当前位置:文档之家› 电力系统振荡的原因及危害

电力系统振荡的原因及危害

电力系统振荡的原因及危害
电力系统振荡的原因及危害

电力系统振荡的原因及危害

1 前言

XXXX公司是装机容量为2×600MW的新建大型火力发电厂,它同原有XXXX公司的2×500MW俄罗斯汽轮机组构成一个电源点,经三条500KV线路向系统送电,地处京津唐负荷中心,对电网稳定起着重要的支撑作用。作为京津唐电网最大的发电机组,其发电机励磁系统性能的优劣对华北电网的稳定运行具有举足轻重的影响。

根据国家十五计划实现全国联网的要求,华北电网规定,新建大型发电机组励磁系统应有系统稳定措施并调整好后才能并网运行,为此我厂先后完成了对3#、4#机组的电力系统稳定器(PSS)定值整定和试验工作,实验效果明显。应国家电力调度中心要求,2003年6月18日,在华北电力调度局方式处的组织下PSS正式投入运行。

2 低频振荡产生原因分析及危害性

电力系统低频振荡在国内外均有发生,通常出现在远距离、重负荷输电线路上,或者互联系统的弱联络线上,在采用快速响应高放大倍数励磁系统的条件下更容易出现。随着电力电子技术的快速发展,快速励磁调节器的时间常数大为减少,这有效地改善了电压调节特性,提高了系统的暂态稳定水平。但由于自动励磁调节器产生的附加阻尼为负值,抵消了系统本身所固有的正阻尼,使系统的总阻尼减少或成为负值,以至系统在扰动作用后的功率振荡长久不能平息,甚至导致自发的低频振荡,低频振荡的频率一般在之间。(风险管理世界

低频振荡会引起联络线过流跳闸或系统与系统或机组与系统之间的失步而解列,严重威胁电力系统的稳定。解决低频振荡问题成为电网安全稳定运行的重要课题之一。

3 PSS原理及其作用

为了既能利用高放大倍数的励磁调节器又能避免其负阻尼效应,人们对传统励磁系统进行了改进。对一个可能引起负阻尼的励磁调节器,向其中注入某些附加控制信号,使之可以提供正的阻尼,平息振荡,这就是PSS最基本的原理。PSS作为一种附加励磁控制环节,即在励磁电压调节器中,通过引入附加信号,产生一个正阻尼转矩,去克服励磁调节器引起的负阻尼,控制量可以采用电功率偏差(△P)、机端电压频率偏差(△f)、过剩功率(△Pm)、和发电机轴速度偏差(△w)以及它们的组合等。它不仅可以补偿励磁调节器的负阻尼,而且可以增加正阻尼,使发电机有效提高遏制系统低频振荡能力。

尽管PSS已是成熟的普遍技术,但它仍是消除互联电网负阻尼低频振荡最经济有效的方法。当系统规模较小、互联程度较低时,系统振荡不明显,PSS整定不为人们所关注。但在当今大电网互联迅速发展的情况下,PSS的作用已经引起人们的高度重视。1994年我国

南方联营电网发生的系统振荡事故是典型的一例,事后分析表明,若在此系统的主力机组上加装PSS,可以有效地阻尼振荡,防止有严重后果的动态稳定破坏事故的发生。

4 PSS的构成和传递函数

早期的PSS由分立元件构成,在微机式励磁调节器中PSS由软件构成,我厂3#、4#机组均是哈尔滨电机厂生产的三机无刷励磁发电机组,型号为QFSN-600-2YH,励磁调节器采用英国ROLLS-ROYCE(简称R-R)公司的数字式励磁调节器, PSS完全由软件构成,其PSS 输入信号采用发电机电功率即△P,其结构如图1:

图1 电力系统稳定器(PSS)方框图

ROLLS-ROYCE公司的电力系统稳定器(PSS)输入信号为发电机的负电功率信号,由此生成一个相位补偿及增益控制的调节信号以对有功功率振荡产生阻尼作用。

现场运行参数为:PSS自动投入值:功率,返回值功率,Kp=2、Te=10 、T1=2、T2=、T3=4、T4=、T5=、T6=、T7=,PSS输出限幅:±5%

5 PSS实验过程

励磁系统在线无补偿频率特性的测量

励磁控制系统无补偿频率特性即励磁系统滞后特性。因励磁控制系统滞后特性的存在,加到励磁调节器的附加信号经滞后才能产生附加力矩。测量励磁控制系统滞后特性应测量附加力矩对PSS迭加点的滞后角度。因为在发电机高功率因数运行时,机端电压对PSS 迭加点的滞后角度近似等于附加力矩对PSS迭加点的滞后角度。

实验时,发电机并网运行,记录有功、无功、机端电压值,PSS不投入,用频谱仪将噪音信号加入到调节器的相加点上,测量励磁系统的相频特性。测得的励磁系统在线无补偿相频特性见表1。

表1 励磁系统相频特性

由表1可见,在线无补偿频率特性基本正常,相位滞后比一般的交流励磁机励磁系统稍大些。(励磁机励磁系统约为-40°---150°)

励磁系统在线有补偿频率特性的测量

有补偿频率特性由无补偿频率特性与PSS单元相频特性相加得到,用来反映PSS 相位补偿后的附加力矩相位。DL/T650-1998<<大行汽轮发电机自并励静止励磁系统技术条件>>提出有补偿频率特性在该电力系统低频振荡区内满足-80°至-135°要求,此角度以机械功率方向为零度。一般试验采用的方法为:(1)断开PSS输入端,在PSS输入端加噪声信号,测量机端电压相对PSS输入信号的相角。(2)PSS环节的相角加上励磁控制系统滞后相角。

在现场试验中,PSS参数的预选择,可以用以上方法进行,此试验的目的是找出一组较好的PSS参数,并尽量使整个低频振荡频率范围内都得到较好的相位补偿。

由于R-R公司的励磁调节器中未设置PSS输入端,也未有相应的软件,此试验在现场无法进行。因此,由中国电科院技术人员根据厂家提供的PSS的传递函数框图,预设置一组PSS参数,用MATLAB自编程序进行仿真计算。PSS参数:Kp=2 Te=10 T1=2 T2= T3=4 T4= T5= T6= T7=,计算所得PSS得相频特性见图2、Kp=时幅频特性曲线见图3

将计算所得的各低频振荡频率下PSS相位角Φp与现场测得的在线无补偿频率特性上同频率下励磁系统滞后角Φe相加,得到在线有补偿频率特性计算值。计算所得的在线有补偿频率特性见下表2。

