当前位置:文档之家› 新型过电压保护装置一消谐器

新型过电压保护装置一消谐器

新型过电压保护装置一消谐器
新型过电压保护装置一消谐器

新型过电压保护装置一消谐器

甘肃陇南水电电机工程学会鱼献荣

本刊今年第三期《改进变电设计的几点意见》一文中提到“加装过电压保护装置”和《采用10千伏不等相混合供电》一文中介绍“防止谐振过电压方法”,无外乎都是在电压互感器开口三角中接入适当的阻尼电阻或白炽灯泡,这必竟是简易、非正规装置,有效果也有一定的弊病。近年来,有不少厂家都在研制消谐装置,力求科学、正规、多功能,已先后出现了KFX-10型分频消谐装置、KZX -60可控硅综合消谐装置、DXG-2型多功能消谐器等,都能有效的消除和抑制因种种因素引起的分频、基频、高频谐振过电压,从结构上也已趋于完整性和成套性。向同行介绍一种已在西北地区农电通用设计35千伏变电所方案中加入应用的FXG

1-2 5

型消谐器。型号含意: F—分频选频,XG—消谐器,1—设序号,2 5—鉴频频率(1/2工频)。此消谐器是昆明市灯泡厂研制生产,荣获八三年国家经委优秀新产品金龙奖,已在我地区新建变电所广泛应用,有些旧变电所中也有加装。该装置能可靠的消除和抑制因电网系统电气参数突变,使电压互感器饱和而引起的分频或基频和高频铁磁谐振过电压,防止虚幻接地等。从陇南地区碧口电站、康县、西和等地几处35千伏变电所近两年使用情况看,动作可靠,效果

良好。现就FXG

1

型消谐器的构造,工作原理、安装及使用维护,作以介绍供用参考。

一、 FXG

1- 2 5

型消谐器构造:该消谐器山鉴频器和消谐组成(见图1图2)。鉴频器又由电抗器L、电容器C、鉴频继电器JL三个元件成串联谐振鉴频回路,谐振频率1/2工频(25HZ)。当系统发生谐振,经鉴频器鉴频,谐振电源频率为25HZ时,消谐回路呈献出低阻抗,当电压达到动作值时鉴频继电器动作,PT开口三角中投入低电阻消谐。因鉴频器兼顾工频和分频谐振时的参数,当电源频率是工频或高频时。开口三角产生100伏左右电压,鉴频器不动作,回路呈高阻抗,投入高电阻,抑制和消除基频或高频波谐振。通过鉴频器的选频作用,投入低电阻或高电阻,吸收谐振能量,对消除分频谐振和基波、高波谐振,都有较高的工作特性。消谐管(图 1中的G和图2中的XXG),是专为此消谐器设计制造的具有特异电阻特性

的真空器件,它综合了阻尼电阻和白炽灯的双重特性。管中R

1R

2

是用钨丝绕制成

的正温度特性的热敏电阻,有较高的冷热电阻比率和一定的阻值变化程度,它保

证电压互感器不致过载。K是用双金属片制成的热动开关元件,有反时限特性(电压高温度高动作就快,反之就慢),对于分频高频谐振,即投入低阻高阻消谐,能可靠自动切投,抗干扰能力强、电压瞬时动作不启动。消谐管不论低阻还是高阻、对PT测量系统均无任何影响。

二、消谐器工作原理:消谐器引出线端子A、B,跨接在电压互感器开口三角上(图2),消谐管管角4、6之间由鉴频继电器常开接点JL

1

相联,在K未断

开时,R

l R

2

并联,即总电阻Rz=R

1

·R

2

/(R

1

+R

2

)≤1Q(略去接触电阻)投入开口

三角之中,当系统正常运行时,在PT开口三角两端(N600、L630),移位电压不大于0.3V,此时,流过Rz的电流不大于0.5A,消谐管处于冷态,对PT 无影响。当投运变电所母线或空载配电线路时,对出现的虚幻按地而可能发生的铁磁振过电压有抑制作用;即是发生谐振,Rz的低阻值足能以消除。

当系统发生单相接地时。在PT开口三角上出现l00伏左右的位移电压,此时消谐管电阻发热、阻值上升60Ω以上,在热辐射和流经开关K的电流产生的热使K

断开,将R

2切除,使R

1

进入全热态、而且阻值变为无限大∝,此时消谐管的总

电阻Rz=R

1=∝(为使PT不致过载。R

1

的设计值足够大),当单相接地(包括弧

光断续接等),引起基频或高频谐振R

1

∝有足够的抑制功能。如果此时发生分频

谐振,鉴频继电器动作。JL

1闭合,使消谐管4.6脚短接。又将R

2

投入,使R

1

∝与R

2

并联,即在PT开口三角上又投入了一个可以消谐的低阻,使谐振消除。

诸振消除后,PT开口三角上的电压消失,恢复到正常值,消谐管冷却,鉴频继

电器复归,JL

1

断开而K又闭合。当反复接地(或弧光断续接地),消谐管重复上述动作,从而抑制和消除了谐振的发生,保证了系统的正常运行。在实际使用中,由于单相接地故障较多,而且时间也较长、易使PT开口三角负担较大,如果不及时切断故障线路,有时会使PT一次侧高压熔断器熔断,可将线路改接为图3。从图中看出,图3只是在图2中减去了消谐管脚4、6之间联接的鉴频继

电器常开接点JL

1

,4脚变为空脚。这种接线有双重保险作用,当系统发生单相接地或断线起谐振。消谐器动作或接点卡住失灵时,热动开关K在短时间后就会

切断R

2,PT不致过载而熔断高压保险丝,同时保护R

2

不致长时间通电而烧毁。

改接后的线路会减掉4、6脚的接点JL

,,但当发生1/2工频谐振,在开口三

1

角中只产生65伏左右的1/2工频电压,因电压低,热动开关K断开时间慢,投入低阻时间长,远大于消谐过程0.l秒,故对分频谐振的消除无影响。

三、消谐器的选择安装及注意事项:FXG-1-25型消谐器,适用于35千伏中性点不接地的电力系统中,根据所用电压互感器的电压等级,10千伏的可用 XG1— 25(0)型,配XXG-10消谐管;35千伏的可选FXG1-25(35)型,配XXG-35消谐管。在变电所中,有几组电压互感器,应装几台消谐器。消谐器安装时、投运前,应进行检查校验,检查各紧固件有无松动、损坏;继电器整定螺漆封是否完好。拔下消谐管通电校验,校验时应垂直悬挂,在接线端子A、B上通入工频可调电压(见图4);从零升起,电压达到125~130伏时鉴频器吸合动作,动作电流0.13安。电压降到115伏左右释放复归.当动作电压偏离上值过大时,调整继电器整定螺丝,使动作值基本接近,调整后用漆封固。消谐管的检查:外观无破损、漏气(发白)、断丝,热动开关K处于导通状态(用万用表高阻挡测)。检查调整后,将消谐管插入,再通电试验:外施电压升到125~130伏,将电源/瞬时接通消谐器,此时继电器应动作,灯丝应红亮。在实验中注

