当前位置:文档之家› 微生物发酵过程简介

微生物发酵过程简介

微生物发酵过程简介
微生物发酵过程简介

微生物发酵过程即微生物反应过程,是指由微生物在生长繁殖过程中所引起的生化反应过程。

根据微生物的种类不同(好氧、厌氧、兼性厌氧),可以分为好氧性发酵和厌氧性发酵两大类。(1)好氧性发酵在发酵过程中需要不断地通人一定量的无菌空气,如利用黑曲霉进行柠檬酸发酵、利用棒状杆菌进行谷氨酸发酵、利用黄单抱菌进行多糖发酵等等。

(2)厌氧性发酵在发酵时不需要供给空气,如乳酸杆菌引起的乳酸发酵、梭状芽抱杆菌引起的丙酮、丁醇发酵等。

(3)兼性发酵酵母菌是兼性厌氧微生物,它在缺氧条件下进行厌气性发酵积累酒精,而在有氧即通气条件下则进行好氧性发酵,大量繁殖菌体细胞。

按照设备来分,发酵又可分为敞口发酵、密闭发酵、浅盘发酵和深层发酵。

一般敞口发酵应用于繁殖快并进行好氧发酵的类型,如酵母生产,由于其菌体迅速而大量繁殖,可抑制其他杂菌生长。所以敞口发酵设备要求简单。相反,密闭发酵是在密闭的设备内进行,所以设备要求严格,工艺也较复杂。浅盘发酵(表面培养法)是利用浅盘仅装一薄层培养液,接人菌种后进行表面培养,在液体上面形成一层菌膜。在缺乏通气设备时,对一些繁殖快的好氧性微生物可利用此法。深层发酵法是指在液体培养基内部(不仅仅在表面)进行的微生物培养过程。

液体深层发酵是在青霉素等抗生素的生产中发展起来的技术。同其他发酵方法相比,它具有很多优点:

1. 液体悬浮状态是很多微生物的最适生长环境。

2. 在液体中,菌体及营养物、产物(包括热量)易于扩散,使发酵可在均质或拟均质条件下进行,便于控制,易于扩大生产规模。

3. 液体输送方便,易于机械化操作。

4. 厂房面积小,生产效率高,易进行自动化控制,产品质量稳定。

5. 产品易于提取、精制等。因而液体深层发酵在发酵工业中被广泛应用。

4.2.1 工业生产常用微生物

微生物资源非常丰富,广布于土壤、水和空气中,尤以土壤中为最多。有的微生物从自然界中分离出来就能够被利用,有的需要对分离到的野生菌株进行人工诱变,得到突变株才能被利用。当前发酵工业所用菌种的总趋势是从野生菌转向变异菌,从自然选育转向代谢控制育种,从诱发基因突

变转向基因重组的定向育种。工业生产上常用的微生物主要是细菌、放线菌、酵母菌和霉菌,由于发酵工程本身的发展以及遗传工程的介人,藻类、病毒等也正在逐步地变为工业生产用的微生物。其他微生物有担子菌、藻类。

4.2.2 培养基

4.2.2.1 培养基的种类

培养基是人们提供微生物生长繁殖和生物合成各种代谢产物需要的多种营养物质的混合物。培养基的成分和配比,对微生物的生长、发育、代谢及产物积累,甚至对发酵工业的生产工艺都有很大的影响。依据其在生产中的用途,可将培养基分成抱子

培养基、种子培养基和发酵培养基等。

(1)抱子培养基抱于培养基是供制备泡子用的。

(2)种于培养基种子培养基是供抱子发芽和菌体生长繁殖用的。

(3)发酵培养基发酵培养基是供菌体生长繁殖和合成大量代谢产物用的。

4.2.2.2 发酵培养基的组成

发酵培养基的组成和配比由于菌种不同。设备和工艺不同以及原料来源和质量不同而有所差别。因此,需要根据不同要求考虑所用培养基的成分与配比。但是综合所用培养基的营养成分,不外乎是碳源(包括用作消泡剂的油类)、氮源、无机盐类(包括微量元素)、生长因子、水、产物形成的诱导物、前体和促进剂等几类。

4.2.3

发酵的一般过程

生物发酵工艺多种多样,但基本上包括菌种制备、种子培养、发酵和提取精制等下游处理几个过程。以下以霉菌发酵为例加以说明。

4..2.3.1 菌种

在进行发酵生产之前,公先必须从自然界分离得到能产生所需产物的菌种,并经分离、纯化

及选育后或是经基因工程改造后的"工程菌".才能供给发酵使用。为了能保持和获得稳定的高产菌株,还需要定期进行菌种纯化和育种,筛选出高产量和高质录的优良菌株。

4.2.3.2 种子扩大培养

种子扩大培养是指将保存在砂上管。冷冻干燥管或冰箱中处于休眠状态的生产菌种,接入试管斜面活化后,再经过茄子瓶或摇瓶及种子罐逐级扩大培养而获得一定数量和质量的纯种的过程。这些纯种培养物称为种子。

发酵产物的产量与成品的质量,与菌种性能以及抱于和种子的制备情况密切相关。先将贮存的菌种进行生长繁殖,以获得良好的抱子,再用所得的抱子制备足够量的菌丝体,供发酵罐发酵使用。种子制备有不同的方式,有的从摇瓶培养开始,将所得摇瓶种于液接入到种子罐进行逐级扩大培养,称为菌丝进罐培养;有的将泡了百接接人种子罐进行扩大培养,称为抱子进罐培养。采用哪种方式和多少培养级数,取决于菌种的性质。生产规模的人小和生产厂艺的特点,种于制备一般使用种于罐,扩人培养级数通常为二级。对于不产孢子的菌种,经试管培养直接得到菌体,再经摇瓶培养后即可作为种子罐种子。

4.2.3.3 发酵

发酵是微生物合成大量产物的过程,是整个发酵工程的中心环节。它是在无菌状态下进行纯种培养的过程。因此,所用的培养基和培养设备都必须经过灭菌,通人的空气或中途的补料都是无菌的,转移种子也要采用无菌接种技术。通常利用饱和蒸汽对培养基进行灭菌,灭菌条件是在120℃(约0.1 Mpa表压)维持20~30 min。空气除菌则采用介质过滤的方法,可用定期灭菌的干燥介质来阻截流过的空气中所含的微生物,从而制得无菌空气。发酵罐内部的代谢变化(菌丝形态、菌浓、糖、氮含量、pH值,溶氧浓度和产物浓度等)是比较复杂的,特别是次级代谢产物发酵就更为复杂,它受许多因素控制。

