 重力 P=G 2 r Mm 1、42有上两式重力加速度g=G 2 r M (物体的重力加速度与物体本身的质量无关,而紧随它到地心的距离而变)

最新大学物理下册公式大全

大学物理第二学期公式集 电磁学 1.定义: ①E 和B : F =q(E +V ×B )洛仑兹公式 ②电势:? ∞ ?= r r d E U 电势差:?-+?=l d E U 电动势:?+-?=l d K ε(q F K 非静电 =) ③电通量:???=S d E e φ磁通量:?? ?=S d B B φ磁通链:ΦB =N φB 单位:韦伯 (Wb ) 磁矩:m =I S =IS n ? ④电偶极矩:p =q l ⑤电容:C=q/U 单位:法拉(F ) *自感:L=Ψ/I 单位:亨利(H ) *互感:M=Ψ21/I 1=Ψ12/I 2 单位:亨利(H ) ⑥电流:I =dt dq ; *位移电流:I D =ε0dt d e φ 单位:安培(A ) ⑦ * 能 流 密 度 : B E S ?= μ 1 2.实验定律 ①库仑定律:0 2 04r r Qq F πε= ②毕奥—沙伐尔定律:204?r r l Id B d πμ?= ③安培定律:d F =I l d ×B ④电磁感应定律:ε感= –dt d B φ 动生电动势:? + - ??= l d B V )(ε 感生电动势:? - + ?=l d E i ε(E i 为感生电场) *⑤欧姆定律:U=IR (E =ρj )其中ρ为电导率 3.*定理(麦克斯韦方程组) E =F /q 0 单位:N/C =V/m B=F max /qv ;方向,小磁针指向(S →N );单位:特斯拉(T )=104高斯(G ) Θ ⊕ -q l

电场的高斯定理:?? =?0εq S d E ??=?0 εq S d E 静 (E 静是有源场) ??=?0S d E 感 (E 感是无源场) 磁场的高斯定理:??=?0S d B ??=?0S d B (B 稳是无源场) ??=?0 S d B (B 感是无源场) 电场的环路定理:? -=?dt d l d E B φ ?=?0l d E 静 (静电场无旋) ?-=?dt d l d E B φ 感(感生电场有旋;变化的磁场产生感生电场) 安培环路定理:d I I l d B 00μμ+=?? ?=?I l d B 0μ 稳 (稳恒磁场有旋) dt d l d B e φεμ00?=? 感 (变化的电场产生感生磁场) 4.常用公式 ①无限长载流导线:r I B πμ20= 螺线管:B=nμ0I ②带电粒子在匀强磁场中:半径qB mV R =周期qB m T π2= 磁矩在匀强磁场中:受力F=0;受力矩B m M ?= ③电容器储能:W c =21CU 2 *电场能量密度:ωe =2 1ε0E 2 电磁场能量密度:ω= 2 1ε 0E 2 +0 21 μB 2 *电感储能:W L =21LI 2 *磁场能量密度:ωB =0 21 μB 2 电磁场能流密度:S=ωV ④ *电磁波:C= 001 εμ=3.0×108m/s 在介质中V=C/n,频率f=ν= 021 εμπ 波动学 1.定义和概念 简谐波方程: x 处t 时刻相位 振幅 简谐振动方程:ξ=Acos(ωt+φ) 波形方程:ξ=Acos(2πx/λ+φ′)

大学物理2,13.第十三章思考题

1、如图13-9所示,薄膜介质的折射率为n 1,薄膜上下介质的折射率分别为n 1和n 3,并且n 2比n 1和n 3都大。单色平行光由介质1垂直照射在薄膜上,经薄膜上下两个表面反射的两束光发生干涉。已知薄膜的厚度为e , λ1为入射光在折射率为n 1的介质中的波长,则两束反射光的光程差等于多少? 【答案:2 21 12λn e n S - =?】 详解:由于入射光在上表面从光疏介质投射到光密介质上存在半波损失,因此反射光一的光程为 2 1λ = S 由于入射光在下表面从光密介质投射到光疏介质上没有半波损失,因此反射光二的光程为 e n S 222= 两束反射光的光程差为 2 2212λ - =-=?e n S S S 其中λ为光在真空的波长,它与介质1中的波长的关系为λ=n 1λ1,因此 2 21 12λn e n S - =? 2、在双缝干涉实验中,两缝分别被折射率为n 1和n 2、厚度均为e 的透明薄膜遮盖。波长为λ的平行单色光垂直照射到双缝上,在屏中央处,两束相干光的相位差等于多少? 【答案:λ ?e n n )(π212-= ?】 详解:设从双缝发出的两束光到屏中央处的距离为r ,依题意它们到达屏中央处的光程分别为 )(11e r e n S -+= )(22e r e n S -+= 它们的光程差为 12S S S -=?e n n )(12-= 因此,在屏中央处两束相干光的相位差为 n 3 图13-9