意绝对不能长时间通电;只能瞬时接入,时间不要大于3秒(详见使用说明)。消谐器安装:按定型设计成套订货的,生产厂家已装配好,10千伏的装在电压互感器(GG-IA-54)的右上仪表箱中,信号继电器装在箱盖外面、安装接线见图5a、图5b。35千伏的装在电压互感器端子箱中(端子箱XW3-1),布置见图6。消谐器接入PT开口三角的引线越短越好,引线电阻不得大于1Ω。在运行中,每次谐装动作或系统发生异常电压冲击后,应检查消谐管是否发黑。发白(漏气)、断丝、破裂等,如有上述情况。应及时更换。此消谐器和消谐管可直接与昆明市灯泡厂联系邮购。

电压互感器的铁磁谐振及其消谐措施

五、关于电压互感器的铁磁谐振及其消谐措施。 1、谐振条件 在中点不接地系统中,由于接地保护的需要,三相电压互感器的中点是直接接地的,因此电 压互感器与电网线路对地电容并联而形成谐振回路,电磁式电压互感器的电感是非线性的,这种 谐振回路为非线性谐振回路,或称铁磁谐振回路,如图5-1。 通常,在正常运行时,电压互感器的感抗X L 远大于电网对地电容的容抗X C ,即X L 与X C 不会形成谐振,但由于某些原因,例如单相接地故障、线路合闸、雷电冲击等等,使电压互感器 的电感量发生变化,如果X L 与X C 匹配合适则将产生谐振。 由于电网中点不接地,正常运行时互感器中点N '和电源中点对地同电位,即中点不发生位 移,当发生谐振时,互感器一相、两相或三相绕组电压升高,各相对地电位发生变动,但因电源 电势由发电机的正序电势所固定,E A 、E B 、E C 保持不变,在电网这一部分对地电压的变动则表 现为电源中点发生位移,而出现零序电压,这就是说,谐振的发生是由于中点位移而引起的。 假定当A 相电压下降,B 、C 相电压升高,则A 相显容性,而B 、C 相显感性,等值电路图 如图5-2所示。 图5-1 电压互感器接线图 图5-2 不对称阻抗产生的中点位移电压

如图,三相中各阻抗不对称,电源中点产生位移,在一定条件下将产生谐振。 根据图5-1,解出中点位移电压如下式: C B A C C B B A A NN Y Y Y Y E Y E Y E U ++++-=????/ (1) 'c j Y A ω=, '1L j Y Y c B ω-== 代入得: ''2)1(/L c L c E U A NN ωωωω-'+'-=? ? (2) 由(2)式可看出,当'2L c ωω= '时则U 0无穷大,即要发生谐振,这也意味着只有当电压互感器的感抗与线路容抗在一定比例下,谐振才会产生。有人(HA.Peterson )对此曾做了专门的模 拟试验,得到了谐振范围的曲线,如图5-3b 所示。模拟试验用互感器的V-A 特性如图5-3 a 。 5-3 a 非线性电感的伏安特性曲线 U —试验电源相电压 U ?—非线性电感额定电压 I*—电流标幺值

交流特高压电网的雷电过电压防护(正式)

编订:__________________ 单位:__________________ 时间:__________________ 交流特高压电网的雷电过电压防护(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-9239-87 交流特高压电网的雷电过电压防护 (正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 交流特高压电网的雷电过电压及其防护可以分为线路和变电站两个方面。线路的雷电过电压防护包括绕击和反击防护,变电站的雷电过电压防护包括直击雷和侵入波的防护。 1.特高压线路的雷电过电压防护 由于特高压输电线路杆塔高度高,导线上工作电压幅值很大,比较容易从导线上产生向上先导,相当于导线向上伸出的导电棒,从而引起避雷线屏蔽性能变差。这一点不但可从电气几何理论上得到解释,运行情况也提供了佐证。前苏联的特高压架空输电线路运行期间内曾多次发生雷击跳闸,基本原因是在耐张转角塔处雷电绕击导线。日本特高压架空输电线路在降压运行期间雷击跳闸率也很高,据分析是线路遭到

侧面雷击引起了绝缘子闪络。 理论分析和运行情况均表明,特高压输电线路雷击跳闸的主要原因是避雷线屏蔽失效,雷电绕击导线造成的。因此采用良好的避雷线屏蔽设计,是提高特高压输电线路耐雷性能的主要措施。同时还应该考虑到特高压输电线路导线上工作电压对避雷线屏蔽的影响。对于山区,因地形影响(山坡、峡谷),避雷线的保护可能需要取负保护角。 2.特高压变电站的雷电过电压保护 根据我国110~500千伏变电站多年来的运行经验,如果特高压变电站采用敝开式高压配电装置,可直接在变电站构架上安装避雷针或避雷线作为直击雷保护装置;如果采用半封闭组合电器(HGIS)或全封闭组合电器(GIS),进出线套管需设直击雷保护装置,而GIS本身仅将其外壳接至变电站接地网即可。 与超高压变电站一样,特高压变电站电气设备也需考虑由架空输电线路传入的雷电侵入波过电压的保护,其根本措施在于在变电站内适当的位置设置避雷

电子设备的雷电及过电压保护

电子设备的雷电及过电压保护 过电压主要是指雷击过电压、电力网络操作过电压,损坏电子设备的过电压通常就是这两种。众所周知,作为一种大气物理现象,每一次雷击都是由一系列的放电(云间、云地)形成的。雷击过电压是指由于雷电直接击中电线;雷击避雷针时由于电阻耦合、电容耦合、电感耦合引入电线;或雷击某地造成不同地之间的地电位不均衡等原因在有源或无源导体上产生的瞬态过电压。雷击过电压的能量有时非常强,雷电的放电电流一般为20_40千安培,在大雷暴时最大可达430千安培,雷击概率及其电流数据如下表所示: 概率50%10%5%≈1% 电流峰值kA3080100200 电荷量As1080100400 雷电现已成为破坏电子设备的主要原因。操作过电压是指开关中央电源设备、电力网中大型感性或容性设备的投切等原因产生的过电压。操作过电压不如雷击过电压高,但出现频繁,对电子设备同样会产生不同程度的损害。 1.过电压保护必要性 现在已进入电子信息时代,各行各业都日益广泛地采用电子信息技术装备自己,如一座现代化的大厦,一般都装有自动消防、防盗保安、程控电话、楼宇自控、电脑管理、群控电梯、广播音响、闭路等一系列电子信息系统;又如国防现代化建设,电子信息技术已作为其发展的基础;其它航天、金融、邮电、石油化工、电力、广播电视等部门及工厂企业也不例外,所以电子信息设备的应用已日趋广泛,其数量与规模正在不断地扩大。但是这种电子信息设备的工作信号电压很低,一般仅5V左右,因此,其抗干扰、抗电涌的能力极低,对电磁环境的要求很高,所以随着电子信息设备的广泛应用,过电压的危害也将日趋严重,尤其是雷电引起的过电压,其后果不但使这种昂贵的设备损坏,而且有可能使整个系统的运行中断,造成巨大的经济损失。 随着电子技术的发展,电子设备日益成为雷电破坏的主要对象之一。为此,国内外专家学者进行了大量的实验和研究,IEC(国际电工委员会)、ITU(国际电信联盟)等组织都制定了相应的防雷电及电磁脉冲的标准,如IEC1024、IEC1312、ITU的K系列等。IEC1024、IEC1312相继公布了雷电流参数(如表1)和雷电波形,并对雷电保护区(LPZ)的划分、系统的分级保护和浪涌过电压保护器(SPD)的各项指标进行了规定。我国的国家标准《建筑物防雷设计规范》(GB50057-94)也对雷电电磁脉冲的防护进行了规定:“在配电盘内,宜在开关的电源侧与外壳之间装设过电压保护器”(第3.5.4条,三);信息产业部《移动通信基站防雷防雷与接地设计规范》(YD5068-98)中规定:“3.1.5……出入基站的所有电力线均应在出口处加装避雷器”,“ 3.3.3同轴电缆馈线进入机房后与通信设备连接处应安装馈线避雷器”,“ 3.4.1信号电缆应由地下进出移动通信基站处应加装相应的信号避雷器”;公安部颁发的《计算机信息系统防雷保安器》(GA173-1998)中规定:“计算机信息系统加装有效可靠的防雷保安器,是国际上通用的最有效的防护措施”等。 表1 首次雷击的雷电流参数保护级别 Ⅰ(一类)Ⅱ(二类)Ⅲ-Ⅳ(三类) I幅值(KA)200150100 T1波头时间(μS)101010 T2波头时间(μS)350350350 2.雷电过电压保护系统 现代意义的防雷,把防雷看成一个系统工程,根据雷电电磁脉冲(LEMP)防护的国际标准:

