当前位置:文档之家› 单相弧光接地过电压

单相弧光接地过电压

单相弧光接地过电压
单相弧光接地过电压

随着电力系统的逐渐增容和发展,电网中的各种过电压发生机率越来越高,每一次的过电压都对电气设备的安全运行造成直接的、严重的威胁,而且每发生一次过电压就会对电气设备的绝缘造成一次破坏,并且这种过电压破坏具有明显的累积效应,当达到一定程度时,会造成电气设备损坏,甚至是造成局域电力网络发供电中断或是受损。

2. 单相弧光接地过电压的形成机理

对于单相弧光接地过电压形成机理的理论分析方法很多,对于电网中性点不接地系统,电力电缆在其相间和相地间都有等效电容。经计算表明,发生单相弧光接地时过电压的最大值将达到:

Umax=1.5Um+(1.5Um–0.7Um)=2.3Um

单相弧光接地的过电压瞬时幅值最大可以达到20.4KV。如果弧光接地在接地点造成弧光间隙性反复燃烧,那么产生的过电压倍数将远远大于2.3倍。根据有关资料介绍,在国外有些专家对单相弧光接地进行了实测,其结果显示,过电压幅值高达正常相电压幅值的3~3.5倍。在系统发生单相接地时,都产生了较高的过电压,才会引起避雷器放电。强烈的过电压使相间空气绝缘被击穿,形成相间弧光短路,至于避雷器的爆炸,主要是由于避雷器的选型错误(原设计型号为Y3W-10/31.5)和产品质量欠佳(受潮),再加上弧光短路产生的高能热量加剧了避雷器的爆炸。由此可见如此高的过电压一旦产生就将会在电力网络绝缘薄弱环节形成闪络放电,严重时将破坏绝缘,造成相间短路或者损害电气设备。发电机接地电流已远远大于5A,才会造成发电机定子铁芯熔化,即与发电机有电气连接的电力网络的单相接地电流已大大超过了5A。

3 单相弧光接地产生的原因

从上述分析可见,单相弧光接地是威胁电力系统安全、稳定和可靠运行的最主要和最直接因素。而中性点的接地方式,直接影响到单相弧光接地的产生和限制力度。根据我国的传统设计经验,在6KV-35KV电力系统普遍采用中性点不接地方式,这是因为在早期的电力网中,电力电缆采用量不大,系统的单相接地电容电流并不大。而随着各电力系统的飞速发展和增容,原电力系统主接线发生了很大的变化,电力电缆的采用量急剧增加。从诸多系统的运行现状和经验来看,其过电压发生的机率越来越高,由于过电压造成的事故在整个电气事故中所占的比例也越来越大。供电系统亦属于这种情况。该系统从最初的以架空线为主的配电

系统发展成为了拥有发电、供配电以及以电力电缆连接为主的电力系统,再加上即将上马的更高变配电网络,将形成以发、变和配电综合一体化电力系统。因此最初采用的中性点不接地方式将受到严峻的考验!根据《电力设备过电压保护设计技术规程》和电力部、国家的有关标准和要求,对于3~35KV电力系统,当单相接地电流小于30A时,如要求发电机能带单相接地故障运行,则当与发电机有电气连接的3~35KV电网的接地电流小于5A时,其中性点可采用不接地运行方式。

4. 单相接地电流的估算

在中性点不接地系统中,当系统发生单相接地时,单相接地电流IC等于正常时相对地电容电流ICi的3倍,即IC=3∑ICi。而正常时的相对地电容电流主要由架空线、电力电缆和主要电气设备(如发电机)组成。为说明问题,本文在此仅采用估算法对现阶段电力网络单相接地时的电容电流进行简要计算。

4.1.1 单相接地时架空线的电容电流IC1:

IC1=(2.7-3.3)λUNL×10-3(A)

式中UN—系统额定电压(KV)

L—线路长度(Km)

λ—设备影响修正系数。

根据架空线均是无避雷线的架空线的情况,取UN=10KV、L=20Km、系数K=3.0、λ=1.16,因此:

IC1=3.0λUNL×10-3

=1.16×3.0×10×20×10-3=0.70(A)

4.1.2 单相接地时电力电缆电容电流IC2:

采用的电力电缆形式多样,截面面积从50~120mm2均有不同程度的采用。在此按平均截面积为70mm2估算。

IC2=

(A)

式中S—电缆截面(mm2)

L—电缆长度(Km)

UN—系统额定电压(KV)

根据电力电缆使用情况取L=20Km、S=70mm2、UN=10KV,因此:

IC2=

= =17.7(A)

4.1.3 单相接地时发电机电容电流IC3:

热电厂两台发电机的电容电流按下式进行估算:

IC3=2.5KSωUN×10-3/

式中K—绝缘材料系数

S—发电机视在功率(MVA)

ω—角频率(rad/s)

UN—发电机额定电压(KV)

对于热电厂B级绝缘的两台QF-6-2型汽轮发电机,取K=0.0187、S=7.5MVA、UN=10.5KV,因此:

IC3=2×2.5KSωUN×10-3/

=2×2.5×0.0187×7.5×2×3.14×50×10.5×10-3/

=0.3(A)

为此在发生单相接地时,在接地点极其容易形成不稳定的间隙性弧光接地,从而产生过电压,危及供电安全。同时强烈的电弧将引起两相或三相短路,造成电气设备严重破坏,危及安全生产。为此如何采取防范措施就显得尤为重要。

5. 防范措施

针对电力系统发生单相接地后的现状,要解决过电压以及发电机的单相接地电流的问题,应从以下几方面着手,以提电力系统在出现单相接地时的稳定性和安全性。

5.1 改变系统中性点的接地方式

电力系统中性点目前采用的是不接地运行方式,这种方式对其本身来说虽然有它的诸多优越性,根据《电气事故处理规程》的规定,在出现单相金属性接地时,可以运行1~2h,在出现单相弧光接地时可以运行15min,这对于电力用户来说其可靠性相对较好。但是实际上一旦产生弧光接地,过电压以及大的接地电流对电气设备的损坏是迅速的,根本就没有15min的时间留给值班人员进行分析、判断和处理。实践证明电力系统中性点不接地的优越性与其由此造成的损失和它带来的不利因素的影响相比,这种优越性已经很难体现。结合上述的分析,中性点是否继续维持不接地方式,值得探讨。要从根本上这类问题,中性点采用消弧线圈接地,应该不失为行之有效的措施之一。

5.2 消弧线圈防治措施

消弧线圈是一个铁芯可调节的电感线圈,将它装设于热电厂发电机或即将新建的变电站变压器的中性点,这样系统一旦发生单相接地(不针对弧光接地高频分量)时,可形成一个与接地电流大小近似相等、方向相反的电感电流与容性接地电流相补偿,从而达到限制接地电流,避免在接地点形成弧光。同时即使是运行方式发生变化,使消弧线圈的补偿度或脱谐度发生变化(无论如何变化,只要在设计上考虑充分,均不可能由过补偿转变为全补或欠补),而产生弧光接地,燃弧后电容的充放电电流要经过消弧线圈流回,而不会在故障点形成多次弧光重燃,这样就有效地避免了接地点的间歇性燃弧,达到扬制弧光过电压的目的。同时在经过精确测试现有系统的单相接地电流的基础上,合理地设计和选择好消弧线圈,可以将接地电流限制在5A以下,以确保电力系统的运行安全。

对于系统中性点的接地方式有诸多方式,如高阻或低阻接地等。但采用消弧线圈接地仍是最行之有效的方式。因为采用消弧线圈接地系统仍属于小电流接地系统,改造后不会对现有电气运行方式造成影响,不会涉及到继电保护方式的调整。要采用消弧线圈接地,必须对现有系统的单相接地电流进行实测,以准确地选择消弧线圈,因为理论计算出来的单相接地电流与实际接地电流会有很大偏差。在我国诸多电网,特别是一些大型工矿企业的系统都进行了中性点接地方式的改造,技术可行,经验成熟,运行可靠。

5.3 消弧线圈的技术分析

但是长期以来,我国3~35kV(含66kV)的电网大多采用中性点不接地的运行方式。此类电网在发生单相接地时,非故障相的对地电压将升高到线电压UL,但系统的线电压保持不变,所以我国国家标准规定,3~35kV(66kV)的电网在发生单相接地故障后允许短时间带故障运行,因而这类电网的各类电气设备,都应满足长期承受线电压而不损坏的要求。

传统观念认为,3~35kV(含66kV)电网属于中低压配电网,此类电网中的内部过电压的绝对值不高,所以危及电网绝缘安全水平的主要因素不是内部过电压,而是大气过电压(即雷电过电压),因而长期以来采取的过电压保护措施仅是以防止大气过电压对设备的侵害。主要技术措施仅限于装设各类避雷器,避雷器的放电电压为相电压的4倍以上,按躲过内部过电压设计,因而仅对保护雷电侵害有效,对于内部过电压不起任何保护作用。

