当前位置:文档之家› 爆炸极限理论与计算

爆炸极限理论与计算

爆炸极限理论与计算
爆炸极限理论与计算

第五节爆炸极限理论与计算

一、爆炸极限理论

可燃气体或蒸气与空气的混合物,并不是在任何组成下都可以燃烧或爆炸,而且燃烧(或爆炸)的速率也随组成而变。实验发现,当混合物中可燃气体浓度接近化学反应式的化学计量比时,燃烧最快、最剧烈。若浓度减小或增加,火焰蔓延速率则降低。当浓度低于或高于某个极限值,火焰便不再蔓延。可燃气体或蒸气与空气的混合物能使火焰蔓延的最低浓度,称为该气体或蒸气的爆炸下限;反之,能使火焰蔓延的最高浓度则称为爆炸上限。可燃气体或蒸气与空气的混合物,若其浓度在爆炸下限以下或爆炸上限以上,便不会着火或爆炸。

爆炸极限一般用可燃气体或蒸气在混合气体中的体积百分数表示,有时也用单位体积可燃气体的质量(kg·m—3)表示。混合气体浓度在爆炸下限以下时含有过量空气,由于空气的冷却作用,活化中心的消失数大于产生数,阻止了火焰的蔓延。若浓度在爆炸上限以上,含有过量的可燃气体,助燃气体不足,火焰也不能蔓延。但此时若补充空气,仍有火灾和爆炸的危险。所以浓度在爆炸上限以上的混合气体不能认为是安全的。

燃烧和爆炸从化学反应的角度看并无本质区别。当混合气体燃烧时,燃烧波面上的化学反应可表示为

A+B→C+D+Q(4—1)

式中A、B为反应物;C、D为产物;Q为燃烧热。A、B、C、D不一定是稳定分子,也可以是原子或自由基。化学反应前后的能量变化可用图4—4表示。初始状态Ⅰ的反应物(A+B)吸收活化能正达到活化状态Ⅱ,即可进行反应生成终止状态Ⅲ的产物(C+D),并释放出能量W,W=Q+E。

图4-4 反应过程能量变化

假定反应系统在受能源激发后,燃烧波的基本反应浓度,即反应系统单位体积的反应数为n,则单位体积放出的能量为nW。如果燃烧波连续不断,放出的能量将成为新反应的活化能。设活化概率为α(α≤1),则第二批单位体积内得到活化的基本反应数为anW/E,放出的能量为。αnW2/E。后批分子与前批分子反应时放出的能量比β定义为燃烧波传播系数,为

现在讨论β的数值。当β<1时,表示反应系统受能源激发后,放出的热量越来越少,因而引起反应的分子数也越来越少,最后反应会终止,不能形成燃烧或爆炸。当β=1时,表示反应系统受能源激发后均衡放热,有一定数量的分子持续反应。这是决定爆炸极限的条件(严格说卢值略微超过1时才能形成爆炸)。当β>1时,表示放出的热量越来越多,引起反应的分子数也越来越多,从而形成爆炸。

在爆炸极限时,β=1,即

假设爆炸下限L

下(体积分数)与活化概率α成正比,则有α=KL

,其中K为比例常数。因

当Q与正相比很大时,式(4—4)可以近似写成

上式近似地表示出爆炸下限L

与燃烧热Q和活化能正之间的关系。如果各可燃气体的活化

能接近于某一常数,则可大体得出

L下Q=常数(4—6)

这说明爆炸下限与燃烧热近于成反比,即是说可燃气体分子燃烧热越大,其爆炸下限就越低。

各同系物的L

Q都近于一个常数表明上述结论是正确的。表4—7列出了一些可燃物质的燃烧热和爆炸极限,以及燃烧热和爆炸下限的乘积。利用爆炸下限与燃烧热的乘积成常数的关系,可以推算同系物的爆炸下限。但此法不适用于氢、乙炔、二硫化碳等少数可燃气体爆炸下限的推算。

式(4—6)中的L 下是体积分数,文献数据大都为20℃的测定数据;Q 则为摩尔燃烧热。

对于烃类化合物,单位质量(每克)的燃烧热q 大致相同。如果以mg ·L —1

为单位表示爆炸下

限,则记为L ′下,有L 下=100L ′下×,于是

式中M为可燃气体的相对分子质量。

把式(4—7)代人式(4—6),并考虑到Q=Mq,则可得到

2.4qL′下=常数(4—8)

近于相同。

可见对于烃类化合物,其L′

二、影响爆炸极限的因素

爆炸极限不是一个固定值,它受各种外界因素的影响而变化。如果掌握了外界条件变化对爆炸极限的影响,在一定条件下测得的爆炸极限值,就有着重要的参考价值。影响爆炸极限的因素主要有以下几种。

1.初始温度

爆炸性混合物的初始温度越高,混合物分子内能增大,燃烧反应更容易进行,则爆炸极限范围就越宽。所以,温度升高使爆炸性混合物的危险性增加。表4—8列出了初始温度对丙酮和煤气爆炸极限的影响。

表4—8 初始温度对混合物爆炸极限的影响

2.初始压力

爆炸性混合物初始压力对爆炸极限影响很大。一般爆炸性混合物初始压力在增压的情况下,爆炸极限范围扩大。这是因为压力增加,分子间更为接近,碰撞几率增加,燃烧反应更容易进行,爆炸极限范围扩大。表4—9列出了初始压力对甲烷爆炸极限的影响。在一般情况下,随着初始压力增大,爆炸上限明显提高。在已知可燃气体中,只有一氧化碳随着初始压力的增加,爆炸极限范围缩小。

表4—9 初始压力对甲烷爆炸极限的影响

初始压力降低,爆炸极限范围缩小。当初始压力降至某个定值时,爆炸上、下限重合,此时的压力称为爆炸临界压力。低于爆炸临界压力的系统不爆炸。因此在密闭容器内进行减压操作对安全有利。

3.惰性介质或杂质

爆炸性混合物中惰性气体含量增加,其爆炸极限范围缩小。当惰性气体含量增加到某一值时,混合物不再发生爆炸。惰性气体的种类不同对爆炸极限的影响亦不相同。如甲烷,氩、氦、氮、水蒸气、二氧化碳、四氯化碳对其爆炸极限的影响依次增大。再如汽油,氮气、燃烧废气、二氧化碳、氟里昂-21、氟里昂-12、氟里昂-11,对其爆炸极限的影响则依次减小。

在一般情况下,爆炸性混合物中惰性气体含量增加,对其爆炸上限的影响比对爆炸下限的影响更为显著。这是因为在爆炸性混合物中,随着惰性气体含量的增加氧的含量相对减少,而在爆炸上限浓度下氧的含量本来已经很小,故惰性气体含量稍微增加一点,即产生很大影响,使爆炸上限剧烈下降。

对于爆炸性气体,水等杂质对其反应影响很大。如果无水,干燥的氯没有氧化功能;干燥的空气不能氧化钠或磷;干燥的氢氧混合物在1000℃下也不会产生爆炸。痕量的水会急剧加速臭氧、氯氧化物等物质的分解。少量的硫化氢会大大降低水煤气及其混合物的燃点,加速其爆炸。

4.容器的材质和尺寸

实验表明,容器管道直径越小,爆炸极限范围越小。对于同一可燃物质,管径越小,火焰蔓延速度越小。当管径(或火焰通道)小到一定程度时,火焰便不能通过。这一间距称作最大灭火间距,亦称作临界直径。当管径小于最大灭火间距时,火焰便不能通过而被熄灭。