瞬态过压分析

瞬态过压问题的本源 危害综述 以浪涌电压形式出现的电气瞬态现象一直存在于配电系统中,而在半导体器件应用之前,电气瞬态现象没被重视。 1961年,美国贝尔实验室首次研究了半导体在雷击中的易损性。[1]稍后的一篇报告尝试确定了特定的半导体在静电放电还没有造成潜在或灾难性损坏的情况下,能够吸收的能量的数值。[2]尽管已经有了这些早期的警告,但是直到20世纪70年代后期,业界才开始圆满地处理这个问题。 所有的电气和电子设备都可能被电压瞬态过程损坏。不同之处是在损坏发生之前,它们所能够吸收的能量大小。由于许多现代半导体器件,比如低压MOSFET以及集成电路(IC),可能被只超过10伏(V)的电压波动损坏,因此它们在无保护环境中的存活性很差。 在许多情况下,随着半导体器件的演进,它们的耐用性下降了。生产更快更小的器件的趋势,以及MOSFET和砷化镓FET技术的广泛应用增加了易损性。高阻抗输入和小的结尺寸限制了这些器件吸收能量和传导大电流的能力。因此,需要使用专门用来应对这些危害的器件来保护这些脆弱的电子元件。 选择恰当的保护方法应当建立在对过压危害潜在来源进行仔细调查的基础之上。不同的应用和环境会带来不同的过压来源。这些来源可能是外来的,也可能是电路内部的。 雷电 在任何给定时刻,世界上都有1,800场雷雨正在发生,每秒大约有100次雷击。在美国,雷电每年会造成大约150人死亡和250人受伤。在雷电发生频率呈现平均水平的平坦地形上,每座300英尺高的建筑物平均每年会被击中一次。每座1,200英尺的建筑物,比如广播或者电视塔,每年会被击中20次,每次雷击通常会产生6亿伏的高压。 每个从云层到地面的闪电实际上包含了在60毫秒间隔内发生的3到5次独立的雷击,第一次雷击的峰值电流大约为2万安培,后续雷击的峰值电流减半。最后一次雷击之后,可能会有大约150安培的连续电流,持续时间达100毫秒。 经测量,这些雷击的上升时间大约为200纳秒或者更快。通过2万安培和200纳秒,不难计算得到dI/dt的值是每秒1011安培!如此大的数值意味着瞬态保护电流必须使用射频(RF)设计技术,特别是需要考虑导体的寄生电感和电容。 尽管这个峰值能量特别引人注目,但实际上是持续时间较长的电流携带了云层和地面之间传输的大部分电荷。

电压互感器与消谐装置

35kV电压互感器和消谐器的绝缘配合 张乃群陈军 《高电压技术》1998年04期 消谐器 消谐器是保护电压互感器一次侧的阻尼器件,用来消谐电网中的谐振。 1消谐器用途 6~35kV中性点不接地电网中的电磁式电压互感器(以下简称PT),当母线空载或出线较少时,因合闸充电或在运行时接地故障消除等原因的激发,会使电压互感器过饱和,则可能产生铁磁谐振过电压。出现相对地电压不稳定,接地指示误动作,PT高压保险丝熔断等异常现象,严重时会导致PT烧毁,继而引发其它事故。这种情况就需要安装消谐器。 消谐器原理其本质是一种高容量非线性电阻器,起阻尼与限流的作用。可以起到良好的限制电压互感器铁磁谐振的效果。如果6~35kV电网中性点不接地,母线上Y0接线的TV一次绕组,成为该电网对地唯一金属性通道。电网对地电容通过TV一次绕组有一个充放电的过渡过程。试验测得此时常常有最高幅值达数安培的工频半波涌流通过TV,此电流有可能将TV高压熔丝熔断。而安装了消谐器后,这种涌流将得到有效抑制,高压熔丝不再因为这种涌流而熔断。 2消谐器现状 目前市场上的消谐器主要为LXQ系列(也有部分厂家为RXQ)。作为一种新型号的消谐器LXQ。L代表裸露,XQ代表消谐。裸露的消谐器具有体积小,尤其适合在开关柜中安装。 消谐器主要材料为SiC,使用金属连接件进行连接。早期消谐器采用铝材进行连接,由于铝熔点比较低,容易软化变形,现在已经基本被铜材料取代。 LXQ型消谐器接线图 消谐器主要参数有:通过0.5mAp的电压及阻值,通过5mAp的电压及阻值,

通流能力,功率,两端限制电压等。其中最重要的是通流能力,设计时必须考虑配合PT的中性点绝缘及PT高压熔丝容量进行选型。 3安装方式 LXQ型消谐器体积较小,可以采用垂直方式,也可以采用水平方式安装,接线图见图1。 4主要型号 主要型号有LXQII-10(6)、LXQ(D)II-10(6)、LXQII-35kV、LXQ(D)II-35kV等 电压互感器接线加装消谐器的作用 在了解电压互感器消中性点谐器的作用之前,我们不妨先探讨一下电力系统的中性点运行方式。在三相交流电力系统中,作为供电电源的发电机和变压器的中性点,有三种运行方式:一种是电源中性点不接地;一种是电源中性点经消弧线圈接地;一种是电源中性点直接接地。前两种合称为中性点非有效接地,或小电流接地系统,后一种中性点直接接地称为中性点有效接地,或大电流接地。 1 电源中性点不接地电力系统(3-63 kV系统大多数采用电源中性点不接地运行方式)。电源中性点不接地系统发生单相接地时,如C相单相接地,那么完好的A、B两相对地电压都由原来的相电压升高到线电压,即升高为原对地电压的倍,C相接地的电容电流为正常运行时每相对地电容电流的3倍。当发生一相接地时,三相用电设备的正常工作未受到影响,因为线路的线电压无论相位和量值均未发生变化,因此三相用电设备仍然照常运行。但电力部门只允许运行2小时,因为一旦另一相又发生接地故障时,就形成两相接地短路,产生很大的短路电流,可能损坏线路设备。 2 电源中性点经消弧线圈接地的电力系统。在中性点不接地的电

