当前位置:文档之家› 混凝土耐久性问题研究

混凝土耐久性问题研究

混凝土耐久性问题研究
混凝土耐久性问题研究

混凝土耐久性问题研究

提要:混凝土耐久性问题已引起人们的重视,针对当前存在的混凝土耐久性出现异常问题,分析了其产生的原因,提出了提高混凝土耐久性相应的解决方法。

关键词:混凝土;耐久性;外加剂。

1、混凝土耐久性下降的原因分析:

1.1冻融破坏

混凝土发生冻融破坏时最显著的特征就是混凝土构件表面剥落,严重时甚至可以露出石子。混凝土的抗冻性能与混凝土内部的孔结构和气泡含量的多少有着很密切的关系。混凝土中的孔越少越小,则破坏作用越小,气泡封闭的越多,则抗冻性越好。影响混凝土抗冻性的因素中,除了孔结构和气泡含量外,还包括混凝土的饱和度、水灰比、混凝土的龄期、集料的孔隙率及其间的含水率等。

1.2碱-集料反应

由于混凝土的碱-集料反应,是在混凝土内部发生的,因此其危害往往是不能根冶的,也是混凝土工程中的一大隐患。一般情况下混凝土发生碱-集料反应需具备三个条件,即碱、活性集料和水份。通常其反应往往有三种类型:碱-硅酸反应,碱-碳酸盐反应,慢膨胀型碱-硅酸盐反应,因此避免碱-集料反应的方法可采用:一、尽量避免采用活性集料;二、限制混凝土的碱含量;三、掺用混合材。

1.3化学侵蚀

常见的化学侵蚀有淡水腐蚀、一般酸性水腐蚀、碳酸腐蚀、硫酸盐腐蚀和镁盐腐蚀五类。淡水的冲刷,会使混凝土中的组分溶解,使混凝土孔隙增加,密实度降低,从而造成对混凝土的破坏;而当水中溶有酸类时,混凝土就受到溶淅和化学溶解双重作用,加速腐蚀;碳酸在溶淅混凝土的同时,会降低混凝土的稳定性,影响混凝土的致密度;硫酸盐的腐蚀则表现为SO42ˉ离子深入混凝土内与水泥组分反应,生成物体积膨胀开裂造成损坏;镁盐使硬化水泥石的结构组分分解。

2、提高混凝土耐久性问题的措施

2.1合理的添加外加剂

提高混凝土耐久性的一个十分重要而有效的措施就是在混凝土拌合物中掺入一定量的引气剂。他可以使混凝土内部产生大量的封闭气泡。缓解了水份结冰时产生的压力。阻断了混凝土内部毛细管与外界的通路,降低了渗透性。另一个措施就是在混凝土中应用减水剂,使用减水剂可以大幅度降低混凝土的水灰比,

混凝土的耐久性和可持续发展问题述评_周维

混凝土技术发展的一个终极目标是最大限度地延长其使 用寿命,也即耐用性(Serviceability)问题。这就对混凝土的长期性能特别是耐久性提出了更高的要求。另外一个很重要的问题是混凝土技术的可持续发展,其目标就是要使混凝土技术的发展与资源、环境等实现良性循环,尽量减少造成修补或拆除的浪费和建筑垃圾,大量利用优质的工业废弃物和矿石,尽量减少自然资源和能源的消耗,减少对环境的污染[1]。 1混凝土的耐久性 混凝土的耐久性可定义为“在使用过程中经受气候变化、化学侵蚀、磨蚀等各种破坏因素的作用而能保持其使用功能 的能力”[2-3] 。一般混凝土建筑物的使用寿命要求在50年以上,很多国家对桥梁、水电站大坝、海底隧道、海上采油平台、核反应堆等重要结构的混凝土耐久性要求在100年以上。气候条件适中的陆上建筑物,应要求混凝土在200年内安全使用。我国GB50010—2002《混凝土结构设计规范》规定,混凝土的耐久性设计应按照环境类别和设计使用年限进行,分为50年和100年2个耐久性预期目标,对于重大、重要工程应按照100年寿命来设计混凝土。近几年来,我国已有不少工程的混凝土设计寿命达到100年,这些工程大都结合环境条件和特点,采取专门有效的措施,以充分保证混凝土工程的耐久 性设计要求。比较著名的百年工程有三峡大坝、东海大桥、南 京地铁1号线、崇明越江通道北港桥梁、重庆朝天门大桥空心桥墩、杭州湾大桥等[4]。 但是近几十年以来,混凝土构筑物因材质劣化造成失效以至破坏崩塌的事故在国内外也是屡见不鲜,并有愈演愈烈之势。 国际上混凝土的大量使用始于20世纪30年代,到五六十年代达到高峰[1]。许多发达国家每年用于建筑维修的费用都超过新建的费用。 过去,除了大型水利工程外,我国混凝土工程的耐久性问题长期不受重视,混凝土结构没有达到预期的使用寿命,受环境作用过早破坏的实例很多,由此造成的经济损失也很大。由于许多工程设计只满足荷载要求,而没有提出耐久性的要求,使已建成的混凝土构筑物存在耐久性隐患。我国在50年代兴建的水电站大坝有很多已经成为“病坝”,我国的混凝土工程量在改革开放30多年来突飞猛进,可以预见,耐久性不佳的混凝土工程的劣化问题将会日趋严重。因此,混凝土耐久性问题越来越受到人们的重视。1.1混凝土的耐久性破坏 混凝土耐久性涉及到混凝土性能的方方面面,是影响混凝土使用寿命的首要因素。造成混凝土耐久性不佳的原因多种多样,主要可分为:(1)物理破坏:由温度变化引起的收缩膨胀裂缝(这是由于混凝土内骨料和硬化水泥浆体不同的温度膨胀系数而引起),如冻融循环、除冰盐分对混凝土的剥蚀等;(2)化学破坏:由混凝土内部材料引起的碱骨料反应以及外部侵蚀性离子(Cl-)引起的诸如钢筋锈蚀、硫酸盐侵蚀(SO42-)以 混凝土的耐久性和可持续发展问题述评 周维1,朱惠英2 (1.广西建筑工程质量检测中心,广西南宁 530011; 2.广西建筑科学研究设计院,广西南宁530011) 摘要:从提高混凝土耐久性和混凝土技术可持续发展方面概述现代混凝土技术的发展趋势和发展方向。混凝土技术发展的根 本方向是坚持可持续发展战略,在与地球资源环境和谐共生的发展基础上,最大限度地改善混凝土的耐久性,提高其使用寿命。 关键词:混凝土;耐久性;可持续发展中图分类号:TU528 文献标识码:A 文章编号:1001-702X(2007)09-0077-05 Reviewofdurabilityandsustainabledevelopmentofconcrete ZHOUWei1,ZHUHuiying2 (1.GuangxiBuildingEngineeringQualityInspectionCenter,Nanning530011,Guangxi,China;2.GuangxiBuildingScienceResearch&DesignInstitute,Nanning530011,Guangxi,China) 收稿日期:2007-05-12 作者简介:周维,男,1965年生,广西柳州人,高级工程师。通迅联系 人: 朱惠英。 全国中文核心期刊

