当前位置:文档之家› 汽车制动系统组成和原理

汽车制动系统组成和原理

汽车制动系统组成和原理
汽车制动系统组成和原理

汽车制动系统组成和原理

原理

1、一般制动系的基本结构

·主要由车轮制动器和液压传动机构组成。

·车轮制动器主要由旋转部分、固定部分和调整机构组成,旋转部分是制动鼓;固定部分包括制动蹄和制动底板;调整机构由偏心支承销和调整凸轮组成用于调整蹄鼓间隙。

·制动传动机构主要由制动踏板、推杆、制动主缸、制动轮缸和管路组成。

2、制动工作原理

制动系统的一般工作原理是,利用与车身(或车架)相连

的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相

互摩擦来阻止车轮的转动或转动的趋势。

1)制动系不工作时

·蹄鼓间有间隙,车轮和制动鼓可自由旋转

2)制动时

·要汽车减速,脚踏下制动器踏板通过推杆和主缸活塞,使主缸油液在一定压力下流入轮缸,并通过两轮缸活塞推使制动蹄绕支承销转动,上端向两边分开而以其摩擦片压紧在

制动鼓的内圆面上。不转的制动蹄对旋转制动鼓产生摩擦力矩,从而产生制动力

3)解除制动

·当放开制动踏板时回位弹簧即将制动蹄拉回原位,制动力消失。

3、制动主缸的结构及工作过程

·制动主缸的作用是将自外界输入的机械能转换成液压能,从而液压能通过管路再输给制动轮缸

·制动主缸分单腔和双腔式两种,分别用于单、双回路液压制动系。

(1)单腔式制动主缸

1)制动系不工作时

·不制动时,主缸活塞位于补偿孔、回油孔之间

2)制动时

·活塞左移,油压升高,进而车轮制动

3)解除制动

·撤除踏板力,回位弹簧作用,活塞回位,油液回流,制动解除

(2)双腔式制动主缸

1)结构(如一汽奥迪100型轿车双回路液压制动系统中的串联式双腔制动主缸)

·主缸有两腔

·第一腔与右前、左后制动器相连;第二腔与左前、右后制动器相通

·每套管路和工作腔又分别通过补偿孔和回油孔与储油罐相通。第二活塞由右端弹簧保持在正确的初始位置,使补偿孔和进油孔与缸内相通。第一活塞在左端弹簧作用下,压靠在套上,使其处于补偿孔和回油孔之间的位置。

2)工作原理

·制动时,第一活塞左移,油压升高,克服弹力将制动液送入右前左后制动回路;同时又推动第二活塞,使第二腔液压升高,进而两轮制动

·解除制动时,活塞在弹簧作用下回位,液压油自轮缸和管路中流回制动主缸。如活塞回位迅速,工作腔内容积也迅速扩大,使油压迅速降低。储液罐里的油液可经进油孔和活塞上面的小孔推开密封圈流入工作腔。当活塞完全回位时,补偿孔打开,工作腔内多余的油由补偿孔流回储液罐。若液压系统由于漏油,以及由于温度变化引起主缸工作腔、管路、轮缸中油液的膨胀或收缩,都可以通过补偿孔进行调节。

4、制动轮缸的结构及工作过程

·制动轮缸的功用:是将液力转变为机械推力。有单活塞和双活塞两种。

1)结构

·奥迪100的双活塞式轮缸体内有两活塞,两皮碗,弹簧

使皮碗、活塞、制动蹄紧密接触。

2)工作过程

·制动时,液压油进入两活塞间油腔,进而推动制动蹄张开,实现制动。

·轮缸缸体上有放气螺栓,以保证制动灵敏可靠。

典型的制动系统

汽车制动的原理

汽车制动的原理 众所周知,当我们踩下制动踏板时,汽车会减速直到停车。但那个工作是怎么样完成的?你腿部的力量是如何样传递到车轮的?那个力量是如何样被扩大以至能让一台笨重的汽车停下来? 首先我们把制动系统分成6部分,从踏板到车轮依次解释每部分的工作原理,在了解汽车制动原理之前我们先了解一些差不多理论,附加部分包括制动系统的差不多操作方式。 差不多的制动原理 当你踩下制动踏板时,机构会通过液压把你脚上的力量传递给车轮。但实际上要想让车停下来必须要一个特别大的力量,这要比人腿的力量大特别多。因此制动系统必须能够放大腿部的力量,要做到这一点有两个方法:?杠杆作用 ?利用帕斯卡定律,用液力放大 制动系统把力量传递给车轮,给车轮一个摩擦力,然后车轮也相应的给地面一个摩擦力。在我们讨论制动系统构成原理之前,让我们了解三个原理:?杠杆作用 ?液压作用 ?摩擦力作用 制动踏板能够利用杠杆作用放大人腿部的力量,然后把那个力量传递给液压系统。

如上图,在杠杆的左边施加一个力F,杠杆左边的长度〔2X〕是右边〔X〕的两倍。因此在杠杆右端能够得到左端两倍的力2F,然而它的行程Y只有左端行程2Y的一半。 液压系统 事实上任何液压系统背后的差不多原理都特别简单:作用在一点的力被不能压缩的液体传递到另一点,这种液体通常是油。绝大多数制动系统也在此中放大制动力量。下图是最简单的液压系统: 如图:两个活塞〔红色〕装在充满油〔蓝色〕的玻璃圆桶中,之间由一个充满油的导管连接,假如你施一个向下的力给其中一个活塞〔图中左边的活塞〕那么那个力能够通过管道内的液压油传送到第二个活塞。由于油不能被压缩,因此这种方式传递力矩的效率特别高,几乎100%的力传递给了第二个活塞。液压传力系统最大的好处确实是能够以任何长度,或者曲折成各种形状绕过其他部件来连接两个圆桶型的液压缸。还有一个好处确实是液压管能够分支,如此一个主缸能够被分成多个副缸,如下图:

《汽车电控系统检测》任务工作单

任务工单教学项目发动机电控系统检测 实施任务任务1:电控燃油喷射系统认识;任务2:空气供给系统检测;任务3:燃油供给系统检测;任务4:发动机辅助系统检测;任务5:发动机数据流的读取与分析 班级组别成员 二、发动机要能够良好的工作,必须满足哪几个基本条件? 三、写出 下列各 标号所 代表的 元件名 称,并画 出燃油 流动方向。 A: B: C: D: E: F: G: H: I:

图示的电控发动机是型发动机,因为。 四、对照实物,在图中标出下列发动机进气系统各主要元件位置。 ①进气歧管绝对压力传感器②空气滤清器③节气门体④怠速控制阀 五、标出右图中燃油压力调节器各部位名称: 1、 2、 3、 4、 5、 6、 7、 8、 燃油压力调节器的工作原理是:发动机工作时,燃油压力调节器膜片上方承受的压力为弹簧压力和的压力之和,膜片下方承受的压力为压力,当压力相等时,膜片处于平衡位置不动。当进气管内气体压力下降时,膜片向上移动,回油阀开度增大,回油量增多,使输油管内燃油压力也下降;反之,进气管内气体压力升高时,燃油的压力也升高。油压调节器的作用: 六、查找资料 ☆小组讨论:燃油压力调节器一旦损坏可能出现什么故障现象? 七、下面两图分别是顺序喷射和分组喷射的喷油器控制电路示意图,请你完成它。(注意喷油器的喷射顺序) 在各类喷油器中,按照安装位置的不同分为喷油器和喷油器。MPI 喷射系统中,喷油器一般安装在并指向。在某些车辆中,为了改善低温启动性能还增设有喷油器。按喷口形状不同。可分为喷油器和喷油器。按电阻值不同,可分为喷油器和

喷油器。其中,喷油器不能直接接蓄电池电源电压;必须串联8~10Ω的电阻,否则可能因电流过大而烧坏喷油器。 八、检测喷油器的电阻: ①拆卸前以避免拆卸插头时由于自感放电而烧毁ECU。 ②检测结果:结论: 九、下图是大众车系的燃油油泵控制电路图 图中,当发动机电门由OFF打到ON时,一般燃油泵继电器将,其作用是。 十、检测燃油压力: 小组讨论:如果检测到油压为0,如何进一步寻找故障原因? 十一、动态测量进气歧管绝对压力传感器。 十二、图中节气门位置传感器各接脚分别是什么? 在燃油喷射控制系统中,节气门位置传感器的作用是:

汽车制动系统

汽车制动系统 1 概述 使行驶中的汽车减速甚至停车,使下坡行驶的汽车的速度保持稳定,以及使已停驶的汽车保值不动,这些作用统称为汽车制动。 制动系至少有行车制动装置和驻车制动装置。前者用来保证第一项功能和在不长的坡道上行驶时保证第二项功能,而后者则用来保证第三项功能。除此之外,有些汽车还设有应急制动和辅助制动装置。 应急制动装置利用机械力源(如强力压缩弹簧)进行制动。在某些采用动力制动或伺服制动的汽车上,一旦发生蓄压装置压力过低等故障时,可用应急制动装置实现汽车制动。同时,在人力控制下它还能兼作驻车制动用。 辅助制动装置可实现汽车下长坡时持续地减速或保持稳定的车速,并减轻或者解除行车制动装置的负荷。 行车制动装置和驻车制动装置,都由制动器和制动驱动机构两部分组成。为防止制动时车轮被抱死,提高制动过程中的方向稳定性和转向操纵能力,缩短制动距离,所以近年来防抱死系统(ABS)在汽车上得到很快的发展和应用。 1.1汽车制动系统的分类 1) 按制动系统的作用 (1)行车制动系统——使行驶中的汽车降低速度甚至停车的一套专门装置。(2)驻车制动系统——使已停驶的汽车驻留原地不动的一套装置。 (3)第二制动系统——在行车制动系统失效的情况下,保证汽车仍能实现减速或停车的一套装置。 (4)辅助制动系统——在汽车下长坡是用以稳定车速的一套装置。 上述各制动系统中,行车制动系统和驻车制动系统是每一辆汽车都必须具备的。 2)按制动操纵能源 (1)人力制动系统——以驾驶员的肌体作为唯一制动能源的制动系统。 (2)动力制动系统——完全靠由发动机的动力转化而成的气压或液压形式的势能

图1 制动系统的组成示意图 1-前轮盘制动器;2-制动总泵;3-真空助力器;4-制动踏板机构;5-后轮鼓式制动;6-制动组合阀;7-制动警示灯 进行制动的系统称。 (3)伺服制动系统——兼用人力和发动机动力进行制动的制动系统称。 按制动能量的传输方式,制动系统又可分为机械式、液压式、气压式和电磁式等。同时采用两种以上传能方式的制动系称为组合式制动系统。 1.2汽车制动系的组成 右图1给出了一种轿车典型制动 系统的组成示意图,可以看出,制动 系统一般由制动操纵机构和制动器两 个主要部分组成。 1.2.1制动操作机构 产生制动动作、控制制动效果并将 制动能量传输到制动器的各个部件,如图 中的2、3、4、6,以及制动主缸和制动轮 缸。 (1)制动主缸 制动主缸分单腔和双腔两种,分别用于单回路和双回路液压制动系统。 (2)制动轮缸 制动轮缸的功用是将液体压力转变为制动蹄张开的机械推力。制动轮缸有单活塞和双活塞式两种。单活塞式制动轮缸主要用于双领蹄式和双从领蹄式制动器,而双活塞式制动轮缸应用较广,即可用于领从蹄式制动器,又可用于双向领从蹄式制动器及自增力式制动器。 1.2.2制动器 一般制动器都是通过其中的固定元件对旋转元件施加制动力矩,使后者的旋转角速度降低,同时依靠车轮与地面的附着作用,产生路面对车轮的制动力以使汽车减速。凡利用固定元件与旋转元件工作表面的摩擦而产生制动力矩的制动器都成为摩擦制动器。 旋转元件固装在车轮或半轴上,即制动力矩直接分别作用于两侧车轮上的制动器称为车轮制动器。旋转元件固装在传动系的传动轴上,其制动力矩经过驱动桥再分配到两侧车轮上的制动器称为中央制动器。

气压制动系统的主要构造元件和工作原理

气压制动系统的主要构造元件和工作原理

————————————————————————————————作者:————————————————————————————————日期:

气压制动系统的主要构造元件 和工作原理 气压制动以压缩空气为制动源,制动踏板控制压缩空气进入车轮制动器,所以气压制动最大的优势是操纵轻便,提供大的制动力矩;气压制动的另一个优势是对长轴距、多轴和拖带半挂车、挂车等,实现异步分配制动有独特的优越性。 但是气压制动的缺点也很明显: 相对于液压制动,气压制动结构要复杂的多;且制动不如液压式柔和、行驶舒适性差;所以气压制动因而一般只用于中、重型汽车上。

