当前位置:文档之家› 电压互感器引起的谐振过电压及防范措施(赵融)

电压互感器引起的谐振过电压及防范措施(赵融)

电压互感器引起的谐振过电压及防范措施(赵融)
电压互感器引起的谐振过电压及防范措施(赵融)

电压互感器引起的谐振过电压及防范措施

上海铁路局杭州供电段赵融

摘要:针对京沪高铁无锡东10kV配电所电压互感器频繁烧损的现象,分析得出中性点不接地电力系统,电压互感器铁芯深度饱和激发铁磁谐振,从而导致电压互感器烧损的结论;同时对消除和防止铁磁谐振的各种措施进行探讨。

关键词:京沪高铁;电压互感器;中性点不接地电力系统;铁磁谐振

0 引言

铁路10kV电力系统中由电压互感器铁芯深度饱和引起铁磁谐振过电压的情况时有发生,它持续时间长甚至能长时间自保持,是电压互感器烧损甚至爆炸的重要原因,对电力系统的安全运行威胁极大。近年来随着铁路客运专线的相继开通,供信号用电的高压线路大范围应用电缆,配电网线路对地电容显著增加,系统中发生单相接地或弧光接地故障时,极易引发系统内电压互感器的饱和,激发谐振过电压,导致电压互感器烧损的现象。

1、故障现象及相关数据

京沪高铁无锡东10kV配电所自开通以来,间隔4次发生电压互感器烧损的现象,以下为典型案例。2011年8月11日14:34分左右,京沪高铁无锡东10kV 配电所高压室里有“嘭、嘭”声响,随后发现电源二N10母互二柜A相电压互感器炸裂,接着N8柜电源二柜断路器跳闸。随即询问供电局得知:14:20分无锡供电局团结变10kV张村线125保护动作跳闸,重合闸成功,同时10kV1段母线接地,电压A相10.3kV;B相10.45kV;C相0.1kV。

无锡东10kV配电所内电源二受电柜毛刺曲线图数据得知:

①14:20分,A相8.94kV;B相9.91 kV;C相1.48 kV。

②14:26分,A相9.07 kV;B相9.93 kV;C相1.23kV。

③14:36分,A相0.07kV;B相0.08kV;C相0.05kV。

事故报文:

故障时,A相电压0.089kV;B相电压 6.648kV;C相电压0.045kV。

故障时,系统频率为21.85HZ。

14时36分18秒425毫秒,电源二欠压保护。

2、故障原因剖析

14:20分无锡供电局团结变高压馈出回路张村线C相接地,由于无锡东10kV 所电源二团结线与供电局故障回路张村线为同一母线,所内主母互二A、B相电压上升为线电压,C相电压基本为0。故障时,系统频率为21.85HZ,从故障现象和故障时各相电压的数据推断A、B相电压是交替变化的,由此判断电压互感器铁磁谐振的基波不是工频,而是1/2分频。因为频率减半,电压互感器铁芯中磁密要比额定时大1倍,使铁芯饱和,励磁感抗急剧下降,而高压绕组流过极大的过电流,导致电压互感器一次电流剧增至原几十倍乃至上百倍。A相PT严重过载造成无锡东10kV所电源二团结线N10主母互二柜A相电压互感器炸裂。后因供电局试拉馈出故障回路,致无锡东10kV所电源二柜低电压保护跳闸。

3、谐振过电压理论分析

10kV系统电压互感器频繁烧损严重威胁电力系统安全运行。通过京沪高铁无锡东10kV配电所一系列故障进行了全面剖析,得出谐振随着对地电容和电压互感器起始励磁电感的增大,依次发生高频、基频和分频谐振。电压互感器电感与系统对地电容并联,构成如图1 所示的等值电路。

图1电压互感器电感和系统对地电容的等值电路

图1中,各相电压互感器励磁特性相同,铁芯不饱和时,L1=L2=L3=L0(L 0为铁芯未饱和时的电感),三相对地电容基本相等,电源电势E A、E B和E C为三相对称电源,中性点O的电位U0。

U0=(E A?Y1+ E B?Y2+ E C?Y3)/(Y1+Y2+Y3) 式(1)

式(1)中,Y1为相对地导纳,Y1=-j?1∕ωL i +jωC0

正常运行时,E A + E B + E C =0,Y1=Y2=Y3,系统中性点电位U0为零。一般情况下,1∕ωL i<ωC0,各相导纳均是容性导纳,不会出现谐振。但当系统受到某种干扰,如单相接地、雷击、合闸操作等外部因素激发的情况下,使某一相或者几相铁芯饱和,恰好使Y1+Y2+Y3接近于零,便产生了谐振现象。

由式(1)得Y1+Y2+Y3接近于零的频率就是回路的自振频率,完全取决于系统对地电容C0的大小和电压互感器的励磁特性L i。如果C0?L i很大,回路的自振频率ω就低,有可能出现分频谐振。反之,如果C0?L i很小,回路的自振频率ω就高,有可能出现高频谐振。

根据Peterson试验也得出结论:电压互感器铁心电感的伏安特性愈好越不易饱和,谐振所需阻抗参数X co/X L越大( X co是线路零序容抗,X L是电压互感器额定线电压下的感抗)。谐振区域与阻抗比X co/X L有直接关系,1/2 分频谐振区域的X co/X L 约为0.01~0.08;基频谐振区域的X co/X L约为0.08~0.8;高频谐振区域的X co/X L约为0.6~3.0。当改变电网零序电容时X co/X L 随之改变,回路可能出现由一种谐振状态转变为另一种谐振状态。如果零序电容过大或过小就可脱离谐振区域即不发生谐振。

据相关试验得到,分频谐振电流为正常电流的240倍以上,工频谐振电流为正常电流的40~60倍之间,高频谐振电流更小。在这些谐振中,分频谐振的破坏最大,如果电压互感器的绝缘良好,工频和高频一般不会危及设备的安全而分频能使电压互感器烧损。由此,也间接推断出京沪高铁无锡东10kV配电所电压互感器铁磁发生分频谐振导致电压互感器烧损的结论。

4、限制电压互感器铁磁谐振过电压的防范措施

根据铁磁谐振产生的原理,防止铁磁谐振的发生,最有效的办法是改变系统参数,设法改变电压互感器的电抗或电力系统对地的容抗,破坏谐振产生的条件。在铁磁谐振发生后,要有效地阻尼谐振的发展,消除其带来的危害。

4.1 在电压互感器开口三角绕组端口接消谐电阻

电力系统正常运行时,开口三角两端的不平衡电压很小,而当谐振发生时,中性点出现位移,开口三角两端将出现较高的电压,如果在开口三角两端接上电

阻,电阻将消耗能量,对谐振起到阻尼的作用。

但在单相接地故障时,开口三角两端也出现较高的零序电压,按规范规定允许系统继续运行两个小时,开口三角上的电阻过小,可能导致流过互感器的电流过大,持续时间过长而烧损。非线性消谐电阻就是通过对单相接地和铁磁谐振的判别,选择性地在铁磁谐振时,在开口三角两端接入不同电阻值,阻尼铁磁谐振的发展,而在单相接地故障和其他不平衡电压发生时不动作。

