当前位置:文档之家› 音频信号分析仪设计报告

音频信号分析仪设计报告

音频信号分析仪设计报告
音频信号分析仪设计报告

音频信号分析仪设计报告

学院:电子信息学院

班级:12电子信息工程

指导老师:邓老师

小组成员:122840112x 程博雅

前言

音频信号是带有语音、音乐和音效的有规律的声波的频率、幅度变化信息载体。根据声波的特征,可把音频信息分类为规则音频和不规则声音。其中规则音频又可以分为语音、音乐和音效。规则音频是一种连续变化的模拟信号,可用一条连续的曲线来表示,称为声波。声音的三个要素是音调、音强和音色。声波或正弦波有三个重要参数:频率ω0、幅度A n 和相位ψn ,这也就决定了音频信号的特征。

音频分析仪器是指既能够测量话筒、音频功放、扬声器等各类单一音频设备的各种电声参数,也能测试组合音响、调音台等组合音频设备的整体性能的分析类仪器。目前市场上已经出现了可用于测量音频设备的各类分析仪器,例如失真度分析器、音频分析仪、频率计数器、交流电压表、直流电压表、音频示波器等。这些基于各种功能电路的机架式硬件仪器使用简便、测量精度较高,目前己经获得了广泛的应用。一般说来,一台功能较为齐全的音频分析仪器应能测量信号交直流电压、信号频率、谐波失真、信噪比等参数。功能强大的音频分析仪器提供频谱分析、倍频程分析、声压级测量等功能。

早期专业的音频分析仪种类很少,在做音频测量时一般是利用万用电表、频率计、示波器及频谱仪等组合成一套音频测试系统。这种测试系统中间环节多,各环节之间接口匹配较为困难,使用起来比较麻烦,测量结果往往也不精确。

近年来出现的音频分析仪器也与仪器的主流发展趋势一致,朝着高度集成化、智能化的方向发展,这些仪器集成了复杂音频信号发生装置、功率放大装置等,具备了一些初步的图形化分析功能,使用户很容易组建音频测量系统。

目录

前言 (2)

目录 (3)

摘要 (5)

第1章设计方案论证 (5)

1.1语音信号采集模块 (5)

1.2主控芯片的选择 (2)

1.3程控放大器模块 (5)

1.4抗混叠滤波器模块 (6)

1.5模数转换模块 (6)

1.6功率测量模块 (6)

第2章系统设计 (7)

2.1总体方案设计 (7)

2.2硬件电路设计 (7)

2.2.1驻极体放大电路模块 (7)

2.2.2电压跟随电路模块 (8)

2.2.3程控增益放大模块 (8)

2.2.4电压抬升电路模块 (9)

2.2.5抗混叠滤波模块 (10)

2.3软件设计 (11)

2.3.1 程序流程图 (12)

2.3.2 ADC采样程序设计 (12)

2.3.3 快速傅里叶变换模块设计 (13)

2.3.4 功率、失真度计算 (13)

2.3.5 周期性判断 (14)

2.3.6 频谱显示 (15)

2.3.7 按键控制模块 (15)

第3章系统测试 (16)

3.1硬件电路测试 (16)

3.1.1驻极体放大电路模块 (16)

3.1.2电压跟随电路模块 (16)

3.1.3程控增益放大模块 (17)

3.1.4电压抬升电路模块 (17)

3.1.5抗混叠滤波模块 (18)

3.2系统功能测试 (19)

3.2.1确知信号测试 (19)

3.2.2麦克风输入信号测试 (20)

第4章总结 (21)

参考文献 (21)

附录 (21)

附录1 元器件明细表

附录2 仪器设备清单

附录3 测试实物图

附录4 程序主函数

摘要:本系统基于快速傅立叶变换(FFT)算法,以单片机STM32F103ZE为控制与数据处理核心,结合必要的外围电路,实现对频率范围在20Hz~10KHz音频信号频率成分的分析。系统由控制与运算核心、程控放大器、抗混叠滤波和采样等模块组成。通过对程控放大器增益的调整将系统可测电压(峰-峰值)的动态范围扩展到100mV~5V;通过改变模数转换器的采样频率,实现频率分辨力100Hz、20Hz两挡可调;频谱分析结果可按序存储,并使用TFTLCD液晶显示屏实时显示;通过对频谱数据特征的提取判断信号的周期性,并实现对信号的失真度分析。另外,可通过TFTLCD液晶显示屏以图形方式显示信号频谱图。

关键词: 频域分析 FFT STM32F103 周期性

第1章设计方案论证

1.1语音信号采集模块

方案一:驻极体话筒放大电路

用驻极体话筒设计一个语音信号输入电路,以便实现真正的语音信号输入。驻极体话筒放大电路可以方便的采集人说话的声音、麦克风播放的声音等人耳能听到声音,并通过三极管放大以后接入后级电路进行音频分析。该方案设计简单,易于实现,但噪声较大且有一定的直流偏置。

方案二:音频口放大接收电路

将电脑或MP3等的音频信号用音频线引出进行放大。该方案实行方便,电路简单,输入信号容易控制,测试结果容易得知,但是不能验证实际应用效果。

由于以上两种方案各有优缺点,但电路都不复杂,故以上两种方案都进行采用,实现多种音频信号都能采集分析功能。

1.2主控芯片的选择

在处理器的选择上通常可以采用8位,16位或者32位的MCU,但由于在处理信号的过程中,通常会遇到快速傅立叶FFT算法,所以会遇到大量的浮点运算,而且一个要占四个字节,故在处理过程中要占大量的内存,同时浮点运算速度比较慢,所以采用普通的MCU在一定时间难以完成,所以综合考虑运算速度和内存大小,我们选用意法半导体公司的32位MCU STM32F103ZE,该芯片具有64KB SRAM,512KB FLASH。运行速度72MHz。在速度和内存上都能满足浮点运算,并且控制方便,成本便宜,所以本系统采用32位

STM32F103ZE。

1.3程控放大器模块

方案一:使用集成可变增益放大器AD603。只要改变控制端电压就可以控制AD603的增益,但要实现增益的精密控制还必须与位数较高的数模转换器件配合使用。

方案二:使用单刀双掷选择则不同的电阻值,作为放大器的反馈电阻,实现不同量程的放大倍数。这种方案控制简单,只要运放的增益带宽积和噪声抑制能力足够大,每级的增益是恒定的。但模拟开关存在一定的导通电阻。

上述方案各有优缺点,考虑到系统成本和精度要求,选择方案二。模拟开关的导通电阻可与放大器的选通电阻一并看作放大器的反馈电阻。

1.4抗混叠滤波器模块

方案一:使用运算放大器设计设计一个四阶巴特沃斯低通滤波器。

方案二:使用集成滤波芯片,如MAX297。

对于一般的滤波器设计,方案一灵活简单,而且有专门的辅助设计软件可快速进行设计,需要两块集成运放芯片,外围电路较复杂;方案二中使用集成滤波芯片外围电路简单,易实现。考虑到运放芯片比较常见,且手中没有集成滤波芯片,因此我们选择方案一。

