当前位置:文档之家› 变压器的温升计算公式

变压器的温升计算公式

变压器的温升计算公式
变压器的温升计算公式

变压器的温升计算公式

1 引言

工频变压器的计算方法很多人认为已趋成熟没有什么可讨论的,对于一个单位的工程技术人员来讲温升计算问题可能并不存在,温升本身来源于试验数据,企业本身有大量试验数据,温升问题垂手可得。下面就温升的计算公式进行探讨,本文仅提出一个轮廓,供大家参考。

2 热阻法

热阻法基于温升与损耗成正比,不同磁心型号热阻不同,热阻法计算温升比较准确,因其本身由试验得来,磁心又是固定不变的,热阻数据由大型磁心生产厂商提供。有了厂家提供的热阻数据,简单、实用何乐而不为。高频变压器可采用这一方法。而铁心片供应商不能提供热阻这一类数据,因此低频变压器设计者很难采用。热阻法的具体计算公式如下: 式中,

温升ΔT(℃)

变压器热阻Rth(℃/w)

变压器铜损PW(w)

变压器铁损PC(w)

3 热容量法

源于早期的灌封变压器,由于开放式变压器的出现这种计算方法已被人遗忘,可以说是在考古中发现。这种计算方法的特点是把变压器看成是一个密封的元件,既无热的传导,也无热的辐射,更无热的对流,热量全部靠变压器的铁心、导线、绝缘材料消耗掉。这样引出一个热容量(比热)的概念,就可以利用古人留给我们的比热的试验数据,准确的计算出变压器的温升来。不是所有的变压器都可以利用这一计算公式,唯独只有带塑料外壳的适配器可采用这一方法,这种计算方法准确度犹如瓮中捉鳖十拿九稳。

若适配器开有百叶窗,那就有一部份热量通过对流散发出去,如不存在强迫对流,百叶窗对温升的影响只在百分之三左右。上一代的变压器设计工作者对这一计算方法很熟悉,现在的变压器设计工作者根据此线索,进行考古也会有收获。热容量法的计算模式如下:

式中,温升ΔT(℃)

变压器质量Gt(g)

变压器铜损PW(w)

变压器铁损PC(w)

T—加热时间常数(s)

At—变压器散热面积(cm2)

Ct——变压器比热(w·s/℃·g)

CC——铁心比热(w·s/℃·g)

GC——铁心质量(g)

cw——导线比热(w·s/℃&mi ddot;g)

Gw——导线质量(g)

cis——绝缘材料比热(w·s/℃·g)

Gis——绝缘材料质量(g)

Gt——变压器质量(g)4 散热面积法

散热面积法基于热量全部由变压器表面积散发出去,这种算法有三种类型:

4.1 统算法

不管变压器的铁损铜损统统加起来,让他从变压器表面积散发出去,环型变压器常采用这一形式。有两种公式:

1)第一种形式:

α——变压器散热系数(w/cm2·℃)

At——变压器散热表面积cm2

2)第二种形式:

4.2 热交换法

热交换法的理论认为若铁心的温度与线圈的温度不同,为达到温度平衡铁心与线圈之间必需进行热交换,热交换有三种形式,一是铁心温度高线圈温度低,铁心向线圈传热,二是铁心温度低线圈温度高,线圈向铁心传热,三是铁心温度与线圈温度相等,互不传热,这样计算方法与统算法相似,只不过他要先计算出铁心与线圈的温度后才能下结论,统算法是不管三七二十一,铁心与线圈温度是多少只有一种算法,

1)计算线圈与铁心初始温升比

2)计算线圈与铁心间热平衡系数k

3)计算修正前温升Δτw0

Aw——线圈散热面积(cm2)

铁心散热面积AC与线圈散热面积AW之比

αw0——线圈散热系数(w/cm2·℃)

散热面积的计算也有三种,第一种认为变压器底部的面积是不能散热的,是将变压器底部表面积不计入变压器的散热面积,第二种是认为变压器底部虽不能散热,但底部是安装在金属底板也会散热,因次将底部的面积计算进去,第三种是变压器表面不规则时为了计算方便要用等效散热面积去代替,例如环型变压器,采用直径等于变压器外径,高度等于变压器高度的一个圆柱体的表面积来代替变压器的散热面积,这三种计算方法的散热面积是不同的,所引起的误差要折算到散热系数中。

干式变压器热时间常数的计算和试验方法

干式变压器热时间常数的计算和试验方法 0概述 变压器短时过负荷(以下简称过载)运行是一种发热的过渡过程。过载某一时刻的绕组温升可按下式计算: θ=θ■+(θ■-θ■)(1-e■)(1) 式中t——过载时间,min; θ——过载时间为t所对应的绕组平均温升,K; θ■——t=0时绕组平均温升,即正常运行时绕组初始温升,K; θ■——过载稳定后绕组的平均温升,K,与变压器过载倍数有关; τ——在过载状态下的热时间常数,min。 干式变压器和油浸变压器不同的是没有油,因此在讨论干式变压器短时过负荷能力时仅需考虑干式变压器高、低压绕组的短时过负荷能力。由(1)可知,绕组短时过负荷能力的大小取决于绕组的热时间常数,而热时间常数和绕组的热容量、损耗水平以及额定温升等因素密切相关。 1热时间常数的计算 干式变压器的热时间常数(理想值)是指干式变压器在恒定负债条件下,温升达到变化值的63.2%所需经历的时间,也等于变压器从稳定温升状态下断开负载,在自然冷却状况下,温升下降63.2%所需的时间,对于干式变压器,其高低压相互独立,故计算时需分别处理。 根据IEEE C57.96-1999(R2005)IEEE Guide for Loading Dry-Type Distribution and Power Transformer中A.8.3提供的公式: τ■=■(2) 式中:τ■——额定负载下的热时间常数,min; C——比热容,W·min/K; Δθ■——额定负载下的稳定温升,K; θ■——铁心引起的温升对线圈的影响,对于内线圈,取20K,外线圈,取0K; P■——线圈的负载损耗,W。 对于比热容C的计算,通常采用以下公式: C=C■*m■+C■*m■(3) 式中:C■——导体的比热值,Cu取6.42(W·min)/(kg·K),Al取14.65(W·min)/(kg·K); m■——导体质量,单位kg; C■——绝缘材料的比热,对于树脂取24.5(W·min)/(kg·K); m■——绝缘材料质量,单位kg。 需要注意的是,在式(3)中的树脂比热值取24.5(W·min)/(kg·K)与IEEE C57.96-1999(R2005)IEEE Guide for Loading Dry-Type Distribution and Power Transformer中选用的6.35(W·min)/(kg·K)是有很大区别的,这是因为,在美国,应用最广泛的干式变压器主要还是敞开式的,而不是环氧浇注式的,其绝缘材料和组成也不一样。根据相关参考资料,环氧树脂的比热约2000J/kg·K=33.3(W·min)/(kg·K),环氧浇注干式变压器绕组中的主要填充材料为玻璃纤维的比热约为800J/kg·K=13.3(W·min)/(kg·K),绕组中树脂质量与玻璃纤维质量的