从表2可见,在低频震荡频率 Hz范围内都基本满足滞后-80°---(-135°)的要求,此组PSS参数是比较合适的。

图2 PSS系统相频特性曲线

图3 Kp=时幅频特性曲线

表2 在线有补偿频率特性计算值

其中:Φ=Φe + Φp

阶越响应(以4#机组为例)

试验条件:发电机并网运行,P= Q= Vt=

先进行PSS不投入时2%电压阶越响应试验。通过调节励磁调节器的输出,在发电机机端产生±2%的阶越,录取发电机机端有功功率、机端电压、无功功率、励磁电压波形(见图4)。

由图4可见,在PSS未投入运行的条件下,做机端电压±2%阶越响应试验,在上阶越时有功功率产生三摆振荡,振荡频率为。在下阶越时有功功率产生三摆振荡,振荡频率为。

通过自动励磁调节器(AVR)控制屏幕调整PSS增益Kp=,投入PSS,重做±2%阶越试验。通过调节励磁调节器的输出,在发电机机端产生±2%的阶越,录取发电机机端有功功率、机端电压、无功功率、励磁电压波形(见图5)。

图4 无PSS时的2%电压阶越响应

图5 有PSS(Kp=时的2%电压阶越响应录波图

由录波图5可见,PSS起到了抑制功率振荡的作用,无论是上阶越还是下阶越时,只产生一摆振荡,振荡频率为。

图6 有PSS(Kp=时的2%电压阶越响应录波图

相同工况下,通过AVR控制屏幕调整Kp分别为1和2、3继续做±2%阶越试验,录取发电机机端有功功率、机端电压、无功功率、励磁电压波形(见图6、7、8),比较PSS 的增益不同时阻尼功率振荡的能力。以找出较合理的PSS增益值。

图7 有PSS(Kp=时的2%电压阶越响应录波图

由录波图可见,PSS阻尼功率振荡能力随Kp的增大而逐步增强,无论是上阶跃还是下阶跃时,只产生一摆振荡,振荡频率为。

PSS增益整定

通过以上Kp取不同值时的阶越响应结果可知,PSS阻尼功率振荡能力随Kp的增大而逐步增强,但是增益过大同样会产生不稳定危害,根据图3( Kp=时的幅频特性计算曲线),PSS在时的交流放大倍数约为,已经足够大。由图5至图8录波图结果,认为取Kp=2比较合适。

PSS反调试验

对于采用发电机电功率信号的PSS,主要的副作用是无功反调,当通过减小原动机的输入功率来减少发电机的出力时,若调整速度较快,发电机的无功输出会突然大幅度增加,几秒后又恢复到原来无功水平。如果增加了有功,则无功会会瞬间大幅度减少,几秒钟后恢复到原来水平。无功反调现象严重时将对系统运行带来不利影响。

试验时,PSS投入运行,按正常运行增减负荷速度改变有功功率,观察调节器输出电压和电流,不出现随有功功率变化而大幅度摆动现象。

图8 有PSS(Kp=时的2%电压阶越响应录波图

6 实验结论

虽然本次实验出于安全性考虑未作大干扰的系统试验,只做了小干扰的机组实验,但是通过实验结果和录波图可看出PSS在增加系统阻尼,抑制发电机有功率振荡、提高系统稳定性方面有明显的效果。同时由于我厂是三机无刷旋转励磁方式,虽然励磁调节器性能优越,反应速度很快,但是根据三机励磁方式本身特有的局限性,我们相信在自并励等其它快速励磁系统上,PSS的效果会更好。

电力系统低频振荡的产生原因及危害性

电力系统低频振荡的产生原因及危害性(图文) 2010-10-23 10:28:14 互联网浏览: 1111 发布评论( 0) 介绍电力系统低频振荡的产生原因及危害性、PSS的基本原理、参数、作用及现场试验过程,并对实验结果进行探讨。 关键词:低频振荡励磁调节器电力系统稳定器(PSS) 1 前言 天津大唐盘山发电有限责任公司是装机容量为2×600MW的新建大型火力发电厂,它同原有天津国华盘山发电有限责任公司的2×500MW俄罗斯汽轮机组构成一个电源点,经三条500KV线路向系统送电,地处京津唐负荷中心,对电网稳定起着重要的支撑作用。作为京津唐电网最大的发电机组,其发电机励磁系统性能的优劣对华北电网的稳定运行具有举足轻重的影响。 根据国家十五计划实现全国联网的要求,华北电网规定,新建大型发电机组励磁系统应有系统稳定措施并调整好后才能并网运行,为此我厂先后完成了对3#、4#机组的电力系统稳定器(PSS)定值整定和试验工作,实验效果明显。应国家电力调度中心要求,2003年6月18日,在华北电力调度局方式处的组织下PSS正式投入运行。 2 低频振荡产生原因分析及危害性 电力系统低频振荡在国内外均有发生,通常出现在远距离、重负荷输电线路上,或者互联系统的弱联络线上,在采用快速响应高放大倍数励磁系统的条件下更容易出现。随着电力电子技术的快速发展,快速励磁调节器的时间常数大为减少,这有效地改善了电压调节特性,提高了系统的暂态稳定水平。但由于自动励磁调节器产生的附加阻尼为负值,抵消了系统本身所固有的正阻尼,使系统的总阻尼减少或成为负值,以至系统在扰动作用后的功率振荡长久不能平息,甚至导致自发的低频振荡,低频振荡的频率一般在0.2-2Hz之间。(风险管理世界-) 低频振荡会引起联络线过流跳闸或系统与系统或机组与系统之间的失步而解列,严重威胁电力系统的稳定。解决低频振荡问题成为电网安全稳定运行的重要课题之一。 3 PSS原理及其作用 为了既能利用高放大倍数的励磁调节器又能避免其负阻尼效应,人们对传统励磁系统进行了改进。对一个可能引起负阻尼的励磁调节器,向其中注入某些附加控制信号,使之可以提供正的阻尼,平息振荡,这就是PSS最

基于Prony算法的电力系统低频振荡模式识别解读

内蒙古科技大学 本科生毕业设计说明书(毕业论文) 题目:基于Prony算法的电力系统 低频振荡的模式识别 学生姓名:谢霞 学号:200867130301 专业:电气工程及其自动化 班级:电气2008-3班 指导教师:杨培宏讲师