λ ?S ?= ?π2λ e n n )(π212-= 3、在双缝干涉实验中,为使屏上的干涉条纹间距变大,可以采取哪些办法? 【答案:增大双缝与屏之间的距离D 、增大入射光波长λ、减小双缝间距d 、减小折射率n 】 详解:双缝干涉条纹间距为 dn D x λ = ? 因此,为使屏上的干涉条纹间距变大,可以增大双缝与屏之间的距离D 、改用波长λ较长的光进行实验、将两缝的间距d 变小、将实验装置放在折射率n 较小的透明流体中。 4、如图13-10所示,在双缝干涉实验中,屏幕E 上的P 点处是明条纹。如果将缝S 1 盖住,并在S 1 S 2连线的垂直平分面处放置一个高折射率玻璃反射面M ,则此时P 点处是明条纹还是暗条纹? 【答案:是暗条纹】 详解:设S 1、S 2到P 点的距离分别为r 1和r 2。由于P 点处原来是明条纹,因此 λk r r =-21 如果在S 1 S 2连线的垂直平分面处放置一个高折射率玻璃反射面M ,由于从S 2发出的光经M 反射时存在半波损失,因此到达P 点的反射光与直射光的光程差为 212 r r S -+ =?λ 2 λ λ+ =k 2 ) 12(λ +=k 即这两束光在P 点处干涉相消,形成暗条纹。 5、如图13-11所示,在双缝干涉实验中,如果单色光源S 到两缝S 1、S 2距离相等,则中央明条纹位于观察屏E 上O 点处。现在将光源S 向上移动到图中的S ' 位置,中央明条纹将向什么方向移动?此时条纹间距是否发生改变? 图13-11 S S 图13-10 P S 图13-11 S S P

大学物理_马文蔚__第五版_下册_第九章到第十一章课后答案

第九章 振动 9-1 一个质点作简谐运动,振幅为A ,起始时刻质点的位移为2 A - ,且向x 轴正方向运动,代表此简谐运动的旋转矢量为( ) 题9-1 图 分析与解(b )图中旋转矢量的矢端在x 轴上投影点的位移为-A /2,且投影点的运动方向指向O x 轴正向,即其速度的x 分量大于零,故满足题意.因而正确答案为(b ). 9-2 已知某简谐运动的振动曲线如图(a )所示,则此简谐运动的运动方程为( ) ()()()()()()()()cm π32π34cos 2D cm π32π34cos 2B cm π32π32cos 2C cm π32π32cos 2A ?? ????+=??????-=??????+=??????-=t x t x t x t x 题9-2 图 分析与解 由振动曲线可知,初始时刻质点的位移为 –A /2,且向x 轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为3/π2.振动曲线上给出质点从–A /2 处运动到+A 处所需时间为 1 s ,由对应旋转矢量图可知相应的相位差3/π4Δ =,则角频率()1s 3/π4Δ/Δ-==t ω,故选(D ).本题也可根据振动曲线所给信息,逐一代入方程来找 出正确答案.