4.2.3.4 下游处理

发酵结束后,要对发酵液或生物细胞进行分离和提取精制,将发酵产物制成合乎要求的成品。

微生物发酵工艺

第六章微生物发酵制药工艺 6.1 微生物发酵与制药 6.2 微生物生长与生产的关系 6.3 微生物生产菌种建立6.4 发酵培养基制备 6.4 发酵培养基制备 ? 概念(medium)供微生物生长繁殖和合成各种代谢产物所需要 的按一定比例配制的多种营养物质的混合物。 ? 培养基的组成和比例是否恰当,直接影响微生物的生长、生产和工艺选择、产品质量和产量。 6.4.1 培养基的成分 碳源 氮源无机盐水生长因子 前体与促进剂 消泡剂 1、碳源(carbon sources) 概念: 构成微生物细胞和代谢产物中碳素的营养物质。作用:为正常生理活动和过程提供能量来源,为细胞物质和代谢产物的合成提供碳骨架。 碳源种类 糖类:葡萄糖、淀粉、糊精和糖蜜 脂肪:豆油、棉籽油和猪油醇类:甘油、乙醇、甘露醇、山梨醇、肌醇蛋白类:蛋白胨、酵母膏速效碳源:糖类、有机酸 迟效碳源:酪蛋白水解产生的脂肪酸 2、氮源(nitrogen sources) 概念:构成微生物细胞和代谢产物中氮素的营养物质。 作用:为生长和代谢主要提供氮素来源。种类:无机氮源、有机氮源 有机氮源 几乎所有微生物都能利用有机氮源 黄豆饼粉、花生饼粉 棉籽饼粉、玉米浆、蛋白\胨、酵母粉、尿素 无机氮源 氨水、铵盐和硝酸盐等。氨盐比硝酸盐更快被利用。 工业应用:主要氮源或辅助氮源;调节pH值生理酸性物质:代谢后能产生酸性残留物质。(NH4)2SO4利用后,产生硫酸 生理碱性物质:代谢后能产生碱性残留物质。硝酸钠利用后,产生氢氧化钠。 3、无机盐和微量元素 ? 概念:组成生理活性物质或具有生理调节作用矿物质 ? 作用方式:低浓度起促进作用,高浓度起抑制作用。? 种类:盐离子 磷、硫、钾、钠、镁、钙,常常添加 铁、锌、铜、钼、钴、锰、氯,一般不加。 4、水 菌体细胞的主要成分。 营养传递的介质。良好导体,调节细胞生长环境温度。培养基的主要成分之一。 5、生长因子(growth factor)

微生物发酵培养基的优化方法

工业发酵进展

微生物发酵培养基的优化方法 对于微生物的生长及发酵,其培养基成份非常复杂,特别是有关微生物发酵的培养基,各营养物质和生长因子之间的配比,以及它们之间的相互作用是非常微妙的。面对特定的微生物,人们希望找到一种最适合其生长及发酵的培养基,在原来的基础上提高发酵产物的产量,以期达到生产最大发酵产物的目的。发酵培养基的优化在微生物产业化生产中举足轻重,是从实验室到工业生产的必要环节。能否设计出一个好的发酵培养基,是一个发酵产品工业化成功中非常重要的一步。以工业微生物为例,选育或构建一株优良菌株仅仅是一个开始,要使优良菌株的潜力充分发挥出来,还必须优化其发酵过程,以获得较高的产物浓度(便于下游处理),较高的底物转化率(降低原料成本)和较高的生产强度(缩短发酵周期)。设计发酵培养基时还应时刻把工 实验室最常用的优化方法是单次单因子法,这种方法是在假设因素间不存在交互作用的前提下,通过一次改变一个因素的水平而其他因素保持恒定水平,然后逐个因素进行考察的优化方法。但是由于考察的因素间经常存在交互作用,使得该方法并非总能获得最佳的优化条件。另外,当考察的因素较多时,需要太多的实验次数和较长的实验周期[3]。所以现在的培养基优化实验中一般不采用或不单独采用这种方法,而采用多因子试验。 2.多因子试验 多因子试验需要解决的两个问题: (1)哪些因子对响应具有最大(或最小)的效应,哪些因子间具有交互作用。 (2)感兴趣区域的因子组合情况,并对独立变量进行优化。

3.正交实验设计 正交实验设计是安排多因子的一种常用方法,通过合理的实验设计,可用少量的具有代表性的试验来代替全面试验,较快地取得实验结果。正交实验的实质就是选择适当的正交表,合理安排实验的分析实验结果的一种实验方法。具体可以分为下面四步: (1)根据问题的要求和客观的条件确定因子和水平,列出因子水平表; (2)根据因子和水平数选用合适的正交表,设计正交表头,并安排实验; (3)根据正交表给出的实验方案,进行实验; (4)对实验结果进行分析,选出较优的“试验”条件以及对结果有显著影响的因子。 正交试验设计注重如何科学合理地安排试验,可同时考虑几种因素,寻找最佳因 次 报道。CastroPML报道用此法设计20种培养基,做24次试验,把gamma干扰素的产量提高了45%。 6.部分因子设计法 部分因子设计法与P1ackett-Burman设计法一样是一种两水平的实验优化方法,能够用比全因子实验次数少得多的实验,从大量影响因子中筛选出重要的因子。根据实验数据拟合出一次多项式,并以此利用最陡爬坡法确定最大响应区域,以便利用响应面法进一步优化。部分因子设计法与Plaekett-Burman设计法相比实验次数稍多,如6因子的26-2部分因子设法需要进行20次实验,而Plackett-Burman设计法只需要7次实验。 7.响应面分析法

微生物与发酵过程

第五章微生物与发酵工程【菜单】

【精解】 例1.所有细菌都是() A.异养型 B.寄生 C.腐生 D.以上都不对 解析:细菌的代谢类型和生活方式多种多样,既有化能自养,如硝化细菌,又有光能自养,如光合细菌,还有很多细菌是异养型生物,如大肠杆菌。有的细菌营腐生生活,在生态系统中是分解者,如圆褐固氮菌,有的细菌营寄生生活,在生态系统中是消费者,如使人致病的结核杆菌。所以,关于细菌的代谢类型和生活方式不能一概而论。答案选D。 例2.控制细菌合成抗生素性状的基因,控制放线菌主要遗传性状的基因,控制病毒抗原特异性的基因依次位于() ①核区大型环状DNA上②质粒上③细胞核染色体上④衣壳内核酸上 A.①③④ B.①②④ C.②①③ D.②①④ 解析:细菌的核区里有一个大型环状的DNA分子,细胞质的质粒也是小型的环状DNA分子。其中,大部分的性状由核区DNA上的基因控制,而控制细菌合成抗生素的基因、抗药性基因和固氮基因等却在质粒上;放线菌也是原核生物,核区内也有大型的DNA分子,控制着放线菌主要的遗传性状,病毒的基因只在核酸上,而蛋白质外壳没有基因。以上三类生物都没有染色体。答案选D。 例3.“非典”的病原体SARS病毒是RNA病毒,据报道,SARS疫苗的研究已取得突破性进展,