下面主要以斯太尔8X4载重汽车为例介绍气压制动传动装置主要部件的结构组成。 1.空气压缩机 空气压缩机是全车制动系气路的气源,斯太尔6X4载重汽车空气压缩机为单缸混合冷却式,气缸体为风冷,气缸盖通过发动机冷却系统水冷。它固定在发动机前端左侧的支架上,它的传动齿轮与其曲轴为高扭矩自锁连接,在正时齿轮室中悬臂安装,由发动机曲轴通过中间齿轮、喷油泵齿轮、空气压缩机传动轴驱动转动,其构造如图18. 5所示,与汽车发动机机构相似,它主要由空气压缩机壳体1、活塞2、曲轴3、单向阀4等组成。 壳体由气缸体、气缸盖组成,壳体是铸铁的,外面带有用于空气冷却的散热筋片,里面是用于产生压缩空气的气缸。进、排气阀门采用舌簧结构,进气口经气管通向空气滤清器;出气口则经气管通向空气干燥器。润滑油由发动机主油道经油管、滚珠轴承,进入曲轴箱,然后经正时齿轮室回到油底壳。 活塞通过连杆与曲轴相连,连杆轴承合金直接浇注在连杆大头和连杆瓦盖上,活塞通过活塞环与气缸密封。 曲轴两端通过滚珠轴承支承在曲轴箱内,?前后有轴承盖,前端伸出盖外用半圆键及螺母固装传动齿轮,前端孔内分另1J装有防止漏油的油封。 发动机运转时,空气压缩机随之转动,当活塞下行时,进气阀门被打开,外界空气经空气滤清器、进气道进人气缸。当活塞上行时,?进气阀门被关闭,气缸内空气被压缩,出气阀门在压缩空气的作用下被打开,压缩空气由空气压缩机出气口经管路、空气干燥器进人储气筒和四管路保护阀。

ABS防抱死制动系统原理及组成图文讲解

● ABS简介 ABS是 Anti_lock Braking System 的缩写,是在制动期间控制和监视车辆速度的电子系统。 它通过常规制动系统起作用,可提高车辆的主动安全性。ABS失效时,常规制动系统仍然起作用。 优点:在紧急制动时保持了车辆方向的可操纵性;缩短和优化了制动距离。在低附着路面上,制动距离缩短10%以上;在正常路面上,保持了最优的路面附着系数利用率-即最佳的制动距离。减少了交通事故的同时减轻了司机精神负担及轮胎磨损和维修费用等。 系统部件

ABS组成部件:ECU;4~6个电磁阀;4~6个齿圈;4~6个传感器;驾驶室线束、底盘线束;ABS指示灯、 ASR灯;挂车ABS指示灯;开关、ASR开关;差动阀;双通单向阀; ISO7638电源线;电源螺旋线等。 ● ABS控制原理

卡车 ABS/ASR ABS控制原理可以简单描述为: 在车轮接近抱死的情况下,相应车轮的制动压力将被释放并在要求或测得车轮重新加速期间保持恒定,在重新加速之后逐步增加制动压力。 ABS齿圈 ABS齿圈能够随车轮转动切割传感器磁场,由铁磁性材料组成,表面采用镀锌或镀铬,齿数一般有80齿、100齿或120齿。 齿圈安装:将齿圈装入在轮毂上加工的平台,采用H8/s7过盈配合,轴向综合公差<0.2mm。装配方式有加热装配和压力装配两种方式。加热装配的方法是加热至2000°C,保温10分 钟左右装入;压力装配即用工具沿齿圈周边用力装入。 ABS 传感器

ABS传感器的作用是车轮转动时与齿圈相对运动产生交流电信号。其阻值在1100欧姆和1250欧姆之间,与环境温度有关。感应电压约110mV,与齿圈的间隙为0.7mm时的工作频率为100HZ,工作电压与传感器和齿圈之间的间隙成反比,与齿圈直径成正比,与轮速成正比。

汽车刹车制动系统工作原理图解

汽车刹车制动系统工作原理图解 想必不需要多问,大家都知道在行车过程中,汽车制动功能是非常重要的,因为刹车制动直接关系到车主的生命财产安全,如果知道不好,那是极度危险的,学习了解汽车制动工作原理,有利于在今后的开车过程中熟练掌握刹车技能,在日常汽车维护中也能自己修理刹车制动部件。随着酒后代驾、商务代驾、婚庆代驾等代驾行业的兴起,标志着中国交通社会文明程度的不断提升。当然,对代驾司机提出了更多的驾驶技能要求,不仅要会驾驶各种品牌的汽车,更要懂得在紧急情况下如何处理应急问题,因此第一代驾为广大司机整理了全面的汽车刹车制动系统工作原理图解知识。 实际刹车与工作原理图解

●制动系统的组成 作为制动系统,作用当然就是让行驶中的汽车按我们的意愿进行减速甚至停车。工作原理就是将汽车的动能通过摩擦转换成热能。汽车制动系统主要由供能装置、控制装置、

传动装置和制动器等部分组成,常见的制动器主要有鼓式制动器和盘式制动器。 ●鼓式制动器 鼓式制动器主要包括制动轮缸、制动蹄、制动鼓、摩擦片、回位弹簧等部分。主要是通过液压装置是摩擦片与岁车轮转动的制动鼓内侧面发生摩擦,从而起到制动的效果。 在踩下刹车踏板时,推动刹车总泵的活塞运动,进而在油路中产生压力,制动液将压力传递到车轮的制动分泵推动活塞,活塞推动制动蹄向外运动,进而使得摩擦片与刹车鼓发生摩擦,从而产生制动力。 从结构中可以看出,鼓式制动器是工作在一个相对封闭的环境,制动过程中产生的热量不易散出,频繁制动影响制动效果。不过鼓式制动器可提供很高的制动力,广泛应用于重型车上。 ●盘式制动器 盘式制动器也叫碟式制动器,主要由制动盘、制动钳、摩擦片、分泵、油管等部分构成。盘式制动器通过液压系统把压力施加到制动钳上,使制动摩擦片与随车轮转动的制动盘发生摩擦,从而达到制动的目的。 与封闭式的鼓式制动器不同的是,盘式制动器是敞开式的。制动过程中产生的热量可以很快散去,拥有很好的制动效能,现在已广泛应用于轿车上。