容器大小对爆炸极限的影响也可以从器壁效应得到解释。燃烧是自由基进行一系列连锁反应的结果。只有自由基的产生数大于消失数时,燃烧才能继续进行。随着管道直径的减小,自由基与器壁碰撞的几率增加,有碍于新自由基的产生。当管道直径小到一定程度时,自由基消失数大于产生数,燃烧便不能继续进行。

容器材质对爆炸极限也有很大影响。如氢和氟在玻璃器皿中混合,即使在液态空气温度下,置于黑暗中也会产生爆炸。而在银制器皿中,在一般温度下才会发生反应。

5.能源

火花能量、热表面面积、火源与混合物的接触时间等,对爆炸极限均有影响。如甲烷在电压100 V、电流强度1 A的电火花作用下,无论浓度如何都不会引起爆炸。但当电流强度增加至2 A时,其爆炸极限为5.9%~13.6%;3A时为5.85%~14.8%。对于一定浓度的爆炸性混合物,都有一个引起该混合物爆炸的最低能量。浓度不同,引爆的最低能量也不同。对于给定的爆炸性物质,各种浓度下引爆的最低能量中的最小值,称为最小引爆能量,或最小引燃能量。表4—10列出了部分气体的最小引爆能量。

表4—10 部分气体的最小引爆能量

另外,光对爆炸极限也有影响。在黑暗中,氢与氯的反应十分缓慢,在光照下则会发生连锁反应引起爆炸。甲烷与氯的混合物,在黑暗中长时间内没有反应,但在日光照射下会发生激烈反应,两种气体比例适当则会引起爆炸。表面活性物质对某些介质也有影响。如在球形器皿中530℃时,氢与氧无反应,但在器皿中插入石英、玻璃、铜或铁棒,则会发生爆炸。

三、爆炸极限的计算

1.根据化学计量浓度近似计算

爆炸性气体完全燃烧时的化学计量浓度可以用来确定链烷烃的爆炸下限,计算公式为

L下=0.55C0(4—9)

式中C0为爆炸性气体完全燃烧时的化学计量浓度;0.55为常数。如果空气中氧的含量按照20.9%计算,C0的计算式则为

式中n0为1分子可燃气体完全燃烧时所需的氧分子数。

如甲烷完全燃烧时的反应式为CH4+2O2→CO2+2H2O,这里n0=2,代入式(4—10),并

=5.2,即甲烷爆炸下限的计算值为5.2%,与实验值5.0%相差应用式(4—9),可得L

不超过10%。

此法除用于链烷烃以外,也可用来估算其他有机可燃气体的爆炸下限,但当应用于氢、乙炔,以及含有氮、氯、硫等的有机气体时,偏差较大,不宜应用。

2.由爆炸下限估算爆炸上限

常压下25℃的链烷烃在空气中的爆炸上、下限有如下关系

如果在爆炸上限附近不伴有冷火焰,上式可简化为

把上式代入式(4—9),可得

3.由分子中所含碳原子数估算爆炸极限

脂肪族烃类化合物的爆炸极限与化合物中所含碳原子数”。有如下近似关系

4.根据闪点计算爆炸极限

闪点指的是在可燃液体表面形成的蒸气与空气的混合物,能引起瞬时燃烧的最低温度,爆炸下限表示的则是该混合物能引起燃烧的最低浓度,所以两者之间有一定的关系。易燃液体的爆炸下限可以应用闪点下该液体的蒸气压计算。计算式为

L下=100×p闪/p总(4—16)

式中p

闪为闪点下易燃液体的蒸气压;p

为混合气体的总压。

5.多组元可燃性气体混合物的爆炸极限

两组元或两组元以上可燃气体或蒸气混合物的爆炸极限,可应用各组元已知的爆炸极限按照下式求取。该式仅适用于各组元间不反应、燃烧时无催化作用的可燃气体混合物。

式中Lm为混合气体的爆炸极限,%;Li为i组元的爆炸极限,%;Vi为扣除空气组元后i组元的体积分数,%。

6.可燃气体与惰性气体混合物的爆炸极限

对于有惰性气体混入的多组元可燃气体混合物的爆炸极限,可应用下式计算。

式中Lm为含惰性气体混合物的爆炸极限,%;L f为混合物中可燃部分的爆炸极限,%;B为惰性气体含量,%。对于单组元可燃气体和惰性气体混合物的爆炸极限,也可以应用上式估算,只需用该组元的爆炸极限代换上式中Lf即可。因为不同惰性气体的阻燃或阻爆能力不同,式(4—18)的计算结果不够准确,但仍不失为有一定参考价值。

7.压力下爆炸极限的计算

压力升高,物质分子浓度增大,反应加速,释放的热量增多。在常压以上时,爆炸极限多数变宽。压力对爆炸范围的影响,在已知气体中,只有一氧化碳是例外,随着压力增加而爆炸范围变小。从低碳烃化合物在氧气中爆炸上限的研究结果得知,在0.1~1.0 MPa范围内比较准确地是以下实验式。

式中L

为气体的爆炸上限,%;p为压力,大气压(0.101325MPa)。

常见气体的爆炸极限

常见气体的爆炸极限 气体名称化学分子式/在空气中的爆炸极限(体积分数) / % 下限(V/V) 上限(V/V) 乙烷C2H6 3.0 15.5 乙醇C2H5OH 3.4 19 乙烯C2H4 2.8 32 氢气H2 4.0 75 硫化氢H2S 4.3 45 甲烷CH4 5.0 15 甲醇CH3OH 5.5 44 丙烷C3H8 2.2 9.5 甲苯C6H5CH3 1.2 7 二甲苯C6H5(CH3)2 1.0 7.6 乙炔C2H2 1.5 100 氨气NH3 15 30.2 苯C6H6 1.2 8 丁烷C4H10 1.9 8.5 一氧化碳CO 12.5 74 丙烯C3H6 2.4 10.3 丙酮CH3COCH3 2.3 13 苯乙烯C6H5CHCH2 1.1 8.0

空气中体积浓度在5.0%~15%之间时,遇火源会爆炸,否则就不会爆炸。可可燃气(粉尘)的重量百分数表示(克/米*或是毫克/升)。爆炸极限是一个气体分级和确定其火灾危险性类别的依据。我国目前把爆炸下限小于是10%的可燃气体等,都需要知道该场所存在的可燃气体(蒸气、粉尘)的爆炸极限数值。(将可燃气体(蒸气、粉尘)的浓度控制在爆炸下限以下。为保证这一点,在制定安全生产警等。 空气(氧气或氧化剂)均匀混合形成爆炸性混合物,其浓度达到一定的范围时,遇到明火度称为爆炸浓度上限,爆炸浓度的上限、下限之间称为爆炸浓度范围。可可燃物质的爆炸极限受诸多因素的影响。如可燃气体的爆炸极限受温度、压力、合物中所占体积的百分比(%)来表示的,表5—3中一氧化碳与空气的混合物的爆炸极限为359/m3可燃粉尘的爆炸上限,因为浓度太高,大多数场合都难以达到,一般很少,爆炸所产生的压力不大,温度不高,爆炸威力也小。当可燃物的浓度大致相当于反应当宽,其爆炸危险性越大,这是因为爆炸极限越宽则出现爆炸条件的机会越多。爆炸下限炸条件。生产过程中,应根据各可燃物所具有爆炸极限的不同特点,采取严防跑、冒、滴容器里或管道里逸出,重新接触空气时却能燃烧,因此,仍有发生着火的危险。 反应时,爆炸所析出的热量最多,产生的压力也最大,实际的反应当量浓度稍高于计算的热量和压力就会随着可燃物质在混合物中浓度的增加而减小;如果可燃物质在混合物中的全燃烧时在混合物中该可燃物质的含量。根据化学反应计算可燃气体或蒸2C0+02+3.76N2=2C02+3.76N2 根据反应式得知,参加反应0%=29.6%(三)爆炸极限的影响因素爆炸极限通常是在常含氧量、惰性气体含量、火源强度等因素的变化而变化。1.初始温度 爆炸危险性。2.初始压力增加混合气体的初始压力,通常