然而,运行经验证明,当这类电网发展到一定规模时,内部过电压,特别是电网发生单相间歇性弧光接地时产生的弧光接地过电压及特殊条件下产生的铁磁谐振过电压已成为这类电网设备安全运行的一大威胁,其中以单相弧光接地过电压最为严重。

随着我国对城市及农村电网的大规模技术改造,城市、农村的配电网必定向电缆化发展,系统对地电容电流在逐渐增大,弧光接地过电压问题也日益严重起来。为了解决上述问题,不少电网采用了谐振接地方式,即在电网中性点装设消弧线圈,当系统发生单相弧光接地时,利用消弧线圈产生的感性电流对故障点电容电流进行补偿,使流经故障点残流减小,从而达到自然熄弧。运行经验表明,虽然消弧线圈对抑制间歇性弧光接地过电压有一定作用,但在使用中也发现消弧线圈存在的一些问题。

由于电网运行方式的多样化及弧光接地点的随机性,消弧线圈要对电容电流进行有效补偿确有难度,且消弧线圈仅仅补偿了工频电容电流,而实际通过接地点的电流不仅有工频电容电流,而且包含大量的高频电流及阻性电流,严重时

仅高频电流及阻性电流就可以维持电弧的持续燃烧。

当电网发生断线、非全相、同杆线路的电容耦合等非接地故障,使电网的不对称电压升高,可能导致消弧线圈的自动调节控制器误判电网发生接地而动作,这时将会在电网中产生很高的中性点位移电压,造成系统中一相或两相电压升高很多,以致损坏电网中的其它设备。

目前国外对3~35kV电网采取中性点直接接地的方式,国内也有少数地区采取了经小电阻接地的方式,虽然抑制了弧光接地过电压,克服了消弧线圈存在的问题,但却牺牲了对用户供电的可靠性。这种系统发生单相接地时,人为增加短路电流使断路器动作,不论负荷性质及重要性,一律切除故障线路而且也不能分辨出金属性或弧光接地。使并不存在弧光接地过电压危害的金属性接地故障线路也被切除,扩大了停电范围和时间。由于加大了故障电流,对于弧光接地则加剧了故障的烧损。

5.4 消弧、消谐及过电压保护装置

5.4.1 概述

消弧消谐选线及过电压保护装置,主要应用于6~35kV中性点非有效接地电网,该装置不仅能对该类电网中的各类过电压(弧光接地过电压、谐振过电压、操作过电压)加以限制,而且能够准确选出系统的接地线路,有效地提高了该类电网的运行安全性及供电可靠性。

5.4.2 工作原理

本装置对系统发生的弧光接地故障,首先分析弧光接地的性质,然后针对具体的接地类型,采取相应的处理方式,处理方式如下:

如果系统发生不稳定的间歇性弧光接地故障,则微机控制器判断接地的相别,同时发出指令使故障相的真空接触器闭合,从而完成消弧。数秒后,故障相的高压真空接触器断开,系统恢复正常运行。真空接触器快速动作将不稳定的弧光接地转化为稳定的金属性接地。

如果接地故障是稳定的弧光接地,微机控制器在判断接地相别后,则装置输出开关量接点信号,也可根据用户要求由微机向真空接触器发出动作指

令;若故障消失,说明这一电弧接地故障是由过电压冲击引起的瞬时性接地故障,系统恢复正常运行;若故障相接触器断开后,系统再次在原故障相出现稳定的电弧接地,则装置认定此故障为永久性电弧接地故障,于是再次闭合故障相真空接触器,等待值班人员处理。

5.4.3消谐原理

本装置采用的是微机二次消谐技术,当系统发生谐振时,微机消谐装置在PT 的开口三角绕组瞬间接入大功率的消谐电阻,利用消谐电阻破坏系统的谐振参数,消耗谐振功率,从而消除系统的谐振故障。主要具有以下特点:

●采用的是微机二次消谐技术,响应时间非常快,消谐效果远远优统于传统的消谐装置;

●对电压互感器保护绕组(开口三角)的电压输出无任何影响,避免了传统消谐技术影响电压互感器保护绕组电压输出的缺点

5.4.4 装置的基本功能及特点

●能将系统的大气过电压和操作过电压限制到较低的电压水平,保证了电网及电气设备的绝缘安全。

●装置动作速度快,可在30ms内快速消除间歇性弧光及稳定性弧光接地故障,抑制弧光接地过电压,防止事故进一步扩大,降低线路的事故跳闸率。

●能够快速、有效地消除系统的谐振过电压,防止长时间谐振过电压对系统绝缘破坏,防止谐振过电压对电网中装设的避雷器及小感性负载的损伤。

●装置动作后,允许200A的电容电流连续通过至少2小时以上,用户可以在完成转移负荷的倒闸操作之后再处理故障线路。

●能够准确查找单相接地故障线路,对防止事故的进一步扩大,对减轻运行和维护人员的工作量有重要意义。

●由装置的工作原理可知,其限制过电压的机理与电网对地电容电流的大小无关,因而其保护性能不随电网运行方式的改变而改变,大小电网均可使用,电网扩容也没有影响。

●本装置中的电压互感器可以向计量仪表和继电保护等装置提供系统的电压信号,能够替代常规的PT柜。

●装置设备简单,体积小,安装、调试方便,即适用于变电站,同样适用于发电厂的高压厂用电系统;既适用于新建站,也适用于老电站的改造。

●性价比高,相对于消弧线圈系统而言,性能价格比很高。

5.5选择过电压装置

电力系统面临的过电压不仅仅是单相弧光接地过电压,对于雷电过电压、操作过电压、谐振过电压等等仍然是存在的。随着国家关于断路器推行―无油化‖改造的不断进行,原有的大量少油断路器(SN系列)将逐步改造为ZN或VS系列真空无油断路器,而真空断路器在分断感性小负载电流时产生的截流过电压,也将

危及到电气设备的安全。因此合理的选择和设置过电压保护装置,对于现有的电力网来说显得异常重要。

采用避雷器作为过电压保护装置,仍是目前电力系统的潮流和主要措施。氧化锌避雷器(MOA)以其优越的保护特性,是电网中避雷器的首选。MOA的种类繁多,对于限制操作过电压各个厂家生产了专门用于保护电机、线路、电容器组以及电站用、配电用等不同类别的MOA,还有YW系列和HYW系列。在防爆、防潮、抗老化、抗污秽等性能方面,HYW系列远远优于YW系列。从事故和大量MOA损坏的事例分析可以看出,正确选择MOA的标称电流、电压等级、工频放电电压、雷电冲击电流、适用范畴以及优良的产品质量是保证MOA安全可靠运行的关键。通过对MOA的分析比较,热电厂将母线上原设计选用的

Y3W-10/31.5型MOA更换为HY5WZ-17/45型MOA后,MOA运行安全可靠,未发生MOA损坏事件。

5.6绝缘薄弱环节的绝缘

从电力系统的电网来看,系统一次设备的绝缘相对较为薄弱,主要是因为粉尘污染造成部分绝缘子污闪以及高湿度的环境空气降低了有效绝缘水平。针对这种具体情况,在高压设备的工作场所采取了各种孔洞的封堵措施,最大程度的限制水汽、粉尘的进入,同时对容易赃污的裸露母线加装了热缩绝缘材料,避免相间空气气隙被过电压击穿。对于容易造成污闪的电气设备(如电抗器支持瓷瓶),进行定期清扫除尘。通过这些措施,有效地提高了绝缘薄弱环节的绝缘水平。

5.7行维护管理

加强电气设备的管理,是保障其安全正常工作的重要环节。在坚持既有的管理平台基础上,对于目前电力系统随时可能遭受的过电压冲击的不利局面,从以下几方面加强管理,有助于降低过电压对电网设备造成的损坏程度。

4.4.1 加强对过电压的监测和分析

针对目前的情况,应对每一次过电压情况进行监测分析,以可靠掌握过电压的产生原因、过电压的性质,同时全面掌握电网对过电压的防护能力、避雷装置的工作状态。但是目前电力系统对过电压的监测十分薄弱,仅在电力系统中发电机出口装设了放电计数器,以监测过电压的活动和避雷器的动作情况,这对整个电网