基于Prony算法的电力系统低频振荡的模态识别 摘要 随着电网的日益扩大,大容量机组在电网中不断的投运以及高放大倍数的励磁系统的使用,使得系统中低频振荡现象时有发生。研究在线的模态的辨识是实现电力系统低频振荡在线监视以及抑制低频振荡的重要理论基础。为了研究电力系统低频振荡,人们提出了许多方法。而Prony算法可以通过给定输入信号下的响应直接估计系统的振荡频率、衰减因子、幅值和相位。在实际应用中,将现场测量的低频振荡数据进行Prony分析,从而得到低频振荡的模型组成,包括各个模型的频率、振幅、衰减因子和相角。因此,Prony算法在电力系统低频振荡分析中得以广泛应用。但Prony算法也有其局限性,如受噪声影响较大等。 关键词:电力系统;低频振荡;Prony分析

Power system low frequency oscillation mode identification based on Prony method Abstract With the growing of power grid, that large capacity units in power grid are continuous operated and the excitation system with high magnification is used makes the system often happen low frequency oscillations. Study of online model identification is the important theoretical basis of the realization of power system low frequency oscillation monitoring as well as damping. In order to study the low frequency oscillation in power system, the people proposed many methods. The Prony method can use the input signal response to directly estimate the oscillation frequency, damping, amplitude and phase. In practical application, Prony analysis analyse the low frequency oscillation data of situation measurement and obtain the low frequency oscillation models, including the frequency, amplitude, damping and phase angle of every model .Therefore, the Prony method is widely applied in low frequency oscillation of power system. But Prony algorithm has its limitations, such as the noise influence. Key words: Electric power system; Low frequency oscillation; Prony analysis

电力系统低频振荡

第36卷第22期电力系统保护与控制Vol.36 No.22 2008年11月16日Power System Protection and Control Nov. 16, 2008 电力系统低频振荡 郭权利 (沈阳工程学院电气工程系,辽宁 沈阳 110136) 摘要:由于系统缺乏阻尼或系统负阻尼引起的输电线路上的功率波动频率一般在 0.1~2.0 Hz之间,通常称之为低频振荡。随着电力系统规模的不断扩大和快速励磁系统的大量应用,电网的低频振荡问题越来越引起人们的关注。低频振荡影响电力系统稳定性和继电保护装置的可靠性。介绍了低频振荡的一些概念、各种机理、研究现状、常用的分析方法和控制方法,并对以后的工作重点做了进一步的阐述。 关键词: 低频振荡;频率波动;负阻尼;分析方法 Low Frequency Oscillation in Power System GUO Quan-li (Electrical Engineering Department,Shenyang Institute of Engineering,Shenyang 110136,China) Abstract: Because of the lack of damping system or negative damping system on the transmission line caused power fluctuations generally between 0.1-2.0 Hz, usually called as low-frequency oscillations. With the development of the size of the power system and large applicationl of the rapid excitation system, the low-frequency oscillation (LFO) of the power system are causing for more and more concern. And low-frequency oscillation affect the stability of the power system and the reliability of the relay device. This text introduces the concept of low-frequency oscillations, all kinds of mechanism and research status, analysis and control methods, and elaborate the focus of the work for a further step. Key words: low-frequency oscillation; frequency fluctuating; negative damping; analysis method 中图分类号: TM711 文献标识码: A 文章编号: 1674-3415(2008)22-0114-03 0 引言 低频振荡产生的原因是由于电力系统的负阻尼效应,常出现在弱联系、远距离、重负荷输电线路上,在采用快速、高放大倍数励磁系统的条件下更容易发生。系统缺乏阻尼甚至阻尼为负,对应发电机转子间的相对摇摆,表现在输电线路上就出现功率波动,由系统缺乏阻尼或系统负阻尼引起的输电线路上的功率波动频率一般在 0.1~2.0 Hz之间,通常称之为低频振荡(又称功率振荡,机电振荡)。一般来说,电力系统振荡模式可分为两种类型:地区振荡模式和区域振荡模式,若系统低频振荡频率很低(0.1~0.5 Hz),则一般认为属互联系统区域间振荡模式。而如果振荡较高,在1 Hz以上,则认为是本地或区域间机组间的振荡模式[1]。对于地区振荡模式,振荡频率较高,参与的机组较少,因而只要在少数强相关机组上增加阻尼,就能显著地增加振荡模式的阻尼。对于区域振荡模式,振荡频率较低,参与的机组较多,因而只有在多数参与机组上增加阻尼,才能显著地增加振荡模式的阻尼。显然,抑制区域振荡模式的低频振荡要比抑制地区振荡模式的低频振荡更加复杂和困难,所以,系统运行中更容易发生区域振荡模式的低频振荡。 由于低频振荡影响着系统的安全稳定运行,并对继电保护装置动作行为产生相当大的影响,因而本文从低频振荡的一些概念和当前研究状况分析,总结了当前分析低频振荡问题的方法和进一步的研究方向。 1 低频振荡的负阻尼机理 电力系统受到扰动时,会发生发电机转子间的相对摇摆,表现在输电线上就会出现功率波动。如果扰动是暂时的,在扰动消失后,可能出现两种情况:一是发电机转子间的摇摆很快平息,二是发电机转子间的摇摆平息的很慢甚至持续增长,若振荡幅值持续增长,以致破坏了互联系统之间的静态稳定,最终将使互联系统解列。产生后者情况的原因是系统缺乏阻尼或者系统阻尼为负,现象表现为受

振荡电路的原理

高频放大器 使用高频功率放大器的目的是放大高频大信号使发射机末级获得足够大的发射功率。 高频放大器的工作状态是由负载阻抗Rp、激励电压vb、供电电压VCC、VBB等4个参量决定的。如果VCC、VBB、vb 3个参变量不变,则放大器的工作状态就由负载电阻Rp决定。此时,放大器的电流、输出电压、功率、效率等随Rp而变化的特性,就叫做放大器的负载特性。 原理 放大电路所需的通频带由输入信号的频带来确定,为了不失真地放大信号,要求放大电路的通频带应大于信号的频带。如果放大电路的通频带小于信号的频带,由于信号的低频段或高频段的放大倍数下降过多,放大后的信号不能重现原来的形状,也就是输出信号产生了失真。这种失真称为放大电路的频率失真,由于它是线性的电抗元件引起的,在输出信号中并不产生新的频率成分,仅是原有各频率分量的相对大小和相位发生了变化,故这种失真是一种线性失真。 For personal use only in study and research; not for commercial use 高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻变换和选频滤波功能。高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 本级振荡电路 本级振荡电路图 本级振荡电路采用改进型晶体振荡电路(克拉伯振荡电路),振荡频率由晶振决定,为6MHz,三极管的静态工作点由RP0控制,集电极电流ICQ,一般取0.5mA~4mA,ICQ过大会产生高次谐波,导致输出波形失真。调节RP1可使输出波形失真较小、波形较清晰,RP2用来调节本振信号的幅值,以便得到适当幅值的本振信号作为载波。 混频器 工作频率 混频器是多频工作器件,除指明射频信号工作频率外,还应注意本振和中频频率应用范围。