爆炸极限一览表

可燃气体或蒸气分子式爆炸极限(%) 下限上限 氢气H2 4.0 75 氨NH3 15.5 27 一氧化碳CO 12.5 74.2 甲烷CH4 5.3 14 乙烷C2H6 3.0 12.5 乙烯C2H4 3.1 32 乙炔C2H2 2.2 81 苯C6H6 1.4 7.1 甲苯C7H8 1.4 6.70 环氧乙烷C2H4O 3.0 80.0 乙醚(C2H5)O 1.9 48.0 乙醛CH3CHO 4.1 55.0 丙酮(CH3)2CO 3.0 11.0 乙醇C2H5OH 4.3 19.0 甲醇CH3OH 5.5 36 醋酸乙酯C4H8O2 2.5 9 常用可燃气体爆炸极限数据表(LEL/UEL及毒性) 物质名称分子式爆炸浓度(V%) 毒性 下限LEL 上限UEL 甲烷CH4 5 15 —— 乙烷C2H6 3 15.5 丙烷C3H8 2.1 9.5 丁烷C4H10 1.9 8.5 戊烷(液体)C5H12 1.4 7.8 己烷(液体)C6H14 1.1 7.5 庚烷(液体)CH3(CH2)5CH3 1.1 6.7 辛烷(液体)C8H18 1 6.5 乙烯C2H4 2.7 36 丙烯C3H6 2 11.1 丁烯C4H8 1.6 10 丁二烯C4H6 2 12 低毒 乙炔C3H4 2.5 100 环丙烷C3H6 2.4 10.4 煤油(液体)C10-C16 0.6 5 城市煤气 4 液化石油气 1 12

汽油(液体)C4-C12 1.1 5.9 松节油(液体)C10H16 0.8 苯(液体)C6H6 1.3 7.1 中等 甲苯C6H5CH3 1.2 7.1 低毒 氯乙烷C2H5Cl 3.8 15.4 中等 氯乙烯C2H3Cl 3.6 33 氯丙烯C3H5Cl 2.9 11.2 中等 1.2 二氯乙烷ClCH2CH2Cl 6.2 16 高毒四氯化碳CCl4 轻微麻醉 三氯甲烷CHCl3 中等 环氧乙烷C2H4O 3 100 中等 甲胺CH3NH2 4.9 20.1 中等 乙胺CH3CH2NH2 3.5 14 中等 苯胺C6H5NH2 1.3 11 高毒 二甲胺(CH3)2NH 2.8 14.4 中等 乙二胺H2NCH2CH2NH2 低毒 甲醇(液体)CH3OH 6.7 36 乙醇(液体)C2H5OH 3.3 19 正丁醇(液体)C4H9OH 1.4 11.2 甲醛HCHO 7 73 乙醛C2H4O 4 60 丙醛(液体)C2H5CHO 2.9 17 乙酸甲酯CH3COOCH3 3.1 16 乙酸CH3COOH 5.4 16 低毒 乙酸乙酯CH3COOC2H5 2.2 11 丙酮C3H6O 2.6 12.8 丁酮C4H8O 1.8 10 氰化氢( 氢氰酸) HCN 5.6 40 剧毒 丙烯氰C3H3N 2.8 28 高毒 氯气Cl2 刺激 氯化氢HCl 氨气NH3 16 25 低毒 硫化氢H2S 4.3 45.5 神经 二氧化硫SO2 中等 二硫化碳CS2 1.3 50 臭氧O3 刺激 一氧化碳CO 12.5 74.2 剧毒

常见气体的爆炸极限完整版

常见气体的爆炸极限 Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】

常见气体的爆炸极限 气体名称化学分子式/在空气中的爆炸极限 (体积分数) / % 下限(V/V) 上限(V/V) 乙烷 C2H6 乙醇 C2H5OH 19 乙烯 C2H4 32 氢气 H2 75 硫化氢 H2S 45 甲烷 CH4 15 甲醇 CH3OH 44 丙烷 C3H8

甲苯 C6H5CH3 7 二甲苯 C6H5(CH3)2 乙炔 C2H2 100 氨气 NH3 15 苯 C6H6 8 丁烷 C4H10 一氧化碳 CO 74 丙烯 C3H6 丙酮 CH3COCH3 13 苯乙烯 C6H5CHCH2

炸,这个浓度范围称为爆炸极限(或爆炸浓度极限)。形成爆炸性混合物的最低浓度称为爆炸浓度下限,最高浓度称为爆炸浓度上限,爆炸浓度的上限、下限之间称为爆炸浓度范围。可燃性混合物有一个发生燃烧和爆炸的浓度范围,即有一个最低浓度和最高浓度,混合物中的可燃物只有在其之间才会有燃爆危险。可燃物质的爆炸极限受诸多因素的影响。如可燃气体的爆炸极限受温度、压力、氧含量、能量等影响,可燃粉尘的爆炸极限受分散度、湿度、温度和惰性粉尘等影响。可燃气体和蒸气爆炸极限是以其在混合物中所占体积的百分比(%)来表示的,表5—3中一氧化碳与空气的混合物的爆炸极限为12.5%~80%。可燃粉尘的爆炸极限是以其在混合物中所占的比重(g/m3)来表示的,例如,木粉的爆炸下限为409/m3,煤粉的爆炸下限为359/m3可燃粉尘的爆炸上限,因为浓度太高,大多数场合都难以达到,一般很少涉及。例如,糖粉的爆炸上限为135009/m3,煤粉的爆炸上限为135009/m3,一般场合不会出现。可燃性混合物处于爆炸下限和爆炸上限时,爆炸所产生的压力不大,温度不高,爆炸威力也小。当可燃物的浓度大致相当于反应当量浓度(表中的30%)时,具有最大的爆炸威力。反应当量浓度可根据燃烧反应式计算出来。可燃性混合物的爆炸极限范围越宽,其爆炸危险性越大,这是因为爆炸极限越宽则出现爆炸条件的机会越多。爆炸下限越低,少量可燃物(如可燃气体稍有泄漏)就会形成爆炸条件;爆炸上限越高,则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件。生产过程中,应根据各可燃物所具有爆炸极限的不同特点,采取严防跑、冒、滴、漏和严格限制外部空气渗入容器与管道内等安全措施。应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器里或管道里逸出,重新接触空气时却能燃烧,因此,仍有发生着火的危险。(二)爆炸反应当量浓度的计算爆炸性混合物中的可燃物质和助燃物质的浓度比例恰好能发生完全化合反应时,爆炸所析出的热量最多,产生的压力也最大,实际的