变压器温升.pdf

1.变压器的温度与周围空气温度的差叫变压器的温升。 2.在变压器寿命上,引起绝缘老化的主要原因是温度。由于变压器内部热量传播不均匀, 故变压器各部位的温度差别很大,因此需要对变压器在额定负荷时,各部分温度的升高做出规定,这是变压器的允许温升。一般油浸变压器采用A级绝缘,最高允许温度105℃。 各部分允许温升为:线圈允许温升65℃。以A级绝缘105℃为基础,当环境温度为40℃时,105℃-40℃=65℃。由于变压器的温度一般比绕组低10℃,故变压器油的允许温升为55℃。为防止油的老化,上层油面的温升不得超过45℃。这样无论周围空气如何变化,只有温升不超过允许值,就能够保证变压器在规定的使用年限内安全运行。 3.变压器上层油温,变压器线圈温度要比上层油温高10℃。国标规定:变压器绕组的极限 工作温度为105℃;(即环境温度为40时℃),上层温度不得超过95℃,通常以监视温度(上层油温)设定在85℃及以下为宜。 变压器异常运行主要表现在:声音不正常,温度显著升高,油色变黑,油位升高或降低,变压器过负荷,冷却系统故障及三相负荷不对称等。当出现以上异常现象时,应按运行规程规定,采取措施将其消除,并将处理经过记录在异常记录簿上。. q0 Q3 }2 `/ P8 U 在正常负荷和正常冷却条件下,变压器上层油温较平时高出10℃以上,或变压器负荷不变而油温不断上升,则应认为变压器温度异常。变压器温度异常可能是下列原因造成的: 1)变压器内部故障。如绕组匝间短路或层间短路,绕组对围屏放电,内部引线接头发热,铁芯多点接地使涡流增大而过热等。这时变压器应停电检修 2)冷却装置运行不正常。如潜油泵停运,风扇损坏停转,散热器阀门未打开。此时,在变压器不停电状态下,可对冷却装置的部分缺陷进行处理,或按规程规定调整变压器负荷至相应值。 变压器的温升: 变压器的温度与周围空气温度的差叫变压器的温升。 回答这个问题要提到变压器的允许温升,它的规定和依据? 在变压器寿命上,引起绝缘老化的主要原因是温度。由于变压器内部热量传播不均匀,故变压器各部位的温度差别很大,因此需要对变压器在额定负荷时,各部分温度的升高做出规定,这是变压器的允许温升。一般油浸变压器采用A级绝缘,最高允许温度105℃。各部分允许温升为: 线圈允许温升65℃。以A级绝缘105℃为基础,当环境温度为40℃时,105℃-40℃=65℃。由于变压器的温度一般比绕组低10℃,故变压器油的允许温升为55℃。 为防止油的老化,上层油面的温升不得超过45℃。这样无论周围空气如何变化,只有温升不超过允许值,就能够保证变压器在规定的使用年限内安全运行。 一般变压器的主要绝缘是A级绝缘,规定最高使用温度为105度,变压器在运行中绕组的温度要比上层油温高10—15度。如果运行中的变压器上层油温总在80-90度左右,也就是绕组经常在95-105度左右。 如果变压器长时间在温度很高的情况下运行,会缩短内部绝缘纸板的寿命,使绝缘纸板变脆,容易发生破裂,失去应有的绝缘作用,造成击穿等事故;绕组绝缘严重老化,并加速绝缘油的劣化,影响使用寿命。所以能避免高温尽量避免,实在不行,时间也不宜太长。

变压器的温升计算

变压器的温升计算方法探讨 1 引言 我们提出工频变压器温升计算的问题,对高频变压器的温升计算也可以用来借鉴。工频变压器的计算方法很多人认为已趋成熟没有什么可讨论的,其实麻雀虽小五脏俱全,再成熟的东西也需要不断创新才有生命力。对于一个单位的工程技术人员来讲温升计算问题可能并不存在,温升本身来源于试验数据,企业本身有大量试验数据,温升问题垂手可得,拿来主义就可以了,在本企业来说绝对有效,离开了本企业也带不走那么多数据。但冷静的考虑一下,任何一个企业不可能生产全系列变压器,总会有相当多的系列不在你生产的范围内,遇到一些新问题,只能用打样与试验的方法去解决,小铁心不在话下,耗费的工时与材料都不多,大铁心耗费的铁心与线材就要考虑考虑了。老企业可以用这样简单的办法去解决,只不过多花费一些时间罢了,一个新企业或规模不大的企业,遇到这些问题要用打样与试验的方法去解决,就耗时比较多了,有时候会损失商机。进入软件时代,软件的编写者如不能掌握这一问题,软件的用户将会大大减少。下面就温升的计算公式进行探讨,本文仅提出一个轮廓,供大家参考。 2 热阻法 热阻法基于温升与损耗成正比,不同磁心型号热阻不同,热阻法计算温升比较准确,因其本身由试验得来,磁心又是固定不变的,热阻数据由大型磁心生产厂商提供。有了厂家提供的热阻数据,简单、实用何乐而不为。高频变压器可采用这一方法。而铁心片供应商不能提供热阻这一类数据,因此低频变压器设计者很难采用。热阻法的具体计算公式如下: 式中, 温升ΔT(℃) 变压器热阻Rth(℃/w) 变压器铜损PW(w) 变压器铁损PC(w) 3 热容量法 源于早期的灌封变压器,由于开放式变压器的出现这种计算方法已被人遗忘,可以说是在考古中发现。这种计算方法的特点是把变压器看成是一个密封的元件,既无热的传导,也无热的辐射,更无热的对流,热量全部靠变压器的铁心、导线、