来讲是远远不够的。同时从几次放电计数器损坏的情况来看,原设计选型的计数器主要适配于SiC避雷器,而不适用于ZnO避雷器。

5.8控制运行方式

电网单相接地电流主要由于连接电缆的分布电容电流构成,为了限制单相弧光接地形成过电压,应合理控制运行方式,力求躲过容易产生弧光接地的电容电流。从电力系统发电机定子铁芯局部熔化的迹象分析,及时地调整发电机的保护方式对于保护发电机极其重要。过电力系统中的发电机的零序电流保护因对接地电流的估算不足以及生产运行的特殊性而长期按作用于发信号设置,也才造成了铁芯局部熔化事故。经过分析后,发电机的零序保护设置为作用于保护跳闸后,该类事故得以有效控制。

5.9补偿电容器的维护管理

电网设置有功率因素补偿电容器,这对于单相弧光接地来说,无疑是加大了系统的相间电容,因此在发弧后的振荡过程中还会有一个电荷的重新分配过程,其结果是抬高了非故障相的起始电压,从而使得过电压幅值降低,限制了过电压倍数,这对于过电压防治是有益无弊。但是在相当一段时间电容器缺乏维护,大量熔断器熔断。经过维护后,过电压得到一定程度的限制。

6结论

综上所述,电力网络发生单相接地时的接地电流危险区域,其接地电流足以造成发电机定子铁芯大局域面积的熔化。目前中性点不接地的运行方式已不能满足安全、可靠运行的需要。同时发生单相弧光接地过电压所产生的过电压对电网的所带来的危害已日益加剧。因此加强电力系统中性点不接地系统方式的保护已十分必要。采用避雷器,消弧、消谐及过电压保护装置等保护装置来加强电力系统的安全运行,加强运行维护管理对于保障电网的安全、稳定和可靠运行有相当积极的作用。

弧光接地过电压的危害及其限制措施

弧光接地过电压又称间隙性弧光接地过电压,当中性点非直接接地系统发生单相间隙性弧光接地故障时,由于不稳定的间歇性电弧多次不断的熄灭和重燃,在故障相和非故障相的电感电容回路上会引起高频振荡过电压,非故障相的过电压幅值一般可达3.15~3.5倍相电压,这种过电压是由于系统对地电容上电荷多次不

断的积累和重新再分配形成的,是断续的瞬间发生的且幅值较高的过电压,对电力系统的设备危害极大,主要表现在以下几个方面:

⑴随着电网的发展,具有固体绝缘的电缆线路应用较多,由于固体绝缘击穿的积累效应,当系统发生单相弧光接地时,在3.5倍过电压的持续作用下,造成电气设备绝缘的积累性损伤,在非故障相的绝缘薄弱环节造成对地击穿,进而发展成为相间短路事故。

⑵弧光接地过电压使电压互感器饱和,容易激发铁磁谐振,导致过电压或电压互感器爆炸事故。

⑶弧光接地过电压的能量由电源提供,持续时间较长,当过电压超过避雷所能能承受的400A 2ms的能量时,就会造成避雷器的爆炸事故。

因220KV及以下电压等级的系统中,系统的绝缘水平主要决定于雷电过电压(大气过电压),故这一电压等级的避雷器主要用于限制雷电过电压,要求3.5倍以下的过电压不动作,而弧光接地过电压一般不超过3.5倍,避雷器对弧光接地过电压根本不能限制。目前我国限制弧光接地过电压的措施主要有中性点直接接地或经小电阻接地,中性点采用经消弧线圈或自动调谐的消弧线圈接地,采用消弧及过电压保护装置

⑴中性点直接接地或经小电阻接地,弧光接地过电压问题并不突出,一般情况下最大过电压不超过2.5倍的相电压,但扩大了单相接地时的故障电流,加剧了故障点的烧伤、牺牲了对用户供电的可*性。

⑵采用消弧线圈或自动调谐的消弧线圈。由于消弧线圈的电感电流补偿了系统的电容电流,降低了故障点的残流,有利于接地电弧的熄灭,避免了长时间燃弧而导致相间弧光短路的可能性。同时可带单相接地运行,提高了供电可*性,但现行消弧线圈设计自动跟踪或自动调谐是在电网工频下完成的。在稳定电弧接地和金属性接地阶段,通过故障点电流才是经消弧线圈自动跟踪补偿(或自动调谐)后的残流,此时非故障相上发生的过电压较低,最大才达2.3倍相电压,而间歇性弧光接地时产生的过电压已不再是稳态的正弦波,而以高次谐波为主,显然,当频率增加时,对于电容电流是增加的,而电感电流是减少的,无法补偿谐波电流。

⑶采用消弧及过电压保护装置

装置主要由三相组合式过电保护器TBP,可分相控制的高压真空接触器JZ,微机控制器ZK,高压限流熔断器组件FUR及带有辅助二次绕组的电压互感器PT 等组成,一旦系统发生单相间隙性弧光接地过电压微机控制器ZK立即判别故障类型与相别并向故障相的真空接触器JZ发出动作指令,真空接触器JZ在0.1S 左右完成合闸动作,间隙性弧光接地随之被转化为金属性接地,弧光接地过电压

消失,真空接触器动作之前的过电压由三相组合式过电压保护器TBP限制在较低的数值,由于时间短,能量不超过TBP允许的400A2ms的能量指标,仍可保证TBP的安全,该装置限制过电压的机理与电网对电容电流的大小无关,因而其保护性能不随电网运行方式的改变而改变。

弧光接地的产生:

固体绝缘设备的增多降低了系统承受过电压的能力;

真空断路器的大量采用使操作过电压的概率大大提高;

内部过电压得不到有效限制使绝缘寿命大大降低;

雷击、鸟害、断线、树枝等外力破坏以及阀式避雷器放电等,是产生弧光接地的外部原因。

弧光接地过电压的产生

形成弧光接地过电压的基础是间歇性电弧。当中性点非直接接地系统发生单相间歇性弧光接地(以下简称―弧光接地‖)故障时,由于电弧多次不断的熄灭和重燃,导致系统对地电容上的电荷多次不断的积累和重新再分配,在非故障相的电感—电容回路上引起高频振荡过电压。

以电缆线路为主的供电电网,绝缘击穿或电弧重燃时过渡过程中的高频电流,可达数百安培甚至上千安培。高频电流过零点电弧熄灭的可能性大大提高,电缆线路弧光接地时,非故障相的过电压可达4~71倍

弧光接地过电压的危害

高幅值的过电压加剧了电缆等固体绝缘的积累性破坏;

弧光接地过电压导致烧PT或保险熔断;

弧光接地过电压导致避雷器爆炸

中容电力补偿设备、消弧消谐柜、高压电容柜等产品

单相弧光接地引起的过电压主要发生在中性点不接地的电网中。当输电线路长和线路电压高时,单相接地电流也随之增大,许多弧光接地故障变得不能自动熄灭;另一方面,由于接地电流也还没有大到能产生稳定性的电弧的程度,于是就形成了熄弧与电弧重燃互相交替的不稳定状态,形成间歇性电弧。

熄灭直流电弧会产生过电压的前提是断路器动作速度很快,能够极快地切断电弧,从而将产生过电压。这是因为:直流电弧在迅速地被切断后,将在触头处产生一个与被切断电压相同的行波,行波将沿着电路行进。此行进电压波与电路上原来的电压叠加,就产生了过电压。

快速开端电路后产生反馈行进波的现象,在交流回路中也会产生。如果其相位与

回路中原有电压相位如果相差180度,将减弱电路上的电压。如果在原有电压上叠加,就产生了交流过电压。

所以,在快速动作的开关回路负荷侧,应当加装过电压保护装置,如压敏电阻、过电压保护器等等。

10kV电压异常原因分析及处理措施

10kV电压异常原因分析及处理措施

10kV电压异常原因分析及处理措施 摘要:本文对电网实际运行中时常出现的10kV电压异常现象的原因进行分类,并逐一研究分析其产生机理,从而引出处理10kV电压异常措施的思路。 关键词:电压异常;负荷;接地;断线;消弧线圈;谐振 0 前言 电压的异常直接影响设备的运行技术指标、经济指标,甚至导致用户的用电设备无法正常工作,电网的安全与经济运行遭至破坏。10kV母线是调度部门可以进行电压调控的最后一级母线,也是最直接影响用户电压质量的母线。因此对10kV电压异常产生的根本原因进行分析研究,对消除电压异常和保障电网安全运行具有十分重要的意义。 1 负荷变化引起的电压偏移 根据相关调压原则要求:变电站和直调电厂的10kV母线正常运行方式下的电压允许偏差为系统额定电压的0%―+7%。而在实际电网运行中,在白天用电高峰时段,10kV母线可能低于10.0kV下限,在深夜用电低谷时段,10kV母线也可能高于10.7kV上限。 造成电网正常运行中电压偏移的原因是不同大小的功