疲劳与环境作用下混凝土的耐久性研究进展

疲劳与环境作用下混凝土的耐久性研究进展 发表时间:2019-06-06T16:00:10.553Z 来源:《建筑学研究前沿》2019年3期作者:周艳霞1 谢波1 [导读] 桥梁、公路、海洋平台等混凝土结构在实际服役环境中经历着荷载与环境共同作用。 中核新能核工业工程有限责任公司山西太原 030012 摘要:桥梁、公路、海洋平台等混凝土结构在实际服役环境中经历着荷载与环境共同作用。对疲劳荷载加载方式、疲劳荷载对混凝土碳化及氯离子侵蚀的影响进行了总结与分析,并指出需要进一步研究和探索的问题。 关键词:混凝土;疲劳荷载;碳化;氯离子 Review Progress on Durability of Concrete under Fatigue and Environment Zhou yanxia1,Xie bo1 (CNNC Xinneng Nuclear Engineering Co.,Ltd,Taiyuan 030012,China) Abstract:Concrete structures such as bridges,highways,and offshore platforms experience the combined effects of loads and the environment in the actual service environment.This paper summarizes and analyzes the loading methods of fatigue,the effects of fatigue load on carbonation of concrete and chloride ion erosion,and points out issues that need further research and exploration. Key words:concrete;fatigue load;carbonation;chloride ion 引言 近年来,随着我国城市化进程的不断推进及现代化不断发展,高铁、地铁、机场、道路、桥梁等工程建设迎来了高峰期。混凝土结构因其取材容易、性能稳定、耐火性能好等诸多优点而被广泛地应用上述工程。在实际服役过程中,此类混凝土结构不仅经历着环境作用(空气中CO2碳化作用、腐蚀性离子侵蚀、冻融作用等),同时还经历着循环往复的交通运输荷载(即疲劳荷载),在诸多作用下混凝土耐久性问题变得越来越突出。 在疲劳荷载作用下,混凝土内部微裂缝不断萌生、扩展、汇合,直至混凝土试件失稳破坏。混凝土碳化及氯离子侵蚀均是CO2、Cl-1通过混凝土孔隙、裂缝进入内部并发生作用。处于海洋环境、除冰盐环境中的混凝土结构,在混凝土碳化、氯离子侵蚀与疲劳荷载耦合作用下,混凝土结构的耐久性性能会加剧劣化,直接关系到混凝土结构能否满足正常使用要求、能否达到预定的服役年限,甚至影响建筑结构的安全性[1]。 鉴于公路、铁路、桥梁等混凝土结构在疲劳荷载和环境共同作用下,将导致混凝土结构耐久性退化和过早劣化,将造成严重的安全隐患和巨大的经济损失。本文将着重论述疲劳荷载与环境作用下混凝土的耐久性研究现状,并讨论需要进一步研究和探索的问题。 1.疲劳荷载的加载方式 疲劳荷载可按照不同的方式进行加载,获得不同疲劳损伤程度混凝土试件用于研究。 宋玉普[2,3]等通过自行改造的MTS疲劳试验机实现混凝土在定侧压下等幅和变幅抗压疲劳。杨健辉[4]等通过大连理工大学研制的大型三轴试验机实现混凝土试件在双向侧压作用下受拉疲劳。吕培印[5]基于室内试验,设计了在等幅和变幅疲劳荷载作用下混凝土的轴拉疲劳试验。易成[6]、石小平[7]、王晶[8]利用三分点加载的方式实现混凝土试件弯曲疲劳。 2.疲劳荷载对混凝土碳化的影响 混凝土碳化是大气环境中的CO2气体通过混凝土内部孔隙、裂缝与混凝土中水化物发生化学反应的过程。疲劳荷载作用会造成混凝土内部产生更多的裂缝,促使裂缝和孔隙贯穿连通,为环境中CO2提供更多通道向混凝土内部扩散,所以疲劳荷载大小和形式一定会影响混凝土碳化性能。到目前为止,国内外学者对疲劳荷载作用下混凝土碳化性能研究已取得不少成果。 胡刚等[9]通过对使用年限不同的实际工程结构在疲劳荷载作用下,对其耐久性性能退化问题进行了调查研究,研究了在疲劳荷载作用下混凝土碳化性能随时间变化的规律,结果表明,疲劳荷载加速了CO2在混凝土中的扩散能力,加快了混凝土碳化速率,同时也加剧了混凝土中钢筋锈蚀的程度。蒋金洋等[10]研究了疲劳荷载作用下超高程泵送钢纤维混凝土碳化性能,研究结果表明,疲劳荷载对混凝土碳化性能劣化存在临界值,一旦疲劳循环次数超过相应的临界值,SFRC试件的抗碳化性能就会随着疲劳次数的增加而降低。王晶等[8]研究了不同疲劳损伤度混凝土的耐久性性能变化规律,综合分析了疲劳损伤对相对动弹模、混凝土碳化深度、空气渗透性、裂缝等多方面的影响,研究结果表明,混凝土碳化深度随疲劳损伤度的增大而增大。 3.疲劳荷载对氯离子侵蚀的影响 在实际工程中,处于海洋环境中或除冰盐环境中的混凝土结构,研究疲劳荷载作用下混凝土氯离子侵蚀性能具有重大的实际工程意义和理论研究价值。到目前为止,国内外学者对疲劳荷载作用下混凝土氯离子侵蚀性能已开展了不少研究。 张武满等[13]研究了在抗压疲劳荷载作用下,GGBFS和SF对混凝土氯离子渗透性影响。分析表明,氯离子渗透速率随应力水平增高而增大;GGBFS掺量不大于30%、SF掺量不大于10%时,可有效抑制氯离子在混凝土中的渗透性速率。 李炜等[14]采用轴向压缩疲劳加载方式,通过控制应力水平、加载循环次数,确定不同疲劳损伤度混凝土试件,研究了疲劳荷载对混凝土中氯离子扩散系数的影响。研究表明,混凝土中氯离子扩散系数随疲劳损伤的增加而增大,该规律在高应力水平下更为明显,但未给出定量表达式。 孙培华[15]通过轴向压缩进行疲劳加载,对不同疲劳损伤程度混凝土进行了氯离子侵蚀试验。结果表明,在疲劳荷载下,氯离子的侵蚀速率和侵蚀深度明显提高,特别当疲劳荷载水平超过0.6fu时,氯离子的侵蚀速率和侵蚀深度显著提高。不足的是该研究未建立考虑疲劳荷载影响的氯离子扩散模型。 Saito等[16]研究了循环压缩荷载对混凝土氯离子侵蚀性能影响。分析得出,当循环压缩荷载水平大于60%时,混凝土中氯离子侵蚀速度显著增大;氯离子侵蚀速率随混凝土残余应变的增大而增大;但未提出定量公式。Xi等[17]利用微观监测方法,研究了轴心抗压疲劳与氯离子扩散交互作用下混凝土的氯离子传输性能,也得出了与Saito等[16]一致的结论。 Xiang等[18]利用数值模拟和可靠性分析方法,研究了不同疲劳损伤度混凝土氯离子扩散速率随时间变化规律,得出了以疲劳损伤度为