干式变压器绕组温升计算方法分析

干式变压器绕组温升计算方法分析 傅华强 2003 1发热与散热的平衡—绕组的稳定温升 绕组上的损耗功率是绕组温升的热源,这是比较好算的.而绕组的散热则是一个比较复杂的问题.在绕组内部热量通过传导的方式传到绕组的表面,在表面则通过对流和幅射的方式传到外界环境中去.当绕组的发热与散热达到平衡时,就是绕组的稳定温升。 绕组的散热是一个复杂过程。影响绕组散热的主要因素:绕组温度;绝缘层厚;绕组外包绝缘厚:绕组外包绝缘材料的散热性能;散热气道的宽度和长度;气流速度;铁芯和相邻绕组散热的影响等。因而绕组温升计算随其所用绝缘材料和结构的不同而不同。 2 绕组温升计算的数学模型 绕组的稳定温升一般用一个简化的公式进行计算,不同的结构和绝缘材料的绕组所用系数是不同的。公式运用的温度范围也是有限定的。如: τ= K Q X Q = W/S S=∑ αi S i 式中:τ—绕组温升; K—系数; X—与散热效果有关的系数,散热越好X的值越小; Q— 绕组的单位热负荷 W/m2 W—参考温度下的绕组损耗功率 W S— 等效散热面 m2 S i— 绕组散热面 m2 αi— 散热系数 2.1 不同结构型式的变压器所用的计算公式是不同的。 2.2 干式变压器的散热主要是对流和幅射完成的,非包封变压器的传导温升

所占比例很小,因而有些计算公式将层绝缘与外绝缘造成的传导引起的温升计算省略了,有些公式还要加上传导引起的温升,如西欧树脂绝缘干式变压器的计算公式。 2.3 黑体面的热量幅射与绝对温度的4次方成比例的,在一个不大的温度段,对流和幅射对散热的综合影响造成的温升式中系数X—与散热效果有关的系数,散热越好X的值越小.如油浸变压器层式绕组温升X值取0.8,而强迫油循环时X取0.7,饼式绕组X取0.6。一般干式变压器X值取0.8,当温升在80K 左右时,由于温度高时散热效率高,在一些计算公式中X取0.75,因而当温升在100—125K时,X的取值应该再小些。 2.4 当温升范围较大时,用一个计算公式会首尾不能兼顾,需要用两个以上的公式,它们的X值不同,即斜率不同。实际上是由几条直线组成的近似曲线。 2.5 绕组的单位热负荷Q 是指在无遮盖的单位散热面上的功率(W/m2),有气道的散热面,则要确定气道的散热系数。 2.6如果计算所得温升离参考温度很远,由于计算所用绕组损耗功率离实际功率差得太大而误差很大,则应调整计算绕组损耗功率所用的参考温度。 3 确定数学模型的工厂方法 最实用的确定数学模型的方法是通过典型变压器的温升试验。无气道绕组的温升是最基本的,如绕在厚绝缘筒上的外线圈。线圈外部的面积大小就是有效散热面,先算出热负荷Q值,由试验所得温升与Q值在双对数座标纸上打点,最少要有3个试验数据,即可在对数坐标纸上连成一条合理的直线,从这条直线上确定公式的两个系数K和X。 τ= K Q X τ1 K = ———— Q1 X Lgτ2 - Lgτ1Lgτ2/τ1 X =———————— = ———— Lg Q2 - Lg Q1Lg Q2/Q1 式中:

变压器的温升计算公式

变压器的温升计算公式 1 引言 工频变压器的计算方法很多人认为已趋成熟没有什么可讨论的,对于一个单位的工程技术人员来讲温升计算问题可能并不存在,温升本身来源于试验数据,企业本身有大量试验数据,温升问题垂手可得。下面就温升的计算公式进行探讨,本文仅提出一个轮廓,供大家参考。 2 热阻法 热阻法基于温升与损耗成正比,不同磁心型号热阻不同,热阻法计算温升比较准确,因其本身由试验得来,磁心又是固定不变的,热阻数据由大型磁心生产厂商提供。有了厂家提供的热阻数据,简单、实用何乐而不为。高频变压器可采用这一方法。而铁心片供应商不能提供热阻这一类数据,因此低频变压器设计者很难采用。热阻法的具体计算公式如下: 式中, 温升ΔT(℃) 变压器热阻Rth(℃/w) 变压器铜损PW(w) 变压器铁损PC(w) 3 热容量法 源于早期的灌封变压器,由于开放式变压器的出现这种计算方法已被人遗忘,可以说是在考古中发现。这种计算方法的特点是把变压器看成是一个密封的元件,既无热的传导,也无热的辐射,更无热的对流,热量全部靠变压器的铁心、导线、绝缘材料消耗掉。这样引出一个热容量(比热)的概念,就可以利用古人留给我们的比热的试验数据,准确的计算出变压器的温升来。不是所有的变压器都可以利用这一计算公式,唯独只有带塑料外壳的适配器可采用这一方法,这种计算方法准确度犹如瓮中捉鳖十拿九稳。 若适配器开有百叶窗,那就有一部份热量通过对流散发出去,如不存在强迫对流,百叶窗对温升的影响只在百分之三左右。上一代的变压器设计工作者对这一计算方法很熟悉,现在的变压器设计工作者根据此线索,进行考古也会有收获。热容量法的计算模式如下: 式中,温升ΔT(℃)