激光打靶游戏机讲解

激光打靶游戏机 激光打靶游戏机 类别:电子综合 本例介绍用常用的元器件来制作激光武器,并且用它来进行射击游戏。工作原理射击游戏机由激光玩具手枪和光电靶机组成。图 (a)是装在玩具手枪中的激光发射电路。用手扣动扳机SB时,其动断触点断开,动合触点闭合。电流通过电阻R和激光二极管VD对电容C进行瞬时充电,激光二极管VD 发出红色的激光束。当射击完成后,动合触点断开,动断触点闭合,电容C通过动断触点放电,为下次射击做准备。图(b)是光电靶机电路图。IC 1是4 一2输入端与非门数字集成电路CD4011,其中D1和D2构成一个低频多谐振荡器,D3和D4构成另一个低频振荡器。合上开关S,当激光玩具枪击中靶机时,光敏电阻R2的电阻变小,三极管VT导通,D1的一个输人端由低电平变为高电平。同时,电源电流通过三极管VT对电容C1充电。电路开始振荡,由D2输出方波信号加到IC2数字集成电路CD4017的CP端,使输出端YO一Y3依次输出高电平。当输出端Y4为高电平时,高电平通过二极管VD1加到R端使之清零,又使YO为高电平。如此循环,就使得装在靶机面板上的4只发光管VD2一VD5依次发光,形成缓慢变化的光环。同时,当D2输出高电平时,D3和D4组成的振荡器振荡使压电片B发出“嘟、嘟……”的声音。直到电容C1的电放完,使D1的一个输人端为低电平,Dl和D2构成的振荡器停止振荡为止。元器件选择IC1用4一2输入与非门CD4011。IC2用十进制计数分频器CD4017. 三极管VT 选用9015型硅PNP小功率三极管,要求电流放大系数β>150。发光管VD2一VD5用Φ3mm红色发光二极管。光敏电阻R2用MG41一22型等,要求亮阻<3 kΩ.暗阻>1MΩ. 激光笔选用市售塑料外壳玩具激光笔。按钮开关SB用带有动合触点和动断触点的。压电片B用协27 mm压电陶瓷蜂鸣器,如FI'一2 卞、HTD27A一1型等。开关S.用钮子开关。电池用4节5号电池。制作与调试在激光笔中引出两条导线,可用小圆形敷铜板叠放在纽扣电池上进行改制。将激光笔装在玩具枪的内部前端。按钮开关装在扳机连杆的下方并用AB胶固定,内部再焊上电容。要求扣动扳机时,能发出激光,随即熄灭即可。靶机的制作方法:按图7一18(b)制成线路板后,一般无需调试即能工作。找一个四方形的塑料外壳,在面板上中间挖一小孔将光敏电阻装上并胶牢。再把4只发光管等距离排列并固定在面板上。把压电陶瓷片装上共鸣腔也装在面板上,并在面板上开一些小孔便于传声。把电池盒和线路板固定在塑料外壳内,外形如图(c)所示。使用时,用激光玩具枪瞄准并扣动扳机射击,击中时发出响声并显现光环。一段时间射击熟练之后,可逐步增加射击距离。

LC振荡电路的工作原理及特点

简单介绍LC振荡电路的工作原理及特点 LC振荡电路,顾名思义就是用电感L和电容C组成的一个选频网络的振荡电路,这个振荡电路用来产生一种高频正弦波信号。常见的LC振荡电路有好多种,比如变压器反馈式、电感三点式及电容三点式,它们的选频网络一般都采用LC并联谐振回路。这种振荡电路的辐射功率跟振荡频率的四次方成正比,如果要想让这种电路向外辐射足够大的电磁波的话,就必须提高其振荡频率,而且还必须是电路具备开放的形式。 LC振荡电路之所以有振荡,是因为该电路通过运用电容跟电感的储能特性,使得电磁这两种能量在交替转化,简而言之,由于电能和磁能都有最大和最小值,所以才有了振荡。当然,这只是一个理想情况,现实中,所有的电子元件都有一些损耗,能量在电容和电感之间转化是会被损耗或者泄露到外部,导致能量不断减小。所以LC 振荡电路必须要有放大元件,这个放大元件可以是三极管,也可以是集成运放或者其他的东西。有了这个放大元件,这个不断被消耗的振荡信号就会被反馈放大,从而我们会得到一个幅值跟频率都比较稳定的信号。 开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率F0。并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。设基极的瞬间电压极性为正。经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离F0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率F0的振荡信号。 LC振荡电路物理模型的满足条件 ①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。 ②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。 ③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。 能产生大小和方向都随周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。 振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。 充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。 放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。 充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。 放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。 在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的

电力系统振荡的原因及危害知识讲解

电力系统振荡的原因 及危害

电力系统振荡的原因及危害 1前言 XXXX公司是装机容量为2×600MW的新建大型火力发电厂,它同原有XXXX公司的2×500MW俄罗斯汽轮机组构成一个电源点,经三条500KV 线路向系统送电,地处京津唐负荷中心,对电网稳定起着重要的支撑作用。作为京津唐电网最大的发电机组,其发电机励磁系统性能的优劣对华北电网的稳定运行具有举足轻重的影响。 根据国家十五计划实现全国联网的要求,华北电网规定,新建大型发电机组励磁系统应有系统稳定措施并调整好后才能并网运行,为此我厂先后完成了对3#、4#机组的电力系统稳定器(PSS)定值整定和试验工作,实验效果明显。应国家电力调度中心要求,2003年6月18日,在华北电力调度局方式处的组织下PSS正式投入运行。 2低频振荡产生原因分析及危害性 电力系统低频振荡在国内外均有发生,通常出现在远距离、重负荷输电线路上,或者互联系统的弱联络线上,在采用快速响应高放大倍数励磁系统的条件下更容易出现。随着电力电子技术的快速发展,快速励磁调节器的时间常数大为减少,这有效地改善了电压调节特性,提高了系统的暂态稳定水平。但由于自动励磁调节器产生的附加阻尼为负值,抵消了系统本身所固有的正阻尼,使系统的总阻尼减少或成为负值,以至系统在扰动作用后的功率振荡长久不能平息,甚至导致自发的低频振荡,低频振荡的频率一般在0.2-2Hz之间。(风险管理世界 低频振荡会引起联络线过流跳闸或系统与系统或机组与系统之间的失步而解列,严重威胁电力系统的稳定。解决低频振荡问题成为电网安全稳定运行的重要课题之一。 3PSS原理及其作用 为了既能利用高放大倍数的励磁调节器又能避免其负阻尼效应,人们对传统励磁系统进行了改进。对一个可能引起负阻尼的励磁调节器,向其中注入某些附加控制信号,使之可以提供正的阻尼,平息振荡,这就是PSS最基本的原理。PSS作为一种附加励磁控制环节,即在励磁电压调节器中,通过引入附加信号,产生一个正阻尼转矩,去克服励磁调节器引起的负阻尼,控制量可以采用电功率偏差(△P)、机端电压频率偏差(△f)、过剩功率(△Pm)、和发电机