混凝土结构耐久性浅谈

网络教育学院 本科生毕业论文(设计) 题目:混凝土结构耐久性浅谈 学习中心: 层次:专科起点本科 专业:土木工程 年级: 学号: 学生: 指导教师: 完成日期:2013 年11 月14 日

混凝土结构耐久性浅谈 内容摘要 混凝土由于其具有经济、耐久、节能等众多优点, 而成为重要的建筑材料, 其应用范围十分广泛。作为目前世界最大宗的人造建筑材料, 其在给人类带来巨大文 明进步的同时 , 也面临由此造成的严峻的资源、能源和环境问题。传统意义上的混 凝土由于自身结构材料和使用环境的特点, 还存在着严重的耐久性问题, 已不能满足混凝土行业的绿色可持续发展的要求。因此, 提高混凝土的耐久性是实现混凝土 环保化、节约化的积极有效措施。本文综述了耐久性对混凝土的重要意义, 并着重分析了影响混凝土耐久性的主要因素。最后介绍了目前世界上提高混凝土的耐久 性的研究结果以及目前国际上对混凝土的耐久性设计要求。 关键词:耐久性;混凝土;影响因素

混凝土结构耐久性浅谈 目录 内容摘 要 .................................................. ..................................................... ....................I 引言......................................... ......................................... ......................................... . 1 1 绪论......................................... ......................................... ......................................... . 2 1.1 混凝土耐久性问题的提出................................................... (2) 1.2 混凝土耐久性的概 念 .................................... ........................................ (2) 2 混凝土结构耐久性问题的分 析 ........................................... (3) 2.1 混凝土冻融破 坏 .................................... ........................................ (3) 2.1.1 破坏机 理 .......................... ............................. ............................. (3) 2.1.2 影响因 素 .......................... ............................. ............................. (4) 2.2 混凝土渗透破 坏 .................................... ........................................ (4) 2.2.1 破坏原 因 .......................... ............................. ............................. (4) 2.2.2 影响因 素 .......................... ............................. ............................. (5) 2.3 碱骨料反 应 ..................................... ........................................ (5) 2.3.1 破坏原 因 .......................... ............................. ............................. (5) 2.3.2 影响因 素 .......................... ............................. ............................. (6) 2.4 混凝土的碳 化 .................................... ........................................ (6) 2.4.1 破坏原 因 .......................... ............................. ............................. (6) 2.4.2 影响因 素 .......................... ............................. ............................. (7) 2.5 钢筋锈 蚀 ..................................... ........................................ (7) 2.5.1 破坏原 因 .......................... ............................. ............................. (7) 影响因 素 ..........................