油浸电力变压器温升计算设计手册

设计手册 油浸电力变压器温升计算

目 录 1 概述 第 1 页 热的传导过程 第 1 页 温升限值 第 2 页 1.2.1 连续额定容量下的正常温升限值 第 2 页 1.2.2 在特殊使用条件下对温升修正的要求 第 2 页 1.2.2.1 正常使用条件 第 2 页 1.2.2.2 安装场所的特殊环境温度下对温升的修正 第 2 页 1.2.2.3 安装场所为高海拔时对温升的修正 第 3 页 2 层式绕组的温差计算 第 3 页 层式绕组的散热面(S q c )计算 第 3 页 层式绕组的热负载(q q c )计算 第 3 页 层式绕组的温差(τq c )计算 第 4 页 层式绕组的温升(θqc )计算 第 4 页 3 饼式绕组的温升计算 第 4 页 饼式绕组的散热面(S q b )计算 第 4 页 3.1.1 饼式绕组的轴向散热面(S q bz )计算 第 4 页 3.1.2 饼式绕组的横向散热面(S q b h )计算 第 5 页 饼式绕组的热负载(q q b )计算 第 5 页 饼式绕组的温差(τq b )计算 第 5 页 3.3.1 高功能饼式绕组的温差(τq g )计算 第 5 页 3.3.2 普通饼式绕组的温差(τq b )计算 第 6 页 饼式绕组的温升(θq b )计算 第 7 页 4 油温升计算 第 8 页 箱壁几何面积(S b )计算 第 8 页 箱盖几何面积(S g )计算 第 9 页 版 次 日 期 签 字 旧底图总号 底图总号 日期 签字 油 浸 电 力 变 压 器 温 升 计 算 共 页 第 页 02 01

油箱有效散热面(S yx )计算 第 9 页 4.3.1 平滑油箱有效散热面(S yx )计算 第 9 页 4.3.2 管式油箱有效散热面(S yx )计算 第10 页 4.3.3 管式散热器油箱有效散热面(S yx )计算 第12 页 4.3.4 片式散热器油箱有效散热面(S yx )计算 第14 页 目 录 油平均温升计算 第19 页 4.4.1 油箱的热负载(q yx )计算 第19 页 4.4.2 油平均温升(θy )计算 第19 页 顶层油温升计算 第19 页 5 强油冷却饼式绕组的温升计算 第21 页 强油导向冷却方式的特点 第21 页 5.1.1 线饼温度分布 第21 页 5.1.2 横向油道高度的影响 第21 页 5.1.3 纵向油道宽度的影响 第21 页 5.1.4 线饼数的影响 第21 页 5.1.5 挡油隔板漏油的影响 第21 页 5.1.6 流量的影响 第21 页 强油冷却饼式绕组的热负载(q q p )计算 第22 页 强油冷却饼式绕组的温差(τq p )计算 第23 页 强油冷却饼式绕组的温升(θq p )计算 第23 页 强油风冷变压器本体的油阻力(ΔH T )计算 第23 页 5.5.1 油管路的油阻力(ΔH g )计算 第23 页 5.5.1.1 油管路的摩擦油阻力(ΔH M )计算 第23 页 5.5.1.2 油管路特殊部位的形状油阻力(ΔH X )计算 第24 页 5.5.1.3 油管路的油阻力(ΔH g )计算 第25 页 5.5.2 线圈内部的油阻力(ΔH q )确定 第26 页 5.5.2.1 线圈内部的摩擦油阻力(ΔH q m )计算 第26 页 5.5.2.2 线圈内部特殊部位的形状油阻力(ΔH qT )计算 第27 页 油 浸 电 力 变 压 器 温 升 计 算 共 页 第 页 02 02

变压器绕组温度场的二维数值计算

变压器绕组温度场的二维数值计算 2D N um erical Calcu lati on of T em peratu re F ield of W inding in T ran sfo r m er 傅晨钊,汲胜昌,王世山,李彦明 (西安交通大学电气工程学院,西安710049) 摘 要 分析变压器绕组的热源和散热条件,应用传热学和流体力学的原理建立其温度场和绝缘油流场的有限元方程,并确定了边界条件。得到绕组温度场和绝缘油流场的分布,并与实测温度值进行了比较,误差均在1K范围内,证明了此方法的正确性。 Abstract T h is paper analyzed the heat sources and the ther m al dispersi on conditi ons of transfo r m er w inding.T he finite elem ent equati ons of temperature field and flow field w ere built by ther modynam ics and hydrodynam ics p rinci p le. A t the sam e ti m e,boundary conditi ons w ere confir m ed. T he temperature distributi on and flow distributi on w ere giv2 en by so lving the equati ons.T he comparison betw een the calculated results and m easured results show s the agree2 m ent:T he difference w as less than1K.It w as verified that the temperature distributi on and flow distributi on could be so lved by th is m ethod. 关键词 变压器 绕组 温度场 有限元 Key words transfo r m er w inding temperature field fi2 nite elem ent 中图分类号 TM83 文献标识码 A 0 前 言 变压器绕组温升的分析和计算对产品的研制开发和运行维护十分重要。传统的平均温升概念不能全面准确反映绕组的真实状况。本文应用传热学和流体力学的原理建立绕组温度场和绝缘油流场的有限元方程,通过数值计算求出各点的温度和绝缘油流动的状况,得到整个变压器绕组的温度场分布。 1 变压器绕组的热源和散热分析 111 变压器绕组的热源 为集中研究绕组的温度场分布,制作的小型变压器绕组实体模型中无铁心,长方环氧箱体。变压器绕组的热源主要是绕组的电阻和绕组内部的涡流损耗,其表达式为: P=P R+P WL=I2R+P W L 其中,I、R、P WL分别为变压器绕组的电流、电阻和涡流损耗。计算中,单位热源q=P V,P为测量得到的有功损耗;V为绕组体积。 112 变压器绕组的散热分析 变压器绕组的散热主要是对流换热,包括箱壁外侧与外界空气的自然对流散热和油流与箱壁内侧和绕组的强制对流散热。 对流散热主要取决于两者之间的温差、对流换热系数和换热面积。由于箱壁的几何形状比较规则,自然对流换热系数Α1采用均值对计算结果影响不大。Α1由下式得到[1]: Α1=C(Κ H)(G r m P r)n, 其中,H为箱壁高度;G r m为葛拉晓夫数;P r为普朗特数;C和n为常数;Κ为空气导热系数。 由于受许多因素的影响,如油的物理特性、绕组的生热率和几何形状、各绕组的空间位置、边界条件和油的流动方式等,油流与绕组的强制对流散热相对复杂一些,其中各绕组的空间位置决定了它们和油之间的Α1相差很大,不能用均值近似。油的流动方式决定了换热的效果,可分为层流和湍流,两者流动状态和换热效果相差较大,须通过雷诺数R e判断: R e=ΘΤL c Λ, 其中,Θ为流体密度;Τ为流体流速;L c为特征尺寸;Λ为流体绝对粘度。当R e<2300时,流动方式为层流;超过时为湍流。 由此可知,必须将变压器绕组温度场和绝缘油流场问题联立,方可得到理想结果。 2 求解的微分方程和边界条件 首先进行4点假设: 1)稳态:当发热与散热达到热平衡时,绕组及油的温、速度分布不随时间变化; 2)常数:油的物理特性,如动力粘度、密度、比热恒定不可压缩; 3)绕组的发热是唯一热源,且单位时间单位体积发热量为常数,传热系数均匀; 4)外界空气温度恒定:油的流动和散热,其温度场和速度场受质量、动量和能量传递的共同支配,由下列方程组描述[2~3]: a1连续性方程 5u 5x+5Τ 5y=0, b1x方向的动量微分方程  Θ(u 5u 5x+Τ 5u 5y)=F x- 5p 5x+Λ( 52u 5x2+ 52u 5y2), c1y方向的动量微分方程  Θ(u 5Τ 5x+Τ 5Τ 5y)=F y- 5p 5y+Λ( 52Τ 5x2+ 52Τ 5y2), 1能量微分方程 ? 1 ? M ay.2002 H IGH VOL TA GE EN G I N EER I N G V o l.28N o.5