1.5模数转换模块

方案一:采用双极性ADC对信号直接采样,本方案不需要考虑信号电压是否为负,但采样频率不易控制且成本较高。

方案二:直接由STM32内部的ADC对信号进行采样,然后再进行分析。该方案实现容易,没有外扩的采样电路,同时STM32内部时钟提供精确度很高的时钟,参考电压选用TI公司的线性稳压源REF2033,可直接输出3.3V参考电压,且纹波小,但是采样之前必须将信号抬高至0V-3.3V之间,因此需要一个电压抬升电路。

由于单片机内部的ADC转换容易实现,供电电压要求也容易满足,故采用第二种方案。

1.6功率测量模块

方案一:有效值检波法。采用专门的真有效值检测芯片AD637,能测量任意交变信号的有效值,精度高,外围电路简单但对单个频率处的功率测量无能为力。。

方案二:A/D采样法。在用FFT得到信号的频谱后可以很方便的得出信号各频率分量的功率及信号的总功率。

经过以上两种方案的论证比较,方案二可以用软件实现,同时本系统要实现20Hz的分辨率,计算误差在可接受范围内,故我们选用方案二

第2章系统设计

2.1总体方案设计

2.2硬件电路设计

2.2.1驻极体放大电路模块

驻极体传声器内部主要包括声电转换和阻抗变换两部分。声电转换部分包括振膜、极板、空隙三部分。当声音传入时,振膜随声波的运动发生振动,此时振膜与固定电极间的电容量也随声音而发生变化。从而产生了随声波变化而变化的交变电压信号,如此就完成了声音转换为电信号的过程。电压变化的大小,反映了外界声压的强弱,这种电压变化频率反映了外界声音的频率。

驻极体放大电路模块,先由驻极体将音频信号转化为电信号,然后用三极管射级放大器放大100倍左右。跟随器的作用是阻抗匹配。仿真电路图如图2.2.1所示:

图2.2.1 驻极体放大电路

2.2.2电压跟随电路模块

如图2.2.2 信号经过50欧姆的电阻和一个高精度、低噪声的运放OPA227实现50的电阻匹配和电压跟随。

图2.2.2 电压跟随电路

2.2.3程控增益放大模块

如图2.2.3.1,程控增益放大模块使用的是高精度低噪声的运放OPA227构成的反相放大器,通过单刀双掷开关ts12a12511选择不同的反馈电阻实现不同的放大倍数。ts12a12511内部结构图如图2.2.3.2所示,通过单片机对控制IN 端高低电平的输入选择不同的反馈电阻实现不同的放大倍数。使用时注意ts12a12511的5欧姆的内阻对放大倍数的影响。

图2.2.3.1 程控增益放大模块

图2.2.3.2 ts12a12511内部结构图

2.2.4电压抬升电路模块

电压抬升电路如图 2.2.4.1所示,根据运放的虚短、虚断原理可以求出Vout=2*Vref-Vin。即此电路可将信号反相后抬升2*Vref,这里我们选择Vref=0.75V,将电压固定抬升1.5V的高度,使得信号在ADC的采样范围内。

0.75V的参考电压由TI公司的线性稳压源芯片REF2033输出的1.65V通过电阻分压得到,纹波小适合作参考源。

图2.2.4.1 电压抬升电路

2.2.5抗混叠滤波模块

信号送到ADC之前要对信号进行抗混叠低通滤波器处理,防止高频分量信号被采样,产生频谱混叠,而影响给定较低频率信号的幅值分析。为此我们设计了一个截止频率为22KHz的四阶巴特沃斯低通滤波器做为抗混叠滤波器。元器件参数由滤波器软件Filter wiz PRO设计得到。图2.2.5.1为电路原理图,下图2.2.5.2为频率特性仿真图。由仿真结果可以看出在20Hz-10KHz内,增益起伏很小且增益几乎为0。

图2.2.5.1四阶巴特沃斯低通滤波器原理图

图2.2.5.2 频率特性仿真图

2.3软件设计

2.3.1 程序流程图

图2.3.1 程序流程图

2.3.1 ADC采样程序设计

本模块采用定时器2的通道2出发ADC1通道1进行采样,由于输入信号20Hz-10kHz,由采样定理知采样频率要大于20KHz。又由频率分辨率和FFT变换点数可得到采样频率。分辨率为20Hz时采样频率选为40.96KHz,采样点数为2048点。分辨率为100Hz时采样频率51.2KHz,采样点为512个。ADC采样后通过DMA将采样值传输到内存。这样可以不用CPU参与,提高刷新速率。

程序中将STM32F103ZE的ADC1的通道1配置成定时器触发的单通道连续采样模式,并使能DMA传输。DMA设置成为单次缓存模式,这样ADC1处于连续采样模式,当系统需要采样时只需使能DMA即可得到连续的采样值。2.3.2 快速傅里叶变换模块设计

快速傅里叶变换计算过程最重要的是码位变换和蝶形运算。码位倒序要解决两个问题:将t位二进制数倒序;将倒序后的两个存储单元进行交换。

for(i=0;i

{

xx=0;

for(j=0;j

x[j]=0;

for(j=0;j

{ x[j]=(i/count[j])&0x01; }

for(j=0;j

{ xx=xx+x[j]*count[n-j-1]; }

dataI[xx]=dataR[i];

}

for(i=0;i

{ dataR[i]=dataI[i]; dataI[i]=0; }

N点FFT从左到右共有log2N级蝶形,每级有N/2L组,每组有L个。所以FFT的C语言编程只需用3层循环即可实现:最外层循环完成每一级的蝶形运算(整个FFT共log2N级),中间层循环完成每一组的蝶形运算(每一级有N/2L 组),j形运算(每一组有L个)。

for(L=1;L<=n;L++) //碟形运算

{

b=1;i=L-1;

while(i>0)

{ b=b*2; i--;}

for(j=0;j<=b-1;j++)

{

p=1;i=n-L;

while(i>0)

{ p=p*2; i--;}

p=p*j;

for(k=j;k

{

TR=dataR[k];

TI=dataI[k];

temp=dataR[k+b];

qq = p*count[11-n];

dataR[k]=dataR[k]+dataR[k+b]*cos_tab(qq)+dataI[k+b]*sin_tab(qq);

dataI[k]=dataI[k]-dataR[k+b]*sin_tab(qq)+dataI[k+b]*cos_tab(qq);

dataR[k+b]=TR-dataR[k+b]*cos_tab(qq)-dataI[k+b]*sin_tab(qq);

dataI[k+b]=TI+temp*sin_tab(qq)-dataI[k+b]*cos_tab(qq);

}

}

}

2.3.3 功率、失真度计算

快速傅里叶变换可以将一个信号从时域变换到频域。假设采样频率为fs,采样点数为N,那么FFT结果就是一个N点的复数,每一个点就对应着一个频率点,某一点n(n从1开始)表示的频率为:fn=(n-1)*fs/N。这个频率点的幅值为:该点复数的模值除以N/2(n=1时是直流分量,其幅值是该点的模值除以N)。各频率点的功率值为该点幅值的平方除以R,总功率为各频率点功率值之和。

失真度的计算公式为

2.3.4 周期性判断

对于一个周期信号来说它的傅里叶变换得到的频谱是稳定的,理想情况下任意两次的谱线是相同的。因此可用对两次采样的数据进行傅里叶变换的频谱比较相似度来判断信号的周期性,如果结果稳定且相似,即可认定为周期信号,信号的周期就是基波周期。周期性判断程序如下:

void panduan_zhouqi(void)