【混凝土】结构耐久性研究现状

混凝土结构耐久性研究现状 由于钢筋混凝土结构结合了钢筋抗拉与混凝土抗压的优点,表现出良好的受力性能,成为应用最普遍最广泛的结构形式,近年对水工结构、港工结构、桥梁结构、建筑结构的大量工程调查显示,钢筋混凝土结构表现出了严重的耐久性问题,许多既有钢筋混凝土结构工程往往达不到设计使用年限就需要进行加固修复,其中耐久性的降低是一大影响因素。钢筋混凝土结构耐久性问题的日益突出,引起了世界各国对加强钢筋混凝土结构耐久性研究的重视。 耐久性是指在确定的环境和维修、使用条件下,构件在设计使用年限内保持适用性、安全性的能力。钢筋混凝土结构在其使用过程中经常会受到各种各样的腐蚀和损伤,降低了构件的耐久性和结构的可靠度,导致工程的实际使用寿命往往短于设计使用年限。 影响耐久性的因素,混凝土的碳化,钢筋锈蚀,混凝土的冻融,碱-骨料反应等。 我国在钢筋混凝土耐久性问题上尚缺少全国性的系统资料,但从一些调查资料和发表的有关文献来看,钢筋混凝土耐久性问题也是极其严重的。中国建筑科学研究院的调查表明,我国现役工业建筑物损坏严重,其结构的使用寿命一般不能保证50年,多数在25-30年左右就必须进行大修或加固。1994年铁路部门的统计表明,我国铁路存在有病害的钢筋混凝土桥2675座,其中的722座发生裂损;仅使用20年的北京西直门立交桥,由于长期在冬季使用化冰盐,部分梁柱锈蚀严重,现己拆除重建。从发达国家所取得的经验来看,钢筋混凝土耐久性问题造成的损失己是惊人的。美国标准局(NBS)1975年的调查表明,美国每年因腐蚀造成的各种损失为700多亿美元,蚀破坏的修复费,1998年度就需要2500亿美元。英国为解决海洋环境下钢筋混凝土结构的腐蚀与防护问题和修复已损伤的钢筋混凝土结构,每年耗资将近200亿英镑,而日本引以为自豪的新干线,在运行10年后也出现大面积的混凝土开裂、剥蚀现象,日本运输省曾检查了其103座混凝土港口码头,发现使用20年以上的都有大量的顺筋裂缝,目前日本每年用于房屋结构维修的费用就达400亿日元。 混凝土结构耐久性降低首先起源于材料性能劣化,继而引起混凝土构件强度、刚度衰减,最后影响整个结构安全。由于客观条件,很多研究基于一般假设,如先钢筋锈蚀后加载试验,忽略荷载对混凝土力学性能劣化影响。在实际工程中绝大多数混凝土结构经受荷载和环境因素同时作用,混凝土在承受荷载时,混凝土本身力学性能退化;同时对钢筋保护作用降低,加速钢筋锈蚀,有效钢筋截面面积减小致使构件承载力降低,钢筋与混凝土黏结性能退化使得钢筋塑性不能充分发挥,降低结构延性。混凝土结构经受荷载和环境因素共同作用,荷载与环境等各因素产生的交互作用使得实际服役混凝土结构破坏过程复杂。研究荷载与环境综合作用下混凝土结构耐久性问题对实际工程更具有意义。 混凝土结构在荷载与一般大气环境综合作用下,荷载对混凝土碳化影响不容忽视,混凝土碳化与荷载大小(应力水平)和荷载形式(拉、压应力)等有关。当荷载应力抑制混凝土内部微裂缝发展时,混凝土碳化减缓; 而当荷载应力扩展混凝土内部微裂缝时,混凝土碳化加速。 荷载与特定大气环境( 如人工气候环境、盐雾大气环境、海洋大气环境等) 综合作用下构件耐久性研究成果甚少。张俊芝等试验研究了人工气候环境下承受荷载作用混凝土梁受压

浅谈钢筋混凝土桥梁的耐久性

浅谈钢筋混凝土桥梁的耐久性 摘要:在进行桥梁结构设计初期,就需要结合桥梁所处地理位置、周围环境及 实际运行环境对桥梁结构的耐久性进行合理设计。对于建设施工过程中可能影响 桥梁耐久性的隐患因素采取合理的预防措施,力求在设计初期就能考虑到所有可 能出现的问题。并采取有效的预防措施,以提高钢筋混凝土桥梁的耐久性。 关键词:钢筋混凝土;桥梁;耐久性 1钢筋混凝土桥梁结构的耐久性分析及其重要性 随着科学技术的发展,钢筋、混凝土材料也得到了快速发展。钢筋混凝土结 构的建筑发展历史远低于木质结构和钢制结构的建筑。19世纪中期,随着钢筋和混凝土材料的发展,钢筋混凝土结构也迅速发展起来;到了19世纪下半叶,法 国设计建筑了第一座钢筋混凝土结构桥梁,随之越来越多的钢筋混凝土结构桥梁 逐渐问世,呈现在人们的视野范围内。据科学数据调研发现,截止到2007年底 世界上钢筋混凝土桥梁总数超过57万座,桥梁建设已慢慢演变为基础设施工程 建设的重要环节。由美国土木工程师学会2003年底发布的混凝土桥梁相关研究 报告可以发现,世界上有1/4的钢筋混凝土桥梁耐久性不达标,严重影响了桥梁 的后期运营寿命[1]。国内外相关工程研究人员对不同桥梁的耐久性进行比较分析 发现,桥梁结构的构件损坏均由桥梁耐久性差引起。通过对近些年钢筋混凝土桥 梁事故原因分析,钢筋腐蚀、结构机械磨损、桥梁冻融循环及混凝土碳化均是导 致桥梁事故的主要原因,而引起这些桥梁故障的最终因素是桥梁耐久性差。 2影响桥梁耐久性的因素分析 影响桥梁耐久性的因素十分复杂,不考虑洪水、地震、超载及船舶的撞击, 主要取决于以下三方面因素:一,混凝土材料、钢材的自身特性;若想保证桥梁 的耐久性好一些,首先,一定要保证混凝土材料以及钢材的质量是绝对高的,然 而就目前我国桥梁事业的施工现状来看,很多建设单位存在以次充好的现象,进 而导致材料的质量不是很高,严重影响了桥梁的耐久性;二,桥梁结构所处的环境;我们都知道,任何物体都符合热胀冷缩的原理,针对于桥梁也是一样,而在 桥梁发生热胀冷缩的过程中,桥梁的结构会发生改变,结构改变了,桥梁的耐久 性自然就会降低,尤其是在北方地区,北方的天气冬夏温差比较大,冬天问题特 别低,桥梁发生缩变,而夏天天气比较炎热,桥梁开始胀裂,这也是为什么桥面 很容易存在裂缝的原因;三,桥梁结构的使用条件与防护措施。部分地区由于建 筑行业比较发达,因此每天都会有大量的货车从桥梁上经过,长时间下来,桥梁 的耐力自然就会降低很多,加上部分地区针对于桥梁的保护缺乏一定的意识,进 而导致桥梁只被使用却不被保护的现象,久而久之,问题自然也就应运而生了。 3钢筋混凝土桥梁耐久性改善措施 3.1确保混凝土灌注的密实性 提升混凝土灌注的密实性是提升钢筋混凝土桥梁耐久性的重要措施之一,可 以从水灰比、骨料及振捣工艺三方面入手,如精确把控水灰比,认真检查骨料质 量以及严格按照规范进行混凝土振捣等,提升混凝土密实度。 3.2提升混凝土和钢筋间的黏附力 为保证混凝土各项性能指标满足施工需求,避免坍塌程度太大,需严格按照 设计规范进行钢筋布设,混凝土振捣要充分,尽可能降低混凝土和钢筋间的缝隙。 3.3保证碱一集料反应工艺满足建设需求 为保障碱一集料反应工艺满足工程设计需求,需从以下方面入手:当混凝土