电控系统工作原理

电控系统工作原理 一、电控系统工作原理 随着科技进步和电子工业的发展,国产轿车采用电子控制燃油喷射系统的比率逐年增加,早在2000年,一汽—大众就宣布停止化油器式发动机的生产,产品全部采用电子控制燃油喷射系统。最早研究和开发汽油喷射式发动机的是德国博世(Bosch)公司,汽油喷射技术首先应用于飞机发动机,随着对汽车节能降耗、降低排放和提高舒适性、增加动力性的要求,这一技术被应用于汽车发动机上。目前,博世公司在这一领域的技术和产品仍处于世界领先地位。捷达王轿车就采用了博世公司最新开发的Motronic M3.8.2发动机电控管理系统,并根据中国的国情做了改进和匹配。Motronic M3.8.2发动机电控管理系统为电子控制多点燃油顺序喷射系统,闭环控制,其突出特点是喷油量及点火时刻综合控制。该系统由电子控制单元、传感器、执行器等组成,传感器为燃油喷射系统和点火系统所共用。 1.Motronic M3.8.2发动机电控管理系统的组成及工作原理 Motronic M3.8.2电控系统由电控单元(即ECU,俗称电脑)、发动机转速传感器(也称曲轴位置传感器)、空气流量传感器、节流阀体、进气温度传感器、冷却液温度传感器(发动机水温传感器)、k传感器(即氧传感器)、爆震传感器、相位传感器(也称凸轮轴位置传感器或霍尔传感器)、双点火线圈、油压调节器和喷油器等组成。 驾驶员通过节气门(俗称油门)控制发动机进气量,控制单元通过节气门位置传感器得知节气门开度,再综合发动机转速、空气流量、进气温度、λ探测值等各传感器及电子开关提供的信息,经分析、计算,确定出最佳喷油量和点火时刻,向喷油器和点火线圈发出喷油和点火指令。发动机转速和空气流量信号是ECU计算基本喷油量的主信号,ECU再根据进气温度传感器、冷却液温度传感器、A传感器、爆震传感器和节气门位置等信号对喷油量进行必要的修正,确定出实际喷油量,然后根据转速传感器得到的曲轴位置信号和相位传感器检测到的1缸压缩上止点信号,适时地向喷油器和点火线圈发出动作指令。 发动机工作可分为如下工况: (1)起动工况 发动机被起动机带动运转,当转速低于某值时,ECU识别出发动机处于起动工况,根据转速传感器、凸轮轴位置传感器、节流阀位置传感器、冷却液温度传感器、进气温度传感器等提供的信号,以及ECU中存储的最佳控制参数,计算出起动喷油量、点火角度和怠速直流电机的位置,并驱动喷油器和点火动力组件动作,使节气门处于起动位置,保证发动机顺利起动。发动机起动后,当转速超过某值时,则起动工况结束。捷达王轿车起动时,司机无需踏油门踏板、节气门会自动处于最佳起动位置。 (2)怠速工况 发动机起动后,怠速运转时,节流阀体内的怠速开关触点闭合,ECU根据此信号得知发动机处于怠速工况,同时根据冷却液温度传感器信号计算出目标转速(存储在ECU中的理论转速,温度越低,理论转速越高,以保证发动机在低温时稳定运转并快速暖机),并与实际转速进行比较,根据转速差的正负和大小,使节气门处于目标位置,以保证发动机怠速转速达到目标值。KCU同时还通过改变点火提前角来稳定发动机怠速。捷达王发动机热车后怠速转速理论值设置为840r/mjn,怠速点火提前角设置为上止点前12°,这些值存储在ECU中,人工不能调整。 (3)运行工况 运行工况又包括部分负荷、全负荷、加减速过渡及被拖动等工况。ECU根据转

制动系统的一般工作原理

制动系统的一般工作原理 制动系统的一般工作原理是,利用与车身(或车架)相连的非旋转元件和与车轮(或传动轴)相连的旋转元件之间的相互摩擦来阻止车轮的转动或转动的趋势。 可用一种简单的液压制动系统示意图来说明制动系统的工作原理。一个以内圆面为工作表面的金属制动 鼓固定在车轮轮毂上,随车轮一同旋转。在固定不动的制动底板上,有两个支承销,支承着两个弧形制动蹄的下端。制动蹄的外圆面上装有摩擦片。制动底板上还装有液压制动轮缸,用油管5与装在车架上的液压制动主缸相连通。主缸中的活塞3可由驾驶员通过制动踏板机构来操纵。 当驾驶员踏下制动踏板,使活塞压缩制动液时,轮缸活塞在液压的作用下将制动蹄片压向制动鼓,使制动鼓减小转动速度,或保持不动。 使机械运转部件停止或减速所必须施加的阻力矩称为制动力矩。制动力矩是设计、选用制动器的依据,其大小由机械的型式和工作要求决定。制动器上所用摩擦材料(制动件)的性能直接影响制动过程,而影响其性能的主要因素为工作温度和温升速度。摩擦材料应具备高而稳定的摩擦系数和良好的耐磨性。摩擦材料分金属和非金属两类。前者常用的有铸铁、钢、青铜和粉末冶金摩擦材料等,后者有皮革、橡胶、木材和石棉等。 在了解某款车型的刹车系统时,您可能经常会听到“前盘后鼓”或“前碟后鼓”这四个字,那么,它到底是什么意思呢?最近就有读者通过电子邮件询问有关汽车制动系统的问题,比如盘式制动器和鼓式制动器的区别,通风盘和实心盘的不同之处等等。 目前车市中很多发动机排量较小的中低档车型,其制动系统大多采用“前盘后鼓式”,即前轮采用盘式制动器,后轮采用鼓式制动器,比如常见的一汽大众捷达、长安铃木奥拓及羚羊、比亚迪福莱尔、东风悦达起亚千里马、上海通用赛欧等等。我们先来简单了解一下后轮经常采用的鼓式制动器。 实际应用差别很明显,盘刹比鼓刹好用。刹车鼓中的石棉材料会致癌。鼓刹与盘刹各有利弊。在刹车效果上,鼓刹与盘刹的相差并不大,因为刹车时,是轮胎和地面的摩擦力让车子逐渐停止下来的。如果车身小巧,车身重量轻,后轮采用鼓刹就足以使轮胎和地面产生足够的摩擦力了。如果后轮使用盘刹,ABS和EBD系统也会自动降低其刹车力度,以保证后轮不会失去抓地力出现打滑、抱死现象。 散热性上,盘刹要比鼓刹散热快,通风盘刹的散热效果更好;在灵敏度上,盘刹会