率在电网元件中传输会产生不同的电压降落。功率由系统通过110kV降压变压器经变压后到达10kV母线,其等值电路图和相量图如图1所示。 在上图中,为归算到110kV变压器10kV侧的一次电压,为110kV变压器的二次电压,即10kV母线电压,S为传输的视在功率,为归算到110kV变压器10kV侧的传输电流,φ为与的相位差,XT为110kV变压器归算到二次侧的等值电抗,RT为110kV变压器归算到二次侧的等值电阻。 图中,就是电压降相量,即(RT+XT),将电压降相量分解为与二次电压同方向和相垂直的两个分量和。称为电压降落的纵分量,称为电压降落的横分量。而在电网实际计算中,由于电压降横分量很小,可以忽略不计,因此,其电压降可以省略简化成仅为电压降落的纵分量,以ΔU表示。由图3可得ΔU的模值为, 将、、代入上式可得, 因此可以得出,10kV母线电压与传输功率的关系公式为: 由上式可知,通过减少传输的有功负荷P、无功负荷Q、电阻RT和电抗XT,或者提高110kV侧电压U1的方法,可以减少电压降落,提高10kV电压;反之则降低10kV电压。 由此可以得出负荷变化引起的电压偏移的处理措施: (1)通过增减无功功率Q,如投退并联电容器、并联电

单相弧光接地过电压引起的重大事故分析

单相弧光接地过电压引起的重大事故分析 【摘要】随着经济的高速发展,电力系统越来越庞大,电网中的各种过电压发生机率越来越高,每一次的过电压都是对电气设备的安全运行造成直接的、严重的考验,而且每发生一次过电压就会对电气设备的绝缘造成一次冲击破坏,并且这种过电压破坏具有明显的累积效应,当累积一定程度时,会造成电气设备损坏,甚至是造成局域电力网络发供电中断。仅供参考,不足之处,请提出宝贵意见。 【关键词】弧光接地;过电压 随着电力系统的随着经济的高速发展,电力系统越来越庞大,尤其是电网中电缆越来越多,电网中的各种过电压发生机率越来越高,而弧光接地过电压不属于常见的,没引起重视,每一次的过电压都是对电气设备的安全运行造成直接的、严重的考验,而且每发生一次过电压就会对电气设备的绝缘造成一次冲击破坏,并且这种过电压破坏具有明显的累积效应,当累积一定程度时,会造成电气设备损坏,甚至是造成局域电力网络发供电中断。2011年11月,XX热电厂主控室事故信号报警,并网运行的#2、#3发电机组跳闸,厂内10KV高压系统母联开关跳闸。值班人员检查两个发电机组均为差动保护动作,厂内10KV高压系统母联开关为过流动作。 (1)配电室现场检查:1)一电缆出线柜内过电压保护器爆炸,产生较大冲力。2)一厂变压器三相高压熔断器全部熔断,过电压保护器烧毁。3)一高压风机重启时,接地报警。 (2)绝缘摇测检查:1)#2机组A:0B:0C:6GΩ。 2)#3机组A:0B:0C:2.5GΩ。3)高压电机:0(兆欧表检查)用2500V 摇表检查绝缘为200MΩ。 (3)发电机定子检查:#2、#3发电机定子绕组多处绝缘受损。 故障前运行方式:35KV架空线#2线运行,#2主变压器运行,35KV架空线#1线备用,35KV母联开关备用,10KV母线母联开关全部运行。故障时无设备操作,电网无重大波动。 故障分析:由于电厂为早期投产,没有录波设备及后台机检测,根据故障现象及厂家、专家分析,认为造成这次故障的根本原因是高压电机的弧光接地,产生过电压,致使过电压保护器爆炸弧光短路。 单相弧光接地过电压的形成机理。 单相弧光接地过电压形成机理的理论分析方法很多,对于电网中性点不接地

初三物理电学难题

1.在图4所示的电路中,电源电压保持不变。当电键S 闭合后,只有一个电表的示数发生变化。若电路中只有一处故障,且只发生在 电阻R 或小灯L 上,则( ) A .电压表V 的示数发生变化,小灯L 断路 B .电压表V 的示数发生变化,小灯L 短路 C .电流表A 的示数发生变化,电阻R 断路 D .电流表A 的示数发生变化,电阻R 短路 2.在图13所示的电路中,电阻R 1为40Ω,滑动变阻器R 2上标有“20Ω 3A ” 字样。现有电压为6V 的电源一个,表盘如图14(a )、(b )所示的电流表、电压表各一个,电键一个。 (1)若在AB 间接入电源,CD 间接入电压表,EF 间接入电键。闭合电键 后,滑片在某一位置时,电压表示数为2V 。求:①通过电阻R 1的电流I 1;②滑片在此位置时,10s 内变阻器R 2消耗的电功W 2。 (2)请选择一个电表,将电源、电键和所选择的电表分别接入AB 、CD 、EF 间。要求选择合适的电表量程,移动滑片P 的过程中,电路各元件能正常工作,且所选电表指针转动的角度最大。 ①应在AB 间接入 ,CD 间接入 ,EF 间接入 。 ②所选电表所用的测量范围是 ,请计算出所选电表的示数变化范 围。 3.某班同学在做“测定小灯泡电功率”的分组实验中,可选用若干节新干电池 作为电源,除滑动变阻器上标的阻值字迹模糊外,器材均完好。已知小灯泡上标有“3.8V ”字样,且小灯泡的额定功率小于1W 。 ⑴甲组同学连接好电路后,闭合电键,观察到电压表的示数为6V 、电流表指针 几乎不动。经检查发现各接线柱连接完好,出现这一现象的原因是_____________。排除故障后,重新连接电路,实验步骤正确,闭合电键,观察到电流表的示数为0.18A 、电压表示数如图19所示,则可判断所用滑动变阻器上标有“_______Ω 2A ”字样。 ⑵乙组同学经讨论解决了精确测出这个小灯泡额定功率的问题。他们在不改变 实验器材的条件下,大家认为可用的电源电压可以是______V ,连接电路 图19 图 20 图14 ( a ) 图 13