混凝土结构耐久性研究

混凝土结构耐久性 1.1 混凝土结构耐久性问题的重要性 钢筋混凝土结构结合了钢筋与混凝土的优点,造价较低,且一直被认为是一种非常耐久性的结构形式,其应用范围非常广泛。 然而,从混凝土应用于建筑工程至今的150年间,大量的钢筋混凝土结构由于各种各样的原因而提前失效,达不到预定的服役年限。这其中有的是由于结构设计的抗力不足造成的,有的是由于使用荷载的不利变化造成的,但更多的是由于结构的耐久性不足导致的。特别是沿海及近海地区的混凝土结构,由于海洋环境对混凝土的腐蚀,尤其是钢筋的锈蚀而造成结构的早期损坏,丧失了结构的耐久性能,已成为实际工程中的重要问题。早期损坏的结构需要花费大量的财力进行维修补强,甚至造成停工停产的巨大经济损失。耐久性失效是导致混凝土结构在正常使用状态下失效的最主要原因。 国内外统计资料表明,由于混凝土结构耐久性病害而导致的损失是巨大的,并且耐久性问题越来越严重。结构耐久性造成的损失大大超过了人们的估计。国外学者曾用“五倍定律”形象地描述了混凝土结构耐久性设计的重要性,即设计阶段对钢筋防护方面节省1美元,那么就意味着:发现钢筋锈蚀时采取措施将追加维修费5美元;混凝土表面顺筋开裂时采取措施将追加维修费25美元;严重破坏时采取措施将追加维修费125美元。 因此,钢筋混凝土结构耐久性问题是一个十分重要也是迫切需要加以解决的问题,通过开展对钢筋混凝土结构耐久性的研究,一方面能对已有的建筑结构物进行科学的耐久性评定和剩余寿命预测,以选择对其正确的处理方法;另一方面可对新建项目进行耐久性设计,揭示影响结构寿命的内部与外部因素,从而提高工程的设计水平和施工质量。因此,它既有服务于服役结构的现实意义,又有指导待建结构进行耐久性设计的理论意义,同时,对于丰富和发展钢筋混凝土结构可靠度理论也具有一定的理论价值。 正因为混凝土结构耐久性的问题如此重要,近年来世界各国均越来越重视混凝土结构的耐久性问题,众多的研究者对混凝土结构耐久性展开了研究,取得了系列研究成果,而材料层面的成果尤为显著。迄今为止,已经形成了混凝土结构耐久性研究框架,如图1-1所示。本章将着重介绍混凝土结构耐久性研究中成熟的相关研究成果。 图1-1 混凝土结构耐久性研究框架 ?????????????????????????????????????????????????耐久性评估耐久性设计结构层次构件承载力的变化粘结性能衰退模型混凝土锈胀开裂模型构件层次钢筋锈蚀碱-集料反应冻融破坏氯盐腐蚀混凝土碳化材料层次工业环境土壤环境海洋环境大气环境环境层次混凝土结构耐久性

混凝土结构耐久性设计浅析

混凝土结构耐久性设计浅析 摘要:根据混凝土结构耐久性的定义及其设计的主要内容,介绍了影响混凝土 结构耐久性的主要因素,阐述了现阶段混凝土结构耐久性设计的目标和、设计方法、混凝土结构耐久性的现场检验以及混凝土结构使用阶段的检测和维护要求, 明确了通过混凝土结构耐久性设计保证混凝土结构达到规定的设计使用年限。 关键词:混凝土;结构;耐久性设计;使用年限 引言 混凝土结构或构件的裂缝及破坏是影响建筑使用年限的主要原因,而建筑的使用年限是 工程质量得以量化的集中表现。建筑的使用年限在量值上与混凝土结构的设计使用年限是相 同的。通过混凝土结构耐久性设计来保证混凝土结构达到规定的设计使用年限,确保建筑拥 有合理的使用寿命。 一、混凝土结构耐久性及其设计内容 混凝土结构的耐久性指的是在环境作用和正常维护、使用条件下,混凝土结构或构件在 设计使用年限内保持其适用性和安全性的能力[1]。混凝土结构失去其适用性和安全性能力的 极限状态表现为:钢筋混凝土构件表面出现锈胀裂缝;结构表面混凝土出现可见的酥裂、粉 化等。 混凝土结构耐久性设计就是通过经验方法及定量方法,确定结构所处的不同环境,提出 对混凝土材料的耐久性基本要求,确定构件中钢筋的混凝土保护层厚度,明确不同环境条件 下的耐久性技术措施,提出结构使用阶段的检测与维护要求[2]。 二、影响混凝土结构耐久性的主要因素 (一)混凝土自身特性影响 混凝土材料的质量是影响结构耐久性的一个主要内因。混凝土材料中混凝土的水胶比、 混凝土的密实度、氯离子含量和碱含量是混凝土材料质量影响混凝土结构耐久性的主要因素。有效胶凝材料含量的不确定性,混凝土的密实度不足,以及氯离子达到一定浓度后引起的钢 筋脱钝和电化学腐蚀,都会严重影响混凝土结构的耐久性。 混凝土构件的施工质量是影响结构耐久性的另外一个内因。钢筋混凝土构件中钢筋的保 护层厚度、混凝土密实度及现浇混凝土构件的养护是混凝土构件施工质量影响混凝土结构耐 久性的主要因素,钢筋混凝土构件中钢筋的保护层厚度太小,混凝土密实度的不足,新浇混 凝土的养护达不到相应的标准,也都会影响混凝土结构的耐久性。 (二)混凝土结构所处环境作用的影响 直接与混凝土构件表面接触的局部环境作用是影响混凝土结构耐久性的外因。环境类别 的不同,对混凝土结构的耐久性影响也不同。当结构和构件同时受到多种类别的环境作用时,均应考虑需满足各自单独作用下的耐久性要求[1]。 (1)一般环境带来的影响