变压器试验基本计算公式

变压器试验基本计算公式 一、电阻温度换算: 不同温度下的电阻可按下式进行换算:R=R t (T+θ)/(T+t) θ:要换算到的温度;t:测量时的温度;R t :t温度时测量的电阻值; T :系数,铜绕组时为234.5,铝绕组为224.5。 二、电阻率计算: ρ=RtS/L R=(T+θ)/(T+t)电阻参考温度20℃ 三、感应耐压时间计算: 试验通常施加两倍的额定电压,为减少励磁容量,试验电压的频率应大于100Hz,最好频率为150-400Hz,持续时间按下式计算: t=120×f n /f, 公式中:t为试验时间,s;f n 为额定频率,Hz;f为试验频率, Hz。 如果试验频率超过400 Hz,持续时间应不低于15 s。 四、负载试验计算公式: 通常用下面的公式计算:P k =(P kt +∑I n 2R×(K t 2-1))/K t 式中:P k 为参考温度下的负载损耗; P kt 为绕组试验温度下的负载损耗; K t 为温度系数; ∑I n 2R为被测一对绕组的电阻损耗。 三相变压器的一对绕组的电阻损耗应为两绕组电阻损耗之和,计算方法如下:“Y” 或“Y n ”联结的绕组:P r =1.5I n 2R xn =3 I n 2R xg ; “D”联结的绕组:P r =1.5I n 2R xn =I n 2R xg 。 式中:P r 为电阻损耗; I n 为绕组的额定电流; R xn 为线电阻; R xg 为相电阻。 五、阻抗计算公式: 阻抗电压是绕组通过额定电流时的电压降,标准规定以该压降占额定电压的百分数表示。阻抗电压测量时应以三相电流的算术平均值为准,如果试验电流无法达到额定电流时,阻抗电压应按下列公式折算并校准到表四所列的参考温度。e kt = (U kt ×I n )/(U n ×I k )×100%, e k =1) - (K ) /10S (P e2 2 N kt 2 kt % 式中:e kt 为绕组温度为t℃时的阻抗电压,%; U kt 为绕组温度为t℃时流过试验电流I k 的电压降,V; U n 为施加电压侧的额定电压,V; I n 为施加电压侧的额定电流,A; e k 为参考温度时的阻抗电压,%; P kt 为t℃的负载损耗,W;S n 为额定容量,kVA; K t 为温度系数。案例1:

变压器温升太高解决方法

变压器温升太高解决方法 开关电源中主要的发热元器件为半导体开关管、功率二极管、高频变压器、滤波电感等。不同器件有不同的控制发热量的方法。功率管是高频开关电源中发热量较大的器件之一,减小它的发热量,不仅可以提高功率管的可靠性,而且可以提高开关电源的可靠性,提高平均无故障时间(MTBF)。开关管的发热量是由损耗引起的,开关管的损耗由开关过程损耗和通态损耗两部分组成,减小通态损耗可以通过选用低通态电阻的开关管来减小通态损耗;开关过程损耗是由于栅电荷大小及开关时间引起的,减小开关过程损耗可以选择开关速度更快、恢复时间更短的器件来减少。但更为重要的是通过设计更优的控制方式和缓冲技术来减小损耗,如采用软开关技术,可以大大减小这种损耗。减小功率二极管的发热量,对交流整流及缓冲二极管,一般情况下不会有更好的控制技术来减小损耗,可以通过选择高质量的二极管来减小损耗。对于变压器二次侧的整流可以选择效率更高的同步整流技术来减小损耗。对于高频磁性材料引起的损耗,要尽量避免趋肤效应,对于趋肤效应造成的影响,可采用多股细漆包线并绕的办法来解决。 高频电源变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。按工作频率高低,可分为几个档次:10kHz~50kHz、50kHz~100kHz、100kHz~500kHz、500kHz~1MHz、1MHz以上。传送功率比较大的,工作频率比较低;传送功率比较小的,工作频率比较高。这样,既有工作频率的差别,又有送功率的差别,工作频率不同档次的电源变压器设计方法不一样. 高频电源变压器的设计原则 高频电源变压器的设计原则,是在具体使用条件下完成具体的功能中追求性能价格比最好。有时可能偏重性能和效率,有时可能偏重价格和成本。现在,轻、薄、短、小,成为高频电源的发展方向,是强调降低成本。其中成为一大难点的高频电源变压器,更需要在这方面下功夫。所以高频电源变压器的“设计要点”,性能,成本,如果能认真考虑一下高频电源变压器的设计原则,追求更好的性能价格比,传送不到10VA的单片开关电源高频变压器,应当设计出更轻、薄、短、小的方案来。市场的价值规律是无情的!许多性能好的产品,往往由于价格不能为市场接受而遭冷落和淘汰。往往一种新产品最后被成本否决。要“节能又节钱”.产品成本,不但包括材料成本,生产成本,还包括研发成本,设计成本。因此,为了节约时间,根据经验,对高频电源变压器的铁损铜损比例、漏感与激磁电感比例、原边和副边绕组损耗比例、电流密度提供一些参考数据,对窗口填充程度,绕组导线和结构推荐一些方案,不要按步就班地来回进行推算和仿真。设计原则是在具体的使用条件下完成具体的功能中追求性能价格比最好。检验设计的唯一标准是设计出的产品能否实应住市场. 高频电源变压器的设计要求以设计原则为出发点,可以对高频电源变压器提出4项设计要求:使用条件,完成功能,提高效率,降低成本。 1 使用条件 使用条件包括两方面内容:可靠性和电磁兼容性。可靠性是指在具体的使用条件下,高频电源变压器能正常工作到使用寿命为止。一般使用条件对高频电源变压器影响最大的是环境温度。有些软磁材料,居里点比较低,对温度敏感。例如:锰锌软磁铁氧体,居里点只有215℃,其磁通密度,磁导率和损耗都随温度发生变化,故除正常温度25℃外,还要给出60℃,80℃,100℃时的各种参考数据。因此,将锰锌软磁铁氧体磁芯的工作温度限制在100℃以下,也就是环境温度为40℃时,温升只允许低于60℃,相当于A级绝缘材料温度。与锰锌软磁铁氧体磁芯相配套的电磁线和绝缘件,一般都采用E级和B级绝缘材料,采用H级绝缘的三重绝缘电磁线和聚酰胺薄膜,成本增加,是不是因为H级绝缘的高频电源变压器优化的设计方案,可以使体积减少1/2~1/3的缘故?本来体积就比较小的高频100kHz10VA高频电源变压器,如次级绕组采用三重绝缘线,能把体积减小1/2~1/3。电磁兼容性是指高频电源变压器既不产生对外界的电磁干扰,又能承受外界的电磁干扰。电磁干扰包括音频噪声和高频噪声。高频电源变压器产生电磁干扰的主要原因之一是磁芯的磁致伸缩。磁致伸缩大的软磁材料,产生的电磁干扰大。例如,锰锌软磁铁氧体,磁致伸缩系数λS为21×10-6,是取向硅钢的7倍以上,是高磁导坡莫合金和非晶合金的20倍以上,是微晶纳米晶合金的10倍以上。因此锰锌软磁铁氧体磁芯产生的电磁干扰大。