汽车刹车系统的工作原理简述

汽车刹车系统的工作原理 在汽车的性能测试环节中,加速和是最主要的两个测试项目,平时我们接触到一辆新车,往往问的第一个问题是这辆车有多快而不是这辆车好不好,但问题在于速度慢多数情况下不会有什么太大问题而不好很可能关系到生命安全,所以今天我们就来说说汽车的。 系统的原理是制造出巨大的摩擦力,将车辆的动能转化为热能。众所周知,能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。汽车在加速过程中把化学能转化成热能和动能,时系统又将汽车的动能转化成热能散发到空气中。一辆车从静止加速到时速100公里可能需要10秒钟,但从时速100公里到静止可能只需要XX秒而已,可见系统承受着巨大的负荷。从另一个角度来说,如果你想体验超级跑车的加速快感,用普通家用车也可以,只不过你需要反过来坐着并且是在急中体验到。

目前大部分小型车都采用液压制动,因为液体是不能被压缩的,能够几乎100%的传递动力,基本原理是驾驶员踩下踏板,向总泵中的油施加压力,液体将压力通过管路传递到每个车轮卡钳的上,驱动卡钳夹紧盘从而产生巨大摩擦力令车辆减速。 我们先从总泵说起,这个部件通常位于发动机舱防火墙靠近驾驶员的一侧,有些车的总泵“小得可怜”,甚至让人怀疑它是否能提供足够的力。其实完全不必为此担心,因为系统运用了“帕斯卡定律”。

帕斯卡定律的主要内容是: 根据静压力基本方程(p=p0+ρgh),盛放在密闭容器内的液体,其外加压强p0发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压强均将发生同样大小的变化。(来源:百度百科) 简单来说就是我们踩下制动踏板后施加到总泵液体上的压强等于盘处的液体压强,但因为压强等于单位面积的压力,所以只要增大的面积,施加的压力就会增大。例如下图这个实验,两个圆柱形,左侧直径是2英寸,右侧直径是6英寸,也就是左侧的3倍,那么如果给左侧施加一定量的力,那么右侧将产生一个9倍的力(面积是半径的平方乘以3.14),这也就是现在所有液压机构的理论基础,所以起重机可以通过液压系统举起数十吨的货物。

制动系统组成

制动系统的组成 作为制动系统,作用当然就是让行驶中的汽车按我们的意愿进行减速甚至停车。工作原理就是将汽车的动能通过摩擦转换成热能。汽车制动系统主要由供能装置、控制装置、传动装置和制动器等部分组成,常见的制动器主要有鼓式制动器和盘式制动器。 鼓式制动器 鼓式制动器主要包括制动轮缸、制动蹄、制动鼓、摩擦片、回位弹簧等部分。主要是通过液压装置是摩擦片与岁车轮转动的制动鼓内侧面发生摩擦,从而起到制动的效果。

在踩下刹车踏板时,推动刹车总泵的活塞运动,进而在油路中产生压力,制动液将压力传递到车轮的制动分泵推动活塞,活塞推动制动蹄向外运动,进而使得摩擦片与刹车鼓发生摩擦,从而产生制动力。 从结构中可以看出,鼓式制动器是工作在一个相对封闭的环境,制动过程中产生的热量不易散出,频繁制动影响制动效果。不过鼓式制动器可提供很高的制动力,广泛应用于重型车上。 盘式制动器 盘式制动器也叫碟式制动器,主要由制动盘、制动钳、摩擦片、分泵、油管等部分构成。盘式制动器通过液压系统把压力施加到制动钳上,使制动摩擦片与随车轮转动的制动盘发生摩擦,从而达到制动的目的。 与封闭式的鼓式制动器不同的是,盘式制动器是敞开式的。制动过程中产生的热量可以很快散去,拥有很好的制动效能,现在已广泛应用于轿车上。 通风制动盘

制动过程实际上是摩擦力将动能转化为热能的过程,如制动器的热量不能及时散出,将会影响其制动效果。为了进一步提升制动效能,通风制动盘应运而生。通风刹车盘内部是中空的或在制动盘打很多小孔,冷空气可以从中间穿过进行降温。 从外表看,它在圆周上有许多通向圆心的洞空,它利用汽车在行驶当中产生的离心力能使空气对流,达到散热的目的,因此比普通实心盘式散热效果要好许多。 陶瓷制动盘 陶瓷制动盘相对于一般的刹车盘具有重量轻、耐高温耐磨等特性。普通的刹车盘在全力制动下容易高热而产生热衰退,制动性能会大打折扣,而陶瓷刹车盘有很好的抗热衰退性能,其耐热性能要比普通制动盘高出许多倍。 陶瓷制动盘在制动最初阶段就能产生最大的制动力,整体制动要比传统制动系统更快,制动距离更短。当然,它的价格也是非常昂贵的,多用于高性能跑车上。 紧急制动辅助系统(EBA) 紧急制动辅助系统,其作用是当行车电脑ECU发现驾驶员进行紧急制动时,可在瞬间自动加大制动力,以防止因为司机制动力不足而发生险情。

汽车刹车泵工作原理

简述刹车系统工作原理 [汽车之家技术] 在汽车之家的性能测试环节中,加速和刹车是最主要的两个测试项目,平时我们接触到一辆新车,往往问的第一个问题是这辆车有多快而不是这辆车刹车好不好,但问题在于速度慢多数情况下不会有什么太大问题而刹车不好很可能关系到生命安全,所以今天我们就来说说汽车的刹车。 刹车系统的原理是制造出巨大的摩擦力,将车辆的动能转化为热能。众所周知,能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。汽车在加速过程中把化学能转化成热能和动能,刹车时刹车系统又将汽车的动能转化成热能散发到空气中。一辆车从静止加速到时速100公里可能需要10秒钟,但从时速100公里刹车到静止可能只需要XX秒而已,可见刹车系统承受着巨大的负荷。从另一个角度来说,如果你想体验超级跑车的加速快感,用普通家用车也可以,只不过你需要反过来坐着并且是在急刹车中体验到。

目前大部分小型车都采用液压制动,因为液体是不能被压缩的,能够几乎100%的传递动力,基本原理是驾驶员踩下刹车踏板,向刹车总泵中的刹车油施加压力,液体将压力通过管路传递到每个车轮刹车卡钳的活塞上,活塞驱动刹车卡钳夹紧刹车盘从而产生巨大摩擦力令车辆减速。 我们先从刹车总泵说起,这个部件通常位于发动机舱防火墙靠近驾驶员的一侧,有些车的刹车总泵”小得可怜“,甚至让人怀疑它是否能提供足够的刹车力。其实完全不必为此担心,因为刹车系统运用了”帕斯卡定律“。

帕斯卡定律的主要内容是: 根据静压力基本方程(p=p0+ρgh),盛放在密闭容器内的液体,其外加压强p0发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压强均将发生同样大小的变化。(来源:百度百科) 简单来说就是我们踩下制动踏板后施加到刹车总泵液体上的压强等于刹车盘活塞处的液体压强,但因为压强等于单位面积的压力,所以只要增大活塞的面积,施加的压力就会增大。例如下图这个实验,两个圆柱形活塞,左侧活塞直径是2英寸,右侧活塞直径是6英寸,也就是左侧活塞的3倍,那么如果给左侧活塞施加一定量的力,那么右侧活塞将产生一个9倍的力(面积是半径的平方乘以3.14),这也就是现在所有液压机构的理论基础,所以起重机可以通过液压系统举起数十吨的货物。

汽车制动系统结构解析

汽车制动系统结构解析 大家都知道,汽车的制动系统对我们的行车安全非常重要,行车中如出现制动失灵等故障,后果都将不堪设想。那么汽车的制动系统是如何制动的?为什么会失灵?ABS、ESP系统又是什么?对我们驾驶安全有什么帮助?