爆炸极限浓度

爆炸极限浓度2007-08-01 13:29 可燃物质(可燃气体、蒸气和粉尘)与空气(或氧气)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为爆炸极限,或爆炸浓度极限。例如一氧化碳与空气混合的爆炸极限为12.5%~80%。可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为爆炸下限和爆炸上限,这两者有时亦称为着火下限和着火上限。在低于爆炸下限和高于爆炸上限浓度时,既不爆炸,也不着火。这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。 可燃性混合物的爆炸极限范围越宽、爆炸下限越低和爆炸上限越高时,其爆炸危险性越大。这是因为爆炸极限越宽则出现爆炸条件的机会就多;爆炸下限越低则可燃物稍有泄漏就会形成爆炸条件;爆炸上限越高则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件。应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器或管道里逸出,重新接触空气时却能燃烧,仍有发生着火的危险。 爆炸极限的单位气体或蒸气的爆炸极限的单位,是以在混合物中所占体积的百分比(%)来表示的,如氢与空气混合物的爆炸极限为4%~75%。可燃粉尘的爆炸极限是以混合物中所占体积的质量比g/m3来表示的,例如铝粉的爆炸极限为40g/m3。 爆炸极限计算爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下:

(1)爆炸反应当量浓度。爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。 可燃气体或蒸气分子式一般用CαHβOγ表示,设燃烧1mol气体所必需的氧摩尔数为n,则燃烧反应式可写成: CαHβOγ+nO2→生成气体 按照标准空气中氧气浓度为20.9%,则可燃气体在空气中的化学当量浓度 X(%),可用下式表示: 可燃气体在氧气中的化学当量浓度为Xo(%),可用下式表示: 也可根据完全燃烧所需的氧原子数2n的数值,从表1中直接查出可燃气体或蒸气在空气(或氧气)中的化学当量浓度。其中。 可燃气体(蒸气)在空气中和氧气中的化学当量浓度 (2)爆炸下限和爆炸上限。各种可燃气体和燃性液体蒸气的爆炸极限,可用专门仪器测定出来,或用经验公式估算。爆炸极限的估算值与实验值一般有些出入,其原因是在计算式中只考虑到混合物的组成,而无法考虑其他一系列因素的影.响,但仍不失去参考价值。 1)根据完全燃烧反应所需的氧原子数估算有机物的爆炸下限和上限,其经验公式如下。 爆炸下限公式: (体积) 爆炸上限公式: (体积) 式中 L下——可燃性混合物爆炸下限;

常见可燃气体爆炸极限数据表

常见可燃气体爆炸极限数据表(2016-02-26 17:56:29) 转载 分类:火灾爆炸(粉尘) 物质名称分子式下限 LEL 上限 UEL 毒性 甲烷CH4 515 乙烷C2H63 丙烷C3H8 丁烷C4H10 戊烷(液体)C5H12 己烷(液体)C6H14 庚烷(液体)CH3(CH2)5CH3 辛烷(液体)C8H181 乙烯C2H436 丙烯C3H62 丁烯C4H810 丁二烯C4H6212低毒 乙炔C2H2100 环丙烷C3H6 煤油(液体)C10-C165 城市煤气4 液化石油气112 汽油(液体)C4-C12 松节油(液体)C10H16 苯(液体)C6H6 中等 甲苯C6H5CH3低毒 氯乙烷C2H5Cl中等 氯乙烯C2H3Cl33 氯丙烯C3H5Cl中等 二氯乙烷ClCH2CH2Cl16高毒 四氯化碳CCl4 轻微麻醉三氯甲烷CHCl3中等 环氧乙烷C2H4O3100中等 甲胺CH3NH2中等 乙胺CH3CH2NH214中等 苯胺C6H5NH211高毒 二甲胺(CH3)2NH中等

乙二胺H2NCH2CH2NH2低毒 甲醇(液体)CH3OH36 乙醇(液体)C2H5OH19 正丁醇(液体)C4H9OH 甲醛HCHO773 乙醛C2H4O460 丙醛(液体)C2H5CHO17 乙酸甲酯CH3COOCH316 乙酸CH3COOH16低毒 乙酸乙酯CH3COOC2H511 丙酮C3H6O 丁酮C4H8O10 HCN剧毒 氰化氢 ( 氢氰 酸 ) 丙烯氰C3H3N28高毒 氯气Cl2 刺激 氯化氢HCl 氨气NH31625低毒 硫化氢H2S神经 二氧化硫SO2 中等 二硫化碳CS250 臭氧O3刺激 一氧化碳CO剧毒 氢H2475 乙醚(C2H5)O浓度超过303g/m3有 生命危险。

爆炸极限理论与计算 (1)

第五节爆炸极限理论与计算 一、爆炸极限理论 可燃气体或蒸气与空气的混合物,并不是在任何组成下都可以燃烧或爆炸,而且燃烧(或爆炸)的速率也随组成而变。实验发现,当混合物中可燃气体浓度接近化学反应式的化学计量比时,燃烧最快、最剧烈。若浓度减小或增加,火焰蔓延速率则降低。当浓度低于或高于某个极限值,火焰便不再蔓延。可燃气体或蒸气与空气的混合物能使火焰蔓延的最低浓度,称为该气体或蒸气的爆炸下限;反之,能使火焰蔓延的最高浓度则称为爆炸上限。可燃气体或蒸气与空气的混合物,若其浓度在爆炸下限以下或爆炸上限以上,便不会着火或爆炸。 爆炸极限一般用可燃气体或蒸气在混合气体中的体积百分数表示,有时也用单位体积可燃气体的质量(kg·m—3)表示。混合气体浓度在爆炸下限以下时含有过量空气,由于空气的冷却作用,活化中心的消失数大于产生数,阻止了火焰的蔓延。若浓度在爆炸上限以上,含有过量的可燃气体,助燃气体不足,火焰也不能蔓延。但此时若补充空气,仍有火灾和爆炸的危险。所以浓度在爆炸上限以上的混合气体不能认为是安全的。 燃烧和爆炸从化学反应的角度看并无本质区别。当混合气体燃烧时,燃烧波面上的化学反应可表示为 A+B→C+D+Q(4—1) 式中A、B为反应物;C、D为产物;Q为燃烧热。A、B、C、D不一定是稳定分子,也可以是原子或自由基。化学反应前后的能量变化可用图4—4表示。初始状态Ⅰ的反应物(A+B)吸收活化能正达到活化状态Ⅱ,即可进行反应生成终止状态Ⅲ的产物(C+D),并释放出能量W,W=Q+E。 图4-4 反应过程能量变化 假定反应系统在受能源激发后,燃烧波的基本反应浓度,即反应系统单位体积的反应数为n,则单位体积放出的能量为nW。如果燃烧波连续不断,放出的能量将成为新反应的活化能。设活化概率为α(α≤1),则第二批单位体积内得到活化的基本反应数为anW/E,放出的能量为。αnW2/E。后批分子与前批分子反应时放出的能量比β定义为燃烧波传播系数,为