不久将进行临床实验。下列关于SARS病毒及疫苗的叙述正确的是() A.SARS病毒的遗传物质的组成中含有5种碱基,8种核苷酸 B.接种SARS疫苗能增强人体免疫力是因为接种了SARS抗体 C.可用含碳源、氮源、生长因子、水、无机盐的普通培养基培养SARS病毒 D.决定其抗原特异性的是SARS病毒的衣壳 解析:SARS病毒是RNA病毒,因此组成它遗传物质的碱基有A.U.C.G4种,只有4种核苷酸。而病毒只能寄生在活细胞内,因此,用普通培养基是不能培养病毒的;决定病毒抗原特异性的是衣壳部分。若SARS疫苗研制成功,它可能是经过处理的已经没有毒性或毒性极弱的SARS 病毒或者是其衣壳部分,注入人体能起到抗原作用,即能刺激人体产生抗体;因此,接种的是抗原而不是抗体。本题容易错选为C,主要是没有正确掌握病毒的生活方式。答案选D 例4.下列关于病毒的叙述,正确的是() A.病毒都含单链RNA或单链DNA B.侵染宿主细胞前,病毒自身不带有任何酶 C.病毒结构成分中只有蛋白质和核酸 D.病毒结构中有时可能装配有寄主细胞中的某些成分 解析:病毒的核酸只有一类,有的是DNA,有的RNA;有的病毒DNA是双链的,有的病毒DNA 是单链的。有的病毒RNA是单链的,也有的病毒RNA是双链的;有的病毒在侵染宿主细胞前带有一些酶,如艾滋病病毒自身带有逆转录酶,T2噬菌体带有溶菌酶。简单的病毒如烟草花叶病毒的结构成分只有蛋白质和核酸,而有些病毒如流感病毒除了核衣壳外,还带有囊膜,因此,组成成分中除了蛋白质和核酸外,还有少量脂质和糖类。所以,病毒结构成分不是只有蛋白质和核酸。因为,衣壳和核酸的组装在寄主细胞中进行,所以,有时可能装配有寄主细胞中的某些成分。答案选D 例5.下列有关微生物营养物质的叙述中,正确的是() A.作为碳源的物质不可能同时是氮源 B.凡是碳源都能提供能量 C.除水以外的无机物只提供无机盐 D.无机氮源也能提供能量 解析:碳源是指能给微生物提供碳元素的物质,而氮源是指能给微生物提供氮元素的物质,有的物质如氨基酸中,即有碳元素又有氮元素,因此可作为异养微生物的碳源和氮源。自养微

微生物与发酵工程

微生物与发酵工程 13101002 朱梦雪发酵工程是生物工程的重要组成部分,也是现代微生物学的核心内容;任何产品的发酵生产都必须通过微生物发酵或细胞扩大培养才能实现。因此,微生物与发酵是紧紧联系在一起的。微生物发酵工程是加快发酵工程研究成果转化为生产力,取得最佳效益的重要手段。微生物科学工作者应不失时机地积极而科学地运用这种手段为社会社会主义市场经济服务。 根据文献的调查,微生物的发酵工程主要应用于以下几点: 首先是在农业生产上,巴西全国土壤生物研究中心的研究人员发现一种新固氮菌,即固氮醋杆菌(Aeetobaeterdiazotrophyeus)。这是人类发现的第一个有固氮能力的醋杆菌,生活在甘蔗根部,具有很强的抗酸性。由于它的高效固氮能力,可使甘蔗年产量提高2倍(由60吨/公顷提高到180吨/公顷)。在固氮菌的研究方面,我国作物茎瘤固氮根瘤菌的高效固氮活性,以及小麦、玉米、陆生水稻固氮根瘤菌研究取得重要进展;英国诺丁汉大学一个研究小组也获得田著根瘤菌进入小麦、水稻、玉米和油菜等非豆科植物侧根中形成小根瘤,且有固氮作用的类似结果。今年拟在埃及、印度、墨西哥分别进行小麦、水稻、玉米的田间试验。这些非豆科专性共生固氮菌尚处在试验研究阶段。而我国联合固氮微生物早已产业化生产,其产品推广应用于农业生产实践,获得了增产的效果。近又发现一些新的联合固氮菌如产酸克氏杆菌、植皮克氏杆菌(Klebsiellaplantieola)等,为扩大联合固

氮菌AIJ新品种的研制做出了新贡献。 其次是在生物材料方面。有很多生物材料都是应用微生物发酵来生产的。我了解到的有生物可降塑料、建筑用生物材料和壳聚糖材料。 生物可降解塑料:微生物合成塑料物质:加拿大蒙特利尔生物技 术研究所以甲醇为原料利用从土壤中选育的嗜甲基细菌生产聚件轻 基丁酸(PHB),在我国,武汉大学生物工程研究中心用圆褐固氮菌发酵生产PHB;中国科学院微生物研究所用真养产碱杆菌生产PHB,在培养基中累积的量达细胞干重的63%(W/W);山东大学微生物研究所用该菌生产PHB的研究取得类似结果。 建筑用生物材料:某些微生物及其代谢产物如橡胶物质、弹力纤维、高分子多糖等作为混凝土添加剂,制造富有弹性的牢固的生物混凝土材料是有可能的,提供生物建筑材料的另一种可能性是某些微生物—蓝细菌或微型藻类,它们有分泌石灰石(碳酸钙)能力。 多用途的壳聚糖材料:壳聚糖又叫脱乙酞基多糖,用途极其广泛,几乎各个行业都用得着它。从微生物发酵生产,如真菌细胞壁含几丁质成分20%一22%,毛霉细胞壁中几丁质含量高达30写一40%,利用黑曲霉或其他真菌来生产壳聚糖是完全可能的。 还有就是利用微生物发酵生产两类重要有机酸这里着重介绍两 类重要有机酸,都有可能通过微生物发酵途径索取。 衣康酸(itaconicac记)进人规模生产:衣康酸又称甲叉丁二酸,系一种不饱和的二梭酸,用途广、需求量大,它是制造合成树脂、合成纤维、塑料、橡胶、表面活性剂、去垢剂、润滑油添加剂等的原料,