{

u16 cha;

for(i=1;i<=10000/Resolution;i++)

{

if(lBufMagArray1[i]>lBufMagArray[i])

{ cha=lBufMagArray1[i]-lBufMagArray[i]; }

else { cha=lBufMagArray[i]-lBufMagArray1[i]; }

if(cha>20) { t=0; break; }

t=1;

}

for(i=1;i<=10000/Resolution;i++)

{ lBufMagArray1[i]=lBufMagArray[i]; }

}

2.3.5 频谱显示

频谱显示模块主要功能为在TFTLCD液晶显示屏上的指定位置显示信号对应的频谱。程序流程为先擦去上次显示的频谱图,然后计算每个频率点所对应的幅值的高度依次在LCD液晶显示屏上显示出来,程序设计如下:

void LCD_draw_f_w(void)

{

u16 fdz;

for(i=30;i<=280;i++)

{ POINT_COLOR=BLUE; LCD_DrawLine(i, 70, i, 220); }

for(i=1;i<=10000/Resolution;i++)

{

fdz=220-lBufMagArray[i]*135/3000;

if(fdz>=70 && fdz<=220)

{

POINT_COLOR=RED;

LCD_DrawLine(30+Resolution*i*250/10000, 220,

30+Resolution*i*250/10000, fdz);

}

else if(fdz<70)

{

POINT_COLOR=YELLOW;

LCD_DrawLine(30+Resolution*i*250/10000, 220,

30+Resolution*i*250/10000, 70);

}

}

}

2.3.6 按键控制模块

按键控制模块主要通过两个按键以外部中断的形式来实现暂停和档位切换功能。当暂停键按下后系统会将暂停标志位翻转,在主程序最后对暂停标志位检测,若置位则进入暂停状态,程序设计如下:

void EXTI3_IRQHandler(void)

{

delay_ms(100)

if( GPIO_ReadInputDataBit(GPIOE,GPIO_Pin_3)==0)

{

while(!GPIO_ReadInputDataBit(GPIOE,GPIO_Pin_3));

if(st==1) { st=0; }

else{ st=1; }

}

EXTI_ClearITPendingBit(EXTI_Line3);

}

void stop_on_off(void)

{

if(st) { while(st); }

}

当档位切换键按下后,系统将完成20Hz档和100Hz档之间的切换,程序设计如下:

void EXTI0_IRQHandler(void)

{

delay_ms(100);

if(GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0)==1)

{

while(GPIO_ReadInputDataBit(GPIOA,GPIO_Pin_0));

if(n==2048)

{ n=256; Resolution=100; m=8;

POINT_COLOR=WHITE; LCD_ShowString(280,160,200,16,16," 100");

POINT_COLOR=RED; Adc1_dma1_Init((u32)&ADCConvertedValue,n);

}

else

{ n=2048; Resolution=20; m=11;

POINT_COLOR=WHITE;LCD_ShowString(280,160,200,16,16," 20");

POINT_COLOR=RED;Adc1_dma1_Init((u32)&ADCConvertedValue,n);

}

}

EXTI_ClearITPendingBit(EXTI_Line0);

}

第3章系统测试

3.1硬件电路测试

3.1.1驻极体放大电路模块

图3.1.1为用cooledit生成的一个5KHz的音频信号经过驻极体放大电路后的测试结果图,由示波器显示图像可看出输出信号有一定的噪声。

图3.1.1

3.1.2电压跟随电路模块

图3.1.2为输入频率为1KHz,幅值为2V的正弦波的测试结果。

图3.1.2

3.1.3程控增益放大模块

图3.1.3为程控放大10倍效果图。其中黄色曲线是输入信号,绿色曲线为

输出曲线。

3.1.4电压抬升电路模块

图3.1.4为电压抬升电路效果图。输入信号为黄色曲线,输出曲线为绿色曲线。可以很清楚的看出电压被抬升了1.5V。

图3.1.4

3.1.5抗混叠滤波模块

图3.1.5.1为抗混叠滤波器通频带内测试图;图3.1.5.2为抗混叠滤波器截止频率处测试图;图3.1.5.3为抗混叠滤波器通频带外测试图。

图3.1.5.1

图3.5.1.2

图3.5.1.3

3.2系统功能测试

3.2.1确知信号测试

用函数发生器输入一个已知的正弦波,将测量结果与理论值比较。

基于单片机音频信号分析仪设计

2007年A题音频信号分析仪 本系统基于Altera Cyclone II 系列FPGA嵌入高性能的嵌入式IP核(Nios)处理器软核,代替传统DSP芯片或高性能单片机,实现了基于FFT的音频信号分析。 音频信号分析仪 山东大学王鹏陈长林秦亦安 摘要:本系统基于Altera Cyclone II 系列FPGA嵌入高性能的嵌入式IP核(Nios)处理器软核,代替传统DSP芯片或高性能单片机,实现了基于FFT的音频信号分析。并在频域对信号的总功率,各频率分量功率,信号周期性以及失真度进行了计算。并在FPGA中嵌入了8阶IIR切比雪夫(Chebyshev)II型数字低通滤波器,代替传统有源模拟滤波器实现了性能优异的音频滤波。配合12位A/D转换芯片AD1674,和前端自动增益放大电路,使在50mV到5V的测量范围下,单一频率功率及总功率测量误差均控制在1%以内。 关键词:FPGA;IP核;FFT;IIR;可控增益放大 Abstract: This system is based on IP core(Nios)soft-core processors embedded in the FPGA of Altera Cyclone II family. Instead of using DSP or microcontroller, we use Nios II to perform a low-cost FFT-based analysis of the audio signal.And we caculated the power of the whole signal,the power of each frequence point that componented the signal.By the way,we anlysised its periodicity and distortion.We also embedded an 8-order Chebyshev II IIR digital low-pass filter to replace the traditional analog Active Filter to perform an excellent audio filter. With 12bit A / D converter chip AD1674, and the front-end automatic gain amplifier, this system’s single-frequency power and total power measurement error is below 1% in 50mV to 5V measurement range. Keyword: FPGA;IP core; FFT;IIR; automatic gain amplifier 一、方案选择与论证 1、整体方案选择 音频分析仪可分为模拟式与数字式两大类。 方案一:以模拟滤波器为基础的模拟式频谱分析仪。有并行滤波法、扫描滤波法、小外差法等。因为受到模拟滤波器滤性能的限制,此种方法对我们来说实现起来非常困难。 方案二:以FFT为基础的的数字式频谱分析仪。通过信号的频谱图可以很方便的得到输入信号的各种信息,如功率谱、频率分量以及周期性等。外围电路少,实现方便,精度高。 所以我们选用方案二作为本音频分析仪的实现方式。

基于LABVIEW的虚拟频谱分析仪设计

目录 1 设计任务 (1) 1.1 技术要求 (1) 1.2 设计方案 (1) 2 基本原理 (1) 3 建立模型 (2) 3.1 系统前面板设计 (3) 3.2 系统程序框图设计 (3) 3.3 系统程序运行结果 (4) 4 结论与心得体会 (9) 4.1 实验结论 (9) 4.2 心得体会 (10) 5 参考文献 (10)