9-3 两个同周期简谐运动曲线如图(a ) 所示, x 1 的相位比x 2 的相位( ) (A ) 落后2π (B )超前2 π (C )落后π (D )超前π 分析与解 由振动曲线图作出相应的旋转矢量图(b ) 即可得到答案为(b ). 题9-3 图 9-4 当质点以频率ν 作简谐运动时,它的动能的变化频率为( ) (A ) 2 v (B )v (C )v 2 (D )v 4 分析与解 质点作简谐运动的动能表式为()?ωω+=t A m E k 222sin 2 1,可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν的两倍.因而正确答案为(C ). 9-5 图(a )中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为( ) (A ) π2 3 (B )π21 (C )π (D )0 分析与解 由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差 是π(即反相位).运动方程分别为t A x ωcos 1=和()πcos 2 2+= t ωA x .它们的振幅不同.对于这样两个简谐运动,可用旋转矢量法,如图(b )很方便求得合运动方程为t A x ωcos 21=.因而正确答案为(D ).

大学物理上下册常用公式

大学物理上下册常用公式 Prepared on 22 November 2020

大学物理第一学期公式集 概念(定义和相关公式) 1. 位置矢量:r ,其在直角坐标系中:k z j y i x r ++=;222z y x r ++=角位置: θ 2. 速度:dt r d V = 平均速度:t r V ??= 速率:dt ds V = (τ V V =)角速度: dt d θω= 角速度与速度的关系:V=rω 3. 加速度:dt V d a = 或2 2dt r d a = 平均加速度:t V a ??= 角加速度:dt d ωβ= 在自然坐标系中n a a a n +=ττ其中dt dV a =τ(=rβ),r V n a 2= (=r 2 ω) 4. 力:F =ma (或F = dt p d ) 力矩:F r M ?=(大小:M=rFcos θ方向:右手螺旋 法则) 5. 动量:V m p =,角动量:V m r L ?=(大小:L=rmvcos θ方向:右手螺旋法则) 6. 冲量:? = dt F I (=F Δt);功:? ?= r d F A (气体对外做功:A= ∫PdV ) 7. 动能:mV 2/2 8. 势能:A 保= – ΔE p 不同相互作用 力势能形式不同且零点选择不同其形式不同,在默认势能零点的情况下: 机械能:E=E K +E P 9. 热量:CRT M Q μ = 其中:摩尔热容量C 与过程有关,等容热容量C v 与等压热容 量C p 之间的关系为:C p = C v +R mg(重力) → mgh -kx (弹性力) → kx 2/2 F= r r Mm G ?2- (万有引力) →r Mm G - =E p r r Qq ?42 0πε(静电力) →r Qq 04πε

大学物理第十三章课后答案

习题十三 13-1 衍射的本质是什么?衍射和干涉有什么联系和区别 ? 答:波的衍射现象是波在传播过程中经过障碍物边缘或孔隙时所发生的展衍现象? 其实质是 由被障碍物或孔隙的边缘限制的波阵面上各点发出的无数子波相互叠加而产生. 而干涉则是 由同频率、同方向及位相差恒定的两列波的叠加形成. 13-2 在夫琅禾费单缝衍射实验中,如果把单缝沿透镜光轴方向平移时,衍射图样是否会 跟着移动?若把单缝沿垂直于光轴方向平移时,衍射图样是否会跟着移动 ? 答:把单缝沿透镜光轴方向平移时, 衍射图样不会跟着移动. 单缝沿垂直于光轴方向平移时, 衍射图样不会跟着移动. 13-3 什么叫半波带?单缝衍射中怎样划分半波带 ?对应于单缝衍射第 3级明条纹和第4级暗 条纹,单缝处波面各可分成几个半波带 ? λ 答:半波带由单缝 A 、B 首尾两点向'方向发出的衍射线的光程差用 2 来划分?对应于第 3级明纹和第4级暗纹,单缝处波面可分成 7个和8个半波带. a Sin =(2k ? 1) “ =(2 3 ■ 1) “ =7 ?.?由 2 2 2 a Sin -4 ' - 8 — 2 13-4 在单缝衍射中,为什么衍射角 ,愈大(级数愈大)的那些明条纹的亮度愈小 ? 答:因为衍射角「愈大则 asin 「值愈大,分成的半波带数愈多,每个半波带透过的光通量 就愈小,而明条纹的亮度是 由一个半波带的光能量决定的,所以亮度减小. 13-5 若把单缝衍射实验装置全部浸入水中时,衍射图样将发生怎样的变化 ?如果此时用公 m λ asin = (2k 1) (k =1,2,) 式 2 来测定光的波长,问测出的波长是光在空气中的还是 在水中的波长? k ■ 解:当全部装置浸入水中时,由于水中波长变短,对应 asin 「= k ? = n ,而空气中为 asi n 「= k ? ,?. Si n 「=n Si n ",即「=n : ,水中同级衍射角变小,条纹变密. λ 如用 asin (2k ■ I) 2 (k = 1,2, …)来测光的波长,则应是光在水中的波长.(因 asin ‘ 只代表光在 水中的波程差)? 13-6 在单缝夫琅禾费衍射中,改变下列条件,衍射条纹有何变化 ?(1)缝宽变窄;(2)入 射光波长变长;(3)入射平行光由正入射变为斜入射. 解:(1)缝宽变窄,由 asin ' =k'知,衍射角「变大,条纹变稀; (2) , 变大,保持a , k 不变,则衍射角 「亦变大,条纹变稀; (3) 由正入射变为斜入射时, 因正入射时 asin 即=k ? ;斜入射时, a(Sin 「- Sin ^)^k -, 保持a ,'不变,则应有 ^ k 或k 二::k ?即原来的k 级条纹现为k 级. 13-7 单缝衍射暗条纹条件与双缝干涉明条纹的条件在形式上类似,两者是否矛盾 ?怎样 说明? λ 答:不矛盾?单缝衍射暗纹条件为.asin =k' =2k 2 ,是用半波带法分析(子波叠加问 题)? 相邻两半波 带上对应点向 '方向发出的光波在屏上会聚点一一相消, 而半波带为偶数,