●制动系统的组成 作为制动系统,作用当然就是让行驶中的汽车按我们的意愿进行减速甚至停车。工作原理就是将汽车的动能通过摩擦转换成热能。汽车制动系统主要由供能装置、控制装置、传动装置和制动器等部分组成,常见的制动器主要有鼓式制动器 和盘式制动器。 ●鼓式制动器 鼓式制动器主要包括制动轮缸、制动蹄、制动鼓、摩擦片、回位弹簧等部分。主要是通过液压装置是摩擦片与岁车轮转动的制动鼓内侧面发生摩擦,从而起到制动的效果。

在踩下刹车踏板时,推动刹车总泵的活塞运动,进而在油路中产生压力,制动液将压力传递到车轮的制动分泵推动活塞,活塞推动制动蹄向外运动,进而使得摩擦片与刹车鼓发生摩擦,从而产生制动力。 从结构中可以看出,鼓式制动器是工作在一个相对封闭的环境,制动过程中产生的热量不易散出,频繁制动影响制动效果。不过鼓式制动器可提供很高的制动力,广泛应用于重型车上。

●盘式制动器 盘式制动器也叫碟式制动器,主要由制动盘、制动钳、摩擦片、分泵、油管等部分构成。盘式制动器通过液压系统把压力施加到制动钳上,使制动摩擦片与随车轮转动的制动盘发生摩擦,从而达到制动的目的。

与封闭式的鼓式制动器不同的是,盘式制动器是敞开式的。制动过程中产生的热量可以很快散去,拥有很好的制动效能,现在已广泛应用于轿车上。 ●通风制动盘 制动过程实际上是摩擦力将动能转化为热能的过程,如制动器的热量不能及时散出,将会影响其制动效果。为了进一步提升制动效能,通风制动盘应运而生。

汽车制动系统工作原理详解

汽车制动系统工作原理详解 众所周知,当我们踩下制动踏板时,汽车会减速直到停车。但这个工作是怎么样完成的?你腿部的力量是怎么样传递到车轮的?这个力量是怎么样被扩大以至能让一台笨重的汽车停下来? 首先我们把制动系统分成6部分,从踏板到车轮依次解释每部分的工作原理,在了解汽车制动原理之前我们先了解一些基本理论,附加部分包括制动系统的基本操作方式。 基本的制动原理 当你踩下制动踏板时,机构会通过液压把你脚上的力量传递给车轮。但实际上要想让车停下来必须要一个很大的力量,这要比人腿的力量大很多。所以制动系统必须能够放大腿部的力量,要做到这一点有两个办法: 1、杠杆作用 2、利用帕斯卡定律,用液力放大 制动系统把力量传递给车轮,给车轮一个摩擦力,然后车轮也相应的给地面一个摩擦力。在我们讨论制动系统构成原理之前,让我们了解三个原理: 杠杆作用、液压作用、摩擦力作用 杠杆作用

制动踏板能够利用杠杆作用放大人腿部的力量,然后把这个力量传递给液压系统。 如上图,在杠杆的左边施加一个力F,杠杆左边的长度(2X)是右边(X)的两倍。因此在杠杆右端可以得到左端两倍的力2F,但是它的行程Y只有左端行程2Y的一半。 液压系统 其实任何液压系统背后的基本原理都很简单:作用在一点的力被不能压缩的液体传递到另一点,这种液体通常是油。绝大多数制动系统也在此中放大制动力量。下图是最简单的液压系统: 如图:两个活塞(红色)装在充满油(蓝色)的玻璃圆桶中,之间由一个充满油的导管连接,如果你施一个向下的力给其中一个活塞(图中左边的活塞)那么这个力可以通过管道内的液压油传送到第二个活塞。由于油不能被压缩,所以这种方式传递力矩的效率非常高,几乎100%的力传递给了第二个活塞。液压传力系统最大的好处就是可以以任何长度,或者曲折成

汽车制动系统简介

汽车制动系统简介 简介 制动系统是汽车上用以使外界(主要是路面)在汽车某些部分(主要是车轮)施加一定的力,从而对其进行一定程度的强制制动的一系列专门装置。制动系统作用是:使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定。对汽车起制动作用的只能是作用在汽车上且方向与汽车行驶方向相反的外力,而这些外力的大小都是随机的、不可控制的,因此汽车上必须装设一系列专门装置以实现上述功能。 功用 为了保证汽车安全行驶,提高汽车的平均行驶车速,以提高运输生产率,在各种汽车上都设有专用制动机构。这样的一系列专门装置即称为制动系统。 汽车制动系功用:1)保证汽车行驶中能按驾驶员要求减速停车;2)保证车辆可靠停放制动系统 汽车制动系统组成和原理 组成 (1)供能装置:包括供给、调节制动所需能量以及改善传动介质状态的各种部件 (2)控制装置:产生制动动作和控制制动效果各种部件,如制动踏板

(3)传动装置:包括将制动能量传输到制动器的各个部件如制动主缸、轮缸 (4)制动器:产生阻碍车辆运动或运动趋势的部件 制动系统一般由制动操纵机构和制动器两个主要部分组成。 (1)制动操纵机构 产生制动动作、控制制动效果并将制动能量传输到制动器的各个部件。 (2)制动器 产生阻碍车辆的运动或运动趋势的力(制动力)的部件。汽车上常用的制动器都是利用固定元件与旋转元件工作表面的摩擦而产生制动力矩,称为摩擦制动器。它有鼓式制动器和盘式制动器两种结构型式。 养护 检查制动片是否仍有余量,若出现磨损的迹象,应提早换掉接近寿命底限制动摩擦片,而不要只相信警示灯。 若制动液液量不足会使空气进入,制动会变得不灵敏。我们建议国内的车主 每个月都检查一次制动液,注意制动液面是否有明显下降,品质是否变差,如果是就应及时添加或更换。另外长途行驶或在越野之后,路上的石子或其它障碍物可能击伤制动液管线造成泄露,因此每次长途行驶后也应及时检查制动液状况,尤其还要观察底盘是否有制动液遗漏的现象。