基于LABVIEW的虚拟频谱分析仪设计1设计任务 1.1 技术要求 1)设计出规定的虚拟频谱分析仪,可对输入信号进行频域分析,显示输入信号的幅度谱和相位谱等 2)设置出各个控件的参数; 3)利用LabVIEW实现该虚拟频谱分析仪的设计; 4)观察仿真结果并进行分析; 5)对该虚拟频谱分析仪进行性能评价。 1.2 设计方案 虚拟频谱分析仪的设计包括以下三个步骤: 1) 按照实际任务的要求,确定频谱分析仪的性能指标。 2) 按照实验原理想好设计思路,并且完成电路图及程序,然后在前面板和程序流程图中实现。 3) 完成电路设计,运行程序并且检查,直至无误后观察仿真结果并且分心。 2基本原理 本设计采用的是数字处理式频谱分析原理,方法为:经过采样,使连续时间信号变为离散时间信号,然后利用LabVIEW的强大的数字信号处理的功能,对采样得到的数据进行滤波、加窗、FFT 运算处理,就可得到信号的幅度谱、相位谱以及功率谱。FFT的输出都是双边的,它同时显示了正负频率的信息。通过只使用一半FFT输出采样点转换成单边FFT。FFT的采样点之间的频率间隔是fs/N,这里fs是采样频率。FFT和能量频谱可以用于测量静止或者动态信号的频率信息。FFT提供了信号在整个采样期间的平均频率信息。因此,FFT主要用于固定信号的分析(即信号在采样期间的频率变化不大)或者只需要求取每个频率分量的平均能量。 在采样过程中,为了满足采样定理,对不同的频率信号,选用合适的采样速率,从而防止频率混叠。实际中,我们只能对有限长的信号进行分析与处理,而进行傅立叶变换的数据理论上应为无限长的离散数据序列,所以必须对无限长离散序列截断,只取采样时间

数字频谱分析仪设计论文

本科生毕业论设计 论文题目:数字频谱分析仪 姓名: 学号: 班级: 年级: 专业: 学院:机械与电子工程学院 指导教师: 完成时间:

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

音频信号分析仪(A题一等奖)

题目名称:音频信号分析仪(A题) 华南理工大学电子与信息学院参赛队员:陈旭张洋林士明 摘要:本音频信号分析仪由32位MCU为主控制器,通过AD转换,对音频信号进行采样,把连续信号离散化,然后通过FFT快速傅氏变换运算,在时域和频域对音频信号各个频率分量以及功率等指标进行分析和处理,然后通过高分辨率的LCD对信号的频谱进行显示。该系统能够精确测量的音频信号频率范围为20Hz-10KHz,其幅度范围为5mVpp-5Vpp,分辨力分为20Hz和100Hz两档。测量功率精确度高达1%,并且能够准确的测量周期信号的周期,是理想的音频信号分析仪的解决方案。 关键词:FFT MCU频谱功率 Abstract:The audio signal analyzer is based on a32-bit MCU controller,through the AD converter for audio signal sampling,the continuous signal discrete,and then through the FFT fast Fourier transform computing,in the time domain and frequency domain of the various audio frequency signal weight and power,and other indicators for analysis and processing,and then through the high-resolution LCD display signals in the spectrum.The system can accurately measure the audio signal frequency range of20Hz-10KHz,the range of5-5Vpp mVpp,resolution of20Hz and100Hz correspondent.Power measurement accuracy up to1%,and be able to accurately measuring the periodic signal cycle is the ideal audio signal analyzer solution. Keyword:FFT MCU Spectrum Power

信号处理实验七音频频谱分析仪设计与实现

哈尔滨工程大学 实验报告 实验名称:离散时间滤波器设计 班级:电子信息工程4班 学号: 姓名: 实验时间:2016年10月31日18:30 成绩:________________________________ 指导教师:栾晓明 实验室名称:数字信号处理实验室哈尔滨工程大学实验室与资产管理处制

实验七音频频谱分析仪设计与实现 一、 实验原理 MATLAB 是一个数据分析和处理功能十分强大的工程实用软件,其数据采集工具箱为实现数据的输入和输出提供了十分方便的函数命令。本实验要求基于声卡和MTLAB 实现音频信号频谱分析仪的设计原理与实现,功能包括: (1)音频信号输入,从声卡输入、从WAV 文件输入、从标准信号发生器输入; (2)信号波形分析,包括幅值、频率、周期、相位的估计、以及统计量峰值、均值、均方值和方差的计算。 (3)信号频谱分析,频率、周期的统计,同行显示幅值谱、相位谱、实频谱、虚频谱和功率谱的曲线。 1、频率(周期)检测 对周期信号来说,可以用时域波形分析来确定信号的周期,也就是计算相邻的两个信号波峰的时间差、或过零点的时间差。这里采用过零点(ti)的时间差T(周期)。频率即为f = 1/T ,由于能够求得多个T 值(ti 有多个),故采用它们的平均值作为周期的估计值。 2、幅值检测 在一个周期内,求出信号最大值ymax 与最小值ymin 的差的一半,即A = (ymax - ymin)/2,同样,也会求出多个A 值,但第1个A 值对应的ymax 和ymin 不是在一个周期内搜索得到的,故以除第1个以外的A 值的平均作为幅值的估计值。 3、相位检测 采用过零法,即通过判断与同频零相位信号过零点时刻,计算其时间差,然后换成相应的相位差。φ=2π(1-ti/T),{x}表示x 的小数部分,同样,以φ的平均值作为相位的估计值。 频率、幅值和相位估计的流程如图1所示。 4、数字信号统计量估计 (1) 峰值P 的估计 在样本数据x 中找出最大值与最小值,其差值为双峰值,双峰值的一半即为峰值。 P=0.5[max(yi)-min(yi)] (2)均值估计 i N i y N y E ∑== 1 )( 式中,N 为样本容量,下同。 (3) 均方值估计 () 20 2 1 ∑== N i i y N y E (4) 方差估计 ∑=-=N i i Y E y N y D 0 2))((1)(

【目录】基于LABVIEW的虚拟频谱分析仪设计

【关键字】目录 目录 基于LABVIEW的虚拟频谱分析仪设计 1设计任务 1.1 技术要求 1)设计出规定的虚拟频谱分析仪,可对输入信号进行频域分析,显示输入信号的幅度谱和相位谱等 2)设置出各个控件的参数; 3)利用LabVIEW实现该虚拟频谱分析仪的设计; 4)观察仿真结果并进行分析; 5)对该虚拟频谱分析仪进行性能评价。 1.2 设计方案 虚拟频谱分析仪的设计包括以下三个步骤: 1) 按照实际任务的要求,确定频谱分析仪的性能指标。 2) 按照实验原理想好设计思路,并且完成电路图及程序,然后在前面板和程序流程图中实现。 3) 完成电路设计,运行程序并且检查,直至无误后观察仿真结果并且分心。