4.2 在电压互感器高压侧中心点与地间接消谐电阻

电压互感器高压侧中心点加装消谐电阻,相当于在电压互感器零序回路增加电阻,一方面部分零序电压将施加在消谐电阻上,使电压互感器的饱和程度降低,不至于发生铁磁谐振消,另一方面消谐电阻限制了流过电压互感器的零序电流,避免过大的电流流过电压互感器引起互感器烧损。从消谐角度来说,消谐电阻越大,分担的电压就越高,电压互感器铁芯越不容易饱和,可以有效地阻止铁磁谐振的发生。但是电阻过大,电压互感器开口三角输出电压就相应降低,影响继电保护装置动作的灵敏性。消谐电阻采用非线性电阻,在电网正常运行时,电阻上电压不高,呈高阻值,防止铁磁谐振的发生,而在单相接地时,电阻上电压升高,呈低阻值,增大开口三角输出电压值,不至于影响继电保护装置的灵敏度和测量的准确性。

4.3 系统中心点经消弧线圈接地

由于大量应用电缆,接地电容电流很大,发生接地后电弧不易熄灭,容易激发电压互感器的饱和谐振过电压和间歇性的弧光接地过电压。系统中心点经消弧线圈接地能使系统阻抗参数尽量避开谐振区,对发生谐振较频繁的一级贯通、综合贯通回路,还应考虑将一贯母互、综贯母互电压互感器中性点改为经消弧线圈接地。谐振严重的变配电所可考虑在电源中性点装设自动调谐接地补偿装置。4.4 降低电压互感器的磁通密度, 改善其伏安特性。

从Peletson 的试验可以看出, 当X co/X L≤0.01 时,可有效地避免谐振的发生,为此选用励磁特性饱和点较高的抗谐振全绝缘电压互感器,通过X L增加,使电压互感器可以在系统有接地时,能够长时间运行而不烧损。

5、结束语

铁路电力系统中引起电网过电压的原因很多,其中谐振过电压出现相对频

繁,其危害性较大。一旦发生,往往会造成电气设备的损坏,甚至发生停电事故,严重影响铁路正常的运输秩序。

通过探讨, 我们知道限制电压互感器铁磁谐振过电压的防范措施有很多,鉴于京沪高铁无锡东10kV配电所电压互感器频繁烧损的情况,考虑到现场电压互感器柜空间有限等因素,决定在电压互感器开口三角绕组处接ABB公司的非线性消谐电阻,电压互感器采用低磁密度互感器以及在电压互感器高压侧增设高压一次熔断器的措施。2011年9月初,京沪高铁无锡东10kV配电所经过电压互感器柜设备改造后,至今未发生电压互感器烧损的现象。

参考文献:

[1]郑鹏鹏. 配电网综合消谐措施的探电力设备,2005.

[2]高伟,陈连贵,赵军良. 配电网电磁式电压互感器谐振过电压抑制方法,综述科技综述,2008

[3] 曾建忠. 10 kV配电网两种消谐措施的分析比较,电力安全技术,2002

[4] 李述冰. 电压互感器饱和过电压事故及消除措施,东北电力技术,2003.

[5] 刘连睿. 电磁式电压互感器铁磁谐振事故分析及措施,华北电力技术,2001 .

[6] 鲁铁成,陈维贤. 配电系统PT 引起的铁磁谐振及抑制新方法,高电压技术,1998 .

[7] 要焕年,曹梅月. 电力系统谐振接地,中国电力出版社,1998年版.

电压互感器常见接线图 (图文) 民熔

电压互感器接线图 电压互感器(Potential Transformer 简称PT,Voltage Transformer简称VT)和变压器类似,是用来变换电压的仪器。但变压器变换电压的目的是方便输送电能,因此容量很大,一般都是以千伏安或兆伏安为计算单位; 而电压互感器变换电压的目的,主要是用来给测量仪表和继电保护装置供电,用来测量线路的电压、功率和电能,或者用来在线路发生故障时保护线路中的贵重设备、电机和变压器,因此电压互感器的容量很小,一般都只有几伏安、几十伏安,最大也不超过一千伏安。词条介绍了其基本结构、工作原理、主要类型、接线方式、注意事项、异常与处理、以及铁磁谐振等。 民熔电压互感器简介: JDZ-10高压电压互感器 10kv 半封闭式 0.5级 羊角型

特点:体积小精度高纯铜线圈一体成型安全可靠环氧材质优质钢片 电压互感器的电力系统通常有四种接线方式。电压互感器的接地和相位必须严格连接,严禁电压互感器二次侧短路。1、单相电压互感器接线方式 一个单相电压互感器接线方式一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器。二、两个单相电压互感器互V/V型的接线方式

两台单相电压互感器的V/V接线方式可以测量线电压,但不能测量相电压。广泛应用于20kV以下中性点不接地或经消弧图接地的电网。3、三台单相电压互 感器Y0/Y0接线方式 三个单相电压互感器Y0/Y0型的接线方式可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。四、三个单相三绕组电压互感器或一个三相五柱式三绕组电压互感器接成Y0/Y0/Δ型

电压互感器的铁磁谐振及其消谐措施

五、关于电压互感器的铁磁谐振及其消谐措施。 1、谐振条件 在中点不接地系统中,由于接地保护的需要,三相电压互感器的中点是直接接地的,因此电 压互感器与电网线路对地电容并联而形成谐振回路,电磁式电压互感器的电感是非线性的,这种 谐振回路为非线性谐振回路,或称铁磁谐振回路,如图5-1。 通常,在正常运行时,电压互感器的感抗X L 远大于电网对地电容的容抗X C ,即X L 与X C 不会形成谐振,但由于某些原因,例如单相接地故障、线路合闸、雷电冲击等等,使电压互感器 的电感量发生变化,如果X L 与X C 匹配合适则将产生谐振。 由于电网中点不接地,正常运行时互感器中点N '和电源中点对地同电位,即中点不发生位 移,当发生谐振时,互感器一相、两相或三相绕组电压升高,各相对地电位发生变动,但因电源 电势由发电机的正序电势所固定,E A 、E B 、E C 保持不变,在电网这一部分对地电压的变动则表 现为电源中点发生位移,而出现零序电压,这就是说,谐振的发生是由于中点位移而引起的。 假定当A 相电压下降,B 、C 相电压升高,则A 相显容性,而B 、C 相显感性,等值电路图 如图5-2所示。 图5-1 电压互感器接线图 图5-2 不对称阻抗产生的中点位移电压

如图,三相中各阻抗不对称,电源中点产生位移,在一定条件下将产生谐振。 根据图5-1,解出中点位移电压如下式: C B A C C B B A A NN Y Y Y Y E Y E Y E U ++++-=????/ (1) 'c j Y A ω=, '1L j Y Y c B ω-== 代入得: ''2)1(/L c L c E U A NN ωωωω-'+'-=? ? (2) 由(2)式可看出,当'2L c ωω= '时则U 0无穷大,即要发生谐振,这也意味着只有当电压互感器的感抗与线路容抗在一定比例下,谐振才会产生。有人(HA.Peterson )对此曾做了专门的模 拟试验,得到了谐振范围的曲线,如图5-3b 所示。模拟试验用互感器的V-A 特性如图5-3 a 。 5-3 a 非线性电感的伏安特性曲线 U —试验电源相电压 U ?—非线性电感额定电压 I*—电流标幺值