电压保护装置

电压保护装置采用面板式安装,高雅、亮丽的外观,为低压电控装置提升档次。 相序保护器、过欠压保护器等)主要用于交流50/60Hz, 400V)、440V(460V)、660V等电压级别的各种故障检测,对三相输入电源的电压过高、电压过低、断相、错相(逆相序)、三相电压不平衡等提供继电保

复位方式:相序、缺相故障手动复位;不平衡、过欠压故障自动复位,也可按复位键手动复位。断 电后故障锁存功能。 JL-410电压保护装置功能选型 电压保护装置按功能的组合分以下四个系列,每个系列都有不同电压等级的产品。 ●表示具有该功能 ○表示不具有该功能 电压保护装置不同电压等级的产品选型 产品选型举例 1. 如用户需要全部保护功能(过电压保护、欠电压保护、缺相保护、三相电压不平衡保护、相序保护), 使用于380V 电压,那所选择的电压保护装置产品型号,应该为JL-410。 2. 如用户只需要相序保护,缺相保护两种功能,使用于煤矿660V 的电压,那所选的电压保护装置产品 型号应该为JL-411-60。 JL-410电压保护装置功能描述: 1、过压保护:当电网电压大于设定值时启动该项保护功能,动作门限值设定范围OFF-390-490V ,动作 方式为定时限,动作时间设置范围0.1-25s 。保护动作后电网电压恢复到小于设定值10V 以上时,保护器 自动复位,也可按复位键手动复位。用户可选择是否启用该项保护功能。 2、欠压保护:当电网电压小于设定值时启动该项保护功能,动作门限值设定范围300-370V-OFF ,动作 方式为定时限,动作时间设置范围0.1-25s 。保护动作后电网电压恢复到大于设定值10V 以上时,保护器 自动复位,也可按复位键手动复位。用户可选择是否启用该项保护功能。 3、三相电压不平衡保护:当电网电压三相不平衡度大于设定值时启动该项保护功能,不平衡度动作门 限值设定范围OFF-5-30%,动作方式为定时限,动作时间设置范围1-25s 。当电网电压三相不平衡度恢复 到小于设定门限值2%以上时,保护器自动复位,也可按复位键手动复位。用户可选择是否启用该项保护 功能。 三相电压不平衡度计算公式: A ——电压不平衡度 max U ——三相线电压中最大线电压值 % 100max min max ?-=U U U A

电力系统暂态分析复习大纲

电力系统暂态分析复习大 纲 The pony was revised in January 2021

电力系统暂态分析复习提纲 第一篇电力系统故障分析 1.短路的定义、基本类型;短路计算的意义;产生短路故障的原因;短路冲击电流定义及定义式 2.无限大功率电源的定义;有无限大功率电源供电的三相电路发生短路时短路电流的特点 3.输电系统等值电路参数标幺值计算 4.空载情况下短路后定子回路与转子回路各电流分量及相互对应关系 5.短路电流交流分量初始值计算 6.派克变换物理意义及计算 7.计算空载电动势 8.电力系统三相短路的实用计算 9.运算曲线法计算短路电流(个别变化法及同一变化法) 10.对称分量法基本概念及计算(相序分量) 11.变压器零序等值电路

12.架空输电线零序阻抗 13.作零序等值网络图 14.不对称短路故障、各相、序电流及电压的推导;作电流电压相量图 15.各序电流比较 16.正序等效定则 17.不同短路形式,变压器两侧电流相量图 第二篇电力系统稳定性分析 1.电力系统稳定性问题基本概念 2.发电机功率角特性推导及特性曲线 3.静态稳定概念;静态稳定实用判据;静态稳定极限;整步功率系数;静态稳定储备系数 4.小干扰;小干扰法分析系统静态稳定性 5.提高系统静态稳定性措施 6.暂态稳定概念;影响电力系统暂态稳定的因素 7.等面积定则及定义 8.提高系统暂态稳定性措施

电力系统暂态分析复习思考题及参考答案 绪论: 1、电力系统运行状态的分类 答:电力系统的运行状态分为稳态运行和暂态过程两种,其中暂态过程又分为波过程、电磁暂态过程和机电暂态过程。波过程主要研究与大气过电压和操作过电压有关的电压波和电流波的传递过程;电磁过渡过程主要研究与各种短路故障和断线故障有关的电压、电流的变化,有时也涉及功率的变化;机电暂态过程主要研究电力系统受到干扰时,发电机转速、功角、功率的变化。 2、电力系统的干扰指什么? 答:电力系统的干扰指任何可以引起系统参数变化的事件。例如短路故障、电力元件的投入和退出等。 3、为什么说电力系统的稳定运行状态是一种相对稳定的运行状态? 答:由于实际电力系统的参数时时刻刻都在变化,所以电力系统总是处在暂态过程之中,如果其运行参量变化持续在某一平均值附近做微小的变化,我们就认为其运行参量是常数(平均值),系统处于稳定工作状态。由此可见系统的稳定运行状态实际是一种相对稳定的工作状态。 4、为简化计算在电力系统电磁暂态过程分析和机电暂态过程分析中都采用了那些基本假设?

消谐装置作用及工作原理

PT二次消谐装置说明书 一、概述 在电力系统中,由于电压互感器的 非线性电感与线路对地电容的匹配而引起铁 磁谐振过电压,直接威胁电力系统的安全运 行,严重时会引起电压互感器(PT)的爆炸, 造成事故。传统的解决办法是在电压互感器 开口三角两端并接一个电阻,从理论上讲对 频率越低的铁磁谐振阻值应取得越小,但太 小的电阻并在PT开口三角上会影响其正常 运行,严重时会造成PT烧毁。另外因为铁磁 谐振的频率往往不是单一的,所以这种方法 就难于消除所有频率的谐振。 针对上述情况,国内一些厂家先后研制了一些分频消谐装置。这些装置的原理均是采用模拟选频的原理,功能单一,只对单一频率的谐振有效。由于电网中谐振往往是多种频率同时存在,所以其适应性较差,模拟电路实现的选频与微机选频相比其选频效果也差,有时电网的过渡过程等也会造成误动。 PWX-50系列微机消谐装置将微机技术用于电网消谐,利用计算机快速、准确的数据处理能力实现快速傅里叶分析,其选频准确。通过对PT开口三角电压的采集,对电网谐振时的各种频率成份能快速分析,准确地辨别出:①单相接地;②过渡过程;③电网谐振。如果是谐振,计算机发出指令使消谐电路投入,实现快速消谐。经实际运行证明本装置对各种高频、低频、工频谐振均判断准确,动作迅速,较完善地解决了电力系统中电网的消谐问题,并能记录存储谐振的次数及谐振频率,可广泛适用于发电厂、变电站及钢铁、煤炭、石油化工等大型厂矿企业的电力系统。 二、装置用途: PWX-50 系列微机消谐装置将微机技术用于电网消谐,利用计算机快速、准确的数据处理能力实现快速傅里叶分析,其选频准确。通过对 PT 开口三角电压的采集,对电网谐振时的各种频率成份能快速分析,准确地辨别出:①单相接地;②过渡过程;③电网谐振。如果是谐振,计算机发出指令使消谐电路投入,实现快速消谐。经实际运行证明本装置对各种高频、低频、工频谐振均判断准确,动作迅速,较完善地解决了电力系统中电网的消谐问题,并能记录存储谐振的次数及谐振频率,可广泛适用于发电厂、变电站及钢铁、煤炭、石油化工等大型厂矿企业的电力系统。