微生物制药工艺

第一章概述 1、微生物制药是利用微生物技术,通过高度工程化的综合性技术,以利用微生物反应过程为基础,依赖于微生物机体在反应器内的生长繁殖及代谢过程来合成一定产物,通过分离纯化进行提取精制,并最终制剂成型来实现药物产品的生产。 传统微生物药物: 主要指微生物合成的抗生素。 现代微生物药物: 指由微生物在其生命活动过程中产生的、具有生理活性(抗微生物感染、抗肿瘤、特异性酶抑制剂、免疫调节等作用)的次级代谢产物及其衍生物。 2、微生物药品种类:包括抗生素、维生素、氨基酸、核酸、酶及酶抑制剂、免疫抑制剂、生物制品、甾体激素等药物。 3、掌握微生物制药的一般生产过程。 答:微生物制药工艺过程一般包括菌体生产及代谢产物或转化产物的发酵生产。 其主要内容包括生产菌种的选育培养及扩大,培养基的制备,设备与培养基的灭菌,无菌空气的制备,发酵工艺控制,产物的分离、提取与精制,成品的检验与包装等。 4、微生物制药的工业发酵类型:微生物菌体发酵;微生物酶发酵;微生物代谢产物发酵;微生物转化发酵。 5、了解微生物制药的特点。 答:以活的生命体(微生物)作为目标反应的实现者,反应过程中既涉及特异的化学反应的实现又涉及生命个体的生长发育及代谢,生物反应机理非常复杂,较难控制,反应液中杂质也多,不容易提取、分离; 反应通常在常温常压下进行,条件温和,能耗小,设备较简单;微生物发酵过程是微生物菌体非正常的、不经济代谢过程,生产过程中应为其代谢活动提供良好的环境。因此,需防止杂菌污染,要进行严格冲洗、灭菌,空气需要过滤等;微生物药物生产周期长,生产稳定性差,技术复杂,不确定因素多,废物排放及治理要求高,难度大;现代微生物制药的最大特点是高技术含量、智力密集、全封闭自动化、全过程质量控制、大规模反应器生产和新型分离技术综合利用等。 第二章抗生素概论 1、半合成抗生素:将天然代谢产物再用化学、生物或生化方法进行分子结构改造,制成的各种衍生物。氨苄西林 2、次级代谢:微生物在一定的生长时期(一般是稳定生长期),以初级代谢产物为前体,合成一些对微生物的生命活动没有明确功能的物质的过程 次级代谢产物:微生物在细胞分化过程中产生的,往往不是细胞生长所必需的代谢产物,对细胞生长并不具有明显的作用,而且通常由一簇结构相似的化合物组成。 3、抗生素的主要产生菌是:产抗生素的微生物中,以放线菌为最多,其次是真菌和细菌。除微生物外,还有来源于植物、动物和海洋微生物的抗生素。 4、医疗用抗生素应具备的条件:难使病源菌产生耐药性;较大的差异毒力;最小抑菌浓度要低;抗菌谱要广。 5、抗生素剂量的表示法 答:合理使用抗生素的剂量十分重要。 抗生素在应用时剂量很小,因此除质量外,更常用特定的效价单位(简称单位)表示。单位是衡量抗生素有效成分的一种尺度。 目前国际上抗生素活性单位表示方法主要有两种:一是指定单位(unit);二是活性质量(μg)。 6、管碟法测定抗生素效价的原理:在培养过程中,小管中的抗生素向培养基中呈球面扩散,与此同时试验菌也开始生长。抗生素浓度高于最小抑菌浓度之处,试验菌不能生长,出现抑菌圈,其圈之边缘处就是最低抑菌浓度。 7、抗生素生产工艺过程:菌种→孢子制备→种子制备→发酵→发酵液预处理→提取精制→产品检

发酵食品微生物的应用现状及发展方向

. 一、发酵食品微生物及发酵方式 利用微生物的作用而制得的食品都可称之为发酵食品。我国传统发酵食品历史悠久,曾影响着日本、朝鲜等国家。近年来,我国发酵食品工业化水平逐年提高,白酒、啤酒、葡萄酒、酸奶等产品的工业化生产发展迅速,其它产品如腐乳、豆豉、酱油、发酵肠等,工业化程度相对较低。因此必须提高我国传统发酵食品工业化水平,参与国际竞争。 1 发酵食品生产中使用的微生物 用于传统发酵食品的微生物有酵母菌、霉菌、细菌等。如中国的著名大曲酒一茅台酒,其发酵所用的大曲由大麦、小麦等粮食原料保温培菌制得。曲中的微生物由曲霉、红曲霉、根霉等霉菌,假丝酵母、汉逊酵母等酵母菌,以及乳酸菌、丁酸菌、耐高温芽抱杆菌等细菌组成;酸奶及发酵乳饮料是由乳酸杆菌、乳酸球菌、双歧杆菌等发酵制得;啤酒发酵是利用酵母菌;发酵肉制品主要的微生物有乳酸菌、片球菌、霉菌等。黄酒发酵利用毛霉、根霉、酵母;酱油生产则利用米曲霉、酵母菌、乳酸菌;醋的生产主要是醋酸菌的作用。 为提高发酵水平,很多发酵食品应用现代生物技术选育优良菌株进行纯种发酵。如英国采用转基因啤酒酵母进行啤酒的生产,可直接利用淀粉和糊精,提高了发酵产率。目前国内外酸奶生产大多使用直投式乳酸菌粉,发酵剂产品质量均一,接种量可精确控制,同时省去了菌种车间,减少投资,简化了生产工艺。 2 发酵食品的发酵形式 . . 发酵食品的发酵形式主要有液态或固态发酵和自然或纯种发酵。 固态发酵广义上讲是指一类使用不溶性固体基质来培养微生物的工艺过程,既包括将固态悬 浮在液体中的深层发酵,也包括在没有(或几乎没有)游离水的湿固体材料上培 养微生物的工艺过程。多数情况下是指在没有或几乎没有自由水存在下,在有一定湿度的水不溶性固态基质中,用一种或多种微生物发酵的一个生物反应过程。与液态培养方式相比,固态发酵具有如下优点:培养基简单且来源广泛,多为便宜的天然基质或工业生产的下脚料;投资少,能耗低,技术较简单;产物的产率 较高;基质含水量低,可大大减少生物反应器的体积,不需要废水处理,环境污 染较少,后处理加工方便;发酵过程一般不需要严格的无菌操作;通气一般可由气体扩散或间歇通风完成,不需要连续通风,空气一般也不需严格的无菌空气。

工业微生物发酵技术汇总

发酵技术指标 沃蒙特发酵技术服务平台 NO 项目英文技术名称名称指标 1他克莫司Tacrolimus 发酵单位:大于 1.0g/L, 发酵周期: 240 小时 , 提取收 率: 60-70% 2西罗莫司Sirolimus\Rapamyci 发酵单位: 1000±200 mg/L,发酵周期: 192hrs ,收率:35- 40% n产品含量:≥ 98% 3乳酸链球菌素Nisin 发酵水平 : 12-15g /L ,发酵时间:16-20小时,收率 :65% 以上。 4霉酚酸mycophenolate 发酵单位: 12g/L 以上,发酵时 间:160 小时,提取得率:mofetil, MMF 75% 5去甲金霉素DMCT,Demethylchlor 发酵单位: 10± 2g/L ,发酵时间: 200 小时,产品收率: 75% tetracycline 6雄烯二酮Androstenedione 发酵时间 96 ± 24 hrs ,每 3- 3.3 公斤植物甾醇可获 得 1 公斤雄烯二酮。 7利福霉素Rifamycin 发酵周期 220 小时,发酵单位大于 20g/L ,收率 65% 86- 羟基烟酸6-Hydroxynicotinic 纯度:≥ 98%,用途说明:用于合成维 生素 A Acid 9L- 缬氨酸Valine 发酵产酸: 60±5 克 /L ,发酵周 期: 60 ± 5 小时,提取 收 率: 65%(医药级) 10 L- 异亮氨酸Isoleucine 发酵产酸: 25-30 克 / 升,发酵周期 : 60-72 小时, 提取收 率: 80% 发酵单位 :35 ± 3g/L ,发酵时间 :33-35 小时,产品 得率 : 饲 11 L- 色氨酸Tryptophan 料级≥ 85%,药品级 ≥ 70%,产品质量 :>98.0%( 纯度 ) , 糖转化率: 18% 12 糖化酶Glucoamylase 发酵周期: 6~7 天,酶 活: 8 万- 10 万 U 13 耐高温淀粉酶Amylase 发酵周期: 140h,酶活: 17 万单位 14 纤维素酶Cellulase 发酵周期: 6~7 天,酶活: 80-100IU 15 超级泰乐菌素Super tylosin 发酵单位: 14000- 16000U/ml 发酵时间: 130-150 小时提 取 收率: 70-75%