大学物理课后答案第十一章

第十一章 机械振动 一、基本要求 1.掌握简谐振动的基本特征,学会由牛顿定律建立一维简谐振动的微分方程,并判断其是否谐振动。 2. 掌握描述简谐运动的运动方程)cos(0?ω+=t A x ,理解振动位移,振幅,初位相,位相,圆频率,频率,周期的物理意义。能根据给出的初始条件求振幅和初位相。 3. 掌握旋转矢量法。 4. 理解同方向、同频率两个简谐振动的合成规律,以及合振动振幅极大和极小的条件。 二、基本内容 1. 振动 物体在某一平衡位置附近的往复运动叫做机械振动。如果物体振动的位置满足)()(T t x t x +=,则该物体的运动称为周期性运动。否则称为非周期运动。但是一切复杂的非周期性的运动,都可以分解成许多不同频率的简谐振动(周期性运动)的叠加。振动不仅限于机械运动中的振动过程,分子热运动,电磁运动,晶体中原子的运动等虽属不同运动形式,各自遵循不同的运动规律,但是就其中的振动过程讲,都具有共同的物理特征。 一个物理量,例如电量、电流、电压等围绕平衡值随时间作周期性(或准周期性)的变化,也是一种振动。 2. 简谐振动 简谐振动是一种周期性的振动过程。它可以是机械振动中的位移、速度、加速度,也可以是电流、电量、电压等其它物理量。简谐振动是最简单,最基本的周期性运动,它是组成复杂运动的基本要素,所以简谐运动的研究是本章一个重点。 (1)简谐振动表达式)cos(0?ω+=t A x 反映了作简谐振动的物体位移随时间的变化遵循余弦规律,这也是简谐振动的定义,即判断一个物体是否作简谐振动的运动学根据。但是简谐振动表达式更多地用来揭示描述一个简谐运动必须