低压供电系统的接地方式分类

有关低压供电系统的接地方式的分析 XXXXXXXXXXXXXXXXXXX 一、工程施工供电系统 工程施工用电的基本供电系统有(380V)三相三线制和(380/220V)三相四线制等,但这些名词术语内涵不是十分严格。国际电工委员会(IEC )对此作了统一规定,称为TT 系统、TN 系统、IT 系统。其中TN 系统又分为TN-C 、TN-S 、TN-C-S 系统。下面就以上所指各种供电系统做一个扼要的分析。 (一)工程供电的基本方式 根据IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT 、TN 和IT 系统,分述如下。 ( 1 )TT 方式供电系统 TT 方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT 系统。第一个符号T 表示电力系统中性点直接接地;第二个符号T 表示负载设备金属外壳和正常不带电的金属部分与大地直接联接,而与系统如何接地无关。在TT 系统中负载的所有接地均称为保护接地,如图1-1 所示。这种供电系统的 设备的外壳对地电压高于安全电压,属于危险电压。 2 )当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,困此TT 系统不宜在380/220V供电系统中应用。

3 )TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。 现在有的施工单位是采用TT 系统,施工单位专门安装一组接地装置,引出一条专用 统适用于用电设备容量小且很分散的场合。 ( 2 ) TN 方式供电系统这种供电系统是将电气设备的金属外壳和正常不带电的金属部分与工作零线相接的保护系统,称作接零保护系统,用TN 表示。它的特点如下。 1 )一旦设备出现外壳带电,接零保护系统能将漏电电流上升为(220V)短路电流,这个电流很大,是TT 系统的很多倍,实际上就是单相对地短路故障,熔断器的熔丝会熔断,低压断路器的脱扣器会立即动作而跳闸,使故障设备断电,比较安全。 2 )TN 系统节省材料、工时,在我国和其他许多国家广泛得到应用,可见比TT 系统优点多。TN 方式供电系统中,根据其保护零线是否与工作零线分开而划分为TN-C 和TN-S 等两种。 ( 3 ) TN-C 方式供电系统它是用工作零线兼作接零保护线,可以称作保护中性线,

铁磁谐振对电压互感器的危害及防范措施

铁磁谐振对电压互感器的危害及防范措施 【摘要】通过电力系统中实际案例说明分析了产生铁磁谐振的原因和产生的条件,总结了运行中经验教训,提出防止铁磁谐振的措施,最后问题得到圆满解决。 【关键词】铁磁谐振;电压互感器;接地 1.事故发生 大连西咀热力有限公司在2005年10月9日6:10 电气后台机报10kV系统接地,6:17分主母10kVII段PT发生爆炸起火,导致电厂供电2#联络线的213乙开关跳闸,全厂停电。事故后检查发现厂外10kV系统发生间歇性单相弧光接地,两相对地电压突然升高,使得中性点发生位移,电磁式电压互感器励磁电流突然增大而发生饱和,产生了严重的铁磁谐振过电压,过电压引起TV柜相间放电击穿,发生电弧短路,并对外壳放电,引起三相短路接地故障,从而烧坏TV 柜。由于厂区内10kV高压设备众多,经常出现设备在运行中发生单相接地事故,通过录波仪记录曾多次检测到开口三角电压不稳定,超过100V。 2.电压互感器产生磁谐振的原因 产生铁磁谐振的必要条件是电压互感器的感抗XL大于与之并联的线路对地容抗Xc,即XL>Xc,两者并联后为一等值电容,系统网络的对地阻抗呈现容性,电网中性点的位移基本接近于零。当有一个激发条件时,电压互感器中性点电压发生位移,相电压升高,位移电压可以是工频,也可以是谐波频率,主要有分频和高频,在过电压的作用下,电压互感器三相铁芯将出现不同程度的饱和,饱和后的电压互感器励磁电感变小,系统网络的对地阻抗趋于感性。当系统网络的对地感抗与对地容抗相互匹配时,就产生了铁磁谐振。其主要特点为: (1)谐振回路中铁心电感为非线性的,电感量随电流增大、铁心饱和而趋于平稳。 (2)铁磁谐振需要一定的激发条件,使电压、电流幅值从正常工作状态转移到谐振状态。如电源电压暂时升高、系统受到较强烈的电流冲击等。 (3)铁磁谐振存在自保持现象。激发因素消失后,铁磁谐振过电压仍然可以继续长期存在。 (4)铁磁谐振过电压一般非常高,过电压幅值主要取决于铁心电感的饱和程度。 在中性点不接地系统中,发生如下情况可能激发铁磁谐振:

低压配电系统的接地方式(最新版)

低压配电系统的接地方式(最 新版) Safety management is an important part of enterprise production management. The object is the state management and control of all people, objects and environments in production. ( 安全管理 ) 单位:______________________ 姓名:______________________ 日期:______________________ 编号:AQ-SN-0375

低压配电系统的接地方式(最新版) 低压配电系统按保护接地的形式不同可分为:IT系统、TT系统和TN系统。其中IT系统和TT系统的设备外露可导电部分经各自的保护线直接接地(过去称为保护接地);TN系统的设备外露可导电部分经公共的保护线与电源中性点直接电气连接(过去称为接零保护)。 国际电工委员会(IEC)对系统接地的文字符号的意义规定如下:第一个字母表示电力系统的对地关系: T一点直接接地; I-所有带电部分与地绝缘,或一点经阻抗接地。 第二个字母表示装置的外露可导电部分的对地关系: T-外露可导电部分对地直接电气连接,与电力系统的任何接地

点无关; N-外露可导电部分与电力系统的接地点直接电气连接(在交流系统中,接地点通常就是中性点)。 后面还有字母时,这些字母表示中性线与保护线的组合: S-中性线和保护线是分开的; C-中性线和保护线是合一的。 XXX图文设计 本文档文字均可以自由修改