微生物制药的一般工艺流程

微生物制药的一般工艺流程 微生物制药技术 工业微生物技术是可持续发展的一个重要支撑,是解决资源危机、生态环境危机和改造传统产业的根本技术依托。工业微生物的发展使现代生物技术渗透到包括医药、农业、能源、化工、环保等几乎所有的工业领域,并扮演着重要角色。欧美日等国已不同程度地制定了今后几十年内用生物过程取代化学过程的战略计划,可以看出工业微生物技术在未来社会发展过程中重要地位。 微生物制药技术是工业微生物技术的最主要组成部分。微生物药物的利用是从人们熟知的抗生素开始的,抗生素一般定义为:是一种在低浓度下有选择地抑制或影响其他生物机能的微生物产物及其衍生物。(有人曾建议将动植物来源的具有同样生理活性的这类物质如鱼素、蒜素、黄连素等也归于抗生素的范畴,但多数学者认为传统概念的抗生素仍应只限于微生物的次级代谢产物。)近年来,由于基础生命科学的发展和各种新的生物技术的应用,报道的微生物产生的除了抗感染、抗肿瘤以外的其他生物活性物质日益增多,如特异性的酶抑制剂、免疫调节剂、受体拮抗剂和抗氧化剂等,其活性已超出了抑制某些微生物生命活动的范围。但这些物质均为微生物次级代谢产物,其在生物合成机制、筛选研究程序及生产工艺等方面和抗生素都有共同的特

点,但把它们通称为抗生素显然是不恰当的,于是不少学者就把微生物产生的这些具有生理活性(或称药理活性)的次级代谢产物统称为微生物药物。微生物药物的生产技术就是微生物制药技术。可以认为包括五个方面的内容: 第一方面菌种的获得 根据资料直接向有科研单位、高等院校、工厂或菌种保藏部门索取或购买;从大自然中分离筛选新的微生物菌种。 分离思路新菌种的分离是要从混杂的各类微生物中依照生产的要求、菌种的特性,采用各种筛选方法,快速、准确地把所需要的菌种挑选出来。实验室或生产用菌种若不慎污染了杂菌,也必须重新进行分离纯化。具体分离操作从以下几个方面展开。 定方案:首先要查阅资料,了解所需菌种的生长培养特性。 采样:有针对性地采集样品。 增殖:人为地通过控制养分或培条件,使所需菌种增殖培养后,在数量上占优势。

2017人教版高中生物选修二3.1微生物发酵及其应用

《微生物发酵及其应用》教学设计与案例 目标的确定 与本节对应的课程标准具体内容是“举例说出发酵与食品生产”,而本节标题定为《微生物发酵及其应用》。事实上,微生物发酵在现实生活中远远超出了食品工业的范畴。因此,本节内容一开始时并没有局限于食品生产,而是从比较大的视角──发酵工程史话引入,然后探秘发酵过程,再举例说出发酵与食品生产的关系。为此,本节主要教学目标确定为:通过了解发酵工程发展的历史,体验科学、技术、社会三者间的关系;说出微生物发酵生产的基本过程;举例说出微生物发酵与食品生产的关系;关注与微生物发酵有关的社会问题等。教学设计思路 教学实施的程序 教学 内容 教学活动教学手段和方法预期目标 1.复习提问,引入新课。 师:同学们在初中时学习过微生物发酵与食品, 我们的日常生活中也接触到许多发酵食品,请同学们思 考这样一个问题:哪些食品是由微生物发酵生产的?相 应的发酵种类是什么? 生:酸奶、泡菜,它们都是乳酸发酵。 学生很可能 回答不全,教师可提 示。 投影或板书: 第一节微生物发酵 联系日常生活 的实例,在回忆旧知识 的基础上,引入新课, 以激发学生的学习兴 趣,强化从社会中来的 意识。

师:很好!还有其他食品吗?想一想,我们每天 吃的主食有通过发酵制作的吗? 生:馒头、面包。 师:对,实际上,我们经常食用的许多食品,以 及使用的一些药品,它们的生产过程都离不开微生物发 酵。那么,微生物发酵是如何发展起来的?其生产过程 怎样?它还可应用在哪些方面?现在我们就一起来解 答这些问题。 及其应用 2.新课──发酵工程史话的学习。 师:现在人们能够利用微生物发酵来大规模地生 产食品、药品等许多产品,那么,人们今天的成绩是如 何一步步取得的呢?下面我们先来学习第一个问题:发 酵工程史话。 首先,请大家阅读教材发酵工程史话标题下的第 一自然段。 从这段文字的叙述中,能够看出,人类的祖先很 早就会在不知微生物发酵原理的情况下,利用微生物发 酵技术来生产多种产品,这个方面还有我们中华民族的 贡献。由此可见,发酵技术是从生产实践中一步步产生 的。 师:下面请同学们继续阅读第二自然段。 第二自然段的核心内容是,随着两位科学家研究 出发酵现象的本质和人们对微生物的认识不断深入后, 诞生了传统的发酵工业。这充分说明了发酵技术需要基 础科学研究的指导,即科学研究促进了技术的发展。 师:好,请大家继续阅读后四个自然段的内容。 从中能够看出,发酵技术随着时代的发展而不断向前 发展,从传统的发酵工业到现代发酵工业,再到微生 物工程,它不仅成为生物技术产业的重要支柱,而且 和基因工程技术的结合使它如虎添翼。由此看来,生 物技术产业的核心是技术,同时科学技术又是一个不断 发展的过程。 投影或板书: 一、发酵工程 史话 学生先阅读教 材相应的段落,教师 就此段落提炼出有 关科学价值观的教 育素材 自然过渡到发酵 工程史话。 让学生体验科学 技术是从生产实践中 产生的。 让学生体验技术 需要以基础科学研究 作指导,科学、技术间 存在相互作用。 让学生认同生物 技术产业的核心是技 术,以及科学技术是 一个不断发展的过程。 3.新课──发酵生产过程探秘。 师:在很多家庭的日常生活中,味精是不可缺少 的调味品,那么,你知道它的化学成分是什么吗? 生:谷氨酸钠。 师:对!有人认为食用味精对人体有毒害作用, 投影或板书: 二、发酵生产 过程探秘──以味 精生产为例 让学生了解发 酵生产的基本过程。