2基本原理 本设计采用的是数字处理式频谱分析原理,方法为:经过采样,使连续时间信号变为离散时间信号,然后利用LabVIEW的强大的数字信号处理的功能,对采样得到的数据进行滤波、加窗、FFT 运算处理,就可得到信号的幅度谱、相位谱以及功率谱。FFT的输出都是双边的,它同时显示了正负频率的信息。通过只使用一半FFT输出采样点转换成单边FFT。FFT的采样点之间的频率间隔是fs/N,这里fs是采样频率。FFT和能量频谱可以用于测量静止或者动态信号的频率信息。FFT提供了信号在整个采样期间的平均频率信息。因此,FFT主要用于固定信号的分析(即信号在采样期间的频率变化不大)或者只需要求取每个频率分量的平均能量。 在采样过程中,为了满足采样定理,对不同的频率信号,选用合适的采样速率,从而防止频率混叠。实际中,我们只能对有限长的信号进行分析与处理,而进行傅立叶变换的数据理论上应为无限长的离散数据序列,所以必须对无限长离散序列截断,只取采样时间内有限数据。这样就导致频谱泄漏的存在。所以利用用加窗的方法来减少频谱泄漏。由于取样信号中混叠有噪声信号,为了消除干扰,在进行FFT 变换之前,要先进行滤波处理。本设计采用了巴特沃斯(Butterworth)、切比雪夫(Chebyshev)、椭圆(Ellipse)、贝塞尔(Bessel)等滤波器。 以下说明时域分析与频域分析的功能 1)信号的时域分析主要是测量尝试信号经滤波处理后的特征值,这些特征值以一个数值的方式来表示信号的某些时域特征,是对尝试信号最简单直观的时域描述。将尝试信号采集到计算机后,在尝试VI中进行信号特征值处理,并在尝试VI前面板上直观地表示出信号的特征值,可以给尝试VI的使用者提供一个了解尝试信号变化的快速途径。信号的特征值分为幅值特征值、时间特征值和相位特征值。 2)信号的频域分析就是根据信号的频域描述来估计和分析信号的组成和特征量。测量时采集到的是时域波形,但是由于时域分析工具较少,往往把问题转换到频域来处理。频域分析包括频谱分析、功率谱分析、相干函数分析以及频率响应函数分析。通过信号的频域分析,可以确定信号中含有的频率组成成分和频率分布范围;还可以确定信号中的各频率成分的幅值和能量;同时还能分析各信号之间的相互关系。 3建立模型 本设计中用LabVIEW中的信号发生控件来代替信号采集部分产生信号。整个系统的设计均由软件来仿真实现。 本设计的虚拟频谱分析仪由两个软件模块组成:信号发生器模块和频谱分析模块。处理过程如下:首先将信号发生模块产生的尝试信号送数字滤波器处理,滤除干扰噪声,然后分别进行时域分析、频域

基于MATLAB的频谱分析仪设计

基于MATLAB的信号频谱分析仪的实现 一、概述 信号处理几乎涉及到所有的工程技术领域,而频谱分析又是信号处理中一个非常重要的分析手段。一般的频谱分析都依靠传统频谱分析仪来完成,价格昂贵,体积庞大,不便于工程技术人员的携带。虚拟频谱分析仪改变了原有频谱分析仪的整体设计思路,用软件代替了硬件,使工程技术人员可以用一部笔记本电脑到现场就可轻松完成信号的采集、处理及频谱分析。 在工程领域中,MA TLAB是一种倍受程序开发人员青睐的语言,对于一些需要做大量数据运算处理的复杂应用以及某些复杂的频谱分析算法MA TLAB显得游刃有余。本文将重点介绍虚拟频谱分析仪、MA TLAB软件及对正弦信号的频谱分析。 1.1虚拟频谱分析仪的功能包括: (1) 音频信号信号输入。输入的途径包括从声卡输入、从WAV文件输入、从信号发生器输入; (2) 信号波形分析。包括幅值、频率、周期、相位的估计,并计算统计量的峰值、均值、均方值和方差等信息; (3) 信号频谱分析。频率、周期的估计,图形显示幅值谱、相位谱和功率谱等信息的曲线。 2.1MA TLAB软件

二、实验原理 2.1快速傅立叶变换(FFT) 在各种信号序列中,有限长序列占重要地位。对有限长序列可以利用离散傅立叶变换(DFT)进行分析。DFT不但可以很好的反映序列的频谱特性,而且易于用快速算法(FFT)在计算机上进行分析。 有限长序列的DFT是其z变换在单位圆上的等距离采样,或者说是序列傅立叶的等距离采样,因此可以用于序列的谱分析。FFT是DFT 的一种快速算法,它是对变换式进行一次次分解,使其成为若干小数据点的组合,从而减少运算量。 MATLAB为计算数据的离散快速傅立叶变换,提供了一系列丰富的数学函数,主要有Fft、Ifft、Fft2 、Ifft2, Fftn、ifftn和Fftshift、Ifftshift等。当所处理的数据的长度为2的幂次时,采用基-2算法进行计算,计算速度会显著增加。所以,要尽可能使所要处理的数据长度为2的幂次或者用添零的方式来添补数据使之成为2的幂次。 Fft函数调用方式:○1Y=fft(X); ○2Y=fft(X,N); ○3Y=fft(X,[],dim)或Y=fft(X,N,dim)。 函数Ifft的参数应用与函数Fft完全相同。 2.2周期图法功率谱分析原理 周期图法是把随机数列x(n)的N个观测数据视为能量有限的序列,直接计算x(n)的傅立叶变换,得X(k),然后再取幅值的平

音频信号分析仪毕业论文

音频信号分析仪 指导老师:邓晶 年纪专业:11信息工程 成员:丽梅(1128401039) 东飞(1128401014) 罗兰(1128401128) 日期:2014年6月

摘要:本音频信号分析仪基于快速傅里叶变换的原理,以32位CPU STM32构成的最小系统为控制核心,由电压跟随、程控放大、峰值检测、抗混叠滤波等模块组成。本音频信号分析仪由STM32控制,通过AD转换,对音频信号进行采样,把连续信号离散化,然后通过FFT运算,对音频信号各个频率分量以及功率等指标进行分析和处理,然后通过高分辨率的LCD对信号的频谱进行显示。该系统能够精确测量的音频信号频率围为50Hz-10KHz,其幅度围为5mVpp-5Vpp,分辨力为50Hz。 关键词:FFT 嵌入式系统前级信号处理功率谱 Abstract: This audio signal analyzer based on the principle of fast Fourier transform, the minimum system consisting of STM32 embedded system as control core, followed by the voltage, program-controlled amplifier, peak detection, such as anti aliasing filter modules. This audio signal analyzer controlled by an embedded system, through the AD conversion, the audio signal sampling, the continuous signal discretization, then through FFT arithmetic, each frequency component and the power index in the audio signal analysis and processing, and then through high resolution display LCD frequency spectrum of the signal and the characteristics of. The system can accurately measure the audio signal frequency range of 50 -10K HZ, its amplitude range is 5 mVpp- 5 V pp ,resolution of 50 Hz.