电力系统周期振荡的失稳分析

电力系统周期振荡的失稳分析 发表时间:2018-09-18T15:14:39.473Z 来源:《电力设备》2018年第14期作者:陶维峰[导读] 摘要:随着国民经济的发展和电网规模的不断扩大,电力系统的动态稳定性越来越受到广泛关注。电力系统的整体控制性和系统互联性在一定程度上加剧了电网低频振荡对电力系统安全稳定运行的威胁。因此,分析影响电力系统低频振荡的诱发因素,并在此基础上分析低频振荡控制的方法,是有效改善当前电力系统安全稳定状况的有效措施。 (江苏阚山发电有限公司江苏徐州 221000)摘要:随着国民经济的发展和电网规模的不断扩大,电力系统的动态稳定性越来越受到广泛关注。电力系统的整体控制性和系统互联性在一定程度上加剧了电网低频振荡对电力系统安全稳定运行的威胁。因此,分析影响电力系统低频振荡的诱发因素,并在此基础上分析低频振荡控制的方法,是有效改善当前电力系统安全稳定状况的有效措施。 关键词:电力系统、低频振荡 0引言 低频振荡是由于电力系统在运行中不断受到外界和内部的干扰,使发电机转子间的阻力不足引起的。从低频振荡发生至今,研究较多的是负阻尼机理,由于系统的调节措施作用,产生附加的负阻尼,抵消系统的正阻尼,导致扰动后振荡不衰减或增幅振荡。因此,研究电力系统低频振荡就是要确定系统中是否存在弱阻尼的振荡模式,并采取有效措施增强这些模式的阻尼,减少发生振荡的可能。为了抑制低频振荡,本文针对现有各种低频振荡的分析方法和抑制措施进行分析研究。 1 电力系统低频振荡概述 1.1 电力系统稳定的定义及分类 所谓定系统的稳定性,是指表征电力系统在受到物理扰动之后,系统自行恢复到运行平衡点的一种综合能力。当系统在给定的初始运行下运行时,由于受到明显的物理扰动,所以系统需要充分发挥自身的性能重新回到原平衡点。这种运行的完整性和平衡性能力被称为电力系统的稳定性。当电力系统受到外界和内部干扰时,依然能够实现发电机组输出的电磁转矩和原动机输入的机械转矩的平衡,使得所有发电机转子速度保持恒定,从而使在电气上连接在一起的各个同步发电机机械输入转矩和电磁转矩平衡,最终保证了电力系统的安全稳定运行。电力系统的稳定性可以分为功角稳定、电压稳定、频率稳定三大类。根据扰动的强度大小,功角稳定又分为小信号稳定和暂态稳定,功角稳定是影响电力系统稳定性的最主要分类。 1.2 电力系统低频振荡的必要性 我国地域辽阔,电力能源需求大,电力能源结构还不够完善。当前的电力负荷中心主要集中在东部和南部地区,为了促进我国电力事业的发展,我们提出了“西电东送、南北互供,全国联网”的电力发展战略。这样,电网互联会有助于实现“电网错峰、水火电互补、功率紧急支援”,提升发电和输电的经济性和可靠性。因此,强化对电力系统低频振荡问题的研究可以有效发挥这些优势,促进国家电力事业的发展。 为了促进西部电力资源的大力开发,西电东送工程是其中的重要一环。借助于西电东送工程,把西部丰富的水电资源输送到华东和广东等负荷中心,从而实现资源的平衡配置。但是需要解决的一个技术难题是超距离负荷中心超容量输电的问题。在负荷高峰期,容易因为联络线路之间的低频自发振荡而降低电力系统的稳定性,所以解决系统的低频振荡问题是实现跨区域交流联网、保证电网安全稳定运行、提升电网传输能力的关键途径。 2 电力系统低频振荡控制的方法分析 2.1 线性模式分析法 这种分析方法是解决小扰动稳定性的系统优化方法。这种方法的设计初衷是从非线性系统的线性逼近稳定性出发,找到非线性系统在平衡点附近的小范围稳定区域。这个方法的关键是用线性模式分析法,在系统初始工作点附近把系统动态元件的方程线性化,从而得出一个系统状态方程。通过分析这个状态方程的特征矩阵的复特征,找到它的特征向量。根据特征向量找到振荡模式在整个系统中的行为信息,从而找出振荡模式和状态变量间的线性相关性。据此来提升电力系统的小扰动稳定性。 2.2 时域仿真法 这种方法是对电力系统的暂态稳定性展开分析的一种常用方法。这种方法可以充分考虑到电力系统非线性因素的影响,通过建模和检验分析结果以及控制器的控制效果来分析系统的暂态稳定性。它是以数值分析为基础,通过计算机仿真系统来测得电力系统在扰动状态下的时间响应,从而得出系统振荡模式频率和阻尼特性。这种方法只适合运用在小型的电力系统扰动性分析中。因为它受地域限制明显。 2.3 信号分析法 信号分析法是指通过对实测数据或仿真数据的分析得出系统的震荡模式信息的一种方法。目前常用的信号分析法是Prony法。这种方法的原理是借助于指数函数的线性组合,通过模拟组合的方式来采集数据的方法。优点是能够从暂态仿真数据或现场实测数据中找到各个分量的频率阻尼比和相位等信息,得出高度准确性的仿真分析结果。多次试验表明该方法在提取系统的振荡特性方面具有显著的优势和可靠性。 2.4 非线性模式分析法 该方法是把电力系统看作一个复杂的非线性系统,认为该系统在受扰动情况下会表现出动态特性。这些动态特性是反映电力系统的结构负荷特性、故障类型、故障地点的重要信息载体。因此通过在运行点附近求出系统状态方程,就可以获得系统的稳定性信息。该方法的局限是必须要在系统稳定工作点附近进行测量,分为正矩形方法和模态级数法两种。正矩形方法的数学实质是非线性微分方程所展开的二阶以及二阶以上的高阶解析解,它可以有效分析模式之间的非线性相关作用对控制性能、控制器设计的影响,从而得出控制模式和低频振荡模式的强相关作用。模态计数法是研究电力系统动态特性的新方法,不需要状态空间的线性变换,可以用于交直流互联电力系统的模式非线性分析。 3低频振荡抑制措施 3.1一次系统抑制方法