各常见气体爆炸极限

常见可燃性气体爆炸极限 三氯氢硅SiHCl3 1. 别名?英文名

硅氯仿、硅仿、三氯硅烷;Trichlorosilane 、Silicochloroform . 2. 用途 单晶硅原料、外延成长、硅液、硅油、化学气相淀积、硅酮化合物制造、电子气。 3. 制法 (1) 在高温下Si 和HCl 反应。 (2) 用氢还原四氯化硅(采用含铝化合物的催化剂) 。 4. 理化性质 分子量:135.43 熔点(101.325kPa) : -134C ;沸点(101.325kPa) : 31.8 C;液体密度(0 C): 13 50kg/m3;相对密度(气体,空气=1): 4.7 ;蒸气压(-16.4 C) : 13.3kPa ; (14. 5C) : 53.3kPa ;燃点:-27.8 C;自燃点:104.4 C;闪点:-14C ;爆炸下限:9.8%;毒性级别:3;易燃性级别:4;易爆性级别:2 三氯硅烷在常温常压下为具有刺激性恶臭易流动易挥发的无色透明液体。在空气中极易燃烧,在-18C以下也有着火的危险,遇明火则强烈燃烧,燃烧时发出红色火焰和白色烟,生成SiO2、HCl 和Cl2: SiHCI3 O2-SiO2 HCI CI2 ;三氯硅烷的蒸气能与空气形成浓度范围很宽的爆炸性混合气,受热时引起猛烈的爆炸。它的热稳定性比二氯硅烷好,在900C时分解产生氯化物有毒烟雾(HCl),还生成Cl2和Si。 遇潮气时发烟,与水激烈反应:2SiHCI3 3H2O—- (HSiO)2O 6HCI ; 在碱液中分解放出氢气:SiHCl3 3NaOH H2O—-Si (OH)4 3NaCl H2 ; 与氧化性物质接触时产生爆炸性反应。与乙炔、烃等碳氢化合物反应产生有机氯硅烷: SiHCl3 CH三CH一—CH2CHSiCl3、SiHCl3 CH2=CH2-->CH3CH2SiCl3 在氢化铝锂、氢化硼锂存在条件下,SiHCl3 可被还原为硅烷。容器中的液态Si HCl3 当容器受到强烈撞击时会着火。可溶解于苯、醚等。无水状态下三氯硅烷对铁和不锈钢不腐蚀,但是在有水分存在时腐蚀大部分金属。 5. 毒性 小鼠-吸入LC50 1.5?2mg/L 最高容许浓度:1mg/m3 三氯硅烷的蒸气和液体都能对眼睛和皮肤引起灼伤,吸入后刺激呼吸道粘膜引起各种症状(参见四氯化硅)。 6. 安全防护 液体用玻璃瓶或金属桶盛装,容器要存放在室外阴凉干燥通风良好之处或在易燃液体专用库内,要与氧化剂、碱类、酸类隔开,远离火种、热源,避光,库温不宜超过25 r。可用氨水探漏。 火灾时可用二氧化碳、干石粉、干砂,禁止用水及泡沫。废气可用水或碱液吸收。 三氯硅烷有水分时腐蚀性极强。可用铁、镍、铜镍合金、镍钢、低合金钢,不能用铝、铝合金。可以用聚四氟乙烯、聚三氟氯乙烯聚合体、氟橡胶、聚氯乙烯、聚乙烯、玻璃等。

实验二 甲烷气体爆炸极限测试

实验二甲烷气体爆炸极限测试 一、实验目的 了解气体爆炸极限测试装置,学习分压法配气的原理和方法,掌握气体爆炸极限测试方法,理解爆炸极限的概念,弄清气体爆炸极限的影响因素及其一般规律。 二、实验原理 爆炸极限是指可燃气体和空气组成的混合气遇火源即能发生爆炸的可燃气体最低和最高浓度。本实验就是将可燃性气体与空气按一定比例混合,然后采用电火花进行引燃实验,通过改变可燃性气体浓度直至测得能发生爆炸的最低、最高浓度。 三、实验装置 爆炸极限测定装置主要由反应管、点火装置、搅拌装置、真空泵、压力计、电磁阀等组成,设备结构原理图及实物见图2-1。反应管采用石英玻璃制成,管长1400mm,管内径60mm,管底部装有通径不小于25mm的泄压阀,装置安放在可升温至50℃的恒温箱内。恒温箱正面装有双层玻璃门,一层为钢化玻璃,一层为有机玻璃,用以观察实验现象并起保护作用。可燃气体和空气混合气利用电火花引燃,电火花能量应大于混合气的最小点火能。点火电极距离反应管底部不小于100mm,并处于管横截面中心。

图2-1 实验装置原理图及实物照片 四、实验步骤 (1)检查实验仪器的气密性 将装置抽到真空度不大于667Pa,然后停泵。5min后压力计压力升高若不大于267Pa,则认为密闭性符合要求。 (2)连接干燥瓶 在干燥瓶内放入适量的干燥剂,平稳地放置在爆炸极限装置恒温箱的托盘架上,并用软胶管连接到空气进气阀接头上。 (3)准备待测样品 采用气囊收集待测纯净的气体样品,再将气囊平稳地放置在恒温箱内的托盘架上,将进样软胶管连接到进样控制电磁阀的接头上。 (4)配制混和气体 采用分压法配制待测混合气体。 (5)搅拌 为使反应管内可燃性混合气体在空气中能均匀分布,配好气后利用无油封闭循环搅拌泵均匀搅拌大约5min。 (6)点火

常见可燃气体爆炸极限.docx

常见可燃气体爆炸极限 可燃气体发生爆炸必须具备一定的条件, 那就是:一定浓度的可燃气体, 一定量的氧气以及足够热量点燃它们的火源, 这就是爆炸三要素 , 缺一不可 , 也就 是说 , 缺少其中任何一个条件都不会引起火灾和爆炸.当可燃气体和氧气混合 并达到一定浓度时 , 遇具有一定温度的火源就会发生爆炸. 我们把可燃气体遇火 源发生爆炸的浓度称为爆炸浓度极限, 简称爆炸极限 , 一般用 %表示 .实际上, 这种混合物也不是在任何混合比例上都会发生爆炸而要有一个浓度范围. 当可 燃气体浓度低于LEL(最低爆炸限度)时(可燃气体浓度不足)和其浓度高于 UEL(最高爆炸限度)时(氧气不足)都不会发生爆炸. 不同的可燃气体的LEL 和 UEL都各不相同 , 为安全起见 , 一般我们应当在可燃气体浓度在LEL 的 10%和 20%时发出警报 , 这里 ,10%LEL称. 作警告警报 , 而 20%LEL称作危险警报 . 这也就是我们将可燃气体检测仪又称作 LEL检测仪的原因 . 需要说明的是 ,LEL 检测仪上显示的 100%不是可燃气体的浓度达到气体体积的100%,而是达到了 LEL 的 100%, 即相当于可燃气体的最低爆炸下限. 序号名称化学式在空气中爆炸限 (体积分数) /% 下限上限1乙烷 C 2H 6 3.015.5 2乙醇C2H 5OH 3.419 3乙烯C2 H 4 2.832 4氢H 2 4.075 5硫化氢H 2 S 4.345 6煤油0.757甲烷CH 4 5.015 8甲醇CH 3 OH 5.544 9丙醇C3H 7OH 2.513.5 10丙烷C3H8 2.29.5 11丙烯C3H6 2.410.3 12甲苯 C 6 H 5 CH 3 1.27 13二甲苯C 6 H 4(CH 3)2 1.07.6 14二氯乙烷C2H 4 Cl2 5.616 15二氯乙烯C2H2C l2 6.515 16二氯丙烷C3H 6 Cl2 3.414.5 17乙醚C2 H 5OC 2H 5 1.736 1

爆炸极限计算

爆炸极限计算 爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下: (1)爆炸反应当量浓度。爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。 可燃气体或蒸气分子式一般用C αHβOγ表示,设燃烧1mol气体所必需的氧摩尔数为n,则燃烧反应式可写成: C αHβOγ+nO2→生成气体 按照标准空气中氧气浓度为20.9%,则可燃气体在空气中的化学当量浓度X(%),可用下式表示: 可燃气体在氧气中的化学当量浓度为Xo(%),可用下式表示: 也可根据完全燃烧所需的氧原子数2n的数值,从表1中直接查出可燃气体或蒸气在 空气(或氧气)中的化学当量浓度。其中。 可燃气体(蒸气)在空气中和氧气中的化学当量浓度