交流特高压电网的雷电过电压防护详细版

文件编号:GD/FS-6195 (解决方案范本系列) 交流特高压电网的雷电过电压防护详细版 A Specific Measure To Solve A Certain Problem, The Process Includes Determining The Problem Object And Influence Scope, Analyzing The Problem, Cost Planning, And Finally Implementing. 编辑:_________________ 单位:_________________ 日期:_________________

交流特高压电网的雷电过电压防护 详细版 提示语:本解决方案文件适合使用于对某一问题,或行业提出的一个解决问题的具体措施,过程包含确定问题对象和影响范围,分析问题,提出解决问题的办法和建议,成本规划和可行性分析,最后执行。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 交流特高压电网的雷电过电压及其防护可以分为线路和变电站两个方面。线路的雷电过电压防护包括绕击和反击防护,变电站的雷电过电压防护包括直击雷和侵入波的防护。 1.特高压线路的雷电过电压防护 由于特高压输电线路杆塔高度高,导线上工作电压幅值很大,比较容易从导线上产生向上先导,相当于导线向上伸出的导电棒,从而引起避雷线屏蔽性能变差。这一点不但可从电气几何理论上得到解释,运行情况也提供了佐证。前苏联的特高压架空输电线路运行期间内曾多次发生雷击跳闸,基本原因是在耐张

转角塔处雷电绕击导线。日本特高压架空输电线路在降压运行期间雷击跳闸率也很高,据分析是线路遭到侧面雷击引起了绝缘子闪络。 理论分析和运行情况均表明,特高压输电线路雷击跳闸的主要原因是避雷线屏蔽失效,雷电绕击导线造成的。因此采用良好的避雷线屏蔽设计,是提高特高压输电线路耐雷性能的主要措施。同时还应该考虑到特高压输电线路导线上工作电压对避雷线屏蔽的影响。对于山区,因地形影响(山坡、峡谷),避雷线的保护可能需要取负保护角。 2.特高压变电站的雷电过电压保护 根据我国110~500千伏变电站多年来的运行经验,如果特高压变电站采用敝开式高压配电装置,可直接在变电站构架上安装避雷针或避雷线作为直击雷保护装置;如果采用半封闭组合电器(HGIS)或全封闭

电力系统暂态分析复习大纲内附真题和答案

绪论: 1、电力系统运行状态的分类 答:电力系统的运行状态分为稳态运行和暂态过程两种,其中暂态过程又分为波过程、电磁暂态过程和机电暂态过程。波过程主要研究与大气过电压和操作过电压有关的电压波和电流波的传递过程;电磁过渡过程主要研究与各种短路故障和断线故障有关的电压、电流的变化,有时也涉及功率的变化;机电暂态过程主要研究电力系统受到干扰时,发电机转速、功角、功率的变化。 2、电力系统的干扰指什么? 答:电力系统的干扰指任何可以引起系统参数变化的事件。例如短路故障、电力元件的投入和退出等。 3、为什么说电力系统的稳定运行状态是一种相对稳定的运行状态? 答:由于实际电力系统的参数时时刻刻都在变化,所以电力系统总是处在暂态过程之中,如果其运行参量变化持续在某一平均值附近做微小的变化,我们就认为其运行参量是常数(平均值),系统处于稳定工作状态。由此可见系统的稳定运行状态实际是一种相对稳定的工作状态。 4、为简化计算在电力系统电磁暂态过程分析和机电暂态过程分析中都采用了那些基本假设? 答:电磁暂态分析过程中假设系统频率不变,即认为系统机电暂态过程还没有开始;机电暂态过程中假设发电机内部的机电暂态过程已经结束。 第一章: 1、电力系统的故障类型 答:电力系统的故障主要包括短路故障和断线故障。短路故障(又称横向故障)指相与相或相与地之间的不正常连接,短路故障又分为三相短路、两相短路、单相接地短路和两相短路接地,各种短路又有金属性短路和经过渡阻抗短路两种形式。三相短路又称为对称短路,其他三种短路称为不对称短路;在继电保护中又把三相短路、两相短路称为相间短路,单相接地短路和两相短路接地称为接地短路。断线故障(又称纵向故障)指三相一相断开(一相断线)或两相断开(两相断线)的运行状态。 2、短路的危害 答:短路的主要危害主要体现在以下方面: 1)短路电流大幅度增大引起的导体发热和电动力增大的危害; 2)短路时电压大幅度下降引起的危害;

电压互感器加装一次消谐器的作用及原理

电压互感器加装一次消谐器的作用及原理 在了解电压互感器消中性点谐器的作用之前,我们不妨先探讨一下电力系统的中性点运行方式。在三相交流电力系统中,作为供电电源的发电机和变压器的中性点,有三种运行方式:一种是电源中性点不接地;一种是电源中性点经消弧线圈接地;一种是电源中性点直接接地。前两种合称为中性点非有效接地,或小电流接地系统,后一种中性点直接接地称为中性点有效接地,或大电流接地。 电力系统为中性点经消弧线圈接地,此系统已考虑到消弧接地,在系统的电压互感器中,Yo接线可不考虑加装一次消谐器。 我们一般指PT柜加装消谐器,是指安装在6-35kV电磁式电压互感器一次绕阻Yo结线中性点与地之间的非线性电阻器,起阻尼与限流的作用。在6-35kV发电、变电站,我们经常碰到的是电网中性点不接地,其母线上的Yo接线的电磁式电压互感器一次绕组,成为中性点不接地电网对地的金属通道,电网相对地电容的充、放电途径必然通过电压互感器一次绕组。这种慢变过程使电压互感器铁芯深度饱和,当电网接地消失时,电压互感器一次绕组中会出现数安培幅值的涌流,将电压互感器0.5A高压熔丝熔断。即使这种涌流尚未达到熔断器的熔断值,但仍超过电压互感器额定电流,长时间处于过电流状态下运行的电压互感器会被烧毁,继而引发其他事故。选用一次消谐器,这种现象就不会发生。当单相接地电容电流小于一定的值时,不会在电压互感器一次绕组中出线较大的涌流,对电压互感器和高压熔丝无任何影响,在电压互感器一次侧加装消谐器会给设备运行增加一层防护。 提到电压互感器加装一次消谐器,不要误认为只要是PT柜就加装,因为在2PT柜中,电压互感器为V-V接线,主要用于计量、测量、绝缘监测,这里不存在中性点接地的问题(不可能有电网相对地电容的充、放电途径),不需要加装消谐器。 在有些工程设计中,用户根据现场电网的实际情况,在母线侧已接入一定大小的电容器,使线路的容性阻抗(Xc)与感性阻抗(XL)的比值小于0.01,可避免谐振,在此配电系统中,电压互感器中性点也无需加装消谐器。 总之,在PT中性点加装消谐器,要根据电力网的具体情况和运行方式区分对待,不要盲目地增加,设计增加一次消谐器注意区分半绝缘电压互感器和全绝缘电压互感器所选用的一次消谐器型号不同。