涉及到的物理量

大学物理(我国矿大)第九、十二、十三章习题答案解析

第九章习题 9.1 卢瑟福试验证明,当两个原子核之间的距离小到15 10 m -时,他们之间的排斥力仍遵守 库伦定律。金的原子核中有79个质子,氦的原子核中有两个质子。已知每个质子带电量为: 191.6010C e -=?,α粒子的质量为276.6810kg -?,当α粒子与核相距为156.910m -?时, 求:⑴ α粒子所受的力;⑵ α粒子的加速度。 解:α粒子的带电量为:2Q e α=,金核的带电量为:19Q e =金 15 6.910 m r -=?,276.6810kg M α-=? 2 22 279764N Q Q e F k k r r α?===金 加速度()2921.1410m s F a M α = =? 9.2 两个相同的小球,质量都是m ;带等量同号电荷q ,各用长l 的细线挂在一起,设平衡时两线夹角为2θ很小。 ⑴ 证明下列近似等式:13 202q l x mg πε?? = ??? 式中x 为两球平衡时的距离。 ⑵ 如果 1.2m l =,2 1.010kg m -=?,2 510m x -=?,则每个小球上的电荷q 是多少库 仑? 解:⑴ 对m 进行受力分析列方程为: cos mg T θ=, sin F T θ=电 tan 2F x mg l θ= =电(θ很小时,tan 2x l θ≈) 即:13 2232 02002422q x q l mgx q l x mgx l mg πεπεπε??=?=?= ??? ⑵ 132 32 8002 022 2.3810C 42mgx q x mgx q l q mgx l l πεπεπε-??=?=?==? ??? 9.3 两个点电荷带电量为2q 和q ,相距为l ,将第三个电荷放在何处,所受库仑力为零? 解:0120121 4qq F r πε= ,0 2 20214qq F r πε= 方向相反

大学物理公式大全(大学物理所有的公式应有尽有)

第一章 质点运动学和牛顿运动定律 1.1平均速度 v = t △△r 1.2 瞬时速度 v=lim △t →△t △r = dt dr 1. 3速度v=dt ds = = →→lim lim △t 0 △t △t △r 1.6 平均加速度a =△t △v 1.7瞬时加速度(加速度)a=lim △t →△t △v =dt dv 1.8瞬时加速度a=dt dv =22 dt r d 1.11匀速直线运动质点坐标x=x 0+vt 1.12变速运动速度 v=v 0+at 1.13变速运动质点坐标x=x 0+v 0t+ 2 1at 2 1.14速度随坐标变化公式:v 2 -v 02 =2a(x-x 0) 1.15自由落体运动 1.16竖直上抛运动 ?????== =gy v at y gt v 22122 ???????-=-=-=gy v v gt t v y gt v v 2212 022 00 1.17 抛体运动速度分量? ? ? -==gt a v v a v v y x sin cos 00 1.18 抛体运动距离分量?? ? ??-?=?=2 0021 sin cos gt t a v y t a v x 1.19射程 X=g a v 2sin 2 1.20射高Y= g a v 22sin 20 1.21飞行时间y=xtga — g gx 2 1.22轨迹方程y=xtga — a v gx 2 2 02cos 2 1.23向心加速度 a= R v 2 1.24圆周运动加速度等于切向加速度与法向加速度矢量和a=a t +a n 1.25 加速度数值 a=2 2 n t a a + 1.26 法向加速度和匀速圆周运动的向心加速度相同 a n = R v 2 1.27切向加速度只改变速度的大小a t = dt dv 1.28 ωΦR dt d R dt ds v === 1.29角速度 dt φωd = 1.30角加速度 22 dt dt d d φωα= = 1.31角加速度a 与线加速度a n 、a t 间的关系 a n =2 2 2 )(ω ωR R R R v == a t = αωR dt d R dt dv == 牛顿第一定律:任何物体都保持静止或匀速直线运动 状态,除非它受到作用力而被迫改变这种状态。 牛顿第二定律:物体受到外力作用时,所获得的加速度a 的大小与外力F 的大小成正比,与物体的质量m 成反比;加速度的方向与外力的方向相同。 F=ma 牛顿第三定律:若物体A 以力F 1作用与物体B ,则同时物体B 必以力F 2作用与物体A ;这两个力的大小相等、方向相反,而且沿同一直线。 万有引力定律:自然界任何两质点间存在着相互吸引力,其大小与两质点质量的乘积成正比,与两质点间的距离的二次方成反比;引力的方向沿两质点的连线 1.39 F=G 2 21r m m G 为万有引力称量=6.67× 10-11 N ?m 2 /kg 2 1.40 重力 P=mg (g 重力加速度) 1.41 重力 P=G 2 r Mm 1.42有上两式重力加速度g=G 2 r M (物体的重力加速度与 物体本身的质量无关,而紧随它到地心的距离而变) 1.43胡克定律 F=—kx (k 是比例常数,称为弹簧的劲度

相关主题
文本预览
相关文档 最新文档