10KV母线电压异常情况分析及处理 徐成华

10KV母线电压异常情况分析及处理徐成华 发表时间:2017-08-02T11:42:08.157Z 来源:《电力设备》2017年第9期作者:徐成华 [导读] 摘要:本文主要就小电流接地系统中,10KV母线电压出现的非正常情况来做出探究和讨论,分别说明出现某些故障的原因以及表现出的现象,在最后根据相应的出现非正常状况的故障的原因来进行分析得出处理的方法和举措,为处理现实生活中出现的母线电压异常提供出一些参考意见。 (国网河南省沈丘县供电公司 466300) 摘要:本文主要就小电流接地系统中,10KV母线电压出现的非正常情况来做出探究和讨论,分别说明出现某些故障的原因以及表现出的现象,在最后根据相应的出现非正常状况的故障的原因来进行分析得出处理的方法和举措,为处理现实生活中出现的母线电压异常提供出一些参考意见。 关键词:10KV母线;异常处理;电压异常 前言:作为对电能优劣程度的一个量度的电压而言,其稳定程度,安全可靠性与用电能否做到快捷安全,是息息相关的。调度部门能够去进行调控的最后一个母线就是10KV母线,他的能否正常使用,是之间与其负责区域的居民或者企业的正常生活、生产是相关的。但10KV母线在当今社会中,仍旧具有复杂的运行条件,相对而言电压发生问题的概率仍然处于高几率。快速,高效的处理其非正常状态是当今社会的一个需求。 一、电压异常情况 (一)单相接地下的10KV系统 在电网的正常运行下,10KV系统中理论上中性点处于零点位的的状态。在单相完全接地的情况下,显示的电压为接地相的电压,理论上说其相应的电压值为零,而另外的两相电压则达到了线电压的大小。在单相不完全接地的状态下,电压则变为了接地项会降低,外两项则会有所上涨。其相应的开口三角电压也均有所上涨,但单相完全接地下可达到100KV,而不完全接地则上涨较少。造成单相完全接地的原因一般为,线路或则配单器件,由于天气,人为,非人力的生物因素,自然灾等变为断线接地。造成单相不完全接地的情况是,配电烧毁,电缆出现问题等。 (二)PT出现问题而导致的电压异常 常用的电压的测量装置就是PT,电压出现异常的可能因素之一可能就是由于PT出现了问题,并且这种问题是发生频率较高的一类问题,超过10KV PT高压保险的即可作为母线电压出现异常的情况来处理,低于其的可以按照低压保险熔断的方式来进行处理,因为低于其的将导致相应的开关跳闸,或者保险熔断等。其断线时电压的读数值所受多种因素影响,例如PT的类别不同所对应的电压的读数可能存在差异,不同的接线方式也可能导致不同的电压读数。PT出现问题与与出现接地的问题就是通过电压数值波动来判定的,在出现接地问题中,在其所有的相中没有一个的电压是在常态下的,而PT出现问题中,可能存在的状态就是三相的电压全部为零或者是最低有一相的电压是没有出现问题的。 (三)消弧线圈动作出现问题 消弧线圈有着当系统出现了故障将自动的将电容电流进行补偿,以达到稳定的目的,一般而言这种故障就是指系统发生单相接地。在该问题得到解决后,补偿电流将自动的消失。可是,有的时候,可能存在线路检测不灵敏或者其他问题,消弧线圈没有能够做到在问题得到解决的同时退出对电容电流的补偿,消弧线圈所形成的补偿电流就会使得系统中产生串联谐振,而串联谐振的产生,往往将进一步的引发工频的过电,所以对于消弧线圈应当在合适的时间尽快结束其动作。 (四)在电网处于常态下电压出现偏离 在现实中,电压会因为有无功的输出,有无电荷的定向移动,电荷定向移动的速率,系统所处状态的电阻等而进行波动,甚至有时会出现母线的电压超出了电压的限定值,进而会对电网所负责的区域造成用电的困难。出现这样的事故,仅需要简单的进行对电网的调节,就可以快速的使得其变为正常值。 二、相应的解决方案 (一)单相接地下的10KV系统的问题处理 对于单相接地而言,主要有以下三个方法能够对不同的情况分别进行确认。一是对于SCADA系统是否存在着相应的线路出现接地的信号,如果存在则将其状态告知相关单位,进而远程操作断开存在故障线路的出线开关,如果此时检测发现母线电压回到正常状态,就说明选中的线路出现问题。二是,如果系统不存在着相应的接地信号,则通知相关单位后,选择“瞬停法”进行检测,如果存在某条线路被断开的时候母线电压恢复了正常的状态,那么就是这条线路存在问题。三是对于以上两种方法均未找出故障所在,那么问题则应当出现在运行的设备上或者母线接地与多条出线同名接地。 (二)PT出现问题而导致的电压异常的问题处理 当出现这种情况时,应当让在场的负责运行的相关人员去查验电力设备的高低压保险丝是否出现熔断的状况,如果出现了高压侧的熔断状况,则应当将母线进行转供电,并同时将出现了问题的PT设备送到负责检修的部门进行整修。如果出现的是低压侧熔断的现象,那么可以将相应的开关进行重新打开,将保险丝进行更换,并将出现问题的PT同样的送到负责检修的部门。在进行相关工作时也应当做好具体情况的了解,如了解低压侧的复合电压过流保护等一系列的保护是否均以进行了推出,在出现问题之前,如果存在母线的分列运行情况,那么是否可以选择让母线进行并列运行的举措来对与其是否存在故障进行相应的分析。 (三)消弧线圈动作出现问题的问题处理 出现了消弧线圈动作出现问题而导致的故障时,可以采用以下几个方法。一是对于接地消弧线圈暂停使用,待选择更换消弧线圈或者消弧线圈的问题排除之后继续让其加入工作任务。二是,将母线进行分并列,有效的使得部分不影响整体电力系统的运行,方便进行排查。三是对于母线上的电容器进行处理,这是油消弧线圈的主要作用方法所决定的。四是,处理母线进行处理,使得其三相电压达到一个动态的稳定状态。 (四)在电网处于常态下电压出现偏离的问题处理 对于在电网处于常态下电压出现偏离的问题处理,主要有以下几种简单的方式,一是,安置利用合理容值得电容,合理阻值的电阻等

单相弧光接地过电压的分析和防范

单相弧光接地过电压的分析和防范 发表时间:2016-07-25T11:33:54.453Z 来源:《电力技术》2016年第4期作者:邱晓博[导读] 随着电力系统的逐渐增容和发展,电网中的各种过电压发生机率越来越高. 西电宝鸡电气有限公司 721103 摘要:随着电力系统的逐渐增容和发展,电网中的各种过电压发生机率越来越高,每一次的过电压都对电气设备的安全运行造成直接的、严重的威胁,而且每发生一次过电压就会对电气设备的绝缘造成一次破坏,并且这种过电压破坏具有明显的累积效应,当达到一定程度时,会造成电气设备损坏,甚至是造成局域电力网络发供电中断或是受损。关键词:单相弧光接地、过电压、中心点、消弧线圈 1. 单相弧光接地过电压的形成机理 对于电网中性点不接地系统,发生单相弧光接地时过电压的最大值将达到:UMAX=1.5Um+(1.5Um-0.7Um)=2.3Um 单相弧光接地的过电压瞬时幅值最大可以达到20.4KV。如果弧光接地在接地点造成弧光间隙性反复燃烧,那么产生的过电压倍数将远远大于2.3倍。在系统发生单相接地时,都产生了较高的过电压,才会引起避雷器放电。强烈的过电压使相间空气绝缘被击穿,形成相间弧光短路,至于避雷器的爆炸,主要是由于避雷器的选型错误和产品质量欠佳,再加上弧光短路产生的高能热量加剧了避雷器的爆炸。如此高的过电压一旦产生就将会在电力网络绝缘薄弱环节形成闪络放电,严重时将破坏绝缘,造成相间短路或者损害电气设备。 2 单相弧光接地产生的原因 从上述分析可见,单相弧光接地是威胁电力系统安全、稳定和可靠运行的最主要和最直接因素。而中性点的接地方式,直接影响到单相弧光接地的产生和限制力度。根据我国的传统设计经验,在6KV-35KV电力系统普遍采用中性点不接地方式,这是因为在早期的电力网中,电力电缆采用量不大,系统的单相接地电容电流并不大。而随着各电力系统的飞速发展和增容,原电力系统主接线发生了很大的变化,电力电缆的采用量急剧增加。过电压造成的事故在整个电气事故中所占的比例也越来越大,供电系统亦属于这种情况。根据《电力设备过电压保护设计技术规程》和电力部、国家的有关标准和要求,对于3~35KV电力系统,当单相接地电流小于30A时,如要求发电机能带单相接地故障运行,则当与发电机有电气连接的3~35KV电网的接地电流小于5A时,其中性点可采用不接地运行方式。 3. 单相接地电流的分类 在中性点不接地系统中发生单相接地时,单相接地电流IC等于正常时相对地电容电流ICi的3倍,即IC=3∑ICi。单相接地电流主要有如下3种:①单相接地时架空线的电容电流IC1:②单相接地时电力电缆电容电流IC2:③单相接地时发电机电容电流IC3 4. 防范措施 针对电力系统发生单相接地后的现状,要解决过电压以及发电机的单相接地电流的问题,应从以下几方面着手,以提电力系统在出现单相接地时的稳定性和安全性。 4.1 改变系统中性点的接地方式 电力系统中性点目前采用的是不接地运行方式,这种方式有诸多优越性,根据《电气事故处理规程》的规定,在出现单相金属性接地时,可以运行1~2h,在出现单相弧光接地时可以运行15min,这对于电力用户来说其可靠性相对较好。但是实际上一旦产生弧光接地,过电压以及大的接地电流对电气设备的损坏是迅速的,根本就没有15min的时间留给值班人员进行分析、判断和处理。中性点采用消弧线圈接地,是有效的措施之一。 4.2 消弧线圈防治措施 消弧线圈是一个铁芯可调节的电感线圈,将它装设于热电厂发电机或即将新建的变电站变压器的中性点,这样系统一旦发生单相接地(不针对弧光接地高频分量)时,可形成一个与接地电流大小近似相等、方向相反的电感电流与容性接地电流相补偿,从而达到限制接地电流,避免在接地点形成弧光。 4.3 消弧、消谐及过电压保护装置 消弧消谐选线及过电压保护装置,主要应用于6~35kV中性点非有效接地电网,不仅能对该类电网中的各类过电压(弧光接地过电压、谐振过电压、操作过电压)加以限制,而且能够准确选出系统的接地线路,有效地提高了该类电网的运行安全性及供电可靠性。 4.4 二次消谐装置 采用微机二次消谐技术,当系统发生谐振时,微机消谐装置在PT的开口三角绕组瞬间接入大功率的消谐电阻,利用消谐电阻破坏系统的谐振参数,消耗谐振功率,从而消除系统的谐振综上所述,目前中性点不接地的运行方式已不能满足安全、可靠运行的需要。同时发生单相弧光接地过电压所产生的过电压对电网的所带来的危害已日益加剧。因此加强电力系统中性点不接地系统方式的保护已十分必要。采用避雷器,消弧、消谐及过电压保护装置等保护装置来加强电力系统的安全运行,加强运行维护管理对于保障电网的安全、稳定和可靠运行有相当积极的作用故障。参考文献[1]李佳斯王国维,浅析10KV配网小电阻接地过电压产生原因及其防治措施[J]中国水利水电技术应用。2011(8);187-188 作者简介:邱晓博男34岁在西电宝鸡电气有限公司从事6-35KV高压开关柜二次设计工作多年,对二次电气设计、事故原因分析等有深刻见解。