西南交通大学研究生混凝土耐久性考试答案2

1试述耐久性极限状态标志及耐久性极限状态的可靠指标取值 答: 混凝土结构发生耐久性破坏可近似认为是当混凝土发开裂到一定程度时混凝土与钢筋之间的粘结力发生破坏从而不能满足受力要求,我国《混凝土结构耐久性设计规》中将混凝土结构构件的耐久性极限状态分为三种:钢筋开始发生锈蚀的极限状态,钢筋发生适量锈蚀的极限状态和混凝土表面发生轻微损伤的极限状态,然而这个破坏程度很难定量描述,同时可知,氯离子浓度是影响钢筋锈蚀的主要因素,所以可以通过对氯离子浓度的定量描述来反映混凝土结构的耐久性能。 在对氯离子侵蚀环境下的混凝土结构进行寿命预测时,保护层内部钢筋表面 的氯离子浓度达到使钢筋开始锈蚀的临界浓度时,即认为结构开始进入失效状态,所以可近似将钢筋表面氯离子浓度达到临界值作为耐久性极限状态的标志。 2.论述混凝土产生裂缝原因及防止方法 混凝土产生裂缝的主要原因可以分为内部材料原因和外部环境作用原因。 1)内部材料原因: 材料原因引起的裂缝各类包括有: 干缩裂缝、中性化伴随钢筋腐蚀产生裂缝、氧化物使钢筋腐蚀产生裂缝、碱集料反应产生裂缝、水泥水化热产生裂缝。 2)外部环境作用原因: 外部环境作用原因引起的裂缝各类包括有:冻融循环作用、干湿交替、盐结晶、施工原因引起的混凝土裂缝、养护条件不当引起的裂缝,结构设计不当引起的裂缝以及建筑物沉降不均引起的裂缝等。 防止措施: 1)合理选择混凝土原材料和配合比,例如骨料品种、水泥品种等。 2)在混凝土中掺加外加剂,提高混凝土的密实度,或配置成高性能混凝土。 3)控制混凝土的搅拌质量和加强混凝土的早期养护条件以及合理的混凝土保护层厚度。4)优化结构设计,加强施工质量。 3.为什么在有盐环境及有干湿交替时耐久性环境等级较差? 答:混凝土是一种多孔材料,内部结构比较复杂,孔洞、微裂缝的分布和形态等对微观特征对混凝土的硫酸盐侵蚀有很大影响,干湿循环对混凝土产生疲劳破坏,干燥状态下水份蒸发,混凝土毛细孔内的硫酸钠溶液浓度上升,溶液过饱和产生析晶,体积膨胀使毛细孔内壁产生微裂缝,降低混凝土试件的抗渗透性;另一方面毛细孔内盐溶液的浓度增大促进了化学反应的速度,侵蚀产物生长速度加快,侵蚀产物富集体积膨胀微裂缝开展,也进一步降低混凝土的抗渗透性。 1)在干湿交替的条件下,潮湿时侵入混凝土孔隙中的盐溶液当环境转为干燥后因过饱和而结晶,还会产生极大的结晶压力使混凝土破坏。 2)盐在混凝土内部孔隙中形成的盐溶液浓度不同,导致渗透压不同,从而在混凝土内部

混凝土结构耐久性试验室

《混凝土结构耐久性试验室“浙商品牌杭州中测”》 一、概述 本试验系统是一种综合性的多功能气候模拟试验设备,其能够在一定范围内模拟自然环境中的温湿度、日照、淋雨、盐雾(NaCl、MgCl2等)、冻融与干湿交替、盐溶液(氯盐、硫酸盐、镁盐)中的腐蚀与干湿交替、大气、CO2、NOx、SO2气体等环境,实现对水泥(沥青)混凝土耐久性的评定。主要功能是在一定空间内模拟一种或多种气候条件状态,可进行混凝土试件的高温干燥试验、低温冻融试验、湿热寒潮试验、高低温交变循环试验、、温湿交变循环试验、盐雾试验、淋雨试验、光照试验及具有盐类或化学物质浸蚀的试验等,为试验样品提供多种环境条件和不同的测试手段,并实现不同环境耦合的模拟试验、不同环境与荷载耦合试验,包括气候环境与力学荷载作用的综合、气候环境与腐蚀工业环境的综合等,且充分考虑试验的综合环境设置、荷载施加反力架的布置、腐蚀环境下加载方式和设备防护等多种综合因素。本试验系统是以“工程应用环境模拟与仿真”为基础,提供了在不同的工程应用环境条件下,为工程材料提供多种环境条件和不同的测试手段下耐久性能的智能环境模拟测试系统。 防腐蚀处理:系统材料、设备及相关附属配件均选用高耐腐蚀性SUS316不锈钢材料和非金属复合材料;有关电器元件均进行隔离或密封防腐蚀处理,系统设计时对试验装置的整体及与腐蚀介质接触的各个部件、管路、电器元件都进行了防腐和密封设计,包括材质、部件的连接、节点的处理等均具有一定的防腐质保年限。

二、满足标准: GB-T50082-2009《普通混凝土长期性能和耐久性能试验方法标准》 三、主要技术规格及参数: 1 工作室尺寸: 3500×4300×2000(宽×长×高)mm 2 温度范围:-20℃~+60℃ 3 温度偏差:±3℃ 4 温度波动度:≤±1℃ 5盐水浓度:3~5% 6.雾粒大小: (5~10)um 7.盐水流量:150~250L/h 8.人工雨方向:垂直向下 9.承重: 2吨/车×2辆 10.试件尺寸: 2500×600×500(mm) 11.试件数量:两件 12.制冷系统冷却方式:风冷式 13.温度控制方式: PID控制方式 14.光源:紫外灯管(UVA) 15.灯管距试件距离: 50mm 16.灯管间距: 70mm 17.碳化试验:通过流量、时间控制浓度,CO2气体浓度用进口浓度仪控制。 18.浸润试验:既可手动控制浸润,也可实现自动周期浸润。

沿海混凝土耐久性研究综述

沿海混凝土耐久性研究综述 四川建筑科学研究 SichuanBuildingScience 第33卷第1期 2007年2月 沿海混凝土耐久性研究综述 钟亚伟,李固华 (1.西南交通大学土木工程学院,四川成都610031: 2.铁道第二勘察设计院,四川成都610081) 摘要:处于海洋环境中的混凝士结构普遍存在腐蚀问题.氯盐的侵蚀引起钢筋锈蚀是导致沿海工程混凝士结构破坏的主 要原因.本文作者概述了氯离子侵蚀的破坏机理,混凝士耐久性测试与评定方法以及寿命评估,并提出有关防腐措施.对设 计,施工及维护方面具有较好的参考意义. 关键词:沿海混凝土;氯离子;耐久性 中图分类号,TU528.33文献标识码:A文章编号:1008—1933(2007)O1.0090—06 Reviewofresearchonconcreteformarineworksdurability ZH0NGYawei.LIGuhua' (1.SchoolofCivilEngineeringSouthwestJiaotongUniversity,ChengdOU610031,China; 2.TheSeeendRailwaysSurveyandDesigninstitute,Chengdu610081.China) Abstract:Concretestructuresunderoceanenvironmentsgenerallyfacethecorrosionproble ms.Corrosionofsteelreinforcementby chlorineionisthemostsignificantcause$ofdeteriorationofreinforceconcretestructuresinm arineenvironment.Thedestructive mechanismofcorrosionunderchlorineenvironment,thedurabilitytestandassessmentmeth odsofconcreteformarineworkswere

混凝土耐久性研究论文.