过电压保护(装置)及维护

过电压保护(装置)及维护 一、过电压的定义及分类 1、过电压:超过电力系统最高工作电压的电压,称为过电压。 2、过电压的分类 ①外部过电压(雷电过电压):由电力系统外部的雷电引起的 过电压。 ②内部过电压(操作过电压、谐振过电压):由电力系统内部 原因引起的过电压。 二、过电压保护措施的选用原则 一个世纪以来,始终是遵循着如下原则。 1、选用保护措施、避雷器保护性能、绝缘水平等,归根到底 是经济问题。 保护措施可靠性越高,避雷器保护性能越优,保护系统投资和避雷器售价越大,可以降低绝缘造价或减少运行故障损失得到回报。反之,保护措施可靠性越低,避雷器保护性能越差,保护系统投资和避雷器售价越小,绝缘造价或运行故障损失越大。 总之,选用过电压保护措施,力求达到最佳经济效益。 2、任何防雷技术措施应经实践检验原则 至今,在实验室里不能逼真模拟自然雷。理论计算和模拟试验 只能作某些定性分析。防雷保护技术措施主要依据长期的大量

的运行经验积累,不断地修正和改进。国际上常出现过以假设 为依据的形形色色的防雷保护装置,经实践检验被淘汰掉了。 三、过电压保护措施的发展概况 1、人为制造弱绝缘,最早采用的,也是最简单的是放电间隙。 迄今为止,人们还在应用放电间隙。仅是结构不断改进。放电 间隙存在的问题是不能自动熄灭工频续流电弧。 2、1870~1890年,主要是放电间隙和熔丝构成变电设备防雷 保护装置。 3、1896~1908年,制成羊角放电间隙。为了增强间隙熄弧能 力,在间隙上加装磁吹线圈。为了限制工频续流,间隙串联线 性电阻。随后发展多间隙,构成多间隙又串又并联线性电阻的 防雷保护装置。 4、1907~1920年,发明了氧化铝和氧化铅电阻器来替代多间 隙串并联线性电阻,这是阀式避雷器的原型。 5、1920~1930年,又将氧化铝和氧化铅避雷器加装外串羊角 放电间隙,或内串间隙。比较广泛地采用羊角放电间隙与消弧 线圈配合使用。 6、1930~1940年,发明了碳化硅非线性电阻片。使阀式避雷 器起了质的变化。 7、1940~1950年,碳化硅阀式避雷器迅速发展和普及。至今, 我国仍在采用这种普阀避雷器。即我国第一代阀式避雷器。

过电压保护

电力电子器件的保护 一 、过电压保护 电力电子装置中可能产生的过电压外分为外因过电压和内因过电压两类。外因过电压主要来自雷击和系统中的由分闸、合闸等开关操作引起的。电力电子装置中,电源变压器等储能元器件,会在开关操作瞬间产生很高的感应电压。 内因过电压主要来自电力电子装置内部器件的开关过程,包括: (1)换相过电压:由于晶闸管或者与全控器件反并联的续流二极管在换相结束不能立刻恢复阻断能力,因而有较大的反向电流过,使残存的载流子恢复,而当其恢复了阻断能力时,该反向电流急剧减小,会由线路电感在器件两端感应出过电压。 (2)关断过电压:全控型器件在较高频率下工作,当器件关断时,因正向电流的迅速降低而由线路电感在器件两端感应出的过电压。 电力电子电路常见的过电压有交流测过电压和直流测过电压。常用的过电压保护措施及配置位置如图1-1所示。 S F RV RCD T D C U M RC 1 RC 2 RC 3 RC 4 L B S DC 图9-10 过电压保护措施及装置位置 F ─避雷器 D ─变压器静电屏蔽层 C ─静电感应过程电压抑制电容 1RC ─阀测浪涌过电压抑制用RC 电路 2RC ─阀测浪涌过电压抑制用反向阻断式RC 电路 RV─压敏电阻过电压抑制器 3RC ─阀器件换相过电压抑制用RC 电路 4RC ─直流测RC 抑制电路 RCD─阀器件关断过电压抑制用RCD 电路

过电压保护所使用的元器件有阻容吸收电路、非线性电阻元件硒堆和压敏电阻等,其中RC 过电压抑制电路最为常见。由于电容两端电压不能突变,所以能有效抑制尖峰过电压。串联电阻能消耗部分产生过电压的能量,并抑制回路的振荡。 视变流装置和保护装置点不同,过电压保护电路可以有不同的连接方式。图9-11所示为RC 过电压抑制电路用于交流测过电压抑制的连接方式。 + -+ -a) b) 网侧 阀侧 直流侧 C a R a C a R a C dc R dc C dc R dc C a R a C a R a 图9-11 RC 过电压抑制电路联结方式 a)单相 b)三相 二、过电流保护 过电流分为过载和短路两种情况。过流保护常采用的有快速熔断器、直流快速断路器、过电流继电器保护措施,以晶闸管变流电路为例,其位置配置如图2-1所示。