10~35 kV系统弧光接地过电压的危害及解决办法示范文本

10~35 kV系统弧光接地过电压的危害及解决办 法示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

10~35 kV系统弧光接地过电压的危害及解决办法示范文本 使用指引:此管理制度资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1 事故情况简介 近几年,随着城网的迅速发展,电缆线路的比例逐年 增多,导致对地电容电流剧增。由于10~35kV系统单相 接地引发的电网事故愈来愈多,由此带来的经济损失和社 会影响也越来越大。 仅就北京供电局1998年7~10月的统计发现,由于 10kV系统单相接地而引发的事故便达4起,有的造成全站 停电,影响重要用户供电,有的造成主变压器损坏、开关 柜烧毁和避雷器爆炸等,简要情况如下:

(1)1998年7月6日,北京肖庄35kV4号母线34路B相发生单相接地,故障持续1h后,引发301开关内附CT主绝缘击穿,开关爆炸起火,1号主变差动跳闸。2号主变在自投过程中经受一次出口短路冲击,由于有载调压开关重瓦斯继电器因振动动作,2号主变也掉闸,造成全站负荷停电。 (2)1998年7月21日,北京北土城站10kV5号母线发生单相接地,在查找故障线路的操作过程中,把5号母线单相接地故障接到了3号母线上,引起211开关爆炸,并造成一台进口全密封110kV、31.5MVA主变压器因出口短路而损坏。 (3)1998年9月16日,北京古城站10kV5号母线发

电路变化量问题

电路变化量问题 1如图,电阻R 1与变阻器R 2串联。将开关S 闭合时,三个电表指针正常偏转。当变阻器滑片P 向右滑动时,则(填变大,不变,变小) (1):A 表 ;V 1表 ;V 2表 ; (2):V 1表与A 表示数比值 ;V 2表示数与A 表示数比值 ; (3):如果电压表V 1示数变化量的绝对值为1U ?,电压表V 2示数变化量的绝对值为2U ?,电流表A 示数变化量的绝对值为I ?,则以下判断正确的是( ): A 、1U ?=2U ? B 、 I U ??1 不变,且等于R 1 。 C 、 I U ??2增大 D 、I U ??2 不变,且等于R 1 。 2左滑时, (1)各表的变化情况为:(填变大,不变,变小) V 1表 ;V 2表 ;V 3表 V 4表 。 (2)设各表变化量分别为 1U ?,2U ?,3U ?,4U ?,I ?, 则以下判断正确的为( ): A 、1U ?=4U ? B 、4U ?=2U ?+3U ? C 、 11R I U =?? D 、3241R R I U I U +=??= ?? E 、 3 2 3 2R R U U = ?? 3、如图电路所示,滑片向右滑动时,下列判断正确的是( ) A .V 表示数变大 B .A1表示数变大 C .A2表示数减小 D .A 表示数变大 E .A 表与A2表都变小,且变化量相同

4、如图所示,电源两端电压不变,电阻R1的阻值为2Ω。闭合开关S,当滑动变阻器的滑片P位于A点时,电压表V1的示数为4V,电压表V2的示数为10V。当滑动变阻器的滑片P 位于B点时,电压表V1的示数为9V,电压表V2的示数为11V。则电阻R2的阻值: 5.某校学生宿舍走廊的路灯,原来用一盏“220V 40W”的白炽灯,每晚亮10小时。同学们在学习电功率知识后,在学校电工的监督下对电路进行改装,他们用两盏“220V 40W”的灯泡串联后代替原路灯。结果,两盏灯的亮度尽管比改装前要暗,但灯泡使用寿命明显延长。求: (1)灯的电阻多大? (2)改装前,一盏路灯每晚需要消耗电能多少度? (3)改装后两灯的总功率是多少? 6.如图23所示电路总电压不变。只闭合开关S3,滑动变阻器的滑片P在最左端时,电路消耗总功率为10W,电流表的示数为I1;只断开开关S1,滑片P移至最右端时,电流表的示数为I2,电压表的示数为U1;只闭合开关S1,滑片P仍在最右端时,电压表示数为U2。若I1∶I2=5∶3,U1∶U2=2∶3。则: (1)R1∶R2的值是多少? (2)R1∶R3的值是多少? (3)上述三个状态中,电路消耗总功率的最小值是多少? (要求画出不同状态等效电路图) 图23

变电站常见电压异常归纳分析

变电站常见电压异常归纳分析 邓邝新 (湖南郴电国际发展股份有限公司) 在变电运行中,我们经常会遇到各种各样电压异常的情况。而且随着配电网络对地电容的增大以及系统短路水平的提高,电压的变化更为复杂多样。就比如在10KV系统上发生单相接地短路时系统的耐受时间比以前更短,而10 kV系统单相接地故障的判定通常只有依靠10 kV二次电压(三相绝缘监测表)来反映,这就需要值班人员能够及时准确地判断故障并断开故障线路。同时对系统通常出现的二次电压异常的各种原因进行归纳分析,给出判断和处理的方法。 在变电站实际运行过程中,系统二次电压异常可能由多种因素造成,包括:电压互感器高压保险熔断、低压保险熔断、一次系统接地故障、二次系统接地、耦合传递、负载不对称、三相TV伏安特性不一致、铁磁谐振、接线错误等等。下面对不接地系统的电压异常做一个简单的归纳,以方便运行人员能够及时、准确的判断故障。

1系统单相接地故障 我们知道,系统单相接地故障时,由于系统的对地电容和绝缘电阻相对固定,系统电压变化情况将随接地电阻的不同而有所不同。当系统发生金属性接地,接地电阻等于0时,接地相与大地同电位,产生严重的中性点位移,中性点位移电压的方向与接地相电压在同一直线上,与接地相电压方向相反,大小相等,系统中性点与故障相电压重合,故障相电压为0,非故障相电压则上升为√3倍相电压即上升为线电压;当系统发生非金属性接地时,接地电阻R≠0,此时,由于零序电压向量值将随接地电阻的大小变化而变化,可能出现的情况包括:①故障相电压与滞后相电压大小相等,但小于另外一相电压。②故障相电压小于滞后相电压,滞后相电压小于故障超前相电压。③故障相电压大于滞后相电压,但小于超前相电压。 由此可见,当系统发生金属性接地时,故障特征较为明显,可以准确地判断出故障类型,而在系统发生非金属性接地时,由于接地电阻的不确定性,二次电压异常具有较大的隐蔽性,容易与TV保险熔断或二次回路接线错误等故障混淆,仔细分析可以发现,这种情况下至少有一相电压超过了相电压,这是保险熔断时不会出现的。 特别值得注意的是接地并不单指线路接地,当线路拉路检查后仍未能消除接地故障,则应考虑到可能所内设备有接地,例如避雷器、电压互感器,甚至变压器接地。

弧光接地

单相弧光接地过电压的分析和防范 1. 前言 随着电力系统的逐渐增容和发展,电网中的各种过电压发生机率越来越高,每一次的过电压都对电气设备的安全运行造成直接的、严重的威胁,而且每发生一次过电压就会对电气设备的绝缘造成一次破坏,并且这种过电压破坏具有明显的累积效应,当达到一定程度时,会造成电气设备损坏,甚至是造成局域电力网络发供电中断或是受损。 2. 单相弧光接地过电压的形成机理 对于单相弧光接地过电压形成机理的理论分析方法很多,对于电网中性点不接地系统,电力电缆在其相间和相地间都有等效电容。经计算表明,发生单相弧光接地时过电压的最大值将达到:U max=1.5U m+(1.5U m–0.7U m)=2.3U m 单相弧光接地的过电压瞬时幅值最大可以达到20.4KV。如果弧光接地在接地点造成弧光间隙性反复燃烧,那么产生的过电压倍数将远远大于2.3倍。根据有关资料介绍,在国外有些专家对单相弧光接地进行了实测,其结果显示,过电压幅值高达正常相电压幅值的3~3.5倍。在系统发生单相接地时,都产生了较高的过电压,才会引起避雷器放电。强烈的过电压使相间空气绝缘被击穿,形成相间弧光短路,至于避雷器的爆炸,主要是由于避雷器的选型错误(原设计型号为Y3W-10/31.5)和产品质量欠佳(受潮),再加上弧光短路产生的高能热量加剧了避雷器的爆炸。由此可见如此高的过电压一旦产生就将会在电力网络绝缘薄弱环节形成闪络放电,严重时将破坏绝缘,造成相间短路或者损害电气设备。发电机接地电流已远远大于5A,才会造成发电机定子铁芯熔化,即与发电机有电气连接的电力网络的单相接地电流已大大超过了5A。 3 单相弧光接地产生的原因 从上述分析可见,单相弧光接地是威胁电力系统安全、稳定和可靠运行的最主要和最直接因素。而中性点的接地方式,直接影响到单相弧光接地的产生和限制力度。根据我国的传统设计经验,