Adobe-Audition-系列教程(二):频谱分析仪

Adobe Audition系列教程(二):频谱分析仪 频谱分析仪是研究信号频谱特征的仪器,在电子技术一日千里的今天,是研究、开发、调试维修中的有力武器。现代频谱分析仪都趋向于智能化,虚拟仪器技术广泛应用,有些就是以专用的计算机系统为核心设计的。其结果是结构大大简化、性能飞速提高。当然专业的频谱分析仪就比示波器更加昂贵了,业余爱好者更难用上。不过不必灰心,我们可以充分利用AdobeAudition的频谱分析功能,让你拥有精确频谱分析仪的美梦成真!? 1. 频谱显示模式? Adobe Audition本身有一种“频谱显示”模式。先打开一段波形,或用《妙用Adobe Audition:数字存储示波器》一文介绍的方法录制一段波形,即可进行频谱分析。这里我们新建一段20秒的对数扫频信号(本文大多选用直接建立的波形,以便了解信号原始波形的标准频谱特征),然后选择“View=>Spectral View”(视图=>频谱),如图1,或点击快捷工具栏的“Toggle between Spectral and Waveform views”(切换频谱视图/波形视图)按扭,即可将波形以频谱显示的方式显示出来,如图2。扫频的频谱显示见图3。 图1

图2 图3 可以看到,横轴为时间,纵轴为频率指示。每个时刻对应的波形频谱都被显示出来了,可以看到扫描速度是指数增加的,即将频率轴取对数时扫描速度是线性的。如图中光标处18秒处频谱指示约11KHz。实际上频谱指示的颜色是代表频谱能量的高低的,颜色从深蓝到红再到黄,指示谱线电平由低到高的变化。这实际上跟地图的地形鸟瞰显示是比较相似的,看图4频谱复杂变化的声音频谱就更容易理解这点了。 图4

简易频谱分析仪课程设计

东北石油大学课程设计 2014年7月18 日

东北石油大学课程设计任务书 课程通信电子线路课程设计 题目简易频谱分析仪 专业姓名学号 主要内容、基本要求、主要参考资料等 主要内容: 设计一个测量频率范围覆盖为10MHz-30MHz,可根据用户需要设定显示频谱的中心频率和带宽,还可以识别调幅,调频和等幅波信号的简易频谱分析仪。基本要求: (1)频率测量范围为10MHz--30MHz; (2)频率分辨力为10kHz,输入信号电压有效值为20mV±5mV,输入阻抗为50Ω; (3)可设置中心频率和扫频宽度; (4)借助示波器显示被测信号的频谱图,并在示波器上标出间隔为1MHz 的频标。 主要参考资料: [1]谢家奎.电子线路(非线性部分)[M].北京:高等教育出版社. [2] 张建华.数字电子技术[M].北京:机械工业出版社. [3] 陈汝全.电子技术常用器件应用手册[M].北京:机械工业出版社. 完成期限2014.7.14 — 2014.7.18 指导教师 专业负责人 2014年7 月14 日

摘要 系统利用SPCE061A单片机作为主控制器,采用外差原理设计并实现频谱分析仪:利用DDS芯片生成10KHz步进的本机振荡器,AD835做集成混频器,通过开关电容滤波器取出各个频点(相隔10KHz)的值,再配合放大,检波电路收集采样值,经凌阳单片机SPCE061A的处理,最后送示波器显示频谱。测量频率范围覆盖10MHz-30MHz,可根据用户需要设定显示频谱的中心频率和带宽,还可以识别调幅,调频和等幅波信号。 关键词:SPCE061A;DDS;频谱分析仪

10频谱分析仪设计外文资料翻译

MATLAB的关键特性介绍 MATLAB 是一种应用于算法开发、数据显示、数据分析、数值计算方面的高级计算机语言和交互式开发环境。使用MATLAB软件,你能比例如C、C++, 或者Fortran更快的解决技术上的问题。 你能在很多领域使用MATLAB,例如信号或者图像处理、通讯、控制、测量、金融建模和生物学计算等。可以通过添加某些收集了特殊用途函数的工具箱来将MATLAB专门用于解决某一应用领域的问题。 MATLAB 为编排和分享你的功能提供了一系列的功能。你可以将MALAB 代码与其他语言整合,并且区别开算法与应用程序。 关键特性 (1)高级的计算语言。 (2)开发环境支持代码、文件、数据的管理。 (3)采用了为重复研究、设计和解决问题的交互式的工具。 (4)为线性代数、统计学、傅立叶分析、滤波器设计、最优化设计、数值综合等设计了相关的数学函数。 (5)为显示数据而准备了2-D 和3-D 图形功能。 (6)有个性化的用户接口工具。 (7)有外部语言(例如C, C++,Fortran, Java, COM,和Microsoft Excel)集成在Matlab中的函数。 开发算法和应用 MATLAB 提供了一个高级语言和开发工具,这些允许让你能迅速的开发和分析你的算法和应用。 MATLAB 语言 MATLAB 语言支持向量和矩阵,而这些是工程和特殊问题的基本。它允许快速的开发和执行。 有了MATLAB 语言,你可以比其他传统的语言在编写和开发算法方面更

加快速。因为你不再需要去执行一些低级的操作,例如定义变量、s制定数据类型和分配内存。在许多例子中,MATLAB 可以不用‘for’语句. 结果是一行MATLAB语句可以替代许多行的 C or C++ 代码. 同时,MATLAB 提供传统编程语言的所有特性,包括算法操作、流控制、数据结构、数据类型、面向对象(OOP)和调试特性。 MATLAB 允许你在执行一个命令或者一组命令时不去编译和链接,确保你能够迅速的重试而得到最优的解决方案。 为了能快速计算大型的矩阵和向量,MATLAB 使用了增强型处理器库。为了普通的标量计算,MATLAB 使用了即时编辑技术的机器码指令集。 这种在大多数平台上使用的技术提供了可以与传统的编程语言可以媲美的执行速度。 开发工具 MATLAB 包含的开发工具可以帮助你高效的实现你的算法。这些工具包括:: MATLAB Editor——提供标准的编辑和调试特点,例如设置断点和单步执行。 M-Lint Code Checker——分析你的代码和推荐的改变方法去改善它的性能和稳定性。 MATLAB Profiler——记录程序在每一行所花的时间。 Directory Reports——在一个文件夹中扫描所有的文件并且报告代码的效率、文件的差异、文件的依赖性和代码的覆盖等。 设计图形化的用户接口 你的可以使用交互式的工具GUIDE (图形化的用户接口开发环境) 去布置、设计和编辑用户接口。GUIDE 能为你提供列表框、下拉式菜单、按键、收音机式按钮、滚动条和MATLAB plots and ActiveX 控件. 或者,你也可以通过MATLAB 函数用程序的形式创建GUIs。 分析和访问数据

基于FFT的音频信号分析仪报告

音频信号分析仪设计实践报告 摘要 系统基于快速傅立叶变换(FFT)算法,以FPGA和NIOS软核为数据处理与控制核心,实现对频率范围在100Hz~10KHz,电压范围(峰-峰值)在1mV~2.5V的音频信号频率成分的分析。系统由音频信号采集、FFT处理、FIFO数据缓存、NIOS软核控制和LABVIEW 上位机显示等模块组成,硬件采用Cyclone III系列FPGA芯片EP3C25F324C8为核心,采用高性能的立体音频Codec芯片TLV320实现音频处理,对输出具有可编程增益调节,然后在Quartus环境下采用FFT IP核完成离散信号的FFT处理,采用DC_FIFO对FFT变换后的数据进行缓存处理,实现与高时钟NIOS核的通讯,在IDE环境下通过C语言编程实现FIFO 和软核CPU的控制,最终在LABVIEW显示音频信号主要频率成分的信息,实现对音频信号的分析和显示。 关键词:音频分析 FFT FPGA NIOS软核 FIFO