电力系统振荡的原因及危害Word版

电力系统振荡的原因及危害 1 前言 XXXX公司是装机容量为2×600MW的新建大型火力发电厂,它同原有XXXX公司的 2×500MW俄罗斯汽轮机组构成一个电源点,经三条500KV线路向系统送电,地处京津唐负 荷中心,对电网稳定起着重要的支撑作用。作为京津唐电网最大的发电机组,其发电机励磁系统性能的优劣对华北电网的稳定运行具有举足轻重的影响。 根据国家十五计划实现全国联网的要求,华北电网规定,新建大型发电机组励磁 系统应有系统稳定措施并调整好后才能并网运行,为此我厂先后完成了对3#、4#机组的电 力系统稳定器(PSS)定值整定和试验工作,实验效果明显。应国家电力调度中心要求,2003 年6月18日,在华北电力调度局方式处的组织下PSS正式投入运行。 2 低频振荡产生原因分析及危害性 电力系统低频振荡在国内外均有发生,通常出现在远距离、重负荷输电线路上, 或者互联系统的弱联络线上,在采用快速响应高放大倍数励磁系统的条件下更容易出现。随着电力电子技术的快速发展,快速励磁调节器的时间常数大为减少,这有效地改善了电压调节特性,提高了系统的暂态稳定水平。但由于自动励磁调节器产生的附加阻尼为负值,抵消了系统本身所固有的正阻尼,使系统的总阻尼减少或成为负值,以至系统在扰动作用后的功率振荡长久不能平息,甚至导致自发的低频振荡,低频振荡的频率一般在0.2-2Hz之间。(风险管理世界 低频振荡会引起联络线过流跳闸或系统与系统或机组与系统之间的失步而解列, 严重威胁电力系统的稳定。解决低频振荡问题成为电网安全稳定运行的重要课题之一。 3 PSS原理及其作用 为了既能利用高放大倍数的励磁调节器又能避免其负阻尼效应,人们对传统励磁 系统进行了改进。对一个可能引起负阻尼的励磁调节器,向其中注入某些附加控制信号,使之可以提供正的阻尼,平息振荡,这就是PSS最基本的原理。PSS作为一种附加励磁控制环节,即在励磁电压调节器中,通过引入附加信号,产生一个正阻尼转矩,去克服励磁调节器引起的负阻尼,控制量可以采用电功率偏差(△P)、机端电压频率偏差(△f)、过剩功率(△Pm)、和发电机轴速度偏差(△w)以及它们的组合等。它不仅可以补偿励磁调节器的负阻尼,而且可以增加正阻尼,使发电机有效提高遏制系统低频振荡能力。 尽管PSS已是成熟的普遍技术,但它仍是消除互联电网负阻尼低频振荡最经济有 效的方法。当系统规模较小、互联程度较低时,系统振荡不明显,PSS整定不为人们所关注。但在当今大电网互联迅速发展的情况下,PSS的作用已经引起人们的高度重视。1994

中心频率详细讲解

中心频率详细讲解 什么是中心频率呢,中心频率就是滤波器通频带中间的频率,以中心频率为准,高于中心频率一直到频率电压衰减到0。707(1/根号2)倍时为上边频,相反为下边频,上边频和下边频之间为通频带。 从原理上讲,再复杂的声音也可以用傅里叶分析的方法把它最后分解成若干正弦波的叠加。但是如果反过来用正弦波叠加的方法制作声音就相当麻烦,主要是很难做出预期的声音.这样的合成技术叫做加法合成,最早的应用大概就是管风琴或电风琴的音栓.要是用滤波器对现有波形进行加工,逐步将其中的各种频率成分减去使之适合自己的需要,事情就会容易一些。这就是减法合成。雕塑家罗丹讲起他的创作时曾有过名言:“拿起工具,把不需要的部分去掉”。减法合成的道理差不多也是这样。 最早期的合成器,用简单的振荡器发生“傻乎乎"的波形,象正弦波、三角波,还有更明亮些的锯齿波、脉冲波等。然后用变形、调制等手法来修饰它们,滤波器是非常重要的工具。 当前的合成器技术已经与早期大不相同,但无论模拟还是数字合成器或者软件合成器,都离不开滤波这一信号处理手段.随着电子技术的发展,滤波器也不再是电容、电阻、电感搭成的电路,大多已变成数字电路甚至就是软件。 合成器中使用的滤波器通常有四种形式:低通、高通、带通、陷波。顾名思义低通就是让低频通过,滤掉高频;高通是让高频通过,滤掉低频;带通是让某一个范围的频率通过,滤除其余频率;陷波是

滤除某一个范围的频率,让其余频率通过. 有几个常用的名词也顺便在这里介绍一下:被滤波器阻挡的频率范围称为禁带(Stopband);能顺利通过滤波器的频率范围称为通带(Passband);禁带的开始处称作半功率点(Half—power point)。滤波器允许或阻止一定的频率通过并不象刀切一样突然变化,而是有一个过渡,是一条斜线。斜线的倾斜程度用斜率(Slop)来表示。当输出信号下降3分贝时,就是半功率点,也叫负3分贝点,大家可能更加熟悉它的另一个称呼“截止频率"(Cutoff Frequency)。合成器中滤波器的截止频率经常是可以随便移动的。带通和陷波滤波器各自有两个半功率点,这两点的中心称为中心频率(Center Frequency)。合成器中最常见的是低通滤波器,如果一台合成器只有一个滤波器的话,毫无疑问就是低通滤波器。 滤波器的斜率要用频率和输出分贝共同表达.这里经常用“八度”作频率的单位.合成器技术和音响技术中“八度”和音乐中“八度”的含义完全一致.比如每八度—3分贝是不太陡的斜线;而每八度—6分贝或—12分贝甚至—24分贝就更陡些。斜率通常由每个滤波器的结构所决定,不能随意改动。软件滤波器不受此限制。 斜率会影响到声音的听觉印象。例如我们送一个100Hz的锯齿波进截止频率300Hz的低通滤波器(正巧等于三次谐波的频率),那么三次谐波在滤波器的输出端将从原来的电平下降3分贝。如果滤波器的斜率是6分贝/八度,六次谐波的电平就还要降6分贝,十二次谐波在此基础再降6分贝,依此类推。这是一条不太陡的斜线,不少高次