干式变压器温升试验

干式变压器温升试验之“模拟负载法” 1.试验方法:模拟负载法。 2.试验原理:通过短路试验和空载试验的组合来确定的。 3.试验目的:是验证变压器冷却能力,能否将由总损耗所产生的热量散发出去,达 到热平衡时使变压器绕组(平均)高于冷却介质的温升不超过规定的限值,同时还要通过红热扫描观测电路联结点、铁心及结构件、绕组等是否有局部过热。 4.试验接线图: 5.试验过程:在额定电压下连续进行的空载试验应一直持续到绕组和铁心的稳定状态, 然后测量各个线圈的温升Δθe;立即进行短路试验,此时一个线圈由开路变成短路,另一 个线圈输入额定电流,直到绕组和铁心稳定为止,然后测量各个线圈的温升Δθc。(试验顺序可以互换) 绕组温升:Δθc(Δθe)=R2/R1(T+θ1)-( T+θ2) 各个线圈的总温升: Δθc’=Δθc [1+(Δθe /Δθc)1/k1]k1 式中:Δθc’--绕组总温升;Δθc—短路试验下的绕组温升; Δθe—空载试验下的绕组温升;T—温度系数,铜时为:235铝时为:225 R1、R2、θ1、θ2—冷态电阻、热态电阻、冷电阻环温、热电阻环温; k1—对于自冷式为0.8;对于风冷式为0.9。 备注:由于某种原因,施加电流没有达到额定电流时折算: I r Δθr=Δθ×(-)q I t 式中:Δθr、Δθt-额定电流下、试验电流下的绕组温升; I r、I t-额定电流、试验电流;(I t >0.9I r) q-AN:1.6、AF:1.8。 首先要测冷电阻并准确的记录绕组温度,接线方式分别同空载试验和负载试验。负载状态下试验的电流应尽可能接近额定持续电流,并不小于此值的90%,电流应持续直到变压器 任何部分每小时的温度上升少于2K。测量高、低压热电阻并准确的记录绕组温度,记录数 据并计算结果。检验绕组的温升是否符合设计要求。 6.温升试验分接位置的选择: a. 对分接范围在±5%以内,且额定容量不超过2500kVA的变压器,如无特殊要求,温 升试验选在主分接上进行。 b. 对分接范围超过±5%,或额定容量大于2500kVA的变压器,温升试验选在最大电流分接上进行。 7.海拔与温升限值的关系: 变压器运行高度超过海拔1000米,但试验场地是正常海拔,温升限值应递减,变压器运行高度低于海拔1000米,但试验场地高于海拔1000米,温升限值应递增,海拔超过1000米每500米为一级, AN:2.5% AF:5% 8.温升稳定的判断方法: 铁芯、绕组温升持续三小时且每小时不超过1K时,变压器视为稳定。 国家标准对温升限值的要求: 部位绝缘系统温度℃最高温升K 线圈 A 105 60 (电阻法) E 120 75 B 130 80