(2)爆炸下限和爆炸上限。各种可燃气体和燃性液体蒸气的爆炸极限,可用专门仪器测定出来,或用经验公式估算。爆炸极限的估算值与实验值一般有些出入,其原因是在计算式中只考虑到混合物的组成,而无法考虑其他一系列因素的影响,但仍不失去参考价值。 1)根据完全燃烧反应所需的氧原子数估算有机物的爆炸下限和上限,其经验公式如下。 爆炸下限公式: (体积) 爆炸上限公式: (体积) 式中 L ——可燃性混合物爆炸下限; 下 L ——可燃性混合物爆炸上限; 上 n——1mol可燃气体完全燃烧所需的氧原子数。 某些有机物爆炸上限和下限估算值与实验值比较如表2: 表2 石蜡烃的化学计量浓度及其爆炸极限计算值与实验值的比较

常见可燃气体爆炸上下限

常见可燃气体爆炸上、下限

什么是可燃气体的爆炸极限、爆炸上限、爆炸下限 可燃气体的爆炸极限: 可燃气体(蒸气)与空气的混合物,并不是在任何浓度下,遇到火源都能爆炸,而必须是在一定的浓度范围内遇火源才能发生爆炸。这个遇火源能发生爆炸的可燃气浓度范围,称为可燃气的爆炸极限(包括爆炸下限和爆炸上限)。不同可燃气(蒸气)的爆炸极限是不同的,如氢气的爆炸极限是4.0%~75.6%(体积浓度),意思是如果氢气在空气中的体积浓度在4.0%~75.6%之间时,遇火源就会爆炸,而当氢气浓度小于4.0%或大于75.6%时,即使遇到火源,也不会爆炸。甲烷的爆炸极限是5.0%~15%意味着甲烷在空气中体积浓度在5.0%~15%之间时,遇火源会爆炸,否则就不会爆炸。 可燃粉尘爆炸极限的概念与可燃气爆炸极限是一致的。 爆炸极限一般用可燃气(粉尘)在空气中的体积百分数表示(%),也可以用可燃气(粉尘)的重量百分数表示(克/米*或是毫克/升)。 爆炸极限是一个很重要的概念,在防火防爆工作中有很大的实际意义: (1)它可以用来评定可燃气体(蒸气、粉尘)燃爆危险性的大小,作为可燃气体分级和确定其火灾危险性类别的依据。我国目前把爆炸下限小于是10%的可 燃气体划为一级可燃气体,其火灾危险性列为甲类。 (2)它可以作为设计的依据,例如确定建筑物的耐火等级,设计厂房通风系统等,都需要知道该场所存在的可燃气体(蒸气、粉尘)的爆炸极限数值。

(3)它可以作为制定安全生产操作规程的依据。在生产、使用和贮存可燃气体(蒸气、粉尘)的场所,为避免发生火灾和爆炸事故,应严格将可燃气体(蒸气、 粉尘)的浓度控制在爆炸下限以下。为保证这一点,在制定安全生产操作规 程时,应根据可燃气(蒸气、粉尘)的燃爆危险性和其它理化性质,采取相 应的防范措施,如通风、置换、惰性气体稀释、检测报警等。 可燃性气体的浓度过低或过高它是没有危险的,它只有与空气混合形成混合气或更确切地说遇到氧气形成一定比例的混合气才会发生燃烧或爆炸。燃烧是伴有发光发热的激烈氧化反应,它必须具备三个要素:a、可燃物(燃气);b、助燃物(氧气);c、点火源(温度)。可燃气的燃烧可以分为两类,一类是扩散燃烧,即挥发的或从设备中喷出、泄漏的可燃气,遇到点火源混合燃烧。另一类燃烧,是可燃气与空气混合着火燃烧,这种燃烧反应激烈而速度快,一般会产生巨大的压力和声响,又称之为爆炸。燃烧与爆炸没有严格的区分。 有关权威部门和专家已经对目前发现的可燃气作了燃烧爆炸分析,制定出了可燃性气体的爆炸极限,它分为爆炸上限(英文upper explode limit的简写UEL)和爆炸下限(英文lower explode limit的简写LEL?)。低于爆炸下限,混合气中的可燃气的含量不足,不能引起燃烧或爆炸,高于上限混合气中的氧气的含量不足,也不能引起燃烧或爆炸。另外,可燃气的燃烧与爆炸还与气体的压力、温度、点火能量等因素有关。爆炸极限一般用体积百分比浓度表示。 爆炸极限是爆炸下限、爆炸上限的总称,可燃气体在空气中的浓度只有在爆炸下限、爆炸上限之间才会发生爆炸。低于爆炸下限或高于爆炸上限都不会发生爆炸。因此,在进行爆炸测量时,报警浓度一般设定在爆炸下限的25%LEL以下。 便携式可燃气体检测仪的通常设有一个报警点:25%LEL为报警点。 举例说明,甲烷的爆炸下限为5%体积比,那也就是说,把这个5%体积比,一百等分,让5%体积比对应100%LEL,也就是说,当检测仪数值到达10%LEL报警点时,相当于此时甲烷的含量为0.5%体积比。当检测仪数值到达25%LEL报警点时,相当于此时甲烷的含量为1.25%体积比。 所以,您不必担心报警后是不是随时有危险了,此时是在提示您,要马上采取相应的措施啦,比如开启排气扇或是切断一些阀门等,离真正有可能出现危险的爆炸下限还

常见气体的爆炸极限及爆炸极限计算公式

常见气体的爆炸极限及爆炸极限计算公式 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

爆炸极限计算方法:比较认可的计算方法有两种: 莱·夏特尔定律 对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。用Pn表示一种可燃气在混合物中的体积分数,则: LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%) 混合可燃气爆炸上限:

UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%) 此定律一直被证明是有效的。 理·查特里公式 理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。Lm=100/(V1/L1+V2/L2+……+Vn/Ln) 式中Lm——混合气体爆炸极限,%; L1、L2、L3——混合气体中各组分的爆炸极限,%; V1、V2、V3——各组分在混合气体中的体积分数,%。 例如:一天然气组成如下:甲烷80%(L下=%)、乙烷15%(L下=%)、丙烷4%(L下=%)、丁烷1%(L下=%)求爆炸下限。 Lm=100/(80/5+15/+4/+1/)= 德迈数据计算: 废气风量:19000Nm3/h 废气中可燃性成分:戊烷7kg/h;甲醛29kg/h,其它约5kg/h(当甲醛计算) 戊烷体积=7000/72*1000=h体积分数=19000=% 甲醛体积分数=h体积分数=19000=% 由公式:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%)得: 混合气体的爆炸下限=%/(+7)=% 结论:混合气体中可燃气体的总体积分数为%,混合气体的爆炸下限为%,可燃气体浓度是爆炸下限浓度的1/38,放心烧吧!