网络高等教育 本科生毕业论文(设计) 题目:混凝土桥梁耐久性研究 学习中心: 层次:专科起点本科 专业: 年级:年秋季 学号: 学生: 指导教师: 完成日期:年月日

内容摘要 结合现代环境中的混凝土桥梁的耐久性研究的最新发展,首先介绍了混凝土结构破坏机理,其次结合工程实际讨论了耐久性设计中的关键问题,包括耐久性区段划分、保护层厚度、高性能混凝土、施工质量控制、耐久性措施、健康监测等。 关键词:混凝土桥梁;耐久性设计;高性能混凝土

目录 内容摘要 (1) 引言 (4) 1 绪论 (5) 1.1 混凝土耐久性的概念 (5) 1.2 混凝土耐久性对桥梁结构的重要性 (5) 1.3 本文主要研究内容及意义 (5) 2.1混凝土冻融循环 (7) 2.2.1影响因素 (7) 2.1.2 破坏机理 (7) 2.2 混凝土碳化 (8) 2.2.1 影响因素 (8) 2.2.2 破坏机理 (8) 2.3 混凝土渗透破坏 (10) 2.3.1 影响因素 (10) 2.3.2 破坏机理 (10) 2.4 碱骨料反应 (10) 2.4.1 影响因素 (10) 2.4.2 破坏机理 (11) 2.5 钢筋锈蚀 (11) 2.5.1 影响因素 (11) 2.5.2 破坏机理 (12) 2.6 化学侵蚀 (12) 2.6.1 影响因素 (12) 2.6.1 破坏机理 (12) 3 混凝土桥梁耐久性改善措施 (14) 3.1 选材方面 (14) 3.2 结构设计方面 (14) 3.3 施工方面 (15)

4 案例分析 (16) 4.1 工程概况 (16) 4.2 存在问题 (16) 4.3 改善措施 (17) 4 结论与建议 (18) 参考文献 (19)

土木工程毕业论文浅谈钢筋锈蚀对钢筋混凝土桥梁耐久性的影响

浅谈钢筋锈蚀对钢筋混凝土桥梁耐久性的影响 论文摘要:钢筋锈蚀是造成钢筋混凝土桥梁耐久性损伤的最主要和最直接因素,也是混凝土桥梁耐久性破坏的主要形式之一。本文从锈蚀机理、影响因素和影响后果等方面进行了综述性讨论。 钢筋锈蚀是一个比较普遍、并且严重威胁结构安全的耐久性问题。它在影响结构物耐久性因素中,占据主导地位。美国、英国、德国和日本等国每年均花费巨资用于混凝土结构的耐久性修复,其中钢筋锈蚀占有相当大的比例。我国也有相当数量的钢筋混凝土桥梁相继进入老化期,钢筋锈蚀的研究和防治显得非常重要。 钢筋锈蚀是造成钢筋混凝土桥梁耐久性损伤的最主要和最直接因素,也是混凝土桥梁耐久性破坏的主要形式之一。钢筋锈蚀对桥梁结构的破坏分为三个时期:前期是钢筋表面局部锈蚀出现锈斑、锈片等;中期是钢筋整个表面锈蚀,并产生膨胀,与保护层脱离,发生层裂;后期表现为钢筋铁锈进一步膨胀,混凝土本身发生破坏,出现顺筋胀裂,混凝土脱离,直至钢筋不断锈蚀,有效截面不断减小,桥梁结构承载力不断下降,钢筋混凝土构件丧失基本承载能力。 一、钢筋混凝土桥梁中钢筋锈蚀机理 正常情况下,由于初始混凝土的高碱性,钢筋混凝土桥梁结构力筋表面形成一层致密的钝化膜,使其处于钝化状态。但随着环境介质的侵入,钝化膜逐渐遭到破坏,从而导致腐蚀的发

生。 力筋发生锈蚀需要三大基本要素: (一)力筋表面钝化膜的破坏; (二)充足氧的供应; (三)适宜的湿度(RH=60~80%)。 三个要素缺一不可,第一要素为诱发条件,而腐蚀速度则取 决于氧气及水分的供应。 钢筋的锈蚀一般为电化学锈蚀。发生电化学锈蚀必须具备3 个条件: 1、在钢筋表面形成电位差; 2、在阴极部位钢筋表面存在足够的氧气和水; 3、在阳极区,使阳极部位的钢筋表面处于活化状态,即钢筋 表面的钝化膜遭到破坏。 在氧气和水的共同作用下,钢筋表面不断失去电子发生电化 学反应,逐渐被锈蚀,在钢筋表面生成红锈,引起混凝土开 裂。 对于钢筋混凝土桥梁,在一般环境条件下,钢筋的锈蚀通常 由两种作用引起:一种是混凝土碳化作用;一种是氯离子的侵蚀。二氧化碳和氯离子对混凝土本身都没有严重的破坏作用,但是这 两种环境物质都是混凝土中钢筋钝化膜破坏的最重要又最常遇到 的环境介质:混凝土碳化使混凝土孔隙溶液中的Ca(OH)2含量逐 渐减少,PH值逐渐下降,钝化膜逐渐变得不再稳定以至于完全被 破坏,使钢筋处于脱钝状态;周围环境中的氯离子从混凝土表面 逐渐渗入到混凝土内部,当到达钢筋表面的混凝土孔溶液中的游 离氯离子浓度超过一定值(临界浓度)时,即使混凝土碱度再高,pH值大于11.5值,Cl-也能破坏钝化膜,从而使钢筋发生锈蚀。 氯盐引起钢筋锈蚀的发展速度很快,远比碳化锈蚀严重,这种情 况常发生在近海或海洋环境以及冬季经常使用除冰盐的环境。