10~35 kV系统弧光接地过电压的危害及解决办法通用版

管理制度编号:YTO-FS-PD504 10~35 kV系统弧光接地过电压的危 害及解决办法通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

10~35 kV系统弧光接地过电压的危害及解决办法通用版 使用提示:本管理制度文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 1 事故情况简介 近几年,随着城网的迅速发展,电缆线路的比例逐年增多,导致对地电容电流剧增。由于10~35kV系统单相接地引发的电网事故愈来愈多,由此带来的经济损失和社会影响也越来越大。 仅就北京供电局1998年7~10月的统计发现,由于10kV系统单相接地而引发的事故便达4起,有的造成全站停电,影响重要用户供电,有的造成主变压器损坏、开关柜烧毁和避雷器爆炸等,简要情况如下: (1)1998年7月6日,北京肖庄35kV4号母线34路B相发生单相接地,故障持续1h后,引发301开关内附CT主绝缘击穿,开关爆炸起火,1号主变差动跳闸。2号主变在自投过程中经受一次出口短路冲击,由于有载调压

电压电流比值问题

电流电压比值问题 一.选择题(共8小题) 1.如图所示,R1和R2为阻值不同的定值电阻,滑片P置于变阻器中间,电源电压保持不变,下列说法错误的是() A.只闭合S1,滑片向左滑动,电压表的示数不变 B.只闭合S2,滑片向右滑动,电压表与电流表A1示数的比值变小 C.只闭合S2和S3,且滑片置于最右端时,两电流表的示数可能相等 D.先闭合S1,S2,电路中的总电流为I1,再闭合S3并移动滑片后,电路中的总电流为I2,I1和I2可能相等2.如图所示,当滑动变阻器滑片P向右移动时,下列判断正确的是() A.电压表的示数不变,电流表A1的示数变大,A2的示数变小 B.电压表的示数不变,电流表A1的示数不变,A2的示数变大 C.电压表的示数与A2的示数的比值变大,A1的示数不变 D.电压表的示数与A2的示数的比值不变,A1的示数不变 3.如图所示的电路中,电源电压保持不变,灯泡的电阻R L保持不变,闭合开关S后,将滑动变阻器R的滑片P 向左移动的过程中,下列说法正确的是() A.电压表V1示数变大,电压表V2示数变小 B.V2表示数与A表示数之比变小

C.电流表A示数不变,灯泡L亮度变亮 D.V1表示数的变化量与A表示的变化量之比等于R L 4.如图所示,电源电压不变,闭合开关S,当滑动变阻器滑片向右移动时() A.电流表A1示数变小,电压表V示数变大 B.电流表A2示数变大,电压表V示数变大 C.电压表V示数与电流表A1示数的比值不变 D.电压表V示数与电流表A2示数的比值不变 5.如图所示的电路中,电源电压保持不变,闭合开关S,当滑动变阻器的滑片P向右移动时,下列分析正确的是() A.电流表A1的示数、电流表A2的示数和电压表的示数都不变 B.电流表A1的示数变大,电流表A2的示数变小,电压表的示数变大 C.电压表V的示数与电流表A1的示数的比值变小 D.电流表A1的示数不变,电流表A2的示数变小,电压表的示数变大 6.如图所示的电路,其中R1为定值电阻,电源电压不变。闭合开关,当滑片P向右移动时,下列说法错误的() A.V表与A表的示数之比会增大 B.V1表与A1表的示数之比会增大 C.V2的示数变大 D.A、A1的示数变小,但示数总是相等 7.如图所示的电路中,电源电压保持不变。闭合开关S,将滑动变阻器的滑片P向右移动时,下列说法不正确的是()

变压器二次侧相电压异常情况的分析

变压器二次侧相电压异常情况的分析 陈辉 中条山有色金属集团有限公司生产部山西垣曲043700 北方铜业侯马冶炼厂二期工程5万吨电解铜扩建项目需要新投入一台主变,型号为SFZ10-1250/110,低压侧为6KV,生产厂家为陕西铜变实业股份有限公司,主变编号为2#,与1#主变分列运行。 1.2#主变试运期的异常情况 2#主变试运初期,只带Ⅱ段高压开关,6KV侧并没有接带负荷,变压器相当于空载运行,此时Ⅱ段电压互感器二次回路相电压显示异常,其中两相显示3700V左右,一相2400V左右,严重不平衡。经过与变压器生产厂家共同检查分析,决定采纳厂家意见:即让变压器带负荷运行,再看各相对地电压的变化情况。2#主变带负荷后(约2000KW),各相对地电压基本平衡,均为3700V左右。 2. 原因分析 2.1 对变压器本身及Ⅱ段高压开关系统进行检查 首先对2#主变的绕组和母线及Ⅱ段高压开关系统进行了认真检察,未发现6KV侧绕组、母线及Ⅱ段高压开关系统存在单相接地故障。同时,又查看了变压器出厂试验报告和安装后的试验报告,两份试验报告均显示变压器各项试验结果合格,所以认为变压器本身的质量性能应该没有问题。 2.22#变压器空载运行状态的分析 变压器运行资料的有关章节中讲到“在中性点不接地的电力系统中,中性点的电位是不固定的,它随着系统对地电容的改变而改变。

当线路不换位或者换位不完善,各相对地电容不相等时,三相电容电流的相量和将不等于零,变压器中性点呈现一定的电位,叫做不对称电压”据以上基本原理,我们认为2#主变处于空载运行状态时,该变压器的负载仅是纯电容性负载,由于各相对地电容的不一致性,造成电力系统中性点的偏移,三相对地电压不平衡。 2.32#变压器负载运行状态的分析 2#主变低压母线接入6KV电力系统,带2000KW负荷运行。由于该厂所带负载是以电感、电阻为主要成分的感性负载,各相对地电容也当要比2#主变空载运行时的母线对地电容大很多倍。2#主变母线系统(小容量分布电容)并入该厂的大容量分布的带负载的电网后,对原有电网的容性电流未产生影响,所以2#主变空载运行时各相对地电容分布不一致而造成的中性点偏移的现象,在该厂的电网中也就没有反映出来,这就是为什么2#主变的电压互感器接入该厂电网后相电压显示正常的原因。据厂家技术服务人员反映,在实际安装调试过程中也曾遇到过此类现象,变压器在空载时相电压不正常,带负载后相电压就正常了,并不影响变压器的正常运行。 3. 改进措施 在Ⅱ段高压配电系统中增加高压消谐装置,这样能够在某种程度上平衡因变压器二次空载时造成的对地电容不均的现象,对带负载运行则更为有利,因为Ⅱ段负荷多为整流机组等容易产生谐波的负荷。1#主变所带Ⅰ段高压配电系统采用的是电压互感器二次侧开口三

110kV变电站弧光接地过电压故障分析通用版

解决方案编号:YTO-FS-PD701 110kV变电站弧光接地过电压故障分 析通用版 The Problems, Defects, Requirements, Etc. That Have Been Reflected Or Can Be Expected, And A Solution Proposed T o Solve The Overall Problem Can Ensure The Rapid And Effective Implementation. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

编写人:xxxxx 审核人:xxxxx 110kV变电站弧光接地过电压故障 分析通用版 使用提示:本解决方案文件可用于已经体现出的,或者可以预期的问题、不足、缺陷、需求等等,所提出的一个解决整体问题的方案(建议书、计划表),同时能够确保加以快速有效的执行。文件下载后可定制修改,请根据实际需要进行调整和使用。 介绍夹江供电局110kV黄土变电站一起由于弧光接地短路故障诱发10kV电压互感器发生的铁磁谐振过电压,描述了故障发生的现象以及现场开关保护装置的动作情况,对引起故障的原因进行了综合分析。 110kV黄土变电站位于四川省乐山市夹江县黄土镇,于1996年年底投入运行。主要担负着联接乐山范坝站、峨眉朱坎站、洪雅槽渔滩站110kV电网及夹江地区的供电任务,主变容量为2×3150kVA。 110kV系统为单母线分段带旁母;35kV、10kV系统为单母线分段的接线方式。110kV进出线有五回,35kV出线四回,10kV出线五回。 1故障发生过程与现象 经过现场勘察发现,事故造成110kV黄土变电站 10kV母线I、II段四元件中性点TV烧毁,电压互感器铁芯