高三生物选修2微生物发酵及其应用同步测试题-教育文档

高三生物选修2微生物发酵及其应用同步测试 题2019 生物学科因初中结业考试的形式与高考的差异而形成了一系列衔接问题。以下是查字典生物网为大家整理的高三生物选修2微生物发酵及其应用同步测试题,希望可以解决您所遇到的相关问题,加油,查字典生物网一直陪伴您。 一、填空题 1、生物发酵工艺多种多样,但基本上包括、、和等下游处理几个过程。 2、根据过滤介质截留的物质颗粒大小的不同,过滤可分为、、和四大类。 3、微生物的育种方法主要有三类:,,。 4、发酵培养基主要由,,,,,组成。 5、青霉素发酵生产中,发酵后的处理包括:、,,。 6、利用专门的灭菌设备进行连续灭菌称为,用高压蒸汽进行空罐灭菌称为。 7、可用于生产酶的微生物有、、。 常用的发酵液的预处理方法有、、。 8、根据搅拌方式的不同,好氧发酵设备可分为和两种。 9、依据培养基在生产中的用途,可将其分成、、三种。 10、现代发酵工程不仅包括和,还包括。 11、发酵工程的主要内容包括、、。

12、发酵类型有、、、、。 13、发酵工业生产上常用的微生物主要有、、、。 14、当前发酵工业所用的菌种总趋势是从野生菌转向,从自然选育转向,从诱发基因突变转向。 15、根据操作方式的不同,液体深层发酵主要有、、。 16、分批发酵全过程包括、、、、,所需的时间总和为一个。 17、分批发酵中微生物处于限制性的条件下生长,其生长周期分为,、。 18、根据搅拌的方式不同,好氧发酵设备又可分为、 19、下流加工过程由许多化工单元操作组成,通常可以分为和、四个阶段。 20、当前发酵工业所用的菌种总趋势是从野生菌转向,从自然选育转向,从诱发基因突变转向。 21、微生物发酵产酶步骤为、、、、。 二、判断 1、微生物发酵的最适氧浓度与临界氧浓度的概念是完全一样的( ) 2、从微生物中发现的抗生素,有约90%是由放线菌产生的。( ) 3、在微生物杀虫剂中,引用最广泛的是苏云金芽孢杆菌,他用来毒杀鳞翅目和双翅目的害虫。( )

2018年高三生物微生物发酵及其应用知识点汇总-优秀word范文 (3页)

本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除! == 本文为word格式,下载后可方便编辑和修改! == 高三生物微生物发酵及其应用知识点汇总 发酵工程的概念和内容 发酵工程是指采用现代工程技术手段,利用微生物的某些特定功能,为人类生产有用的产品,或直接把微生物应用于工业生产过程的一种新技术。发酵工程的内容包括菌种的选育、培养基的配制、灭菌、扩大培养和接种、发酵过程和产品的分离提纯等方面。 (1)“发酵”有“微生物生理学严格定义的发酵”和“工业发酵”,词条“发酵工程”中的“发酵”应该是“工业发酵”。 (2)工业生产上通过“工业发酵”来加工或制作产品,其对应的加工或制作工艺被称为“发酵工艺”。为实现工业化生产,就必须解决实现这些工艺(发酵工艺)的工业生产环境、设备和过程控制的工程学的问题,因此,就有了“发酵工程”。 (3)发酵工程是用来解决按发酵工艺进行工业化生产的工程学问题的学科。发酵工程从工程学的角度把实现发酵工艺的发酵工业过程分为菌种、发酵和提炼(包括废水处理)等三个阶段,这三个阶段都有各自的工程学问题,一般分别把它们称为发酵工程的上游、中游和下游工程。 (4)微生物是发酵工程的灵魂。近年来,对于发酵工程的生物学属性的认识愈益明朗化,发酵工程正在走近科学。 (5)发酵工程最基本的原理是发酵工程的生物学原理。 (6)发酵工程有三个发展阶段。 现代意义上的发酵工程是一个由多学科交叉、融合而形成的技术性和应用性较强的开放性的学科。发酵工程经历了“农产手工加工——近代发酵工程——现代发酵工程”三个发展阶段。 发酵工程发源于家庭或作坊式的发酵制作(农产手工加工),后来借鉴于化学工程实现了工业化生产(近代发酵工程),最后返璞归真以微生物生命活动为中心研究、设计和指导工业发酵生产(现代发酵工程),跨入生物工程的行列。

微生物发酵过程简介

微生物发酵过程即微生物反应过程,是指由微生物在生长繁殖过程中所引起的生化反应过程。 根据微生物的种类不同(好氧、厌氧、兼性厌氧),可以分为好氧性发酵和厌氧性发酵两大类。 (1)好氧性发酵在发酵过程中需要不断地通人一定量的无菌空气,如利用黑曲霉进行柠檬酸发酵、利用棒状杆菌进行谷氨酸发酵、利用黄单抱菌进行多糖发酵等等。 (2)厌氧性发酵在发酵时不需要供给空气,如乳酸杆菌引起的乳酸发酵、梭状芽抱杆菌引起的丙酮、丁醇发酵等。 (3)兼性发酵酵母菌是兼性厌氧微生物,它在缺氧条件下进行厌气性发酵积累酒精,而在有氧即通气条件下则进行好氧性发酵,大量繁殖菌体细胞。 按照设备来分,发酵又可分为敞口发酵、密闭发酵、浅盘发酵和深层发酵。 一般敞口发酵应用于繁殖快并进行好氧发酵的类型,如酵母生产,由于其菌体迅速而大量繁殖,可抑制其他杂菌生长。所以敞口发酵设备要求简单。相反,密闭发酵是在密闭的设备内进行,所以设备要求严格,工艺也较复杂。浅盘发酵(表面培养法)是利用浅盘仅装一薄层培养液,接人菌种后进行表面培养,在液体上面形成一层菌膜。在缺乏通气设备时,对一些繁殖快的好氧性微生物可利用此法。深层发酵法是指在液体培养基内部(不仅仅在表面)进行的微生物培养过程。 液体深层发酵是在青霉素等抗生素的生产中发展起来的技术。同其他发酵方法相比,它具有很多优点: 1. 液体悬浮状态是很多微生物的最适生长环境。 2. 在液体中,菌体及营养物、产物(包括热量)易于扩散,使发酵可在均质或拟均质条件下进行,便于控制,易于扩大生产规模。 3. 液体输送方便,易于机械化操作。 4. 厂房面积小,生产效率高,易进行自动化控制,产品质量稳定。 5. 产品易于提取、精制等。因而液体深层发酵在发酵工业中被广泛应用。 4.2.1 工业生产常用微生物 微生物资源非常丰富,广布于土壤、水和空气中,尤以土壤中为最多。有的微生物从自然界中分离出来就能够被利用,有的需要对分离到的野生菌株进行人工诱变,得到突变株才能被