关于4PT电压互感器防谐振与开口三角接线说明

前言:电压互感器作为开关柜主要设备之一,进行电力计量、测量及继电保护作用。但是由于电力系统的不稳定性、特别是频繁发生谐振地区,对电压互感器的危害是很大的,大部份都导致电压互感器烧毁。 一、产生铁磁谐振的原因 由非线性电感(铁心线圈)和线性电容组成的回路,当外施电压发生变化时,由于电感的变化而产生谐振,这种现象称为铁磁谐振。 1、在中性点不接地系统中,虽然电源侧的中性点不直接接地,但电压互感器的高压侧中性点是接地的,若Ca,Cb,Cc为各回线路(包括电缆出线和架空线路)三相对地的等值电容,而La,Lb,Lc则为母线电压互感器的一次侧三个线圈的对地阻抗(忽略其线圈电阻),假设系统发生单相接地。此时,电压互感器的铁心线圈相当于与电容器并联,构成了可能产生谐振的并联电路,由于相对地电压升高√3倍,有可能使得电压互感器的铁心出现饱和或接近饱和,阻抗变小,电路中出现容抗和阻抗相等的情况,从而产生了并联谐振,此时互感器一次侧的电流最大,这样有可能使电压互感器的高压侧熔断件熔断,或者烧坏电压互感器。 此种情况往往在变电所投产初期(线路出线回路少)不是很明显,但随着线路出线回路的增多(各回线路对地的等值电容量增大,容抗增大)出现谐振的情况较多。 2、操作过电压:包括互感器在内的空载母线或送电线路的突然合闸,使得PT的某一相或二相绕组内产生巨大的涌流和磁饱和现象; ①由于合闸瞬间的三相触头不同期性,此时最慢接触的一相在触头间相当于串联上一个电容(如A相)。当电容的容抗等于互感器的感抗时即产生谐振,但该状态下只是使中央信号装置的电铃响了一下,仪表摆动一下,但随着操作的完成该现象随之消失。 ②由于合闸过程中产生操作过电压,此时假设断路器在合闸操作过程中A相出现过电压,则有可能使A相电压互感器铁心出现饱和,使A相电压互感器线圈感抗变小,从而三相的总阻抗出现不平衡,使电压互感器的中性点对地电压发生位移现象。 3、雷击过电压:由于雷击或其它原因,线路中发生瞬间弧光接地,使得其它两相电压瞬间升到线电压,而故障相电压在接地消失后又瞬间恢复至相电压,以至造成暂态励磁电流的急剧增大和铁芯的磁饱和; 4、磁饱和的产生也可能由于另一绕组瞬间传递过来的过电压或者系统运行方式的突然改变、负荷剧烈波动等所引起的系统电压的强烈扰动。 二、铁磁谐振的种类 铁磁谐振是一个非常复杂的非线性振荡过程,PT伏安特性饱和得越快,谐振的区域越广。谐振大致分为分频谐振、基波谐振、高频谐振,基波和高次谐波的谐振过电压的幅值很少超过3Uj,故除非存在弱绝缘设备,是不会产生危险的。对于分频谐波,由于频率只有工频的一半,励磁感抗相应降低一半,使得励磁电流急剧增加,有时甚至达到额定值的100倍以上,使得互感器发生严重的磁饱和现象,因而限制了过电压幅值,通常在2Uj以下,中性点位移电压一般不超过Uj,但大电流持续时间过长,势必引起TV高压熔丝熔断,或者造成TV本身冒油和烧毁。 三、消除铁磁谐振的措施和方法 电力系统过电压现象十分普遍,如果没有防范措施,随时都有可能造成电气设备损坏和大面积的停电事故。目前,我国35 kV及以下配电网,仍大部分采用中性点不接地方式或采用老式的消弧线圈接地。从电网的运行实践证明,中性点不接地系统中由于电压互感器铁芯饱和引起的铁磁谐振过电压比较多,尽管采取了不少限制谐振过电压的措施,如:消谐灯、消谐器等等,但始终没有从根本上得到解决。由于谐振过电压作用时间长,所引起谐振现象的原因又很多,因此在选择保护措施方面造成了很大的困难。为了尽可能的防止谐振过电压的发

电压互感器接线图及含义

电压互感器接线图及含义 电压互感器的含义:

双绕组和三绕组电压互感器的结构: 供测量用的电压互感器,一般都做成单相双绕组结构.当两端绝缘等级相同时,可以单相使用,也可以组合起来作三相使用。对这种电压互感器的主要技术要求是保证必要的准确级。 供接地保护用的电压互感器还具有一个辅助二次绕组,称三绕组电压互感器。三相的辅助二次绕组结成开口三角形,一旦系统发生单相接地时中性点出现位移,辅助二次绕组上会出现一个零序电压,所以辅助二次绕组现称零序电压线组。 三绕组电压互感器一般做成单相,做成三相时应采用三相五拄式(三相三柱旁扼式)铁心,且电压在10kv及以下,这是为了提供零序磁通的回路。对于这种电压互感器,零序电压绕组的准确级要求不高,一般为3B级或6B级,以保证开口三角端子电压在一定范围之内,但要求具有一定的过励磁特性。 三相五柱式电压互感器与单相电压互感器: 三相五柱设计是高压侧Y0接线,低压侧是Y0(三柱) +开口三角(两柱) 低压侧是Y0(三柱)用于线电压和相电压的测量,中性点接地系统。不接地系统只能测线电压,无专用计量PT时,供计量表计电压量。 开口三角(两柱)在开口三角接有电压继电器,用于监视开口三角电压,检测系统的整体绝缘,用来反映系统发生接地时的零序电压。当开口三角电压达到启动值时,提供给保护需要的零序电压。小接地电流系统通常用于发信号。 这种互感器只限制制成10KV以下电压等级。应用于10KV以下系统。其优点是投资小,接线简单,操作及运行维护方便;其缺点是只发出系统接地的无选择性预告信号,不能确切判定发生接地的故障线路,运行人员需要通过拉路分割电网的方法来进一步判定故障线路,影响了非故障线路的连续供电。该装置的优点是以牺牲非故障线路的供电可靠性为代价的。 当然两个或三个同型号同规格单相互感器也可以组合来测量线电压、相电压或继电器保护之用。以及和电度表、功率表组合量电用。电压等级可以比集成的五柱式做得更高,且可以灵活配置,适用范围更广。

电压互感器使用注意事项 民熔

注意事项 1.电压互感器在投入运行前要按照规程规定的项目进行试验检查。例如,测极性、连接组别、摇绝缘、核相序等。 2电压互感器的接线应保证其正确性。一次绕组与被测电路并联,二次绕组与所连接的测量仪表、继电保护装置或自动装置的电压线圈并联,同时注意极性的正确性。 三。连接到电压互感器二次侧的负载容量应适当,连接到电压互感器二次侧的负载不应超过其额定容量,否则,变压器的误差会增大,难以达到测量精度。 4电压互感器二次侧不允许短路。由于电压互感器内阻小,如果二次回路短路,会产生大电流,损坏二次设备,甚至危及人身安全。电压互感器可在二次侧装设熔断器,以防止二次侧短路损坏。如有可能,还应在一次侧安装熔断器,以保护高压电网不因变压器高压绕组或引线故障而危及一次系统的安全。 5为了保证测量仪表和继电器接触人员的安全,电压互感器的二次绕组必须有接地点。因为接地后,当一次绕组和二次绕组之间的绝缘损坏时,会使仪表和继电器免受高压,危及人身安全。 6电压互感器二次侧不允许短路。 异常与处理

常见异常 (1)三相电压指示不平衡:一相降低(可为零),另两相正常,线电压不正常,或伴有声、光信号,可能是互感器高压或低压熔断器熔断; (2)中性点非有效接地系统,三相电压指示不平衡:一相降低(可为零),另两相升高(可达线电压)或指针摆动,可能是单相接地故障或基频谐振,如三相电压同时升高,并超过线电压(指针可摆到头),则可能是分频或高频谐振; (3)高压熔断器多次熔断,可能是内部绝缘严重损坏,如绕组层间或匝间短路故障; (4)中性点有效接地系统,母线倒闸操作时,出现相电压升高并以低频摆动,一般为串联谐振现象;若无任何操作,突然出现相电压异常升高或降低,则可能是互感器内部绝缘损坏,如绝缘支架绕、绕组层间或匝间短路故障; (5)中性点有效接地系统,电压互感器投运时出现电压表指示不稳定,可能是高压绕组N(X)端接地接触不良。 (6)电压互感器回路断线处理。 处理方法