变压器常识ABC

变压器常识A B C③ 1.变压器允许温升 2.变压器的参数偏差值与使用峰值的参数 3.铁心 4.温升试验 5.冲击试验 1.变压器允许温升 变压器各个部门有不同的允许温升,不同的运行工况也有不同的允许温升。决定允许温升的因素有:变压器的运行预期寿命、变压器的安全运行、变压器的检测技术。 绕组允许温升:绕组的允许温升是指整个绕组的平均温升,由电阻法测得,允许温升与绝缘耐热等级有关。油浸式变压器属A级绝缘,由于传统的绕组温升测量法为电阻法,测得的温升为平均温升,A级绝缘允许的平均温升为65K。平均温升与绕组最热点温升之差假使为13K。在年平均温度为20℃时,A级绝缘绕组最热点温度为 20+65+13=98℃,此时A级绝缘具有正常寿命。干式变压器各种绝缘的允许平均温升:A级为60K,E级为75K,B级为80K,F级为100K,H级为125K,C级为150K。冬季绕组温升低于平均温升,绕组可延长寿命,夏季的绕组温升高于平均温升,绕组要牺牲寿命。如超名牌容量也要牺牲寿命,但超名牌容量运行时,油浸式变压器A级绝缘绕组最热点温度不能超过140℃,即使牺牲的寿命不多,也不允许超过140℃,因超过140℃时油要分解出气体而影响绝缘强度。所以油浸式变压器A级绝缘的最热点温度不 能超过140℃是从变压器安全运行出发的。 大容量变压器有时有几种冷却方式,例如ONAN/ONAF,变压器额定容量一般是指ONAF下的允许值,当风扇失去电源后,冷却效率下降,如仍按ONAF冷却方式下容量运行时,绕组平均温升必将升高,故ONAN冷却方式下必须降低容量运行,使绕组平均 温升不超过65K。 另外,双绕组或三绕组变压器中,二个或三个绕组应同时达相同的温升,当一个绕组达65K平均温升时另一个或二个绕组低于65K,则这样的设计是不经济的。油浸式变压器还应使油面顶层与几个绕组平均温升同时达允许温升是较为经济的。即油面顶层温升达55K,绕组平均温升达65K为经济的方案。在设计阶段,就合理选取每一绕组的电流密度,在保持负载损耗不超过标准值时使各个绕组的温升接近65K,同时油面顶层也达55K。但是,这对强油循环的变压器是难以达到的。因强油风冷式变压器的油顶层温升一般为40K,强油水冷式变压器的油顶层温升一般为35K。 实际上,油面顶层温升与绕组平均温升很难同时到达极限允许值,因此,一般不能根据油面顶层温升来判断绕组平均温升。这也是大容量变压器既装油面温度指示仪与

变压器温升测量方法的比较

变压器温升测量方法的比较 在设备中,变压器作为安全件有着极其重要的作用。如果设备在正常工作或局部产生故障的情况下,而引起变压器温升过高且已超出变压器材料件(如骨架、线包、漆层等)所能承受的温度,可能会使变压器绝缘失效,引起触电危险或着火危险。所以在设备中对变压器温升的测量是必不可少的。通常对变压器温升的测量,我们采用两种方法:热电偶法和电阻法。 一、热电偶法:目前可采用DR030数字温度巡回检测仪来测量变压器温升。测试时可用胶布或用涂 料(氧化铝+溶剂将热电偶丝粘贴在变压器被测部位上。贴好热电偶后,受试变压器加上负载,接通电源,待热稳定或4h后测量其温升。二、电阻法:首先在变压器加负载并接通电源前,应先测量变压器的冷态电阻R1, 然后,给变压器加上负载并接通电源,4h或热稳定后,断开电源,立即测量变压器各线包的热态电阻R2,由以下公式计算出变压器的温升:Δt=R2-R1∕R1(234.5+t1)-( t2- t1) ;R1:试验开始时的阻值(Ω);R2:试验结束时的阻值(Ω);t1:试验开始时的室温(℃) ;t2:试验结束时的室温(℃)。 从上述测试方法不难发现,用热电偶法和电阻法测量变压器温升时,前者测量的是变压器线包外层的温升,后者测得的是变压器线包的平均温升。在GB4943中规定测量变压器的线包温升允许采用热电偶法,测得的结果增加10℃,GB8898则要求用电阻法测量变压器线包的温升。为了了解这两种方法的差异,同时, 为了了解我们在测量变压器温升时,是测量变压器初级线包还是次级线包更能反应出变压器温升的实际情况,所以在对变压器进行温升试验时,特留意了以下两种结构的电源变压器,根据测量结果,进行了比对。热电偶法和电阻法变压器温升测量结果表(纯电阻负载)

变压器温度计算

1 引言 工频变压器的计算方法很多人认为已趋成熟没有什么可讨论的,对于一个单位的工程技术人员来讲温升计算问题可能并不存在,温升本身来源于试验数据,企业本身有大量试验数据,温升问题垂手可得。下面就温升的计算公式进行探讨,本文仅提出一个轮廓,供大家参考。 2 热阻法 热阻法基于温升与损耗成正比,不同磁心型号热阻不同,热阻法计算温升比较准确,因其本身由试验得来,磁心又是固定不变的,热阻数据由大型磁心生产厂商提供。有了厂家提供的热阻数据,简单、实用何乐而不为。高频变压器可采用这一方法。而铁心片供应商不能提供热阻这一类数据,因此低频变压器设计者很难采用。热阻法的具体计算公式如下: 式中, 温升ΔT(℃) 变压器热阻Rth(℃/w) 变压器铜损PW(w) 变压器铁损PC(w) 3 热容量法 源于早期的灌封变压器,由于开放式变压器的出现这种计算方法已被人遗忘,可以说是在考古中发现。这种计算方法的特点是把变压器看成是一个密封的元件,既无热的传导,也无热的辐射,更无热的对流,热量全部靠变压器的铁心、导线、绝缘材料消耗掉。这样引出一个热容量(比热)的概念,就可以利用古人留给我们的比热的试验数据,准确的计算出变压器的温升来。不是所有的变压器都可以利用这一计算公式,唯独只有带塑料外壳的适配器可采用这一方法,这种计算方法准确度犹如瓮中捉鳖十拿九稳。 若适配器开有百叶窗,那就有一部份热量通过对流散发出去,如不存在强迫对流,百叶窗对温升的影响只在百分之三左右。上一代的变压器设计工作者对这一计算方法很熟悉,现在的变压器设计工作者根据此线索,进行考古也会有收获。热容量法的计算模式如下:

式中,温升ΔT(℃) 变压器质量Gt(g) 变压器铜损PW(w) 变压器铁损PC(w) T—加热时间常数(s) At—变压器散热面积(cm2) Ct——变压器比热(w·s/℃·g) CC——铁心比热(w·s/℃·g) GC——铁心质量(g) cw——导线比热(w·s/℃·g) Gw——导线质量(g) cis——绝缘材料比热(w·s/℃·g) Gis——绝缘材料质量(g) Gt——变压器质量(g) 4 散热面积法 散热面积法基于热量全部由变压器表面积散发出去,这种算法有三种类型:

毕业设计-10KV干式变压器设计

目录 摘要................................................................................................ I Abstract ................................................................................................ II 第1章概述 (1) 1.1 干式变压器的发展及前景 (1) 1.2 干式变压器的应用场合 (2) 1.3 干式变压器的分类 (2) 1.4 冷却方式及其标志 (3) 1.5 温升限值及参考温度 (3) 1.6 绝缘水平 (4) 1.7 干式变压器的过载能力 (4) 1.8 干式变压器的防护方式 (5) 1.9 干式变压器的环保标准 (5) 第2章设计要点 (6) 2.1 铁心相关计算 (6) 2.1.1 铁心直径的选择 (6) 2.1.2 铁心的空间填充系数 (6) 2.1.3 铁心叠片系数 (7) 2.1.4 铁轭截面和形状的选择 (7) 2.1.5 其它 (8) 2.2 高低压绕组匝数的计算 (8) 2.2.1 初算每匝电压 (8) 2.2.2 低压绕组匝数的计算 (9) 2.2.3 磁通密度和磁通的计算 (9) 2.2.4 高压绕组匝数的计算 (10) 2.2.5 电压比校核 (10) 2.3 绕组相关尺寸和铜重的计算 (11) 2.4 关于H级干式变压器的绝缘结构 (12) 2.4.1 概述 (12) 2.4.2 关于NOMEX 纸的技术性能 (12) 2.4.3 用NOMEX纸做原料的H 级干式变压器 (14)

单相和三相干式变压器的计算

单相和三相干式变压器的计算 计算程序 这里介绍电压低于500伏(试验电压为5千伏以下)、容量10-100千伏安的干式变压器的计算。 计算前应已知额定容量Ps(千伏安)(指视在功率)、相数、频率f(赫)、额定电压U (伏)对于变压器是指线电压。当变压器一次侧加上额定电压Ux1后,空载时测得的二次侧电压Ux2就是二次侧的额定电压值)、连接方式和绝缘等级。 具体的计算步骤是: 1、计算一次侧与二次侧的电压和电流 单相变压器:一次侧电流I1=Ps/U1 二次侧电流I2=Ps/U2 三相变压器:一或二次侧的线电压Ux、相电压Uxa;线电流Ix、相电流Ixa,电压和电流变换公式如下: 2、计算铁芯截面 铁柱的净面积St可根据经验公式决定。 ps(厘米2) 三相St=323/ 单相壳式St=32ps(厘米2) (铁芯结构如图2-2(a)所示) ps(厘米2) 单相芯式St=322/ 式中:Ps——变压器额定容量,以千伏安为单位。 (铁芯结构如图2-2(b)所示,须注意一、二次侧绕组应平分绕在二只铁柱上。) 铁柱毛面积 式中:K D——迭片系数,它与工艺和材料有关。对于厚度为0.35的冷轧硅钢片不涂漆取K D=0.94 ,热轧硅钢片涂漆取K D=0.91;对厚度为0.5毫米的硅钢片,不涂漆 取K D=0.96,涂漆取K D=0.93。 多级阶梯形铁柱的外接直径,视在面积(毛面积)、净面积及各级尺寸如表2-13所示。 铁柱面积确定后,接着计算铁轭截面Sy。为了降低空载电流,在一般情况下; 单相壳式Sy≥1/2St(厘米2) 单相芯式Sy=St(厘米2) 当采用多级铁芯柱截面时,则 Sy=(1.05-1.10)St(厘米2) 三相三柱式Sy=(1.05-1.10)St(厘米2) 铁轭高hy=Sy/KpT(厘米) 式中:Kp——迭片系数;

干式变压器的设计选型

干式变压器的设计选型 1.干式变压器的冷却方式 干式变压器冷却方式分为自然空气冷却(AN)和强迫空气冷却(AF)。自然空冷(AN)时,正常使用条件下,变压器可在额定容量下长期连续运行。强迫风冷(AF)时,正常使用条件下,变压器输出容量可提高50%,适用于断续过负荷运行,或应急事故过负荷运行;由于过负荷时负载损耗和阻抗电压增幅较大,处于非经济运行状态,故不应使其处于长时间连续过负荷运行。 对自然空冷(AN)和强迫风冷(AF)的变压器,均需保证变压器室具有良好的通风能力。当变压器安装在地下室或通风能力较差环境时,须增设散热通风装置,通风量可按每1kW损耗(PO+PK)需2~4m3/min风量选取。 新型的帘式风机风冷系统噪音降低,冷却均匀,效果好;体积小,占用空间小,不超出变压器本体外形轮廓尺寸;风机容量小,2500kVA以下的配电变压器风机只180W~540W,且采用单相AC220V电源。但需注意此电源应从低压MCC或PC配电屏内之断路器引取,而不能直接从变压器低压出线母排接取。 2.干式变压器的过载能力 干式变压器的过载能力与环境温度、过载前的负载情况(起始负载)、变压器的绝缘散热情况、发热时间常数等有关。若有需要,可向生产厂索取干变的过负荷曲线。 如何利用其过载能力呢?笔者提出两点供设计人员参考: (1)选择计算变压器容量时可适当减小:充分考虑某些轧钢、焊接等设备短时冲击过负荷的可能性- 尽量利用干式变压器的较强过载能力而减小变压器容量;对某些不均匀负荷的场所,如供夜间照明等为主的居民区、文化娱乐设施、以供空调和白天照明为主的商场等,可充分利用其过载能力,使其主运行时间处于满载或短时过载,这样就可以在计算、选配容量时,适当减小变压器容量。 (2)可减少备用容量或台数:在某些场所,对变压器的备用系数要求较高,使得工程选配的变压器容量大、台数多。而利用干变的过载能力,在考虑其备用容量时可予以压缩;在确定备用台数时亦可减少。例如,设计计算容量Sjs30=1400kVA时,可选配2台(而不用选配3台)1000 kVA干式变压器。当其中1台故障须退出运行时,另1台可以应急承担整个负荷;若负荷重,温度超过110℃时,强迫风冷系统将自动投入,可使其过载能力提高到1.4~1.5倍。变压器处于过载运行时,一定要注意监测其运行温度:若温度上升达155℃(有报警发出)即应采取减载措施(减去某些次要负荷),以确保对主要负荷的安全供电;而当处理好故障,应

相关主题
文本预览
相关文档 最新文档