混凝土结构耐久性试验系统

《混凝土结构耐久性试验系统“浙商品牌杭州中测”》 一、概述 本试验系统是一种综合性的多功能气候模拟试验设备,其能够在一定范围内模拟自然环境中的温湿度、日照、淋雨、盐雾(NaCl、MgCl2等)、冻融与干湿交替、盐溶液(氯盐、硫酸盐、镁盐)中的腐蚀与干湿交替、大气、CO2、NOx、SO2气体等环境,实现对水泥(沥青)混凝土耐久性的评定。主要功能是在一定空间内模拟一种或多种气候条件状态,可进行混凝土试件的高温干燥试验、低温冻融试验、湿热寒潮试验、高低温交变循环试验、、温湿交变循环试验、盐雾试验、淋雨试验、光照试验及具有盐类或化学物质浸蚀的试验等,为试验样品提供多种环境条件和不同的测试手段,并实现不同环境耦合的模拟试验、不同环境与荷载耦合试验,包括气候环境与力学荷载作用的综合、气候环境与腐蚀工业环境的综合等,且充分考虑试验的综合环境设置、荷载施加反力架的布置、腐蚀环境下加载方式和设备防护等多种综合因素。本试验系统是以“工程应用环境模拟与仿真”为基础,提供了在不同的工程应用环境条件下,为工程材料提供多种环境条件和不同的测试手段下耐久性能的智能环境模拟测试系统。 防腐蚀处理:系统材料、设备及相关附属配件均选用高耐腐蚀性SUS316不锈钢材料和非金属复合材料;有关电器元件均进行隔离或密封防腐蚀处理,系统设计时对试验装置的整体及与腐蚀介质接触的各个部件、管路、电器元件都进行了防腐和密封设计,包括材质、部件的连接、节点的处理等均具有一定的防腐质保年限。

二、满足标准: GB-T50082-2009《普通混凝土长期性能和耐久性能试验方法标准》 三、主要技术规格及参数: 1 工作室尺寸: 3500×4300×2000(宽×长×高)mm 2 温度范围:-20℃~+60℃ 3 温度偏差:±3℃ 4 温度波动度:≤±1℃ 5盐水浓度:3~5% 6.雾粒大小: (5~10)um 7.盐水流量:150~250L/h 8.人工雨方向:垂直向下 9.承重: 2吨/车×2辆 10.试件尺寸: 2500×600×500(mm) 11.试件数量:两件 12.制冷系统冷却方式:风冷式 13.温度控制方式: PID控制方式 14.光源:紫外灯管(UVA) 15.灯管距试件距离: 50mm 16.灯管间距: 70mm 17.碳化试验:通过流量、时间控制浓度,CO2气体浓度用进口浓度仪控制。 18.浸润试验:既可手动控制浸润,也可实现自动周期浸润。

混凝土结构耐久性设计方法与寿命预测研究进展_金伟良

文章编号:1000-6869(2007)01-0007-07 混凝土结构耐久性设计方法与寿命预测研究进展 金伟良,吕清芳,赵羽习,干伟忠 (浙江大学结构工程研究所,浙江杭州310027) 摘要:由混凝土结构耐久性定义入手,首先评述现有的混凝土结构耐久性设计方法,提出耐久性设计的发展应结合结构全生命周期成本(SLCC)的理念;其次总结了结构耐久性的评估和寿命预测方法的研究现状,认为耐久性的评估与寿命预测需要研究确立反映结构使用寿命的耐久性指标,并建立基于动态评估方法的寿命评估体系;最后提出上述方面发展领域尚待解决的一些基本问题,包括:界定给定环境和使用要求下的混凝土结构耐久性失效极限状态;确定表征材料与结构耐久特征的指标与参数;建立耐久性动态检测数据分析理论等。关键词:混凝土结构;耐久性;结构全生命周期成本(S LCC);综述中图分类号:TU375 文献标识码:A Research progress on the durability design and life prediction of concrete structures JI N Weiliang,L B Qingfang,ZHAO Yuxi,GAN Weizhong (Department of Civil Engineering,Zhejiang University,Hangzhou 310027,China) Abstract:This paper starts with the definition of concrete -struc tural durability.Then it presents that durability design method should be combined with the theory of Structural Life -Cycle C ost(SLC C)based on the survey of the recent durability design theories.Moreover,the current situation of evaluation and life prediction of durable concre te structures are summarized,which makes it necessary to determine a durability index reflecting service life and a dynamic life -assessment https://www.doczj.com/doc/e413278026.html,st,several basic problems in this domain are brought forth,including definition of durability limit state for c oncrete structures under given environmental condition and usage require ment,determination of inde xes and parameters representing the durability characters of materials as well as structures and establishment of theory for analysis of durability dynamic detection data.Keywords:concrete structure;durability;structural life -cycle cost(SLCC);summary 基金项目:国家自然科学基金重点项目/氯盐侵蚀环境的混凝 土结构耐久性设计与评估基础理论研究0(50538070) 资助。 作者简介:金伟良(1961) ),男,浙江大学结构工程研究所所 长,教授。 收稿日期:2006年8月 0 概述 混凝土结构是目前使用最为广泛的结构形式,由于混凝土结构材料自身和使用环境的特点,使混凝土 结构不可避免地存在耐久性问题。自混凝土结构问世 以来,大量的混凝土结构提前失效大多源于混凝土结构耐久性的不足。当前欧美等发达国家每年用于已有工程的维修费用都已占到当年土建费用总支出的1/2以上。我国在役以混凝土为主体的结构在数量上居于绝对支配地位,混凝土结构耐久性问题更加突出,存在着/南锈北冻0的耐久性破坏特征。5中国腐蚀调查报告6[1]指出,建筑部门的腐蚀年损失约为1000亿人民币,其经济损失以及对社会安定性的冲击力之大不言而喻。 随着我国东部地区经济的持续增长和西部大开发发展战略的实施,我国正以前所未有的巨大投资进行 7 第28卷第1期建 筑 结 构 学 报 Vol 128,No 112007年2月 Journal of Building Structures Feb 12007

相关主题
文本预览
相关文档 最新文档