电力系统振荡的结果及处理方式

电力系统振荡的结果及处理方式 2012/7/13 15:35:41 当发生短路或突然有大负荷切除或投入时,发电机与大系统之间的功角会发生变化,发电机的输出功率就会沿着发电机的功角特性曲线来回摆动,这就是电力系统的振荡。 电力系统振荡的结果有两种:一个是发电机的输出功率和负载能重新在一个点上实现平衡,经过一段时间的振荡后重新达到稳定,保持同步运行。一个是发电机的输出功率和负载能无法再在任何一个点上实现平衡,从而导致发电机失去同步。 发电机的原动机输入力矩突然变化,如:水轮机调速器不正常动作;系 统发生突然短路;大机组或大容量线路突然变化等。通常,短路是引起 系统振荡,破坏稳定运行的主要原因。 电力系统振荡的预防:预防是多方面的,有继电保护上的要求,如快速切断故障线路;也有运行操作上的要求,如避免使发电机的容量大于被 投入空载线路的充电功率,避免发电机带空载线路启动和以全电压向空载线路合闸;也有设计上的考虑,如避免发生发电机的次同步共振。 系统振荡有多种:异步振荡、同步振荡、低频振荡 异步振荡——其明显特征是,系统频率不能保持同一个频率,且所有电气量和机械量波动明显偏离额定值。如发电机、变压器和联络线的电流表,功率表周期性地大幅度摆动;电压表周期性大幅摆动,振荡中心的

电压摆动最大,并周期性地降到接近于零;失步的发电厂间的联络的输 送功率往复摆动;送端系统频率升高,受端系统的频率降低并有摆动。 引起电力系统异步振荡的主要原因: 1、输电线路输送功率超过极限值造成静态稳定破坏; 2、电网发生短路故障,切除大容量的发电、输电或变电设备,负荷瞬间 发生较大突变等造成电力系统暂态稳定破坏; 3、环状系统(或并列双回线)突然开环,使两部分系统联系阻抗突然增大,引启动稳定破坏而失去同步; 4、大容量机组跳闸或失磁,使系统联络线负荷增大或使系统电压严重下降,造成联络线稳定极限降低,易引起稳定破坏; 5、电源间非同步合闸未能拖入同步。 异步系统振荡的一般现象: (1)发电机,变压器,线路的电压,电流及功率周期性的剧烈摆动,发 电机和变压器发出有节奏的轰鸣声。 (2)连接失去同步的发电机或系统的联络线上的电流和功率摆动得最大。电压振荡最激烈的地方是系统振荡中心,每一周期约降低至零一次。(3)失去同期的电网,虽有电气联系,但仍有频率差出现,送端频率高,受端频率低并略有摆动。 同步振荡——其系统频率能保持相同,各电气量的波动范围不大,且振荡在有限的时间内衰减从而进入新的平衡运行状态。 低频振荡——在电力系统中,发电机经输电线路并列运行时,在负荷突变等小扰动的作用下,发电机转子之间会发生相对摇摆,这时电力系统

电力系统的低频振荡

发电机的转子角、转速,以及相关电气量,如线路功率、母线电压等发生近似等幅或增幅的振荡,因振荡频率较低,一般在0.1-2.5Hz,故称为低频振荡。 其产生的原因主要为电力系统中发电机并列运行时,在扰动下发生发电机转子间的相对摇摆,并在缺乏阻尼时持续振荡导致。 低频振荡是随着电网互联而产生的。联网初期,同步发电机之间联系紧密,阻尼绕组可产生足够的阻尼,低频振荡少有发生。随着电网互联规模的扩大,高放大倍数快速励磁技术的广泛采用,以及受经济性、环保等因素影响下电网的运行更加接近稳定极限,在世界各地许多电网陆续观察到低频振荡。 大致可分为局部模式振荡和区域间模式振荡两种。一般来说,涉及机组越多、区域越广,则振荡频率越低。 低频振荡的多重扰动特征 一般认为,低频振荡是电力系统在遭受扰动后联络线上的功率摇摆。系统动态失稳是扰动后由于阻尼不足甚至是负阻尼引起的发散振荡导致的。失稳的因素主要是系统电气阻尼不足或缺乏合适的有功配合,通常是由以下几种扰动引发的:(1)切机;(2)输电线故障或保护误动;(3)断路器设备事故;(4)损失负荷。扰动现象一般要经历产生、传播、消散的过程,在传播过程中可能引起新的扰动,同时针对扰动的操作本身也是一种扰动。所以,这些情况往往不是孤立的,而是相互关联的,在时间、空间上呈现多重现象。这就是多重扰动存在的实际物理背景。持续恶化的互相作用最终将导致系统失稳、解列,形成大规模的停电事故。 电厂系统低频振荡的现象及处理 主要现象:系统频率在一定范围内振荡,且具有与同步振荡类似现象。 处理: 1) 应根据振荡频率、振荡分布等信息正确判断低频振荡源; 2) 如振荡源为本厂,则降低机组有功,直至振荡平息; 3) 提高振荡区域系统电压; 4) 若有运行机组PSS未投入,应立即将其投入。