低压配电系统的接地方式及特点

编号:SM-ZD-97536 低压配电系统的接地方式 及特点 Organize enterprise safety management planning, guidance, inspection and decision-making, ensure the safety status, and unify the overall plan objectives 编制:____________________ 审核:____________________ 时间:____________________ 本文档下载后可任意修改

低压配电系统的接地方式及特点 简介:该安全管理资料适用于安全管理工作中组织实施企业安全管理规划、指导、检查 和决策等事项,保证生产中的人、物、环境因素处于最佳安全状态,从而使整体计划目 标统一,行动协调,过程有条不紊。文档可直接下载或修改,使用时请详细阅读内容。 1 低压配电系统中的接地类型 (1)工作接地:为保证电力设备达到正常工作要求的接地,称为工作接地。中性点直接接地的电力系统中,变压器中性点接地,或发电机中性点接地。 (2)保护接地:为保障人身安全、防止间接触电,将设备的外露可导电部分进行接地,称为保护接地。保护接地的形式有两种:一种是设备的外露可导电部分经各自的接地保护线分别直接接地;另一种是设备的外露可导电部分经公共的保护线接地。 (3)重复接地:在中性线直接接地系统中,为确保保护安全可靠,除在变压器或发电机中性点处进行工作接地外,还在保护线其他地方进行必要的接地,称为重复接地。 (4)保护接中性线:在380/220V低压系统中,由于中性点是直接接地的,通常又将电气设备的外壳与中性线相连,称为低压保护接中性线。此种方式也叫保护接零。

电压互感器铁磁谐振的发生原因及防范措施

电力系统中存在着许多储能元件,当系统进行操作或发生故障时,变压器、互感器等含铁芯元件的非线性电感元件与系统中电容串联可能引起铁磁谐振,对电力系统安全运行构成危害。在中性点不接地的非直接接地系统中,铁磁式电压互感器引起的铁磁谐振过电压是常见的,是造成事故较多的一种内部过电压。这种过电压轻则使电压互感器一次熔丝熔断,重则烧毁电压互感器,甚至炸毁瓷绝缘子及避雷器造成系统停运。在一定的电源作用下会产生串联谐振现象,导致系统中出现严重的谐振过电压。 1、电压互感器引起铁磁谐振的发生原因分析 在中性点不接地系统中,为了监视对地绝缘,母线上常接有Y接线的电磁式电压互感器,如图1所示,图中u0为电源电势,C为线路等设备的对地电容,L为电压互感器激磁电感,R0为中性点串联消谐电阻。 在正常运行状态下电压互感器励磁感抗很大,其数值范围在兆殴级以上且各相对称。C数值视线路长短而定,线路愈长容抗愈小,即以1 km线路而言,其每相对地电容约0.004μF ,故其容抗小于1 MΩ,所以整个网络对地仍呈容性且基本对称,电网中性点的位移电压很小,接近地电位。但电压互感器的励磁电感随通过的电流大小而变化,其U-I特性如图2所示。

由图2可见,曲线的起始一段接近直线,其电感相应地保持常数。当激磁电流过大时,铁芯饱和,则L值随之大大降低。正常运行时铁芯工作在直线范围,当系统中出现某些波动,如电压互感器突然合闸的巨大涌流、线路瞬间单相弧光接地等,使电压互感器发生三相不同程度的饱和,以至破坏了电网的对称,电网中性点就出现较高的位移电压,造成工频谐振或激发分频谐振。 2、铁磁谐振的特点 对于铁磁谐振电路,在相同的电源电势作用下,回路可能不只有一种稳定的工作状态。电路到底稳定在哪种工作状态,要看外界冲击引起的过渡过程的情况。 TV的非线性铁磁特性是产生铁磁谐振的根本原因,但铁磁元件的饱和效应本身,也限制了过电压的幅值。此外回路损耗也使谐振过电压受到阻尼和限制。当回路电阻大于一定的数值时,就不会出现强烈的铁磁谐振过电压。 串联谐振电路,产生铁磁谐振过电压的的必要条件是ω0 = 1/L0C<ω。因此铁磁谐振可在很大的范围内发生。 维持谐振振荡和抵偿回路电阻损耗的能量均由工频电源供给。为使工频能量转化为其它谐振频率的能量,其转化过程必须是周期性,且有节律的,即…1/2(1,2,3…)倍频率的谐振。 铁磁谐振对TV的损坏,铁磁谐振(分频)一般应具备如下三个条件。 1、电磁式电压互感器(TV)的非线性效应,是产生铁磁谐振的主要原因。 2、TV感抗为容抗的100倍以内,即参数匹配在谐振范围。 3、要有激发条件,如投入和断开空载母线、TV突然合闸、单相接地突然消失、外界对系统的干扰或系统操作产生的过电压等。 由前面分析可知,事故中具备了3个条件,才导致了此次事故。当良站10 kV系统发生单相接地时,故障点流过电容电流,未接地的两相B、C相电压升高31/2,对系统产生扰动,在这一瞬间电压突变过程中,TV高压线圈的非接地两相的励磁电流就要突然增大,甚至饱和,由此构成相间串联谐振。饱和后的TV励磁电感变小,系统网络对地阻抗趋于感性,此时若系统网络的对地电感与对地电容相匹配,就形成共振回路,激发各种铁磁谐振过电压。尤其是分频铁磁谐振可导致相电压低频摆动,励磁感抗成倍下降,产生过电压,过电压幅值可达到近2~3.5Ue以上,但此过电压达不到避雷器的动作电压1.7 kV,故母线避雷器并未动作。同时,感抗下降会使励磁回路严重饱和,励磁电流急剧加大,电流大大超过额定值,据

电压互感器几种常见接地点的作用

图片: 图片:

图片: 本部分设定了隐藏,您已回复过了,以下是隐藏的内容 电压互感器的接地方式通常有三种: 一次侧中性点接地 二次侧线圈接地 互感器铁芯接地 三种接地的作用不尽相同,如下: 1)一次侧中性点接地。由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。如下图所示。因为电压互感器在系统中不仅有电压测量,而且还起继电保护的作用。 当系统中发生单相接地时,系统中会出现零序电流。如果一次侧中性点没有接地,那么一次侧就没有零序电流通路,二次侧开口三角形线圈两端也就不会感应出零序电压,继电器KV

就不会动作,发不出接地信号。 对于三相五柱式电压互感器,其一次侧中性点同样要接地。 由两只单相电压互感器组成的V-V形接线时,其一次侧是不允许接地的,因为这相当于系统的一相直接接地。而应在二次中性点接地,如下图所示。 2)二次侧接地。电压互感器二次侧要有一个接地点,这主要是出于安全上的考虑。当一次、二次侧绕组间的绝缘被高压击穿时,一次侧的高压会窜到二次侧,有了二次侧的接地,能确保人员和设备的安全。另外,通过接地,可以给绝缘监视装置提供相电压。 二次侧的接地方式通常有中性点接地和V相接地两种,如下图所示。 根据继电保护等具体要求加以选用。 采用V相接地时,中性点不能再直接接地。为了避免一、二次绕组间绝缘击穿后,一次侧高压窜入二次侧,故在二次侧中性点通过一个保护间隙接地。当高压窜入二次侧时,间隙击穿接地,v相绕组被短接,该相熔断器会熔断,起到保护作用。 二次侧接地点按规程规定,均应选在主控室保护屏经端子排接地,而在配电装置处只设置试验检修时的安全接地点。 3)铁心接地,在电压互感器外壳上有一个接地桩头,这是铁心和外壳的接地点,起安全保护作用。