雷电保护及电力装置过电压防护

第十三章雷电保护及电力装置过电压防护 第一节建筑物防雷 1 建筑物防雷的分类 建筑物应根据其重要性、使用性质、发生雷电事故的可能性和后果,按防雷要求分为三类。 (1) 应划为第一类防雷建筑物: 一、凡制造、使用或贮存炸药、火药、起爆药、火工品等大量爆炸物质的建筑物,因电火花而引起爆炸,会造成巨大破坏和人身伤亡者。 二、具有0区或10区爆炸危险环境的建筑物。 三、具有1区爆炸危险环境的建筑物,因电火花而引起爆炸,会造成巨大破坏和人身伤亡者。 (2) 应划为第二类防雷建筑物: 一、国家级重点文物保护的建筑物。 二、国家级的会堂、办公建筑物、大型展览和博览建筑物、大型火车站、国宾馆、国家级档案馆、大型城市的重要给水水泵房等特别重要的建筑物。 三、国家级计算中心、国际通讯枢纽等对国民经济有重要意义且装有大量电子设备的建筑物。 四、制造、使用或贮存爆炸物质的建筑物,且电火花不易引起爆炸或不致造成巨大破坏和人身伤亡者。 五、具有1区爆危险环境的建筑物,且电火花不易引起爆炸或不致造成巨大破坏和人身伤亡者。 六、具有2区或11区爆炸危险环境的建筑物。 七、工业企业内有爆炸危险的露天钢质封闭气罐。 八、预计雷击次数大于0.06次/a的部、省级办公建筑物及其它重要或人员密集的公共建筑物。 九、预计雷击次数大于0.3次/a的住宅、办公楼等一般性民用建筑物。 (3) 应划为第三类防雷建筑物: 一、省级重点文物保护的建筑物及省级档案馆。 二、预计雷击次数大于或等于0.012次/a,且小于或等于0.06次/a的部、省级办公建筑物及其重要或人员密集的公共建筑物。 三、预计雷击次数大于或等于0.06次/a,且小于或等于0.3次/a的住宅、办公楼等一般性民用建筑物。 四、预计雷击次数大于或等于0.06次/a的一般性工业建筑物。 五、根据雷击后对工业生产的影响及产生的后果,并结合当地气象、地形、地质及周围环境等因素,确定需要防雷的21区、22区、23区火灾危险环境。 六、在平均雷暴日大于15d/a的地区,高度在15m及以上的烟囱、水塔等孤立的高耸建筑物;在平均雷暴日小于或等于15d/a的地区,高度在20m及以上的烟囱、水塔等孤立的高耸建筑物。 2 建筑物的防雷措施 (1) 一般规定 一、各类防雷建筑物应采取防直击雷和防雷电波侵入的措施。 第一类防雷建筑物和四、五、六款所规定的第二类防雷建筑物尚应采取防雷电感应的措

消弧消谐及过电压保护装置

AL-XHZ系列消弧消谐及过电压保护装置 一、概述 传统消弧技术概述 长期以来,我国3~66KV的电网大多采用中性点不接地的运行方式。这种电网具有结构简单、投资小,供电可靠性高的优点。该电网发生稳定单相接地故障时,系统线电压不变,只是非故障相的对地电压升高到线电压,虽然该系统中的电气设备的绝缘均可承受长期线电压的强度可以带故障运行两小时。但是,如果系统发生的单向接地故障为间歇性弧光接地,则会在系统中产生高达3.5倍相电压峰值的过电压,如此高的过电压如果数小时作用于电网,会对电气设备的绝缘造成损伤,甚至会造成健全相对地绝缘击穿,进而发展成为相间短路事故。在间歇性弧光接地过程中,还会形成多频段振荡回路,不仅会产生高幅值的相对地过电压,而且还可能出现高幅值相间过电压,使相间绝缘闪络,造成相间短路事故。 随着我国对城市及农村电网的大规模技术改造,城市、农村的配电网必定向电缆化发展,系统对地电容电流在逐渐增大,弧光接地过电压问题也日益严重起来。运行经验证明,当这类电网发展到一定规模时,内部过电压,特别是电网发生单相间歇性孤光接地时产生的孤光接地过电压,及特殊条件下产生的铁磁谐振过电压已成为这类电网设备安全运行的一大威胁,其中以单相弧光接地过电压最为严重。为了解决上述问题,不少电网在电网中性点装设消弧线圈,当系统发生单相弧光接地时,利用消弧线圈产生的感性电流对故障点电容电流进行补偿,使流经故障电流减小,从而达到自然熄弧的目的。运行经验表明,虽然消弧线圈对抑制间歇性弧光接地过电压有一定作用,但在使用中也发现消弧线圈存在的一些问题。 1、由于电网运行方式的多样化及弧光接地点的随机性,消弧线圈要对电容电流进行有效补偿却有难度,且消弧线圈仅仅补偿了工频电容电流,而实际通过接地点的电流不仅有工频电容电流,而且包含大量的高频电流及阻性电流,严重时仅高频电流及阻性电流就可以维持电弧的持续燃烧。 2、当电网发生断线、非全向、同杆线路的电容耦合等非接地故障,使电网的不对称电压升高,可能导致消弧线圈的自动调节控制器误判电网发生接地而动作,这时将会在电网中产生很高的中性点位移电压,造成系统中一相或两相电压升高很多,以致损坏电网中的其它设备。 3、消弧线圈体积大,组件多,成本高,安装所占场地较大,运行维护复杂,而且随着电网的扩大,消弧线圈也要随之更换,不利于电网的远景规划。

电力系统过电压复习重点

.电磁暂态分析的理论基础 1、电源合闸至单频振荡电路,在电容元件上产生的最大过电压幅值为,Ucm=稳态值+振荡幅值=稳态值+(稳态值—初始值)=2*稳态值—初始值 2、导致波在传播过程产生损耗的因素主要有以下四种:1)导线电阻引起损耗;2)导线对 地电导引起的损耗;3)大地电阻的损耗;4)导线发生电晕引起的损耗。 3、冲击电晕对波过程的影响 对导线耦合系数的影响:发生冲击电晕后,在导线周围形成导电性能较好的电晕套,在这个电晕区内充满电荷,相当于扩大了导线的有效半径,因而与其它导线间的耦合系数也增大。 对波阻抗和波速的影响:冲击电晕将使线路波阻抗减小、波速减小 对波形的影响:冲击电晕减小波的陡度、降低波的幅值的特性,有利于变电所的防雷保护。 4.一般连续式变压器绕组的αl值为5~10。变压器绕组的末端不论接地与否,其初始电压分布均相同,按指数规律分布。 最大电位梯度出现在绕组的首端。冲击电压波作用于变压器绕组初瞬,绕组首端的电位梯度是平均电位梯度的αl倍。αl越大,电位分布越不均匀,相应绕组的抗冲击能力越差。(危及变压器绕组的首端匝间绝缘) 5.变压器绕组中的电磁振荡过程在10μs以内尚未发展起来,在这段时间内变压器绕组的特性主要由其纵向电容和对地电容组成的电容链决定,对首端来说相当于一个等效集中电容Cr,称为变压器的入口电容。 6.最大电位梯度均出现在绕组首端,其值等于αU0,对变压器绕组的纵绝缘(匝间绝缘)有危害。绕组内的波过程除了与电压波的幅值有关外,还与作用在绕组上的冲击电压波形有关。过电压波的波头时间越长(陡度越小),由于电感分流的影响,振荡过程的发展比较和缓,绕组各点的最大对地电压和纵向电位梯度都将下降;反之则振荡越激烈。波尾也有影响,在短波作用下,振荡过程尚未充分激发起来时,外加电压已经大为减小,导致绕组各点的对地电压和电位梯度也比较低。 截波作用下绕组内的最大电位梯度将比全波作用时大,会在变压器绕组中产生很大的电位梯度,从而危及变压器绕组的纵绝缘,电力变压器不仅需要进行全波冲击耐压试验,还要通过截波耐压试验。 7.三相变压器绕组,三角形接线方式(Δ) 对于三角形接线的变压器,当冲击电压波沿一相线路(A相)入侵时,同样因为绕组的冲击波阻抗远大于线路波阻抗,所以B、C两端点相当于接地,因此在AB、AC绕组中的波过程与单相绕组末端接地的情况相同。 若发生两相或三相线路进波,则三角形接线的每相绕组两端同时有波侵入,当波传到绕组中部时,相当于波传到开路末端的情况,会产生较高的过电压,在各相绕组的中部出现的最大对地电位将达2U0。 8.变压器绕组内部保护的关键措施是:改善绕组的初始电位分布,使初始电位分布尽可能地接近稳态电位分布。这可有效地降低作用在绕组纵绝缘上的电位梯度,并削弱振荡,减小振荡过电压的幅值.。 (1)补偿对地电容C0dx的影响;(静电环) (2)增大纵向电容K0/dx (纠结式绕组) 变压器和电机绕组内部暂态过程 1 在冲击电压作用下,变压器绕组的初始电压分布对变压器绝缘有何影响?如何改善绕组初始电压分布:初始电压分布要尽量接近稳态电压分布,可有效降低作用在绕组纵绝缘上的电