粉尘爆炸极限测试

粉尘爆炸极限测试 粉尘爆炸,指可燃性粉尘在爆炸极限范围内,遇到热源(明火或高温),火焰瞬间传播于整个混合粉尘空间,化学反应速度极快,同时释放大量的热,形成很高的温度和很大的压力,系统的能量转化为机械能以及光和热的辐射,具有很强的破坏力。某些厂矿生产过程中产生的粉尘,特别是一些有机物加工中产生的粉尘,在某些特定条件下会发生爆炸燃烧事故。 为提高生产安全性,可提前进行粉尘爆炸极限测试,获取爆炸极限值,设置预警装置,确保生产安全。夏溪科技可为用户提供爆炸极限测试服务,测试范围宽,温度范围最高可达200℃,测量准确度高。爆炸极限测试仪可以广泛用于煤矿瓦斯、城镇燃气、制冷空调、化学化工、检测检疫等领域的可燃性气体、粉尘爆炸极限测试以及研究工作。 1、测试说明 FL5000测压法爆炸极限测试仪,符合ASTM E918、EN 1839B标准。可测试高温、高压下多达三种组分的气体、液体蒸气和易爆粉尘在空气中的爆炸极限。气体配比准确,是否爆炸依据压力升高的原则来判断,测试结果不受主观因素影响。大尺寸的爆炸容器设计可保证氨气、卤代烃类等难燃性气体的测试准确度。燃烧室防爆网与防护层的双保险设计保证了实验的安全性。 2、测量范围 压力范围:0~2MPa; 温度范围:室温~ 200 ℃; 控温精度:±1.0℃; 压力测量精度:0.1%FS。 3、实验分析 根据爆炸前后容器内部压力升高7%的原则来判断被测样品的爆炸极限。

根据Arrhenius定理可知,初始温度和初始压力对瓦斯爆炸的反应速率具有很大的影响。初始温度升高或初始压力的増大都将加快瓦斯爆炸基元反应的反应速率,从而使爆炸反应更快地进行。但影响爆炸极限的因素有多种多样,初始温度、初始压力、点火能量、惰性介质、容器形状大小等因素都不同程度地影响可燃气体的爆炸极限。在处理与分析中,不能仅仅考虑单个因素的作用,需要综合考虑各个方面。 4、测量优势 a)试验温度范围宽:可测定可燃性气体、液体蒸气和粉尘,温度范围室温~200度,可根据客户要求订制; b)测试精度高:根据分压法配气原理进行配气,采用精度为0.25%FS的高精度压力传感器,且配气过程通过软件对电磁阀的自动化控制完成,最大程度上减小了操作误 差,试验中配气误差一般不超过0.1%,从而得到精确的爆炸极限值; c)全自动化控制:可实现软件的自动化控制。软件的模块分为组分设置模块、系统状态显示模块、温度控制模块、温度压力实时数据模块和温度压力曲线显示模块。自 动化软件控制整个操作过程,包括对抽真空、配气、搅拌、测温、控温、测压、点 火等实验过程的控制; d)安全性强:燃烧室防爆网与防护层的双保险设计保证了实验的安全性。

天然气的爆炸极限数值和测定方法

天然气的爆炸极限数值和测定方法 天然气在空气中浓度达到15%以上时,可以正常燃烧。若天然气在空气中浓度为5%~15%的范围内,遇明火即可发生爆炸,这个浓度范围即为天然气的爆炸极限。爆炸在瞬间产生高压、高温,其破坏力和危险性都是很大的。 空气中可燃气体爆炸极限测定方法 GB/T 12474—90 国家技术监督局1990-09-10批准 1991-09-01实施 爆炸极限应用于可燃气体危险性的分类。有爆炸性危险的工艺设备内允许可燃气体的浓度,爆炸性气体环境的通风和供热系统的计算,动火作业时安全浓度的确定等都同这一参数有关。 可燃气体和空气混合气的爆炸极限与以下因素有关: a.可燃气体的种类及化学性质; b.可燃气体的纯度; c.可燃气体和空气混合气的均匀性; d.点火源的形式、能量和点火位置; e.爆炸容器的几何形状和尺寸; f 可燃气体和空气混合气的温度、压力和湿度。 1 主题内容与适用范围 本标准规定了测定可燃气体在空气中爆炸极限的方法。 本标准适用于常温常压下测定可燃气体在空气中的爆炸极限值。 本标准不适用于测定其他安全技术参数。

注:按照本标准规定的方法点燃混合气后未形成火焰传播,不能认为该混合气不会爆炸,具体情况由有关专家予以解释。 2 术语 爆炸范围 explosion range 可燃气体与空气的混合气中,可燃气体的爆炸下限与爆炸上限之间的浓度范围称为爆炸范围。 3 试验方法 3.1 试验装置 爆炸极限测定装置见示意图。主要由反应管、点火装置、搅拌装置、真空泵、压力计、电磁阀等组成。装置的主要部分是一个用硬质玻璃为材质的反应管,管长1400±50mm,管内径φ60±5mm,管壁厚不小于2mm,管底部装有通径不小于φ25mm 泄压阀。装置安放在可升温至50℃的恒温箱内。恒温箱前后各有双层门,一层为普通玻璃,一层为有机玻璃,用以观察实验并起保护作用。 爆炸极限装置示意图 1一安全塞;2一反应管;3一电磁阀;4一真空泵;5一干燥瓶;6一放电电极;7一电压互感器;8一泄压电磁阀;9一搅拌泵;10一压力计;M1、M2一电动机 可燃气体和空气混合气利用电火花点燃,电火花能量应大于混合气的点燃能量。放电电极距反应管底部不小于100mm处位于管的横截面中心,电极间距离为3~4mm。 注:建议采用300VA电压互感器作为点火电源,产生高压为10kV(有效值),火花持续时间为0.5s左右。 3.2 试验步骤 先检查装置的密闭性,将装置抽真空至不大于668Pa(5mmHg)的真空度,然后停泵。经5min压力计压力下降不大于267Pa(2mmHg),认为真空度符合要求。按分压法进行混合气配制,为了使反应管内可燃气在空气中均匀分布,配好气后利用无油

常见气体的爆炸极限及爆炸极限计算公式精修订

常见气体的爆炸极限及爆炸极限计算公式 标准化管理部编码-[99968T-6889628-J68568-1689N]

爆炸极限计算方法:比较认可的计算方法有两种: 莱·夏特尔定律?对于两种或多种可燃蒸气混合物,如果已知每种可燃气的爆炸极限,那么根据莱·夏特尔定律,可以算出与空气相混合的气体的爆炸极限。用Pn表示一种可燃气在混合物中的体积分数,则: LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3)(V%) 混合可燃气爆炸上限: UEL=(P1+P2+P3)/(P1/UEL1+P2/UEL2+P3/UEL3)(V%)

此定律一直被证明是有效的。 2.2理·查特里公式 理·查特里认为,复杂组成的可燃气体或蒸气混合的爆炸极限,可根据各组分已知的爆炸极限按下式求之。该式适用于各组分间不反应、燃烧时无催化作用的可燃气体混合物。Lm=100/(V1/L1+V2/L2+……+Vn/Ln)式中Lm——混合气体爆炸极限,%;L1、L2、L3——混合气体中各组分的爆炸极限,%;V1、V2、V3——各组分在混合气体中的体积分数,%。例如:一天然气组成如下:甲烷80%(L下=5.0%)、乙烷15%(L下=3.22%)、丙烷4%(L下=2.37%)、丁烷1%(L下=1.86%)求爆炸下限。Lm=100/(80/5+15/3.22+4/2.37+1/1.86)=4.369德迈数据计算: 废气风量:19000Nm3/h 废气中可燃性成分:戊烷7kg/h;甲醛29kg/h,其它约5kg/h(当甲醛计算)戊烷体积=7000/72*22.4/1000=2.178Nm3/h体积分数=2.178/19000=0.012% 甲醛体积分数=25.39Nm3/h体积分数=25.39/19000=0.134% 混合气体中可燃气体的总体积分数=0.146% 由公式:LEL=(P1+P2+P3)/(P1/LEL1+P2/LEL2+P3/LEL3) (V%)得: 混合气体的爆炸下限=0.146%/(0.012/1.7+0.134/7)=5.57% 结论:混合气体中可燃气体的总体积分数为0.146%,混合气体的爆炸下限为5.57%,可燃气体浓度是爆炸下限浓度的1/38,放心烧吧!