低压配电系统接地方式及接地故障保护

低压配电系统接地方式及接地故障保护 0 前言 随着我国工业的急速发展, 电能已成为工业生产中最基本的不可代替的能源。然而, 当电能失去控制时,就会引发各类电气事故, 其中对人身伤害即触电事故是最常见的, 而人们最忽视的就是间接触电。保护接地和保护接零是防止间接触电最基本的措施。目前,供配电系统的接地方式主要有三种:即TN系统、TT系统和IT 系统三种形式。本文对上述三种中性点接地方式进行了分析与比较, 指出了他们各自的优缺点。 1IT 系统 IT 系统是三相三线式供电及接地系统, 如图1 所示: 该系统变压器(或发电机组三相输出)中性点不接地或经高阻抗接地, 无中性线(俗称零线)N, 只有线电压(380V), 无相电压 (220V), 电器设备保护接地线(PE 线)各自独立接地。 IT 系统在供电距离不长时, 供电可靠性高, 安全性好。电源 侧也可采取中性点经高阻抗接地。 IT 系统在一相接地时, 单相对地漏电电流小, 不破坏电源的 电压平衡。一般用于不允许停电的场所, 或是严格要求连续供电的地方。 如果一相发生接地故障, 通过熔断器等可以切断该相, 其它 两相可以供电。而且,用电设备有接地保护,当单相绝缘损坏碰到外

壳,使金属外壳呈带电状态时, 人员触及带电金属外壳可以避免触电事故的发生。这是因为电流经过两条并联电路流通, 一路通过接地线、大地, 另一路是通过人体、大地。由于接地电阻(要求不超过4Q ,最大不超过10Q)比人体电阻(最小1000 Q )小得多, 所以大部分电流通过接地体入地, 只有很小部分电流通过人体, 即通过人体的电流不超过人体安全电流,从而保护了设备和人员安全。 当中性点不接地系统单相接地电流超过规定值时, 为了避免产生断续电弧, 避免引起过电压或造成短路, 减小接地电弧电流并使电弧容易熄灭, 中性点应经消弧线圈接地。消弧线圈实际上就是电抗线圈。假设,L1 相对地短路, 由于中性点接地电抗的存在, 感性对抗电流滞后90°, 而线路分布电容电流超前90°, 从而有效减小了短路电流的电弧。 2TN 系统 TN系统采用接零保护,系统有一点直接接地,电气设备外露可导电部分通过保护线(或公用中性线PEN与接地连接。按照中性线与保护组合情况的不同,TN 系统又可分为三种型式, 即TN-C 系 统,TN-S系统和TN-C-S系统。 2.1TN-C 系统 TN-C系统(如图2)中保护零线(PE)与工作零线(N)共用,当发生电气设备相线与外壳接触故障时, 故障电流经中性线回流到接地点,故障电流较大。TN-C系统适用于三相负荷基本平衡场合, 若三相负荷不平衡,PE线中存在不平衡电流,使设备外壳带电,易造

常用电压互感器的接线

常用电压互感器的接线 电压互感器在三相电路中常用的接线方式有四种,如下图 1.一个单相电压互感器的接线,用于对称的三相电路,二次侧可接仪表和继电器,如图1(a)。 2.两个单相电压互感器的V/V形接线,可测量相间线电压,但不能测相电压,它广泛应用在20kV以下中性点不接地或经消弧线图接地的电网中。如图1(b)。 3.三个单相电压互感器接成Y0/Y0形,如图1(c)。可供给要求测量线电压的仪表和继电器,以及要求供给相电压的绝缘监察电压表。 4.一台三相五芯柱电压互感器接成Y0/Y0/Δ(开口三角形),如图1(d)所示。接成Y0形的二次线圈供电给仪表、继电器及绝缘监察电压表等。辅助二次线圈接成开口三角形,供电给绝缘监察电压继电器。当三相系统正常工作时,三相电压平衡,开口三角形两端电压为零。当某一相接地时,开口三角形两端出现零序电压,使绝缘监察电压继电器动作,发出信号。

V/V型的接线图分析 V/V连接的两个电压互感器二次侧两个开口端之间的电压与其一次侧的两个开口端电压存在对应的相量关系。也就是说,二次侧两个开口端及公共端之间的电压也同样满足电源三相电压的关系。因此,虽然“B相无电压”(未施加任何电压),输出端的电量仍然是三相电量。左图是正确接线,从相量图看三相平衡;右图是错误接线,从相量图看三相不平衡。 图1 (正确)图2(错误) 图3 根据ab和ub的线电压可以计算出ca线电压,。若二次侧ab相接反,从相量图看,则ca线电压变为。

电压互感器几种常见接地点的作用 一次侧中性点接地 由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。如下图所示。因为电压互感器在系统中不仅有电压测量,而且还起继电保护的作用。 当系统中发生单相接地时,系统中会出现零序电流。如果一次侧中性点没有接地,那么一次侧就没有零序电流通路,二次侧开口三角形线圈两端也就不会感应出零序电压,继电器KV就不会动作,发不出接地信号。 对于三相五柱式电压互感器,其一次侧中性点同样要接地。 由两只单相电压互感器组成的V-V形接线时,其一次侧是不允许接地的,因为这相当于系统的一相直接接地。而应在二次中性点接地,如下图所示。 二次侧接地 电压互感器二次侧要有一个接地点,这主要是出于安全上的考虑。当一次、二次侧绕组间的

配电系统

建筑工程低压供电使用的基本供电系统有三相四线制,但这些名词术语内涵不是十分严格。国际电工委员会(IEC )对此作了统一规定,称为TT 系统、TN 系统、IT 系统。其中TN 系统又分为TN-C 、TN-S 、TN-C-S 系统。下面内容就是对各种供电系统做一个扼要的介绍。 供电系统→IT 系统 TT 系统 TN 系统→TN-C TN-S TN-C-S (一)工程供电的基本方式 根据IEC 规定的各种保护方式、术语概念,低压配电系统按接地方式的不同分为三类,即TT 、TN 和IT 系统,分述如下。 (1)IT 方式供电系统: 1)I 表示电源侧变压器中性点没有工作接地,或经过高阻抗接地。每二个字母T 表示负载侧电气设备迚行保护接地。2)I T 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。一般用于不允许停电的场所,或者是要求严格地连续供电的地方,运用IT 方式供电系统,由于电源中

性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡。 3)I T 方式当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有保护接地,可以大大减少触电的危险性,使漏电设备的外壳对地电压在安全电压范围内。4)但是,如果I T 方式用在供电距离很长时,供电线路对大地的分布电容就不能忽视了。在负载发生漏电时,漏电电流经大地形成回路,使设备外壳带电电压升高,而保护设备又因电流小不一定动作,这是危险的。只有在供电距离不太长时才比较安全。 (2 )TT 方式供电系统 1)TT 方式第一个符号T 表示电力系统中性点直接接地;第二个符号T 表示负载设备外露不与带电体相接的金属导电部分与大地直接联接; 2 )在线电压380v供电系统,当设备漏电时,相电压220v 漏电流通过保护接地电阻、工作接地电阻串联形成回路,这时保护接地电阻的电压高于安全电压,不在安全范围内,是个不安全供电系统,在我国禁止使用TT 方式供电;