二滩水电厂低频振荡现象及根源分析

二滩水电厂低频振荡现象及根源分析 庞晓艳 李明节 梁汉泉 陈苑文  四川省电力公司调度中心    摘要:本文介绍了二滩水电厂多次出现的低频振荡现象和机组励磁系统,分析了低频振荡现象发生的背景和根源。现场试验表明,机组励磁系统设计存在缺陷,其伏特/赫兹(V/Hz)限幅环节限制了PSS输出信号。在二滩机组带满负荷运行,多台机组增加励磁调压时,多台机组PSS功能同时退出,致使PSS功能未能真正发挥作用。这些教训对大容量机组励磁系统设计、调试及运行等具有指导意义。 关键词:低频振荡;电力系统稳定器(PSS);伏特/赫兹(V/Hz)限制 一前言 二滩水电厂位于四川省西南部攀枝花地区,装机容量6550MW,经1100多公里的500kV输电通道向川渝和华中电网送电。根据川渝孤立电网、川渝-华中互联电网的小干扰稳定性分析,在二滩大功率远距离输电方式下,系统均存在1个与二滩、宝珠寺和铜街子机组强相关的负阻尼振荡模式。为此在二滩、宝珠寺和铜街子机组励磁系统中,投入了电力系统稳定器(以下简称PSS)附加控制功能,并经过现场调试投入运行,而且时域数字仿真表明,系统PSS配置方案可以明显改善系统阻尼特性,防治低频振荡现象的发生。  但是自2001年8月以来,二滩水电厂已多次发生低频振荡现象,而且电厂现场打印记录显示机组PSS功能一直处于投运状态。为了弄清低频振荡发生的根源,我们对多次发生低频振荡的背景和二滩机组励磁系统进行了分析,并通过现场试验,最终查明了低频振荡的根源。本文将介绍二滩水电厂多次出现的低频振荡现象、机组励磁系统及现场试验情况等,提出了在大容量机组及励磁系统设计、调试和实际运行中需注意的问题。 二低频振荡现象及特点 1.2001年8月3日低频振荡 20:47 因负荷中心电压低,四川省调通知二滩将电压调至电压曲线上限,二滩5台机组相继增加了励磁。 20:48 二滩汇报电压在532KV至539KV之间波动。 20:53 龚嘴电厂汇报7台机有功、无功均在波动,无功摆动大,有功摆动小。 20:54 洪沟站汇报500KV、220KV所有电流表计均在摆动;龙王站汇报电压在510-520KV之间波动;江油电厂汇报机组励磁电流波动大;映秀湾汇报110KV有功波动大,电压基本无波动。

电力系统振荡

电力系统振荡 2008.12.15

主题 一、了解振荡 二、振荡闭锁与开放

什么是振荡? 并列运行的系统或发电厂失去同步,破坏了稳定运行,于是出现了振荡。这是最为严重的一类系统事故。他可能发展为电网大停电的起因,也可能是发展为大停电事故过程中的一个环节。为了避免由于系统稳定破坏,最根本的前提是要有一个合理的电网运行结构。

河南500kV嵩郑双回线继电保护误动作跳闸,原线路178万千瓦的负荷完全转移到和它电磁环网的 220kV系统,先过负荷继而全网稳定破坏,系统振荡不仅波及西到四川、南到湖南、东到江西的华中全网,而且波及北到华北电网。发电机组共26台跳闸、出力损失600多万千瓦。华中和华北的弱联系单回 500kV联络线手动解列。华中电网频率下降到49.1Hz,负荷损失近380万千瓦。

振荡的起因? 稳定破坏:静态稳定破坏、暂态稳定破坏。 暂态稳定破坏是由短路引起的,短路故障破坏了系统功率的平衡,此时若故障切除慢就可能导致系统失去稳定。 大机组失磁或线路传输功率超过稳定极限等原因造成的稳定破坏为静态稳定破坏。

振荡的处理方式? 由解裂装臵有计划的进行解裂,以终止振荡。 放任继电保护装臵在震荡中自由动作。 该方式是西方一些国家长期的习惯做法。只要是机电保护装臵本身没有问题,在系统震荡中动作导致大面积停电仍然被认为是正确的。该观点的主要根源是这些国家的系统联结较强,但这些观点直接导致了美国几次大停电 调度处理。 保持系统的稳定性,留待调度处理,我国处理振荡的成功运行经验。 前提是发电机组、线路继电保护装臵必须保证在震荡中不误动,对发电机而言主要是失步保护的整定,对线路保护主要是可靠的震荡闭锁。

电力系统振荡的原因及危害

电力系统振荡的原因及危害 1前言 XXXX公司是装机容量为2×600MW的新建大型火力发电厂,它同原有XXXX公 司的2×500MW俄罗斯汽轮机组构成一个电源点,经三条500KV线路向系统送电,地处京津唐负荷中心,对电网稳定起着重要的支撑作用。作为京津唐电网最大的发电机组,其发电机励磁系统性能的优劣对华北电网的稳定运行具有举足轻重的影响。 根据国家十五计划实现全国联网的要求,华北电网规定,新建大型发电机组励磁 系统应有系统稳定措施并调整好后才能并网运行,为此我厂先后完成了对3#、4#机组的电力系统稳定器(PSS)定值整定和试验工作,实验效果明显。应国家电力调度中心要求,2003 年6月18日,在华北电力调度局方式处的组织下PSS正式投入运行。 2低频振荡产生原因分析及危害性 电力系统低频振荡在国内外均有发生,通常出现在远距离、重负荷输电线路上, 或者互联系统的弱联络线上,在采用快速响应高放大倍数励磁系统的条件下更容易出现。随着电力电子技术的快速发展,快速励磁调节器的时间常数大为减少,这有效地改善了电压调节特性,提高了系统的暂态稳定水平。但由于自动励磁调节器产生的附加阻尼为负值,抵消了系统本身所固有的正阻尼,使系统的总阻尼减少或成为负值,以至系统在扰动作用后的功率振荡长久不能平息,甚至导致自发的低频振荡,低频振荡的频率一般在0.2-2Hz之间。(风险管理世界 低频振荡会引起联络线过流跳闸或系统与系统或机组与系统之间的失步而解列, 严重威胁电力系统的稳定。解决低频振荡问题成为电网安全稳定运行的重要课题之一。 3PSS原理及其作用 为了既能利用高放大倍数的励磁调节器又能避免其负阻尼效应,人们对传统励磁 系统进行了改进。对一个可能引起负阻尼的励磁调节器,向其中注入某些附加控制信号,使之可以提供正的阻尼,平息振荡,这就是PSS最基本的原理。PSS作为一种附加励磁控制环节,即在励磁电压调节器中,通过引入附加信号,产生一个正阻尼转矩,去克服励磁调节器引起的负阻尼,控制量可以采用电功率偏差(△P)、机端电压频率偏差(△f)、过剩功率(△Pm)、和发电机轴速度偏差(△w)以及它们的组合等。它不仅可以补偿励磁调节器的负阻尼,而且 可以增加正阻尼,使发电机有效提高遏制系统低频振荡能力。 尽管PSS已是成熟的普遍技术,但它仍是消除互联电网负阻尼低频振荡最经济有效的方法。当系统规模较小、互联程度较低时,系统振荡不明显,PSS整定不为人们所关注。但在当今大电网互联迅速发展的情况下,PSS的作用已经引起人们的高度重视。1994

相关主题
文本预览
相关文档 最新文档