微生物发酵类药物

微生物发酵中药的相关调查 中药发酵制药技术是在继承中药炮制学发酵法的基础上,吸取了微生态学研究成果,结合现代生物工程的发酵技术而形成的高科技中药制药新技术,是从中药(天然 药物) 制药方面寻找药物的新疗效。传统的中药发酵多是在天然的条件下进行的, 而现在的中药发酵制药技术是在充分吸收了近代微生态学、生物工程学的研究成果 而逐渐形成的。其先进发酵工艺特点是:以优选的有益菌群中的一种或几种、一株 或几株益生菌作为菌种,加入中药提取液中,再按照现代发酵工艺制成产品,它是一 种含有中药活性成分、菌体及其代谢产物的全组分发酵液的新型中药发酵加工制剂。 一、微生物发酵中药的应用历史 早在千余年前,我国已开始用发酵方法制药,直到现在临床仍在应用的发酵(制品) 中药有六神曲、半夏曲、淡豆豉、豆黄等,其工艺均为固体发酵。 1、微生物发酵中药中所应用到的很多微生物是药用真菌或者含有真菌的混合菌群,其中药用真菌很多本身作为中药来应用。因此一定意义上讲,中药与微生物,特别 是与一些药用真菌具有密切的联系。 早在东汉年间《神龙本草经》中,就有灵芝、茯苓、猪苓、雷丸等药用真菌分 别列项论述,这些药物至今沿用不衰。 2、微生物发酵中药应用历史悠久,也是传统中药加工炮制的重要方法之一,一般 主要是起到中药复合炮制的作用。而且很多发酵之后的药物在临床应用上取得了较 好效果。 微生物发酵中药在中医药应用中得到了很大的体现。如片仔癀的主要成分是三 七的微生物发酵物;神曲由面粉、赤小豆、苦杏仁、鲜青蒿、鲜苍耳、鲜辣蓼按一 定比例混匀后经发酵而成的曲剂。 3、某些传统的微生物制剂一直使用至今,其中以不同中药作为辅料,采用微生物 处理后自身成为发酵物组成的一部分,如半夏炮制,神曲制备等。同时随着历史的 发展,微生物发酵中药的应用也在不断变化。 半夏在整个炮制过程中使用到了一些中药,最终形成具有一定功效的以半夏为 主要组成部分的中药炮制品。半夏至汉代始用汤洗去毒,即为炮制品。南北朝时增 加生姜制、热汤洗、白芥子末制、头醋制等炮制品。唐代增加姜汁制,宋代增加麸炒、热洒炒、酸浆浸、米醋炒浸、生姜甘草桑白皮制、猪苓制、白矾制、萝卜制、 姜矾牙皂制和半夏曲。金之时期,增加米泔浸、香油炒、菜油拌炒。明代增加盐水洗、面炒醋制、杏仁炒。清代增加巴豆制、活生姜制、猪胆汁炒、皂荚白矾姜汁竹 沥制,有仙半夏和法半夏。由此可见,半夏的炮制方法繁多,而且种类各异,如仙 半夏、半夏曲等,已经成为含半夏的一个复方 二、微生物发酵中药的研究现状  中药发酵研究开始于80 年代,但仅是对真菌类自身发酵的研究,如灵芝菌丝体、冬虫夏草菌丝体、槐耳发酵等,大都是单一发酵。虽有报道加入中药,但也仅是将中 药当做菌丝体发酵的菌质,同时研究发现,含有中药的菌质对原发酵物的功效有影响,只是未见深入研究。目前,已有学者呼吁中药发酵制药可按新药审批办法规定开发新药。同时也开展了另一项研究,即生物转化,我们认为它与中药发酵是密不可分的 1、利用中药为培养基的组成部分,构建药性菌质,比较发酵前后中药相关成分的

微生物发酵过程优化控制技术进展

微生物发酵过程优化控制技术进展 摘要发酵工程是生化工程和现代生物技术及其产业化的基础。在发酵工程领域,为了提高发酵水平和生产率,更多的研究工作集中在菌种的筛选和改造上。随着生物科学技术的发展,基因工程与代谢工程研究领域都出现了长足的进步与发展,利用基因重组与诱发等技术可以实现高产菌株普遍生产。但只有通过发酵过程的优化控制,才能实现产品质量最高、生产力最大、成本消耗最低的生产过程,因此对微生物发酵过程的优化控制成为发酵工程中研究人员日益关注的焦点。 关键词微生物发酵;影响因素;优化控制技术 1 培养基对发酵的影响 1.1 发酵培养基碳源和氮源的选择 碳源用于提供微生物能量来源、构建细胞以及形成产物。碳源包括单糖、双糖、多糖、天然复合物、油脂等,比如葡萄糖、蔗糖、淀粉以及豆油等。氮源是微生物蛋白质和其他含氮有机物的重要来源,与此同时,氮源也参与形成含氮产物。氮源包括无机氮源以及有机氮源,比如氨盐、硝酸盐、蛋白胨以及豆粉等。 1.2 发酵培养基中无机盐对发酵的影响 无机盐对代谢产物的生成及微生物的正常生长都具有相当重要的影响。在微生物的生长代谢过程中,磷参与了微生物细胞中核酸等辅酶的构成,是微生物能量代谢、生长的重要因素之一。在苏云金芽泡杆菌的发酵产物苏云金素的分子结构中包含磷酸根,所以在其发酵培养基中添加更多磷酸盐,更有利于产物苏云金素的合成。钙离子在微生物发酵过程中的主要作用是调节细胞的生理状态,比如说维持细胞的胶体状态、降低细胞膜的通透性等。与此同时,在大多数发酵培养基里面,添加适量的CaCO3,能够对发酵液含菌量的变化起到相当明显的影响,其主要原因是CaCO3的添加对发酵液的pH具有非常良好的缓冲作用,从而大大改善了菌体的生长环境。镁元素是许多酶的催化剂。锰、锌、铁、钼以及钴等元素是微生物所需要的微量元素[1]。 2 培养条件对发酵的影响 2.1 种子质量对发酵的影响 在发酵培养基中接入合适的接种量以及种龄适宜的优质种子液,能够使目标微生物更加迅速地进入到对数生长期,从而使发酵周期大大地减短,进而促使产物质量得以有效提升。如果种龄过长则会直接导致菌体过早的发生衰退,菌体的生产能力也随之而有一定程度的下降;如果种龄过短,则会直接导致菌体生长缓慢,产物合成时间大大推迟。若接种量过小,那么便会使得菌体细胞的生长量变

微生物发酵过程简介终审稿)