防止谐振过电压的措施

防止谐振过电压的措施 电力系统中一些电感、电容元件在系统进行操作或发生故障时可形成各种振荡回路,在一定的能源作用下,会产生串联谐振现象,导致系统某些元件出现严重的过电压。 谐振过电压分为以下几种: 1、线性谐振过电压谐振回路由不带铁芯的电感元件(如输电线路的电感,变压器的漏感)或励磁特性接近线性的带铁芯的电感元件(如消弧线圈)和系统中的电容元件所组成。 2、铁磁谐振过电压谐振回路由带铁芯的电感元件(如空载变压器、电压互感器)和系统的电容元件组成。因铁芯电感元件的饱和现象,使回路的电感参数是非线性的,这种含有非线性电感元件的回路在满足一定的谐振条件时,会产生铁磁谐振。 3、参数谐振过电压由电感参数作周期性变化的电感元件(如凸极发电机的同步电抗在Xd~Xq间周期变化)和系统电容元件(如空载线路)组成回路,当参数配合时,通过电感的周期性变化,不断向谐振系统输送能量,造成参数谐振过电压。 限制谐振过电压的主要措施有: 1、提高开关动作的同期性由于许多谐振过电压是在非全相运行条件下引起的,因此提高开关动作的同期性,防止非全相运行,可以有效防止谐振过电压的发生。 2、在并联高压电抗器中性点加装小电抗用这个措施可以阻断非

全相运行时工频电压传递及串联谐振。 3、破坏发电机产生自励磁的条件,防止参数谐振过电压。 4、严格执行调度规程 在运行方式上和倒闸操作过程中,防止断路器断口电容器与空 载母线及母线PT构成串联谐振回路,以防止因谐振过电压损坏设备。它包括两个方面: ①应避免用带断口电容器的断路器切带电磁式电压互感器的 空载母线。 ②避免用带断口电容器的回路的刀闸对带电磁式电压互感器的 空载母线进行合闸操作。 具体可采用下述方式来实现:在切空母线时,先拉开电压互 感器,对母线断电;在投空母线时,先断开被送电母线PT, 对母线送电,再合母线电压互感器。 5、避免操作过电压 在进行投切空母线操作时,加强母线电压监测,发生铁磁谐振 时,应立即合上带断口电容器的断路器,切除回路电容,终止 谐振,防止隐患发展形成事故。 6、中性接地点 增加母线对地电容或减少系统中电压互感器压中性点接地台数,即增大母线的对地感抗,从而减少自振固有频率,避免因系统由东而发生母线铁磁谐振过电压,如:在变电站基建设计时,采用

电压互感器的接地方式

电压互感器的接地方式通常有三种: ?一次侧中性点接地 ?二次侧线圈接地 ?互感器铁芯接地 三种接地的作用不尽相同,如下: 1)一次侧中性点接地。由三只单相电压互感器组成星形接线时,其一次侧中性点必须接地。如下图所示。因为电压互感器在系统中不仅有电压测量,而且还起继电保护的作用。 当系统中发生单相接地时,系统中会出现零序电流。如果一次侧中性点没有接地,那么一次侧就没有零序电流通路,二次侧开口三角形线圈两端也就不会感应出零序电压,继电器KV就不会动作,发不出接地信号。 对于三相五柱式电压互感器,其一次侧中性点同样要接地。 由两只单相电压互感器组成的V-V形接线时,其一次侧是不允许接地的,因为这相当于系统的一相直接接地。而应在二次中性点接地,如下图所示。

2)二次侧接地。电压互感器二次侧要有一个接地点,这主要是出于安全上的考虑。当一次、二次侧绕组间的绝缘被高压击穿时,一次侧的高压会窜到二次侧,有了二次侧的接地,能确保人员和设备的安全。另外,通过接地,可以给绝缘监视装置提供相电压。 二次侧的接地方式通常有中性点接地和V相接地两种,如下图所示。 根据继电保护等具体要求加以选用。

采用V相接地时,中性点不能再直接接地。为了避免一、二次绕组间绝缘击穿后,一次侧高压窜入二次侧,故在二次侧中性点通过一个保护间隙接地。当高压窜入二次侧时,间隙击穿接地,v相绕组被短接,该相熔断器会熔断,起到保护作用。 二次侧接地点按规程规定,均应选在主控室保护屏经端子排接地,而在配电装置处只设置试验检修时的安全接地点。 3)铁心接地,在电压互感器外壳上有一个接地桩头,这是铁心和外壳的接地点,起安全保护作用

配电系统保护接地形式

配电系统保护接地形式 GB9089.2规定了配电系统接地型式共有TN、,TT及IT三种。 1)接地型式文字代号的意义 TN、TT、IT三种型式均使用两个字母,以表示三相电力系统和电气装置的外露可导电部分(即设备的外壳、底座等)的对地关系。 第一个字母表示电力系统的对地关系,即 T:表示一点直接接地(通常为系统中性点); I:表示不接地(所有带电部分与地隔离),或通过阻抗(电阻器,电抗器)及通过等值线路接地。 第二个字母表示电气装置外露可导电部分的对地关系,即 T:表示独立于电力系统可接地点而直接接地; N:表示与电力系统可接地点直接进行电气连接。 在TN系统中,为了表示中性导体和保护导体的组合关系,有时在TN代号后面还可附加以下子母: S:表示中性导体和保护导体在结构上是分开; C:表示中性导体和保护导体在结构上是合一的(PEN 导体)。 保护导体(PE 导体)是为满足某些防护需要用来与下列任一部件电气连接的导体:外露可导电部分、外界可导电部分、主接地端子、接地极、电源接地点或人工接地点。 中型导体(N 导体)是与系统中性点连接并能其传输电能作用的导体。 保护中性导体(PEN 导体)兼具PE和N导体的功能。 2)各种接地型式的说明 TN系统。这系统的电力系统有一点直接接地,电气装置的外露可导电部分通过保护导体与该点连接。按PE和N导体的组合情况,TN系统可以分为以下三种型式: TN—S系统:PE和N导体在整个系统中是分开的(见图1—1 ) TN—C—S系统:系统中一部分PE和N导体合一(见图1—2 ) TN—C系统:PE和N导体在整个系统中是合一的(见图1—3 ) 图1—1 中性导体与保护导体在系统中是分开的TN系统(TN—S)