电压互感器消谐措施

电压互感器消谐措施 长期以来,石河子电网6~35 kV系统均采用不接地运行方式。这种运行方式在系统发生单相接地时,允许一定的时间内带故障运行,因而大大提高了系统的供电可靠性。随着区域电网的超前发展,系统对地电容也迅速增大。在系统发生某些扰动时,极易引发系统内电磁式电压互感器的饱和,激发谐振过电压,导致系统接地电压互感器(TV)高压保险熔断烧毁,严重时出现设备闪络跳闸。根据本地区电网的实际情况,选择了不同的措施来抑制由于TV 饱和引起的谐振过电压。 关键词:电压互感器消谐措施选择 长期以来,石河子电网6~35 kV系统均采用不接地运行方式。这种运行方式在系统发生单相接地时,允许一定的时间内带故障运行,因而大大提高了系统的供电可靠性。随着区域电网的超前发展,系统对地电容也迅速增大。在系统发生某些扰动时,极易引发系统内电磁式电压互感器的饱和,激发谐振过电压,导致系统接地电压互感器(TV)高压保险熔断烧毁,严重时出现设备闪络跳闸。根据本地区电网的实际情况,选择了不同的措施来抑制由于TV 饱和引起的谐振过电压。 1 TV三角形开口装设消谐电阻 由110/35 kV紫泥泉变电站35 kV设备,35 kV红沟变电站及石场变电站的35 kV设备,以及它们之间的35 kV联络线(紫红线:20 km,紫石线:8 km)组成局部的35 kV系统,其所带的负荷常年在较低水平,自建成后,频繁发生谐振,每年都有数个35 kV TV喷油烧毁,损失惨重。严重威胁着电网的安全运行。经由分析该系统发生分频谐振的区域为 XC0/XL = 0.01~0.08 (1) 发生基波谐振的区域为 XC0/XL = 0.08~0.5 (2) 式中XC0——系统的零序电容容抗; XL——电压互感器(tv)单相绕组在额定线电压下的激磁阻抗。 输电线路的电容电流一般采用下式计算 I C0= 3Uφ(1/Xco)×103 (3) 式中Uφ——相对地电压,kV。 由式(3)可求得该35 kV系统零序电容容抗XC0为0.0187 MW。这几个站的JDJJ2-35

电力系统雷电过电压防护综述1

雷电过电压研究及防护 摘要:雷电过电压对电力系统破坏是非常严重的,雷电放电的危害形式主要有直接雷击、感应雷击、雷电过电压侵入、反击。对于输电线路的防护我们通过安装避雷器、避雷线、降低接地电阻、架设耦合地线的方法降低雷击概率;对于变电站我们可以通过采取进线段保护和侵入波保护的方法减小雷击对电站带来的危害;目前一般采用电磁仿真软件ATP-EMTP和PSCAD/EMTDC对输电线路和变电站进行防雷性能的分析,并给出合理的建议。 关键词:雷电过电压;雷电保护;电磁仿真软件 0引言 雷电是大气中集声、光、电、热极为壮观的自然现象,它对人们的生活、生产有着重大影响作用。但是,在现代生活中,雷电也给人类各行各业带来巨大的危害。据美国的保守估计,主要由于雷电冲击导致计算机网络系统失效或损坏,平均每年约占全部故障的。据我国一些省市统计,因雷害作用,电子设备的直接损失约占雷电灾害总损失 的80%。输电线路的电压等级越高,遭受自 然雷害的几率也随着增加。 雷云放电一般经过三个过程先导放电阶段、主放电阶段、余光放电阶段。主放电阶段存在时间极短,电流极大,可达数十乃至数百千安,这个时间造成的危害是巨大的。雷电的危害一般分为直击雷和雷电感应。直击雷击中人体、建筑物、设备时,会产生巨大的光和热,强大的雷电流转变为热能。雷电流在闪击中直接进入金属管道或导线时,它们沿着金属管道或导线可以传送到很远的地方。除了沿管道或导线产生的电或热效应,破坏其机械和电气连接之外,当它侵入与此相连的金属设施或用电设备时,还会对金属设施或用电设备的机械结构产生破坏作用,并危及有关操作和使用人员的安全。直击雷或感应雷都可能使导线或金属管道产生过电压。这种过电压沿着导线或金属管道从远处雷区或防雷保护区域之外传来,侵入建筑物内部或设备内部,而使建筑物结构、设备部件损坏或人员的伤亡。同时,当雷电击中到建筑物时,雷电流幅值大,波头陡度高,雷电流流过时也会使接地引下线和接地装置的电位骤升到上百千伏,有可能会将工作接地引入反击电流,造成人身和设备雷击事故。 因此,如何切实有效地制定及改善输电线路和变电站的防雷措施,已经成为确保电力系统安全、可靠、稳定运行的重要工作之一。本文分别从输电线路防雷和变电站防雷的方法进行了简单的介绍,希望对输电线路和变电站防雷设计提供参考。 1 输电线路的防雷措施 目前在防雷工作方面,人们主要是通过架设避雷器、架设避雷线、降低杆塔接地电阻,提高绝缘水平、安装一系列的其他保护装置以及选择适合中线点的接地运行方式等。 1.1 安装避雷器 输电线路是通过采用架设避雷器的办法,可以在当雷电击中线路时将一部分雷电电流通过雷电杆塔将其引入大地,从而达到对输电线路保护的效果。而且如果线路中有较大的雷电电流流过时,通过采用架设避雷器的办法,还可以达到对雷电电流进行分流的效果,大量的雷电电流被引入到地下。考虑经济因素的影响,在确保一定耐雷水平的前提下,往往没有必要在所有相都安装避雷器, 对于文献[1]中根据220KV同塔双回路的建模 分析得出,考虑单相、两相、三相和四相的耐雷水平,两相安装时均应选取在中层安装这种形式。 1.2 降低接地电阻 对于不同的电压等级,输电线路杆塔的接地电阻大小都有严格规定。在高电阻率地区,我们还需要通过接地电阻降阻剂、爆破接地技术、多支外引式接地装置、伸长水平接地体的方法来降低接地电阻;通过降低接地电阻可以提高线路耐雷水平、降低雷击跳

相关主题
文本预览
相关文档 最新文档