ABS的组成和工作原理

ABS的组成和工作原理 通常,ABS是在普通制动系统的基础上加装车轮速度传感器、ABS电控单元、制动压力调节装置及制动控制电路等组成的。 制动过程中,ABS电控单元(ECU)3不断地从传感器1和5获取车轮速度信号,并加以处理,分析是否有车轮即将抱死拖滑。 如果没有车轮即将抱死拖滑,制动压力调节装置2不参与工作,制动主缸7和各制动轮缸9相通,制动轮缸中的压力继续增大,此即ABS制动过程中的增压状态。 如果电控单元判断出某个车轮(假设为左前轮)即将抱死拖滑,它即向制动压力调节装置发出命令,关闭制动主缸与左前制动轮缸的通道,使左前制动轮缸的压力不再增大,此即ABS 制动过程中的保压状态。 若电控单元判断出左前轮仍趋于抱死拖滑状态,它即向制动压力调节装置发出命令,打开左前制动轮缸与储液室或储能器(图中未画出)的通道,使左前制动轮缸中的油压降低,此即ABS制动过程中的减压状态。 ABS液压控制总成的结构 ABS液压控制总成是在普通制动系统的液压装置基础上经设计后加装ABS制动压力调节器而形成的。 普通制动系统的液压装置一般包括制动助力器、双腔式制动主缸、储液室、制动轮缸和双液压管路等。除了普通制动系统的液压部件外,ABS制动压力调节器通常由电动泵、储能器、主控制阀、电磁控制阀和一些控制开关等组成。实质上,ABS系统就是通过电磁控制阀体上的控制阀控制分泵上的油压迅速变大或变小,从而实现了防抱死制动功能。 (1)电动泵 电动泵是一个高压泵,它可在短时间内将制动液加压(在储能器中)到15~18MPa,并给整个液压系统提供高压制动液体。电动泵能在汽车起动一分钟内完成上述工作。电动泵的工作独立于ABS电脑,如果电脑出现故障或接线有问题,电动泵仍能正常工作。 (2)储能器 储能器的结构形式多种多样。用得较多的为活塞-弹簧式储能器,该储能器位于电磁阀与回油泵之间,由轮缸来的液压油进入储能器,进而压缩弹簧使储能器液压腔容积变大,以暂时储存制动液。 (3)电磁控制阀 电磁控制阀是液压调节器的重要部件,由它完成对ABS的控制。ABS系统中都有一个或两个电磁阀体,其中有若干对电磁控制阀,分别控制前、后轮的制动。常用的电磁阀有三位三通阀和二位二通阀等多种形式。 (4)压力控制、压力警告和液位指示开关 压力控制开关(PCS)独立于ABS电脑而工作,监视着储能器下腔的压力。压力报警开关(PWS)和液位指示开关(FLI)的功能是,当压力下降到一定值(14MPa以下)时或制动液面下降到一定程度时,点亮制动系统故障指示灯和ABS故障指示灯,同时让ABS电脑停止防抱死制动工作。

汽车制动真空助力器工作原理

汽车知识——真空助力器工作原理汽车知识——真空助力器工作原理 制动助力器,它是一个黑色圆罐,位于驾驶员侧发动机舱后部,固定在车身上,借推杆与制动踏板连接。加力气室由前后壳体组成,其间夹装有膜片和座,它的前腔经单向阀通进气管或真空筒;后腔膜片座毂筒中装有控制阀,其中装有与推杆固接的空气阀和限位板、真空阀和推杆等零件。膜片座前端滑装有推杆,其间有传递脚感的橡胶反作用盘,橡胶反作用盘是两面受力;右面的中心部分要受推杆及空气阀的推力,盘边环部分还要承受膜片座的推力;左面要承受推杆传来的主缸液压反作用力。实际上它是一个膜片,利用它的弹性变形来完成渐进随动,同时使脚无悬空感。单向阀有两个功能:一是保证发动机熄火后有一次有效地助力制动;二是发动机偶尔回火时,保护真空助力室的膜片免于损坏。 一般和刹车总泵一体,助力器成圆筒形状,当中有个皮碗把助力器分成两个腔,当中和前面各有一个单向阀,平时这两个腔全是真空的,当踏下刹车踏板时,前面的单向阀打开,前腔开始进气,但后面的腔还是真空的,当中的单向阀关闭,因为前腔和后腔产生负压,所以皮碗带动顶杆一起推动刹车总泵工作;当收回刹车踏板时当中的单向阀打开,前面的单向阀关闭,前腔的空气流入后腔,两个腔没有负压,顶杆随着踏板回位弹簧一起回到原来的位置,同时当中的单向阀也关闭。 制动助力器利用发动机真空来增大脚施加给主缸的力,真空助力器是一个含有智能阀和膜片的金属罐。一根杆穿过罐的中央,两头分别连接主缸活塞和踏板连杆。 动力制动系统的另一个关键零件是单向阀。 单向阀只允许将空气吸出真空助力器。如果关闭发动机,或者真空管发生泄漏,则单向阀将确保空气不进入真空助力器。这点很重要,因为在发动机停止运转时,真空助力器必须得提供足够的推进力来让驾驶员再刹几次车。在公路上驾车行驶时,如果汽油耗尽,您当然不希望在此时失去制动功能。 真空助力器的设计非常简单、精致。该装置需要真空源才能运行。汽油动力车的发动机可以提供适用于助力器的真空。在装有真空助力器的汽车上,制动踏板推动一个连杆,该连杆穿过助力器进入主缸,驱动主缸活塞。发动机在真空助力器内的膜片两侧形成部分真空。踩下制动踏板时,连杆打开一个气门,使空气进入助力器中膜片的一侧,同时密封另一侧真空。这就增大了膜片一侧的压力,从而有助于推动连杆,继而推动主缸中的活塞。 释放制动踏板时,阀将隔绝外部空气,同时重新打开真空阀。这将恢复膜片两侧的真空,从而使一切复位