三相抗谐振电压互感器

三相抗谐振电压互感器JSZK1-10,JSZK2-10,JSZK2-10F 为改进型抗铁磁谐振三相电压互感器,提高了抗谐振防烧毁的能力,同时提高了计量精度,降低铁损。产品为半浇注式,体积小,气候适应性强,抗分频、工频谐振,不会过励烧毁。互感器采用芯式结构,使用优质冷轧硅钢片叠装成方型, 2、额定绝缘水平:12/42/75kV; 3、当系统发生单相接地时,可长期无损伤地承受系统单相接地时产生的高电压; 4、由于产品中性点采取消谐措施,安装时中性点直接接地; 使用条件: (1)海拔高度不超过1000米; (2)周围气温最大变化不超过-5℃~+40℃; (3)相对湿度不大于80%的地方; (4)安装环境中无腐蚀性的气体、蒸气或沉降物; (5)无导电尘埃(炭末、金属末等)的地方; (6)不可能发生火灾和危险的地方; (7)无强烈的震动或撞击的地方; 三相抗谐振电压互感器JSZK1-10,JSZK2-10,JSZK2-10F 为三相五柱式电压互感器之后,为消除因电力系统不同程度接地后而导致互感器发生铁磁谐振大量烧毁而设计的抗铁磁谐振的改进型产品,适用于交流 50Hz、额定电压10kV户外装置的电力系统中作电压、电能测量及继电保护用. 本型电压互感器为改进型抗铁磁谐振三相电压互感器,提高了抗谐振防烧毁的能力,同时提高了计量精度,降低铁损。产品采用三相三柱铁芯,零序回路采用独立铁芯。一次绕组为非全绝缘(故只能做感应耐压试验),一、二次绕组均用环氧树脂浇注绝缘,套装在铁芯柱上,组成三相一体结构,吊装在钢桶中。接线原

1、本型互感器能在120%额定电压下长期工作; 2、额定绝缘水平:12/42/75kV; 3、当系统发生单相接地时,可长期无损伤地承受系统单相接地时产生的高电压; 4、由于产品中性点采取消谐措施,安装时中性点直接接地; 使用条件: (1)、户外装置; (2)、环境温度:-30℃~+40℃; (3)、海拔高度不超过1000米; (4)、不可能发生火灾和危险的地方; (5)、无强烈的震动或撞击的地方;

电压互感器二次侧为什么有的电压互感器采用B相接地

电压互感器二次侧为什么有的电压互感器采用B相接地,而有的采用零相接地? 一般电压互感器的二次接地都在配电装置端子箱内经端子排接地。对220 千伏的电压互感器二次侧一般采用中性点接(也叫零相接地);对发电机及厂用电的电压互感器,大都采用二次侧B机接地。 为什么电压互感器的二次侧有两种接地方法呢?主要原因是: (1)习惯问题。通常有的地方(380伏低压厂用母线)为了节省电压互感器台数,选有V/V接。为了安全,二次侧总得有个接地点,这个接地点一般选在二次侧两线圈的公共点。而为了接线对称,习惯上总把一次侧的两个线圈的首端一个接在A相上,一个接在C相上,而把公共端接在B相。因此,二侧侧对应的公共点就是B 相,于是,成了B相接地。 从理论上讲,二次侧哪一相端头接地都可以,一次侧哪一相作为公共端的连接相也者可以,只要一、二次对应就行。 对于三个线圈星形连接的电压互感器有的也采用二次侧B相接地(如发电机及厂用高压母电压互感器),同样是为了接线对称的习惯问题。 有的星形连接的电压互感器,二次侧B相接地是为了与低压厂用各电压等级的电压互感器二次侧接方式相一致,因为在一个发电厂的厂用电中,总不希望同时存在几种电压互感器二次侧接地方式,不然的话,会给厂用电的二次接线造成不应有的麻烦。 (2)继电保护的特殊需要。220千伏的线路都装有距离保护,而距离保护对于电压互感器二次回路均要求零相接地,因为要接断线闭锁装置需要有零线。所以,220千伏系统的电压互感器是采用零相接地,即中性点接地而不采用B相接地。对于发电厂来说,为了满足不同要求,电压互感器二次侧既有中性点接地,又有B相接地的。当这两种接地方式的电压互感器都用于同期系统时,一般采用隔离变压器来解决因不同的接地方式引起的可能烧坏星形接线的电压互感器B相线圈的问题。 电压互感器二次侧B相接地的接地点一般放在熔断器之后。为什么B相也配置二次熔断器呢?这是为了防止当电压感器一、二次间击穿时,经B相接地点和一次侧中性点形成回路,使B相二次线圈短接以致烧坏。 凡采用B相接地的电压互感器二次侧中性点都接一个击穿保险器JB。这是考虑到在B相二次保险熔断的情况下,即使高压窜入低压,仍能击穿保险器,而使电压互感器二次有保护接地。击穿保险器动作电压约为500伏。 电压互感器开口三角形额定电压(单相): 用在大接地系统中的PT开口绕组额定电压为100V,用在小接地或不接地系统中的

浅谈供电系统的接地方式

浅谈供电系统的接地方式 1.绪论 工程施工用电的基本供电系统有(380V)三相三线制、(380/220V)三相四线制、三相五线制等,但这些名词术语内涵不是十分严格。国际电工委员会(IEC)对此作了统一规定,称为TT系统、TN系统、IT系统。其中TN系统又分为TN-C、TN-S、TN-C-S系统。下面就以上所指各种供电系统做一个简要的分析。 2.供电线路符号小结 2.1国际电工委员会(IEC)规定的供电方式符号中,第一个字母表示电力(电源)系统对地关系。如T表示是中性点直接接地;I表示所有带电部分绝缘(不接地)。 2.2第二个字母表示用电装置外露的金属部分对地的关系。如T表示设备外壳接地,它与系统中的其他任何接地点无直接关系;N表示负载采用接零保护。 2.3第三个字母表示工作零线与保护线的组合关系。如C表示工作零线与保护线是合一的(我们称零地合一),如TN-C;S表示工作零线与保护线是严格分开的,所以PE线称为专用保护线,如TN-S。 3.供电的基本方式的使用范围 3.1TN-S:适宜大中公共建筑中的配电系统。 3.2TN-C:适宜三相负荷平衡以及未装设剩余电流保护器的配电系统。 3.3TN-C-S:适宜小区居民住宅楼的配电系统。 3.4TT:是地区供电部门规定采用的配电系统或在TN接地系统中装设剩余电流保护器的配电系统。 3.5IT:适宜诸如消防配电系统、医院手术室等对不间断供电要求高的配电系统。 4.TT方式供电系统 TT方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT系统。第一个符号T表示电力系统中性点直接接地;第二个符号T表示负载设备金属外壳和正常不带电的金属部分与大地直接联接,而与系统如何接地无关。在TT系统中负载的所有接地均称为保护接地,如图1-1所示。 4.1TT方式供电系统特点 4.1.1当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。 4.1.2当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,因此TT系统不宜在380/220V供电系统中应用。 4.1.3TT系统接地装置耗用钢材多,而且难以回收、费工时、费料。 4.2TT方式供电系统的改进 现在有的施工单位是采用TT系统,施工单位专门安装一组接地装置,引出一条专用接地保护线,以减少需接地装置钢材用量,如图1-2所示。 4.2.1TT方式供电系统的改进的特点 4.2.1.1把新增加的专用保护线PE线和工作零线N分开,共用接地线与工作零线没有电的联系; 4.2.1.2正常运行时,工作零线可以有电流,而专用保护线没有电流;4.2.1.3TT系统适用于用电设备容量小且很分散的场合。 5.TN方式供电系统

相关主题
文本预览
相关文档 最新文档