高电压习题

《高电压技术》复习题 第三篇波、防雷保护、过电压 1.所谓“过电压”是指(电力系统中出现的对绝缘有危险的电压升高和电位差升高)。 3.电力系统在发生雷击或进行操作时,输电线路的都可能产生以(行波)的过电压波,该波过程的本质是(能量沿着导线传播)的过程,即在导线周围逐步建立起(电场和磁场)的过程,也就是在导线周围空间(储存电磁能)的过程。 4.波阻抗Z是(电压波与电流波之间)的比例常数,它反映了波在传播过程中遵循(储存在单位长度线路周围媒质中的电场能量和磁场能量一定相等)的规律,所以Z是(一个非常重要)的参数。 5. 电压波的符号(指取决于它的极性),而与电荷的(运动方向)无关。 6. 过电压波在线路开路末端处的(电压加倍,电流变零),这种电压(加倍升高)对线路的绝缘是(很危险的)。 7.过电压波在线路末端短路(接地)处的(电流加倍,电压变零),该现象表明这时的全部能量都(转化为磁场能量储存起来)。 8.在波过程的分析中,可将入射波和波阻抗为Z的线路,用一个(用一个集中参数)的等值电路来代替,其中(电源电势等于电压入射波的两倍,该电源内阻等于线路波阻抗Z)。这就是应用广泛的(彼得逊)法则。 12.雷电放电是一种(超长气隙的火花放电)。“云—地”间的线状雷的放电经过(先导电,后放电回击)等阶段完成的。 13.雷暴日是(一年中发生雷电的田鼠,以听到雷声为准)。在一天内只要听到过雷声,无论(次数多少)均计为(一个雷暴日),雷暴小时数则是(一年中发生雷电放电的小时数,)即在一个小时内只有(一次雷电),就计作(一个雷电小时)。 14.雷电通道(即主放电通道)可达数千米长,而半径仅为数厘米,类似于(一条分布参数线路),,它具有的等值波阻抗称作(雷道波阻抗),我国规程建议(Z0≈300Ω)。 19.称(雷击于线路附近或甚至雷击于接地的线路杆塔顶部)时,在(绝缘的导线上引起的感应过电压)为感应雷击过电压。感应雷击过电压在三相导线上(同时出现),且数值(基本相等),不会出现相间(电位差和相位闪络)。 20.现代电力系统中实际采用的防雷保护装置有(避雷针、避雷线、保护间隙、各种避雷器、防雷接地、)电抗线圈、电容器、消弧线圈、自动重合闸等等。 21.避雷针较宜用于(变电所、发电厂那样相对集中)的保护对象,避雷线则宜用于(像架空输电线路那样伸展很广)的保护对象。 22.雷电绕过(避雷装置而击中被保护的物理)的现象称作绕击。 23.避雷器被(雷电过电压)击穿,在工作电压的作用下将有(一工频电流继续流过已经电离化了的击穿通道),这一电流称为(工频)续流。 25.阀式避雷器主要由(火花间隙F及与之串联的工作电阻R)两大部分组成。因此,它的最主要保护特性参数就是(火花间隙的冲击冲击放电U0(i))和流过避雷器的冲击电流在(工作电阻上)产生的压降,即(残压)。 26.避雷针的保护角(θ=45°),避雷线的保护角(θ=25°)。 29.在(雷暴日次数Zc=40情况下100km的线路)每年因雷击而引起的跳闸次数称为(雷击跳闸率),其单位为(次/100km.40雷暴日)。 30. 为限制进入变电所的雷电过电压波的波前陡度和阀式避雷器动作后的续流,应(取接近变电所 2km线路段)作为进线保护段。进线保护段内避雷线的保护角(不宜超过20°,最小应超过15°),杆塔的(接地电阻)应降低,以提高(进线保护段的耐雷水平)。 33.电力系统绝缘配合的根本任务是(正确处理过电压和绝缘这一矛盾)。以达到(任务安全,经济供电)的目的。 3.试述冲击电晕对防雷保护的有利和不利方面。

谐振接地系统中单相接地引起的过电压分析

谐振接地系统中单相接地引起的过电压分析 摘要: 单相接地故障是电力系统中主要的故障形式,由其引发的各种过电压事故很多。本文描述了单相接地的各种现象,分析了谐振接地系统中单相接地引起的弧光接地过电压和铁磁谐振过电压,特别是两种不同工作方式的消弧线圈自动调谐装置对消除铁磁谐振过电压的影响。 关键词:单相接地弧光接地过电压消弧线圈铁磁谐振 前言 配电网中性点经消弧线圈接地方式,又称为谐振接地方式,在谐振接地系统中有三种过电压对其影响最大,即雷击过电压、弧光接地过电压和铁磁谐振过电压。前两种过电压可以采用比较明确有效的措施来进行防护,如对于雷击过电压,可以采用避雷器等防雷保护措施来限制其危害性。对于弧光接地过电压,通常采用消弧线圈进行有效的抑制。但对于铁磁谐振过电压,虽然目前可采用的防治措施很多,但实际效果和评价各不相同,铁磁谐振过电压在实际运行中仍然经常引发严重的事故。长期运行经验表明,单相接地故障是电力系统中主要的故障形式,约占60%以上。当电网发生单相接地时, 容易产生间歇性弧光接地, 此时产生的弧光接地过电压和由此激发的铁磁谐振过电压将会导致弱绝缘的击穿,甚至发展为相间短路故障而引发跳闸。我厂的6kV配电网为谐振接地系统,且单相接地时有发生,因此对谐振接地系统中单相接地引起的弧光接地过电压和铁磁谐振过电压进行分析是十分必要的。 1单相接地的各种现象 运行中单相接地一般是间歇性电弧接地→稳定电弧接地→金属性接地。根据实测, 间歇性电弧接地, 持续时间可达0.2~2S, 频率可达300~3000Hz;然后呈稳定电弧接地, 持续时间可达2~10s,最后, 故障点导线被烧熔成为金属性接地, 即所谓永久性故障接地。另一种情况是暂时性的单相电弧接地如(雷击、鸟害等),当系统电容电流超过一定数值时,电弧难以自动熄灭。然而这个电流又不至于大到形成稳定电弧的程度,因此可能出现电弧时燃时灭的不稳定状态。两种间歇性的电弧导致系统中电感-电容回路的电磁振荡过程,产生遍及全系统的的弧光接地过电压。 2消弧线圈自动调谐对弧光接地过电压的抑制 间歇性电弧接地流过故障点的电流中包含两个分量,即工频分量和高频分量。在谐振接地系统中,现行所有消弧线圈设计的自动调谐都是在电网工频下完成的,不能补偿高频分量,因此消弧线圈自动调谐不能消除弧光接地过电压。

弧光接地过电压引起设备烧毁事故原因分析

弧光接地过电压引起设备烧毁事故原因分析 王接旭,侯建军,丁晓峰 (新密市电业局,河南郑州 452370) 摘要:这是一起由于10kV出线A相发生非金属接地短路产生弧光接地过电压的事故,造成10kV母联开关爆炸、10kV I母、II母C相电压互感器以及两条备用出线板上刀闸相继烧毁事故,此时两台运行变压器低压侧开关分别跳闸,减少了事故范围的扩大。 关键词:弧光接地过电压开关跳闸分析 Analysis on the cause of the accident of the burning equipment caused by arc grounding Over-voltage WANGjiexu HOUJianjun DINGXiaofeng (Xinmi Electric Power Bureau,zhengzhou 452370,Henan) Abstract:This accident was due to the occurrence of arc gorunding over-voltage coused by the non-metallic gound short circuit failure of 10kV outgoing line of A-phase, resulted in the explosion 10kV bus coupler switch and 10kV I bus, II bus C-phase voltage transformer and two standby switch on the board have been burned win accident,meantime two low-voltage side of transformer operation switch successive tripped, to reduce the expansion of the scope of the accident. Keywords: arc gorunding, over voltage, switch tripping, Analysis. 引言 目前我国10kV线路电力网络采用中性点不接地的方式运行,当10kV出线发生单相接地时,接地电流只是网络电容电流,比较小,保护装置不动作于跳闸,只给出信号,电网可持续运行2小时,故提高了供电可靠性。其缺点是经济性差,因10kV中性点不接地网络单相接地时,使不接地相对地电压变成了线电压,易出现弧光引起的谐振过电压,造成对电力设施的严重损坏。 一事故经过 1.1事故前运行方式 110kV某变电站一次主接线如(图一)所示,110kV东母带1#主变运行,110kV西母带2#主变运行,110kV母联处于解备位置。1#、2#(2×40MW)分别带10kV I段、10kV II段运行,10kV母联开关处于热备用状态,10kV备用出线均在解备位置。 图一 110kV变电站接线图 1.2 事故动作报告 2009年6月11日21时43分,110kV变电站后台机报“10kVⅡ母PT接地”时,正当值班人员准

相关主题
文本预览
相关文档 最新文档