汽车制动系统论文

汽车制动系统论文

贵州航天职业技术学院毕业论文(设计)题目汽车制动系统故障分析 系别:汽车工程系 专业:汽车检测与维修技术 班级: 2015级汽检一班 学生姓名: 学号: A153GZ0311001008 指导教师: 冉煜

摘要 摘要正文:汽车制动系统是汽车的一个重要组成部分,直接影响汽车的安全性。据相关资料介绍,在由于汽车本身造成的交通事故中,制动故障引起的事故占45%。可见,制动系统是保证行车安全的重要系统。制动系统作用是:使行驶中的汽车按照驾驶员的要求进行强制减速甚至停车;使已停驶的汽车在各种道路条件下(包括在坡道上)稳定驻车;使下坡行驶的汽车速度保持稳定。汽车制动系统是指为了在技术上保证汽车的安全行驶,提高汽车的平均速度等,而在汽车上安装制动装置专门的制动机构。一般来说汽车制动系统包括行车制动装置和停车制动装置两套独立的装置。其中行车制动装置是由驾驶员用脚来操纵的,故又称脚制动装置。停车制动装置是由驾驶员用手操纵的,故又称手制动装置。 关键词:制动系统、故障分析 1

目录 1 制动系统的历史 (1) 2 制动系统的组成、工作原理 (2) 3 制动器的分类 (3) 4 液压制动系统的故障诊断分析 (4) 5 气压制动系统的故障诊断分析 (5) 6 汽车液压制动系统与气压制动系统对比 (6) 总结 (7) 1

1 制动系统的历史 最原始的制动控制只是驾驶员操纵一组简单的机械装置向制动器施加作用力,这时的车辆的质量比较小,速度比较低,机械制动虽已满足车辆制动的需要,但随着汽车自质量的增加,助力装置对机械制动器来说已显得十分必要。这时,开始出现真空助力装置。1932年生产的质量为2860kg的凯迪拉克V16车四轮采用直径419.1mm的鼓式制动器,并有制动踏板控制的真空助力装置。林肯公司也于1932年推出V12轿车,该车采用通过四根软索控制真空加力器的鼓式制动器。 随着科学技术的发展及汽车工业的发展,尤其是军用车辆及军用技术的发展,车辆制动有了新的突破,液压制动是继机械制动后的又一重大革新。器。克莱斯勒的四轮液压制动器于1924年问世。通用和福特分别于1934年和1939年采用了液压制动技术。到20世纪50年代,液压助力制动器才成为现实。 20世纪80年代后期,随着电子技术的发展,世界汽车技术领域最显著的成就就是防抱制动系统(ABS)的实用和推广。ABS集微电子技术、精密加工技术、液压控制技术为一体,是机电一体化的高技术产品。它的安装大大提高了汽车的主动安全性和操纵性。防抱装置一般包括三部分:传感器、控制器(电子计算机)与压力调节器。传感器接受运动参数,如车轮角速度、角加速度、车速等传送给控制装置,控制装置进行计算并与规定的数值进行比较后,给压力调节器发出指令。 1936年,博世公司申请一项电液控制的ABS装置专利促进了防抱制动系统在汽车上的应用。1969年的福特使用了真空助力的ABS制动器;1971年,克莱斯勒车采用了四轮电子控制的ABS装置。这些早期的ABS装置性能有限,可靠性不够理想,且成本高。1979年,默本茨推出了一种性能可靠、带有独立液压助力器的全数字电子系统控制的ABS制动装置。1985年美国开发出带有数字显示微处理器、复合主缸、液压制动助力器、电磁阀及执行器“一体化”的ABS防抱装置。随着大规模集成电路和超大规模集成电路技术的出现,以及电子信息处理技术的高速发展,ABS以成为性能可靠、成本日趋下降的具有广泛应用前景的成熟产品。1992年ABS的世界年产量已超过1000万辆份,世界汽车ABS的装用率已超过20%。一些国家和地区(如欧洲、日本、美国等)已制定法规,使ABS成为汽车的标准设备。 1

简述刹车系统工作原理

简述刹车系统工作原理 [汽车之家技术]在汽车之家的性能测试环节中,加速和刹车是最主要的两个测试项目,平时我们接触到一辆新车,往往问的第一个问题是这辆车有多快而不是这辆车刹车好不好,但问题在于速度慢多数情况下不会有什么太大问题而刹车不好很可能关系到生命安全,所以今天我们就来说说汽车的刹车。 刹车系统的原理是制造出巨大的摩擦力,将车辆的动能转化为热能。众所周知,能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为其他形式,或者从一个物体转移到另一个物体,在转化或转移的过程中,能量的总量不变。汽车在加速过程中把化学能转化成热能和动能,刹车时刹车系统又将汽车的动能转化成热能散发到空气中。一辆车从静止加速到时速100公里可能需要10秒钟,但从时速100公里刹车到静止可能只需要XX秒而已,可见刹车系统承受着巨大的负荷。从另一个角度来说,如果你想体验超级跑车的加速快感,用普通家用车也可以,只不过你需要反过来坐着并且是在急刹车中体验到。

目前大部分小型车都采用液压制动,因为液体是不能被压缩的,能够几乎100%的传递动力,基本原理是驾驶员踩下刹车踏板,向刹车总泵中的刹车油施加压力,液体将压力通过管路传递到每个车轮刹车卡钳的活塞上,活塞驱动刹车卡钳夹紧刹车盘从而产生巨大摩擦力令车辆减速。 我们先从刹车总泵说起,这个部件通常位于发动机舱防火墙靠近驾驶员的一侧,有些车的刹车总泵”小得可怜“,甚至让人怀疑它是否能提供足够的刹车力。其实完全不必为此担心,因为刹车系统运用了”帕斯卡定律“。

帕斯卡定律的主要内容是: 根据静压力基本方程(p=p0+ρgh),盛放在密闭容器内的液体,其外加压强p0发生变化时,只要液体仍保持其原来的静止状态不变,液体中任一点的压强均将发生同样大小的变化。(来源:百度百科) 简单来说就是我们踩下制动踏板后施加到刹车总泵液体上的压强等于刹车盘活塞处的液体压强,但因为压强等于单位面积的压力,所以只要增大活塞的面积,施加的压力就会增大。例如下图这个实验,两个圆柱形活塞,左侧活塞直径是2英寸,右侧活塞直径是6英寸,也就是左侧活塞的3倍,那么如果给左侧活塞施加一定量的力,那么右侧活塞将产生一个9倍的力(面积是半径的平方乘以 3.14),这也就是现在所有液压机构的理论基础,所以起重机可以通过液压系统举起数十吨的货物。

相关主题
文本预览
相关文档 最新文档