微生物发酵过程简介文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

微生物发酵过程即微生物反应过程,是指由微生物在生长繁殖过程中所引起的生化反应过程。根据微生物的种类不同(好氧、厌氧、兼性厌氧),可以分为好氧性发酵和厌氧性发酵两大类。(1)好氧性发酵在发酵过程中需要不断地通人一定量的无菌空气,如利用黑曲霉进行柠檬酸发酵、利用棒状杆菌进行谷氨酸发酵、利用黄单抱菌进行多糖发酵等等。(2)厌氧性发酵在发酵时不需要供给空气,如乳酸杆菌引起的乳酸发酵、梭状芽抱杆菌引起的丙酮、丁醇发酵等。(3)兼性发酵酵母菌是兼性厌氧微生物,它在缺氧条件下进行厌气性发酵积累酒精,而在有氧即通气条件下则进行好氧性发酵,大量繁殖菌体细胞。按照设备来分,发酵又可分为敞口发酵、密闭发酵、浅盘发酵和深层发酵。一般敞口发酵应用于繁殖快并进行好氧发酵的类型,如酵母生产,由于其菌体迅速而大量繁殖,可抑制其他杂菌生长。所以敞口发酵设备要求简单。相反,密闭发酵是在密闭的设备内进行,所以设备要求严格,工艺也较复杂。浅盘发酵(表面培养法)是利用浅盘仅装一薄层培养液,接人菌种后进行表面培养,在液体上面形成一层菌膜。在缺乏通气设备时,对一些繁殖快的好氧性微生物可利用此法。深层发酵法是指在液体培养基内部(不仅仅在表面)进行的微生物培养过程。液体深层发酵是在青霉素等抗生素的生产中发展起来的技术。同其他发酵方法相比,它具有很多优点: 1.液体悬浮状态是很多微生物的最适生长环境。 2.在液体中,菌体及营养物、产物(包括热量)易于扩散,使发酵可在均质或拟均质条件下进行,便于控制,易于扩大生产规模。 3.液体输送方便,易于机械化操作。 4.厂房面

微生物发酵制药-总体工艺过程流程

微生物发酵制药 -----总体工艺过程流程 工业微生物技术是可持续发展的一个重要支撑,是解决资源危机、生态环境危机和改造传统产业的根本技术依托。工业微生物的发展使现代生物技术渗透到包括医药、农业、能源、化工、环保等几乎所有的工业领域,并扮演着重要角色。欧美日等国已不同程度地制定了今后几十年内用生物过程取代化学过程的战略计划,可以看出工业微生物技术在未来社会发展过程中重要地位。 微生物制药技术是工业微生物技术的最主要组成部分。微生物药物的利用是从人们熟知的抗生素开始的,抗生素一般定义为:是一种在低浓度下有选择地抑制或影响其他生物机能的微生物产物及其衍生物。(有人曾建议将动植物来源的具有同样生理活性的这类物质如鱼素、蒜素、黄连素等也归于抗生素的范畴,但多数学者认为传统概念的抗生素仍应只限于微生物的次级代谢产物。)近年来,由于基础生命科学的发展和各种新的生物技术的应用,报道的微生物产生的除了抗感染、抗肿瘤以外的其他生物活性物质日益增多,如特异性的酶抑制剂、免疫调节剂、受体拮抗剂和抗氧化剂等,其活性已超出了抑制某些微生物生命活动的范围。但这些物质均为微生物次级代谢产物,其在生物合成机制、筛选研究程序及生产工艺等方面和抗生素都有共同的特点,但把它们通称为抗生素显然是不恰当的,于是不少学者就把微生物产生的这些具有生理活性(或称药理活性)的次级代谢产物统称为微生物药物。 微生物药物的生产技术就是微生物制药技术。可以认为包括五个方面的内容: 第一方面菌种的获得 根据资料直接向有科研单位、高等院校、工厂或菌种保藏部门索取或购买;从大自然中分离筛选新的微生物菌种。 1.分离思路:新菌种的分离是要从混杂的各类微生物中依照生产的要求、菌种的特性,采用各种筛选方法,快速、准确地把所需要的菌种挑选出来。实验室或生产用菌种若不慎污染了杂菌,也必须重新进行分离纯化。具体分离操作从以下几个方面展开。 2.定方案:首先要查阅资料,了解所需菌种的生长培养特性。 3.采样:有针对性地采集样品。 4.增殖:人为地通过控制养分或培条件,使所需菌种增殖培养后,在数量上占优势。

微生物发酵

微生物发酵:利用微生物,在适宜的条件下,将原料经过特定的代谢途径转化为人类所需要的产物的过程。 液体发酵是在借鉴抗生素生产工艺的基础上,把菌丝体加入培养基中,将之与药材混合后放置于适温下进行发酵。液体发酵具有较高的物质传递效率,易于实现发酵工艺的自动化控制。固体发酵是以富含多种营养成分的农副产品如麦麸、甘蔗渣、玉米芯等作为发酵营养基质,用一种或多种真菌作为发酵菌种,在一定的温度、湿度条件下进行发酵。固体发酵在发酵过程中既生长菌体,又形成各种次生代谢物质,难以将其分离,统成为菌质。 固态发酵是指没有或几乎没有自由水存在下,在有一定湿度的水下溶性固态基质中,用一种或多种微生物的一个生物反应过程。从生物反应过程中的本质考虑,固态发酵是以气相为连续相的生物反应过程。固体发酵具有操作简便、能耗低、发酵过程容易控制、对无菌要求相对较低、不易发生大面积的污染等优点。 广义:微生物生长于不溶于水的基质,且基质上含有不同量的自由水(free water)。 狭义:微生物生长在潮湿不溶于水的基质进行发酵,在固体发酵过程中不含任何自由水,随著微生物产出的自由水的增加,固体发酵范围延伸至黏稠发酵(slurry fermentation)以及固体颗粒悬浮发酵 固体发酵的优点: 1. 培养基单纯,例如谷物类、小麦麸、小麦草、大宗谷物或农产品等均可被使用,发酵原料成本较经济。 2. 基质前处理较液体发酵少,例如简单加水使基质潮湿,或简单磨破基质增加接触面积即可,不需特殊机具,一般家庭即可进行步骤。 3. 因获得水分可减少杂菌污染,此种低灭菌步骤即可施行的发酵,适合低技术地区使用。 4. 能产生特殊产物,如红麴产生的红色色素是液体发酵的十倍,又Aspergillus 在固体发酵所产生的glucosidase较液体发酵产生的酵素更具耐热性。 5. 固体发酵相当于使用相当高的培养基,且能用较小的反应器进行发酵,单位体积的产量较液体为高。 6. 下游的回收纯化过程及废弃物处理通常较简化或单纯,常是整个基质都被使用,如做为饲料添加物则不需要回收及纯化,无废弃物的问题。 7. 固体发酵可食品产生特殊风味,并提高营养价值,如天培可作为肉类的代用品,其胺基酸及脂肪酸易被人体消化吸收。 固体发酵的缺点: 1. 限于低湿状态下生长的微生物,故可能的流程及产物较受限,一般较适合于真菌。 2. 在较致密的环境下发酵,其代谢热的移除常造成问题,尤其是大量生产时,常限制其大规模的产能。 3. 固态下各项参数不易侦测,尤其是液体发酵的各种探针不适用于固体发酵,pH值、湿度、基质浓度不易调控,Biomass不易量测,每批次发酵条件不易一致,再现性差。 4. 不易以搅拌方式进行质量传递(masss transfer),因此发酵期间,物质的添加无法达到均匀。 5. 由于不易侦测,从发酵工程的观点来看,许多工作都只是在定性或观察性质,故不易设计反应器,难以量化生产或设计合理化的发酵流程。

相关主题
文本预览
相关文档 最新文档