目录 音频信号分析仪设计实践报告 (1) 摘要 (1) 一、设计任务及要求 (3) 1)任务 (3) 2)要求 (3) 二、系统设计方案 (3) 2.1 设计方案的选择 (3) 2.2 总体设计思路 (4) 三、模块电路与程序设计 (5) 3.1 TLV320控制电路 (5) 3.2 FFT控制电路 (5) 3.3 FIFO控制电路 (7) 3.4 NIOS软核 (8) 3.5 LABVIEW显示 (8) 3.6 程序说明 (8) 四. 测试方案与测试结果 (9) 4.1 测试方案 (9) 4.2 测试结果 (9) 五.遇到问题及解决办法 (10) 六. 组员分工.................................................................................................. 错误!未定义书签。 七. 总结与感想.............................................................................................. 错误!未定义书签。八.参考文献 (12) 附录 ................................................................................................................ 错误!未定义书签。

Adobe-Audition-系列教程(二):频谱分析仪

AdobeAudition系列教程(二):频谱分析仪 频谱分析仪是研究信号频谱特征的仪器,在电子技术一日千里的今天,是研究、开发、调试维修中的有力武器。现代频谱分析仪都趋向于智能化,虚拟仪器技术广泛应用,有些就是以专用的计算机系统为核心设计的。其结果是结构大大简化、性能飞速提高。当然专业的频谱分析仪就比示波器更加昂贵了,业余爱好者更难用上。不过不必灰心,我们可以充分利用AdobeAudition的频谱分析功能,让你拥有精确频谱分析仪的美梦成真! 1. 频谱显示模式 AdobeAudition本身有一种“频谱显示”模式。先打开一段波形,或用《妙用Adobe Audition:数字存储示波器》一文介绍的方法录制一段波形,即可进行频谱分析。这里我们新建一段20秒的对数扫频信号(本文大多选用直接建立的波形,以便了解信号原始波形的标准频谱特征),然后选择“View=>Spe ctral View”(视图=>频谱),如图1,或点击快捷工具栏的“Toggle between Spectral and Waveform views”(切换频谱视图/波形视图)按扭,即可将波形以频谱显示的方式显示出来,如图2。扫频的频谱显示见图3。 图1

图2 图3 可以看到,横轴为时间,纵轴为频率指示。每个时刻对应的波形频谱都被显示出来了,可以看到扫描速度是指数增加的,即将频率轴取对数时扫描速度是线性的。如图中光标处18秒处频谱指示约11KHz。实际上频谱指示的颜色是代表频谱能量的高低的,颜色从深蓝到红再到黄,指示谱线电平由低到高的变化。这实际上跟地图的地形鸟瞰显示是比较相似的,看图4频谱复杂变化的声音频谱就更容易理解这点了。

音频信号分析仪设计报告

音频信号分析仪设计报告 1.摘要: 设计一个可对音频信号进行分析,并在LCD上显示其频率分量及功率的电路,电路还可对输入的失真信号进行失真度测量。电路主要由扫描滤波网络,检波采集网络,以及失真度测量网络构成。扫描滤波部分主要由MAX264开关电容滤波器电路和基于DDS扫描控制信号产生电路组成,完成对各个频率分量的提取;检波部分主要由有效值转换电路完成对频率分量功率的测量;失真度测量部分可自动跟踪输入信号的基频,通过谐波检测的方法,实现对失真度的测量,并可借助单片机测量其频率。整个测量电路结构简单,可较好完成对音频信号的各项分析。 关键字:MAX264 AD9851 音频功率检测失真度 2.总体方案设计 2.1方案一 动态信号分析法,即对信号进行时域采集,然后进行fourier变换,转换成频域信号。特点是较快,有较高的分辩率和采样速率。但受采样定理限制,无法推广到高频,且对采集网络要求较高,一般的单片机无法完成信号的频域变换算法。 2.2方案二 并行滤波法,通过一组滤波器网络,且每个滤波器都有自己的检波器,其通频带应尽量窄,数目应应该有足够的密度概括整个测量频带。优点是可实时显示和分析各个信号的频率分布及大小,缺点是其频率分量的个数取决于滤波器数目,当测量带宽增大,所需滤波器数目巨大。 2.3方案三 外差法,采用超外差接收机的方式,利用混频器、中频放大器、中频滤波器、检波器等构成频谱分析电路。其优点是工作频率范围宽、选择性好、灵敏度高。但是由于本振是连续可调谐的,被分析的频谱是依次顺序取样,因此扫频外差式不能实时地检测和显示信号的频谱。 2.4方案四 扫描滤波法,其采用中心频率可调的滤波器。被测信号首先加至可调谐窄带滤波器,其中心频率自动反复在信号频率范围内扫描。扫描滤波式频谱分析电路的优点是结构简单,价格低廉。由于没有混频电路,省去了抑制假信号的问题。我们选择这种方案,用DDS控制滤波器中心频率从而实现对不同频率分量的的提取并且利用滤波网络还可以实现失真度测量。(系统框图如下)

音频频谱分析仪设计

信号处理实验 实验八:音频频谱分析仪设计与实现

一、实验名称:音频频谱分析仪设计与实现 二、实验原理: MATLAB是一个数据信息和处理功能十分强大的工程实用软件,其数据采集工具箱为实现数据的输入和输出提供了十分方便的函数和命令。本实验可以用MATLAB进行音频信号频谱分析仪的设计与实现。 1、信号频率、幅值和相位估计 (1)频率(周期)检测 对周期信号来说,可以用时域波形分析来确定信号的周期,也就是计算相邻的两个信号波峰的时间差、或过零点的时间差。这里采用过零点(ti)的时间差T(周期)。频率即为f = 1/T,由于能够求得多个T值(ti有多个),故采用它们的平均值作为周期的估计值。 (2)幅值检测 在一个周期内,求出信号最大值ymax与最小值ymin的差的一半,即A = (ymax - ymin)/2,同样,也会求出多个A值,但第1个A值对应的ymax和ymin不是在一个周期内搜索得到的,故以除第1个以外的A值的平均作为幅值的估计值。 (3)相位检测 采用过零法,即通过判断与同频零相位信号过零点时刻,计算其时间差,然后换成相应的相位差。φ=2π(1-ti/T),{x}表示x的小数部分,同样,以φ的平均值作为相位的估计值。 频率、幅值和相位估计的流程如图所示。

其中tin表示第n个过零点,yi为第i个采样点的值,Fs为采样频率。 2、数字信号统计量估计 (1) 峰值P的估计 在样本数据x中找出最大值与最小值,其差值为双峰值,双峰值的一半即为峰值。P=0.5[max(yi)-min(yi)] (2)均值估计 式中,N为样本容量,下同。 (3) 均方值估计