高炉煤气爆炸极限

有关高炉煤气爆炸极限的解答 为什么各种气体的爆炸极限不一样,过小了不行,过大了也不行?如: H2是4%-75% CH4是5%-15% CO是12.5%-74% 可燃物质(可燃气体、蒸气和粉尘)与空气(或氧气)必须在一定的浓度范围内均匀混合,形成预混气,遇着火源才会发生爆炸,这个浓度范围称为爆炸极限,或爆炸浓度极限。例如一氧化碳与空气混合的爆炸极限为12.5%~80%。可燃性混合物能够发生爆炸的最低浓度和最高浓度,分别称为爆炸下限和爆炸上限,这两者有时亦称为着火下限和着火上限。在低于爆炸下限和高于爆炸上限浓度时,既不爆炸,也不着火。这是由于前者的可燃物浓度不够,过量空气的冷却作用,阻止了火焰的蔓延;而后者则是空气不足,导致火焰不能蔓延的缘故。当可燃物的浓度大致相当于反应当量浓度时,具有最大的爆炸威力(即根据完全燃烧反应方程式计算的浓度比例)。 可燃性混合物的爆炸极限范围越宽、爆炸下限越低和爆炸上限越高时,其爆炸危险性越大。这是因为爆炸极限越宽则出现爆炸条件的机会就多;爆炸下限越低则可燃物稍有泄漏就会形成爆炸条件;爆炸上限越高则有少量空气渗入容器,就能与容器内的可燃物混合形成爆炸条件。应当指出,可燃性混合物的浓度高于爆炸上限时,虽然不会着火和爆炸,但当它从容器或管道里逸出,重新接触空气时却能燃烧,仍有发生着火的危险。 爆炸极限的单位气体或蒸气的爆炸极限的单位,是以在混合物中所占体积的百分比(%)来表示的,如氢与空气混合物的爆炸极限为4%~75%。可燃粉尘的爆炸极限是以混合物中所占体积的质量比g/m3来表示的,例如铝粉的爆炸极限为40g/m3。 爆炸极限计算爆炸反应当量浓度、爆炸下限和上限、多种可燃气体混合物的爆炸极限计算方法如下: (1)爆炸反应当量浓度。爆炸性混合物中的可燃物质和助燃物质的浓度比例,在恰好能发生完全的化合反应时,则爆炸所析出的热量最多,所产生的压力也最大。实际的反应当量浓度稍高于计算的反应当量浓度,这是因为爆炸性混合物通常含有杂质。 可燃气体或蒸气分子式一般用CαHβOγ表示,设燃烧1mol气体所必需的氧摩尔数为n,则燃烧反应式可写成: CαHβOγ+nO2→生成气体

常用可燃气体爆炸极限数据表

常用可燃气体爆炸极限数据表 序号名称化学式在空气中的爆炸限(V%) 毒性下限LEL上限UEL 1 乙烷C 2 H6 3.0 15.5 2 乙醇C2 H50H 3. 3 19 3 乙烯C2 H 4 3.1 32 4 氢H2 4.0 75 5 硫化氢H2S 4.3 45 神经 6 煤油0. 7 5 7 甲烷CH4 5 15 — 8 甲醇CH a OH 5.5 44 9 丙醇C3H7OH 2.5 13.5 10 丙烷C a H8 2.2 9.5 11 丙烯C a H6 2.4 10.3 12 甲苯C6H5CH3 1.2 7 13 二甲苯 C6H4 (CH3) 2 1.0 7.6

14 二氯乙烷C2HQI2 5.6 16 高毒 15 二氯乙烯C2H2CI2 6.5 15 16 二氯丙烷C3H6CI2 3.4 14.5 17 乙醚C2H5OC2H5 1.7 36 18 二甲醚CH3OCH3 3.0 27.0 19 乙醛CH a COH 4 57 20 乙酸CH3COOH 4 17 低毒 21 丙酮CH a COCH a 2.15 13 (CH a CO)2C 1.7 22 乙酰丙酮 H2 23 乙酰氯CH 3COCI 5.0 19 24 乙炔C2H2 1.5 100 25 丙烯腈CH2CHCN 2.8 28 高毒 CH2CHCH2 26 烯丙基氯 3.2 11.2 Cl 27 甲基乙炔CH3CCH 1.7 28 氨NH3 15 30.2 低毒 29 乙酸戊酯CH3CO2C5 1.0 7.5

H ii 30 苯胺C6H5NH2 1.2 11 高毒 31 苯C6H6 1.2 8 32 苯甲酸C6H5CHO 1.4 33 苄基氯C6H5CH2CI 1.1 34 溴丁烷C a H y CH2Br 2.5 35 溴乙烷CH3CH2Br 6.7 11.3 CH2CHCH 36 丁二烯 2.0 11.5 低毒 CH2 37 丁烷C4H10 1.9 8.5 38 丁醇C4H9OH 1.4 11.3 39 丁烯C4H8 1.6 9.3 40 丁醛C3H3CHO 1.4 12.5 CH3COOC4 1.2 8.0 41 丁酸丁酯 H9 C4H9COCH 42 丁基甲基酮 1.2 8 3 43 二硫化碳CS2 1.0 60

爆炸极限测试仪

产品简介 技术指标 HWP05-20S 氧化性固体试验仪 1) 2) 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11)12) 本试验仪通过测定试样与某种可燃物质完全混 合时增加该可燃物质的燃烧速度或燃烧强度的潜力,将其试验燃烧时间与标准混合物进行比较,进而确认其包装类别,适用于固体物质;符合联合国《关于危险货物运输的建议书·试 验和标准手册》34.4.1试验O.1:氧化性固体的试验和GB/T 21617-2008《危险品 氧化性固体试验方法》;试验O.3:氧化性固体的替代试验(TDG和GHS上氧化性固体试验和标准修改稿的提案)。 作环境:5℃~30 ℃,<85%RH 加热方式:标准形状的惰性金属线加热加热金属丝功率:150W±7W 检测方式:红外传感器阵列检测方式或天平称重检测方式天平称重精度:±0.1g 环境温度测量范围:-10℃~+60℃环境温度测量精度:±0.5℃环境湿度测量范围:5~95% RH 环境湿度测量精度:±5.0% RH 计时范围:0~999s 测试板:材质为刚玉,长150mm,宽150mm,厚6mm 制样模具:材质为聚四氟乙烯,内直径70mm,角度为60°的圆锥体

功能特点 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11)采用嵌入式处理器,Windows CE操作系统; 8英寸液晶触摸屏,可实时显示试验状态; 兼容现行的O.1标准和新提案的O.3标准; 全自动光电检测技术,可靠检测燃烧现象; 全自动天平称重检测,自动记录燃烧过程中质量损失; 配备标准金属丝制作模具; 自动检测金属丝熔断并提供声光报警; 高精度温湿度检测功能,有效采集环境温、湿度; 试验过程中,实时显示运行时间、试验动画图像; 试验过程全自动化,无须人工干预,支持参数设置、数据存储、查看报表等功能; 配备温湿度模块,可实时监测试验环境的温度、湿度。 ▲ 承烧板 ▲ 金属丝制样模具 ▲ 筛网

相关主题
文本预览
相关文档 最新文档