基于LabVIEW的频谱分析仪的设计--开题报告

XXXX大学学生开题报告表 课题名称基于LabVIEW的频谱分析仪的设计 课题来源实际课题类型 E 导师XXX 学生姓名XXX 学号XXX 专业电子信息工程开题报告内容:(调研资料的准备,设计目的、要求、思路与预期成果;任务完成的阶段内容及时间安排;完成设计(论文)所具备的条件因素等。) 1、调研资料的准备 在毕业设计前期,利用图书馆、互联网获取了LabVIEW软件及频谱分析仪的设计的相关资料;对于题目关键技术要点,通过向导师答疑以及与同组同学讨论的方式得到解决,从而确定了题目的技术方案;在后续的设计过程中,还将继续利用图书馆、互联网等途径获取与设计有关的知识,并加强与导师的沟通。 2、设计目的、要求 题目主要是利用LabVIEW软件设计出简单的频谱分析仪,根据频谱分析仪的原理确定其功能,结合LabVIEW软件平台的特点对仪器做出设计和软件编程,实现对信号的分析和研究。 整个系统由虚拟信号发生器模块、虚拟信号滤波器模块和频谱分析模块三部分组成。虚拟信号发生器模块能够产生正弦波、三角波、方波等标准信号,并且可以叠加各种干扰噪声;频谱分析模块主要对上述信号进行时域分析、频域分析和谐波分析等。 掌握基于LabVIEW编程的相关知识和信号的频谱分析方法,要求系统能够产生正弦波、三角波、方波等标准信号,可以叠加各种干扰噪声并对上述信号进行时域分析、频域分析和谐波分析等。完成15000字以上的毕业设计论文,并翻译3000汉字以上的相关英文资料。 3、设计思路与预期成果 根据频谱分析仪的原理确定分析幅度谱、相位谱、自功率谱、互功率谱功能,然后结合LabVIEW软件平台特点实施仪器系统的总体设计和软件编程,最后进行系统调试试验。 本设计采用的是数字处理式频谱分析原理。频谱分析仪是在虚拟示波器的基础上调用滤波函数、加窗函数、FFT函数得到信号频谱特性参数的仪器。实现方法如下:经过采样,将连续时间信号变为离散时间信号,接着利用LabVIEW强大的数字信号处理功能,对这组数据进行滤波、加窗、FFT运算处理,得到信号的幅度谱、相位谱以及功率谱。 在采样过程中,对不同的频率信号,选用合适的采样速率,以满足采样定理,从而防止

简易频谱分析仪

简易频谱分析仪[ 2005年电子大赛二等奖] 摘要:本设计以凌阳16位单片机SPCE061A为核心控制器件,配合Xilinx Virtex-II FPGA及Xilinx公司提供的硬件DSP高级设计工具System Generator,制作完成本数字式外差频谱分析仪。前端利用高性能A/D对被测信号进行采集,利用FPGA高速、并行的处理特点,在FPGA内部完成数字混频,数字滤波等DSP 算法。 SPCE061A单片机是整个设计的核心控制器件,根据从键盘接受的数据控制整个系统的工作流程,包括控制FPGA工作以及控制双路D/A在模拟示波器屏幕上描绘频谱图。人机接口使用128×64液晶和4×4键盘。本系统运行稳定,功能齐全,人机界面友好。 关键字:SPCE061A 简易频谱分析仪 一、方案论证 频谱分析仪是在频域上观察电信号特征,并在显示仪器上显示当前信号频谱图的仪器。从实现方式上可分为模拟式与数字式两类方案,下面对两种方案进行比较: 方案一:模拟式频谱分析仪 模拟方式的频谱仪以模拟滤波器为基础,通常有并行滤波法、顺序滤波法,可调滤波法、扫描外差法等实现方法,现在广泛应用的模拟频谱分析仪设计方案多为扫描外差法,此方案原理框图如图1.1:

图 1.1 模拟外差式频谱仪原理框图 图中的扫频振荡器是仪器内部的振荡源,当扫频振荡器的频率在一定范围内扫动时,输入信号中的各个频率分量在混频器中产生差频信号 (),依次落入窄带滤波器的通带内(这个通带是固定的),获得中频增益,经检波后加到Y放大器,使亮点在屏幕上的垂直偏移正比于该频率分量的幅值。由于扫描电压在调制振荡器的同时,又驱动X放大器,从而可以在屏幕上显示出被测信号的线状频谱图。这是目前常用模拟外差式频谱仪的基本原理。模拟外差式频谱仪具有高带宽和高频率分辨率等优点,但是模拟器件调试复杂,短期实现有难度,尤其是在对频谱信息的存储和分析上,逊色于新兴的数字化频谱仪方案。 方案二:数字式频谱分析仪 数字式频谱仪通常使用高速A/D采集当前信号,然后送入处理器处理,最后将得到的各频率分量幅度值数据送入显示器显示,其组成框图如图1.2: 图 1.2 数字式频谱仪组成框图

基于labview的信号频谱分析仪毕业设计论文

基于LABVIEW的信号频谱分析仪设计 摘要 随着科学技术的进步,对测量技术的要求越来越高。电子测量技术在各个领域得到越来越广泛的应用,传统的电子测量仪器由于其功能单一,体积庞大,已经很难满足实际工作的需要。集成电路和计算机技术的迅猛发展使电子测量仪器逐渐向数字化、智能化方向发展,与传统仪器相比表现为:功能更强、处理速度更快、频带更宽、用途更广、操作更简单、体积更小、可扩充性更好。微型计算机的普及程度和性能不断提高,使得基于PC平台的虚拟仪器系统应运而生。虚拟仪器可以充分利用计算机的运算、存储和显示功能,因而在降低仪器成本的同时使仪器的灵活性和数据处理能力大大提高,可以很好地满足学校科研和教学改革的需要。 本文论述了基于虚拟仪器概念的信号采集系统的实现方案,重点讨论了在数据传输、显示和处理中的关键技术。使用USB数据采集卡,最终实现了基于 PC 平台的,具有频率计和频谱分析仪功能的数字存储示波器系统。本文所选用的软件LabView 是美国 NI 公司的创新软件产品,也是日前应用最广泛、发展最快、功能最强的图形化软件开发环境。它具有开发周期短、运行速度快、可重用性、使用方便灵活等优点。因此LabView 对虚拟存储示波器的设计是一种最理想的方法。 关键词:虚拟仪器;数字存储示波器;谐波分析仪;LabView仪器驱动程序

THE DESIGN OF SIGNAL SPECTRUM ANALYSER BASED ON LABVIEW ABSTRACT With the advancement of science and technology, the development of measurement technique is getting more and more important. The application of electronic measurement technique has extended to more fields than ever. Due to limited functions and big size, traditional electronic measurement equipment is no longer suited for common purposes. Thanks to the rapid development of integrated circuit and computer technology, measurement instruments are becoming digitized and https://www.doczj.com/doc/eb7002890.html,pared with traditional equipment, the new instruments have more functions, higher processing speed, wider bandwidth, friendlier interface,smaller size and better expandability. The prevalence and rocketing development of personal computers give birth to a new kind of instrument, Virtual Instrument (VI). VI is based on PC platform, and can make use of the software and hardware resources of a PC. Compared with its ability of data processing and flexibility, VI has a low price, which means it is a good choice for research and teaching reform inuniversities. This dissertation discusses the implementation of a signal acquisition system,based on the concept of VI and focuses on key techniques in data transmission, display and processing. With a USB data acquisition card connectedto PC, a digital storage oscillograph (DSO) with the function of cymometer and spectrum analyzer is https://www.doczj.com/doc/eb7002890.html,bVIEW is the innovate software of national instruments corps, of America.lt is also the most widely used、the most quickly developing and the strongest function gragh software.lt has short epolder and fast run-rate.So LabView

相关主题
文本预览
相关文档 最新文档